1
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024; 124:11962-12005. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
3
|
Niu W, Guo J. Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology. Chem Rev 2024; 124:10577-10617. [PMID: 39207844 PMCID: PMC11470805 DOI: 10.1021/acs.chemrev.3c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Over the past two decades, genetic code expansion (GCE)-enabled methods for incorporating noncanonical amino acids (ncAAs) into proteins have significantly advanced the field of synthetic biology while also reaping substantial benefits from it. On one hand, they provide synthetic biologists with a powerful toolkit to enhance and diversify biological designs beyond natural constraints. Conversely, synthetic biology has not only propelled the development of ncAA incorporation through sophisticated tools and innovative strategies but also broadened its potential applications across various fields. This Review delves into the methodological advancements and primary applications of site-specific cellular incorporation of ncAAs in synthetic biology. The topics encompass expanding the genetic code through noncanonical codon addition, creating semiautonomous and autonomous organisms, designing regulatory elements, and manipulating and extending peptide natural product biosynthetic pathways. The Review concludes by examining the ongoing challenges and future prospects of GCE-enabled ncAA incorporation in synthetic biology and highlighting opportunities for further advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| |
Collapse
|
4
|
Schubert K, Karousis ED, Ban I, Lapointe CP, Leibundgut M, Bäumlin E, Kummerant E, Scaiola A, Schönhut T, Ziegelmüller J, Puglisi JD, Mühlemann O, Ban N. Universal features of Nsp1-mediated translational shutdown by coronaviruses. Mol Cell 2023; 83:3546-3557.e8. [PMID: 37802027 PMCID: PMC10575594 DOI: 10.1016/j.molcel.2023.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/16/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Nonstructural protein 1 (Nsp1) produced by coronaviruses inhibits host protein synthesis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp1 C-terminal domain was shown to bind the ribosomal mRNA channel to inhibit translation, but it is unclear whether this mechanism is broadly used by coronaviruses, whether the Nsp1 N-terminal domain binds the ribosome, or how Nsp1 allows viral RNAs to be translated. Here, we investigated Nsp1 from SARS-CoV-2, Middle East respiratory syndrome coronavirus (MERS-CoV), and Bat-Hp-CoV coronaviruses using structural, biophysical, and biochemical experiments, revealing a conserved role for the C-terminal domain. Additionally, the N-terminal domain of Bat-Hp-CoV Nsp1 binds to the decoding center of the 40S subunit, where it would prevent mRNA and eIF1A accommodation. Structure-based experiments demonstrated the importance of decoding center interactions in all three coronaviruses and showed that the same regions of Nsp1 are necessary for the selective translation of viral RNAs. Our results provide a mechanistic framework to understand how Nsp1 controls preferential translation of viral RNAs.
Collapse
Affiliation(s)
- Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8049, Switzerland
| | - Evangelos D Karousis
- Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Bern 3012, Switzerland.
| | - Ivo Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8049, Switzerland
| | - Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8049, Switzerland
| | - Emilie Bäumlin
- Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Bern 3012, Switzerland
| | - Eric Kummerant
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8049, Switzerland
| | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8049, Switzerland
| | - Tanja Schönhut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8049, Switzerland
| | - Jana Ziegelmüller
- Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern 3012, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8049, Switzerland.
| |
Collapse
|
5
|
Schubert K, Karousis ED, Ban I, Lapointe CP, Leibundgut M, Bäumlin E, Kummerant E, Scaiola A, Schönhut T, Ziegelmüller J, Puglisi JD, Mühlemann O, Ban N. Universal features of Nsp1-mediated translational shutdown by coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543022. [PMID: 37398176 PMCID: PMC10312502 DOI: 10.1101/2023.05.31.543022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Nonstructural protein 1 (Nsp1) produced by coronaviruses shuts down host protein synthesis in infected cells. The C-terminal domain of SARS-CoV-2 Nsp1 was shown to bind to the small ribosomal subunit to inhibit translation, but it is not clear whether this mechanism is broadly used by coronaviruses, whether the N-terminal domain of Nsp1 binds the ribosome, or how Nsp1 specifically permits translation of viral mRNAs. Here, we investigated Nsp1 from three representative Betacoronaviruses - SARS-CoV-2, MERS-CoV, and Bat-Hp-CoV - using structural, biophysical, and biochemical assays. We revealed a conserved mechanism of host translational shutdown across the three coronaviruses. We further demonstrated that the N-terminal domain of Bat-Hp-CoV Nsp1 binds to the decoding center of the 40S subunit, where it would prevent mRNA and eIF1A binding. Structure-based biochemical experiments identified a conserved role of these inhibitory interactions in all three coronaviruses and showed that the same regions of Nsp1 are responsible for the preferential translation of viral mRNAs. Our results provide a mechanistic framework to understand how Betacoronaviruses overcome translational inhibition to produce viral proteins.
Collapse
Affiliation(s)
- Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Evangelos D Karousis
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ivo Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Emilie Bäumlin
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Eric Kummerant
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Tanja Schönhut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Jana Ziegelmüller
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Andrews J, Gan Q, Fan C. "Not-so-popular" orthogonal pairs in genetic code expansion. Protein Sci 2023; 32:e4559. [PMID: 36585833 PMCID: PMC9850438 DOI: 10.1002/pro.4559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
During the past decade, genetic code expansion has been proved to be a powerful tool for protein studies and engineering. As the key part, a series of orthogonal pairs have been developed to site-specifically incorporate hundreds of noncanonical amino acids (ncAAs) into proteins by using bacteria, yeast, mammalian cells, animals, or plants as hosts. Among them, the pair of tyrosyl-tRNA synthetase/tRNATyr from Methanococcus jannaschii and the pair of pyrrolysyl-tRNA synthetase/tRNAPyl from Methanosarcina species are the most popular ones. Recently, other "not-so-popular" orthogonal pairs have started to attract attentions, because they can provide more choices of ncAA candidates and are necessary for simultaneous incorporation of multiple ncAAs into a single protein. Here, we summarize the development and applications of those "not-so-popular" orthogonal pairs, providing guidance for studying and engineering proteins.
Collapse
Affiliation(s)
- Joseph Andrews
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleArkansasUSA
| | - Qinglei Gan
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleArkansasUSA
| | - Chenguang Fan
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleArkansasUSA
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
7
|
Zhang Y, Ding W, Wang Z, Zhao H, Shi S. Development of Host-Orthogonal Genetic Systems for Synthetic Biology. Adv Biol (Weinh) 2021; 5:e2000252. [PMID: 33729696 DOI: 10.1002/adbi.202000252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Indexed: 12/17/2022]
Abstract
The construction of a host-orthogonal genetic system can not only minimize the impact of host-specific nuances on fine-tuning of gene expression, but also expand cellular functions such as in vivo continuous evolution of genes based on an error-prone DNA polymerase. It represents an emerging powerful approach for making biology easier to engineer. In this review, the recent advances are described on the design of genetic systems that can be stably inherited in the host cells and are responsible for important biological processes including DNA replication, RNA transcription, protein translation, and gene regulation. Their applications in synthetic biology are summarized and the future challenges and opportunities are discussed in developing such systems.
Collapse
Affiliation(s)
- Yang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology) Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Zhihui Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
8
|
Wang T, Liang C, Xu H, An Y, Xiao S, Zheng M, Liu L, Nie L. Incorporation of nonstandard amino acids into proteins: principles and applications. World J Microbiol Biotechnol 2020; 36:60. [PMID: 32266578 DOI: 10.1007/s11274-020-02837-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/04/2020] [Indexed: 01/01/2023]
Abstract
The cellular ribosome shows a naturally evolved strong preference for the synthesis of proteins with standard amino acids. An in-depth understanding of the translation process enables scientists to go beyond this natural limitation and engineer translating systems capable of synthesizing proteins with artificially designed and synthesized non-standard amino acids (nsAA) featuring more bulky sidechains. The sidechains can be functional groups, with chosen biophysical or chemical activities, that enable the direct application of these proteins. Alternatively, the sidechains can be designed to contain highly reactive groups: enabling the ready formation of conjugates via a covalent bond between the sidechain and other chemicals or biomolecules. This co-translational incorporation of nsAAs into proteins allows for a vast number of possible applications. In this paper, we first systematically summarized the advances in the engineering of the translation system. Subsequently, we reviewed the extensive applications of these nsAA-containing proteins (after chemical modification) by discussing representative reports on how they can be utilized for different purposes. Finally, we discussed the direction of further studies which could be undertaken to improve the current technology utilized in incorporating nsAAs in order to use them to their full potential and improve accessibility across disciplines.
Collapse
Affiliation(s)
- Tianwen Wang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Chen Liang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Hongjv Xu
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Yafei An
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Sha Xiao
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Mengyuan Zheng
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Lu Liu
- College of International Education, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Lei Nie
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China.
| |
Collapse
|
9
|
Augustine G, Raghavan S, NumbiRamudu K, Easwaramoorthi S, Shanmugam G, Seetharani Murugaiyan J, Gunasekaran K, Govind C, Karunakaran V, Ayyadurai N. Excited State Electronic Interconversion and Structural Transformation of Engineered Red-Emitting Green Fluorescent Protein Mutant. J Phys Chem B 2019; 123:2316-2324. [PMID: 30789731 DOI: 10.1021/acs.jpcb.8b10516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Red fluorescent proteins with a large Stokes shift offer a limited autofluorescence background and are used in deep tissue imaging. Here, by introducing the free amino group in Aequorea victoria, the electrostatic charges of the p-hydroxybenzylidene imidazolinone chromophore of green fluorescent protein (GFP) have been altered resulting in an unusual, 85 nm red-shifted fluorescence. The structural and biophysical analysis suggested that the red shift is due to positional shift occupancy of Glu222 and Arg96, resulting in extended conjugation and a relaxed chromophore. Femtosecond transient absorption spectra exhibited that the excited state relaxation dynamics of red-shifted GFP (rGFP) (τ4 = 234 ps) are faster compared to the A. victoria green fluorescent protein (τ4 = 3.0 ns). The nanosecond time-resolved emission spectra of rGFP reveal the continuous spectral shift during emission by a solvent reorientation in the chromophore. Finally, the molecular dynamics simulations revealed the rearrangement of the hydrogen bond interactions in the chromophore vicinity, reshaping the symmetric distribution of van der Waals space to fine tune the GFP structure resulting from highly red-shifted rGFP.
Collapse
Affiliation(s)
- George Augustine
- Department of Biochemistry and Biotechnology , Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI) , Chennai 600 020 , India
| | - Sriram Raghavan
- Department of Crystallography and Biophysics , University of Madras , Chennai 600 025 , India
| | - Kamini NumbiRamudu
- Department of Biochemistry and Biotechnology , Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI) , Chennai 600 020 , India
| | | | | | | | - Krishnasamy Gunasekaran
- Department of Crystallography and Biophysics , University of Madras , Chennai 600 025 , India
| | - Chinju Govind
- Photosciences and Photonics Section, Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology , Thiruvananthapuram , 695 019 Kerala , India
| | - Venugopal Karunakaran
- Photosciences and Photonics Section, Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology , Thiruvananthapuram , 695 019 Kerala , India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology , Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI) , Chennai 600 020 , India
| |
Collapse
|
10
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
11
|
Shi M, Zhang H, Wang L, Zhu C, Sheng K, Du Y, Wang K, Dias A, Chen S, Whitman M, Wang E, Reed R, Cheng H. Premature Termination Codons Are Recognized in the Nucleus in A Reading-Frame Dependent Manner. Cell Discov 2015; 1. [PMID: 26491543 PMCID: PMC4610414 DOI: 10.1038/celldisc.2015.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
mRNAs containing premature termination codons (PTCs) are known to be degraded via nonsense-mediated mRNA decay (NMD). Unexpectedly, we found that mRNAs containing any type of PTC (UAA, UAG, UGA) are detained in the nucleus whereas their wild-type counterparts are rapidly exported. This retention is strictly reading-frame dependent. Strikingly, our data indicate that translating ribosomes in the nucleus proofread the frame and detect the PTCs in the nucleus. Moreover, the shuttling NMD protein Upf1 specifically associates with PTC+ mRNA in the nucleus and is required for nuclear retention of PTC+ mRNA. Together, our data lead to a working model that PTCs are recognized in the nucleus by translating ribosomes, resulting in recruitment of Upf1, which in turn functions in nuclear retention of PTC+ mRNA. Nuclear PTC recognition adds a new layer of proofreading for mRNA and may be vital for ensuring the extraordinary fidelity required for protein production.
Collapse
Affiliation(s)
- Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changlan Zhu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Sheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanhua Du
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Anusha Dias
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Enduo Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Robin Reed
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
12
|
Dumas A, Lercher L, Spicer CD, Davis BG. Designing logical codon reassignment - Expanding the chemistry in biology. Chem Sci 2015; 6:50-69. [PMID: 28553457 PMCID: PMC5424465 DOI: 10.1039/c4sc01534g] [Citation(s) in RCA: 373] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/14/2014] [Indexed: 12/18/2022] Open
Abstract
Over the last decade, the ability to genetically encode unnatural amino acids (UAAs) has evolved rapidly. The programmed incorporation of UAAs into recombinant proteins relies on the reassignment or suppression of canonical codons with an amino-acyl tRNA synthetase/tRNA (aaRS/tRNA) pair, selective for the UAA of choice. In order to achieve selective incorporation, the aaRS should be selective for the designed tRNA and UAA over the endogenous amino acids and tRNAs. Enhanced selectivity has been achieved by transferring an aaRS/tRNA pair from another kingdom to the organism of interest, and subsequent aaRS evolution to acquire enhanced selectivity for the desired UAA. Today, over 150 non-canonical amino acids have been incorporated using such methods. This enables the introduction of a large variety of structures into proteins, in organisms ranging from prokaryote, yeast and mammalian cells lines to whole animals, enabling the study of protein function at a level that could not previously be achieved. While most research to date has focused on the suppression of 'non-sense' codons, recent developments are beginning to open up the possibility of quadruplet codon decoding and the more selective reassignment of sense codons, offering a potentially powerful tool for incorporating multiple amino acids. Here, we aim to provide a focused review of methods for UAA incorporation with an emphasis in particular on the different tRNA synthetase/tRNA pairs exploited or developed, focusing upon the different UAA structures that have been incorporated and the logic behind the design and future creation of such systems. Our hope is that this will help rationalize the design of systems for incorporation of unexplored unnatural amino acids, as well as novel applications for those already known.
Collapse
Affiliation(s)
- Anaëlle Dumas
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Lukas Lercher
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Christopher D Spicer
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Benjamin G Davis
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| |
Collapse
|
13
|
Leisle L, Valiyaveetil F, Mehl RA, Ahern CA. Incorporation of Non-Canonical Amino Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 869:119-51. [PMID: 26381943 DOI: 10.1007/978-1-4939-2845-3_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this chapter we discuss the strengths, caveats and technical considerations of three approaches for reprogramming the chemical composition of selected amino acids within a membrane protein. In vivo nonsense suppression in the Xenopus laevis oocyte, evolved orthogonal tRNA and aminoacyl-tRNA synthetase pairs and protein ligation for biochemical production of semisynthetic proteins have been used successfully for ion channel and receptor studies. The level of difficulty for the application of each approach ranges from trivial to technically demanding, yet all have untapped potential in their application to membrane proteins.
Collapse
Affiliation(s)
- Lilia Leisle
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Road, 52246, Iowa City, IA, USA
| | - Francis Valiyaveetil
- Department of Physiology and Pharmacology, Oregon Health and Sciences University, 97239, Portland, OR, USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University Corvallis, 97331, Corvallis, OR, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Road, 52246, Iowa City, IA, USA.
| |
Collapse
|
14
|
Quast RB, Claussnitzer I, Merk H, Kubick S, Gerrits M. Synthesis and site-directed fluorescence labeling of azido proteins using eukaryotic cell-free orthogonal translation systems. Anal Biochem 2014; 451:4-9. [PMID: 24491444 DOI: 10.1016/j.ab.2014.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Eukaryotic cell-free systems based on wheat germ and Spodoptera frugiperda insect cells were equipped with an orthogonal amber suppressor tRNA-synthetase pair to synthesize proteins with a site-specifically incorporated p-azido-l-phenylalanine residue in order to provide their chemoselective fluorescence labeling with azide-reactive dyes by Staudinger ligation. The specificity of incorporation and bioorthogonality of labeling within complex reaction mixtures was shown by means of translation and fluorescence detection of two model proteins: β-glucuronidase and erythropoietin. The latter contained the azido amino acid in proximity to a signal peptide for membrane translocation into endogenous microsomal vesicles of the insect cell-based system. The results indicate a stoichiometric incorporation of the azido amino acid at the desired position within the proteins. Moreover, the compatibility of cotranslational protein translocation, including glycosylation and amber suppression-based incorporation of p-azido-l-phenylalanine within a cell-free system, is demonstrated. The presented approach should be particularly useful for providing eukaryotic and membrane-associated proteins for investigation by fluorescence-based techniques.
Collapse
Affiliation(s)
- Robert B Quast
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, 14476 Potsdam, Germany
| | | | | | - Stefan Kubick
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, 14476 Potsdam, Germany
| | | |
Collapse
|
15
|
Tian H, Deng D, Huang J, Yao D, Xu X, Gao X. Screening system for orthogonal suppressor tRNAs based on the species-specific toxicity of suppressor tRNAs. Biochimie 2012; 95:881-8. [PMID: 23274575 DOI: 10.1016/j.biochi.2012.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 12/07/2012] [Indexed: 11/19/2022]
Abstract
Incorporation of unnatural amino acids into proteins in vivo, known as expanding the genetic code, is a useful technology in the pharmaceutical and biotechnology industries. This procedure requires an orthogonal suppressor tRNA that is uniquely acylated with the desired unnatural amino acid by an orthogonal aminoacyl-tRNA synthetase. In order to enhance the numbers and types of suppressor tRNAs available for engineering genetic codes, we have developed a convenient screening system to generate suppressor tRNAs with good orthogonality from the available library of suppressor tRNA mutants. While developing an amber suppressor tRNA, we discovered that amber suppressor tRNA with poor orthogonality inhibited the growth rate of the host, indicating that suppressor tRNA demonstrates a species-specific toxicity to host cells. We verified this species-specific toxicity using amber suppressor tRNA mutants from prokaryotes, eukaryotes, and archaea. We also confirmed that adding terminal CCA to Methanococcus jannaschii tRNA(Tyr) mutant is important to its toxicity against Escherichia coli. Further, we compared the toxicity of the suppressor tRNA toward the host with differing copy numbers. Using the combined toxicity of suppressor tRNA toward the host with blue-white selection, we developed a convenient screening system for orthogonal suppressor tRNA that could serve as a general platform for generating tRNA/aaRS pairs and thereby obtained three suppressor tRNA mutants with high orthogonality from the tRNA library derived from Mj tRNA(Tyr).
Collapse
Affiliation(s)
- Hong Tian
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Hoesl MG, Budisa N. In Vivo Incorporation of Multiple Noncanonical Amino Acids into Proteins. Angew Chem Int Ed Engl 2011; 50:2896-902. [DOI: 10.1002/anie.201005680] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Indexed: 11/11/2022]
|
17
|
Hoesl MG, Budisa N. Paralleler In-vivo-Einbau von mehreren nichtkanonischen Aminosäuren in Proteine. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005680] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Thibodeaux GN, Liang X, Moncivais K, Umeda A, Singer O, Alfonta L, Zhang ZJ. Transforming a pair of orthogonal tRNA-aminoacyl-tRNA synthetase from Archaea to function in mammalian cells. PLoS One 2010; 5:e11263. [PMID: 20582317 PMCID: PMC2889833 DOI: 10.1371/journal.pone.0011263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Accepted: 06/01/2010] [Indexed: 11/19/2022] Open
Abstract
A previously engineered Methanocaldococcus jannaschii tRNA(CUA Tyr)-tyrosyl-tRNA synthetase pair orthogonal to Escherichia coli was modified to become orthogonal in mammalian cells. The resulting tRNA(CUA Tyr)-tyrosyl-tRNA synthetase pair was able to suppress an amber codon in the green fluorescent protein, GFP, and in a foldon protein in mammalian cells. The methodology reported here will allow rapid transformation of the much larger collection of existing tyrosyl-tRNA synthetases that were already evolved for the incorporation of an array of over 50 unnatural amino acids into proteins in Escherichia coli into proteins in mammalian cells. Thus we will be able to introduce a large array of possibilities for protein modifications in mammalian cells.
Collapse
Affiliation(s)
- Gabrielle Nina Thibodeaux
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Xiang Liang
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Kathryn Moncivais
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Aiko Umeda
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Oded Singer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Lital Alfonta
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (LA); (ZJZ)
| | - Zhiwen Jonathan Zhang
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (LA); (ZJZ)
| |
Collapse
|
19
|
|
20
|
Iraha F, Oki K, Kobayashi T, Ohno S, Yokogawa T, Nishikawa K, Yokoyama S, Sakamoto K. Functional replacement of the endogenous tyrosyl-tRNA synthetase-tRNATyr pair by the archaeal tyrosine pair in Escherichia coli for genetic code expansion. Nucleic Acids Res 2010; 38:3682-91. [PMID: 20159998 PMCID: PMC2887954 DOI: 10.1093/nar/gkq080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Non-natural amino acids have been genetically encoded in living cells, using aminoacyl-tRNA synthetase-tRNA pairs orthogonal to the host translation system. In the present study, we engineered Escherichia coli cells with a translation system orthogonal to the E. coli tyrosyl-tRNA synthetase (TyrRS)-tRNA(Tyr) pair, to use E. coli TyrRS variants for non-natural amino acids in the cells without interfering with tyrosine incorporation. We showed that the E. coli TyrRS-tRNA(Tyr) pair can be functionally replaced by the Methanocaldococcus jannaschii and Saccharomyces cerevisiae tyrosine pairs, which do not cross-react with E. coli TyrRS or tRNA(Tyr). The endogenous TyrRS and tRNA(Tyr) genes were then removed from the chromosome of the E. coli cells expressing the archaeal TyrRS-tRNA(Tyr) pair. In this engineered strain, 3-iodo-L-tyrosine and 3-azido-L-tyrosine were each successfully encoded with the amber codon, using the E. coli amber suppressor tRNATyr and a TyrRS variant, which was previously developed for 3-iodo-L-tyrosine and was also found to recognize 3-azido-L-tyrosine. The structural basis for the 3-azido-L-tyrosine recognition was revealed by X-ray crystallography. The present engineering allows E. coli TyrRS variants for non-natural amino acids to be developed in E. coli, for use in both eukaryotic and bacterial cells for genetic code expansion.
Collapse
Affiliation(s)
- Fumie Iraha
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 and Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Kenji Oki
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 and Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Takatsugu Kobayashi
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 and Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Satoshi Ohno
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 and Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Takashi Yokogawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 and Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Kazuya Nishikawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 and Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 and Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
- *To whom correspondence should be addressed. Tel: +81 45 503 9196; Fax: +81 45 503 9195;
| | - Kensaku Sakamoto
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 and Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
- *To whom correspondence should be addressed. Tel: +81 45 503 9196; Fax: +81 45 503 9195;
| |
Collapse
|
21
|
Wang Q, Parrish AR, Wang L. Expanding the genetic code for biological studies. CHEMISTRY & BIOLOGY 2009; 16:323-36. [PMID: 19318213 PMCID: PMC2696486 DOI: 10.1016/j.chembiol.2009.03.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 11/15/2022]
Abstract
Using an orthogonal tRNA-synthetase pair, unnatural amino acids can be genetically encoded with high efficiency and fidelity, and over 40 unnatural amino acids have been site-specifically incorporated into proteins in Escherichia coli, yeast, or mammalian cells. Novel chemical or physical properties embodied in these amino acids enable new means for tailored manipulation of proteins. This review summarizes the methodology and recent progress in expanding this technology to eukaryotic cells. Applications of genetically encoded unnatural amino acids are highlighted with reports on labeling and modifying proteins, probing protein structure and function, identifying and regulating protein activity, and generating proteins with new properties. Genetic incorporation of unnatural amino acids provides a powerful method for investigating a wide variety of biological processes both in vitro and in vivo.
Collapse
Affiliation(s)
- Qian Wang
- The Jack H. Skirball Center for Chemical Biology & Proteomics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Angela R. Parrish
- The Jack H. Skirball Center for Chemical Biology & Proteomics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lei Wang
- The Jack H. Skirball Center for Chemical Biology & Proteomics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
22
|
Mascarenhas AP, An S, Rosen AE, Martinis SA, Musier-Forsyth K. Fidelity Mechanisms of the Aminoacyl-tRNA Synthetases. PROTEIN ENGINEERING 2009. [DOI: 10.1007/978-3-540-70941-1_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Gáspári Z, Pál G, Perczel A. A redesigned genetic code for selective labeling in protein NMR. Bioessays 2008; 30:772-80. [DOI: 10.1002/bies.20786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Köhrer C, RajBhandary UL. The many applications of acid urea polyacrylamide gel electrophoresis to studies of tRNAs and aminoacyl-tRNA synthetases. Methods 2008; 44:129-38. [PMID: 18241794 PMCID: PMC2277081 DOI: 10.1016/j.ymeth.2007.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022] Open
Abstract
Here we describe the many applications of acid urea polyacrylamide gel electrophoresis (acid urea PAGE) followed by Northern blot analysis to studies of tRNAs and aminoacyl-tRNA synthetases. Acid urea PAGE allows the electrophoretic separation of different forms of a tRNA, discriminated by changes in bulk, charge, and/or conformation that are brought about by aminoacylation, formylation, or modification of a tRNA. Among the examples described are (i) analysis of the effect of mutations in the Escherichia coli initiator tRNA on its aminoacylation and formylation; (ii) evidence of orthogonality of suppressor tRNAs in mammalian cells and yeast; (iii) analysis of aminoacylation specificity of an archaeal prolyl-tRNA synthetase that can aminoacylate archaeal tRNA(Pro) with cysteine, but does not aminoacylate archaeal tRNA(Cys) with cysteine; (iv) identification and characterization of the AUA-decoding minor tRNA(Ile) in archaea; and (v) evidence that the archaeal minor tRNA(Ile) contains a modified base in the wobble position different from lysidine found in the corresponding eubacterial tRNA.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/analysis
- Animals
- Archaea/metabolism
- Blotting, Northern/methods
- Electrophoresis, Polyacrylamide Gel/methods
- Humans
- Hydrogen-Ion Concentration
- Lysine/analogs & derivatives
- Lysine/biosynthesis
- Protein Engineering/methods
- Pyrimidine Nucleosides/biosynthesis
- RNA, Bacterial/isolation & purification
- RNA, Transfer/analysis
- RNA, Transfer/isolation & purification
- RNA, Transfer, Cys/biosynthesis
- RNA, Transfer, Ile/metabolism
- RNA, Transfer, Met/metabolism
- Urea
Collapse
Affiliation(s)
- Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Uttam L. RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Ye S, Köhrer C, Huber T, Kazmi M, Sachdev P, Yan EC, Bhagat A, RajBhandary UL, Sakmar TP. Site-specific Incorporation of Keto Amino Acids into Functional G Protein-coupled Receptors Using Unnatural Amino Acid Mutagenesis. J Biol Chem 2008; 283:1525-1533. [DOI: 10.1074/jbc.m707355200] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Tsunoda M, Kusakabe Y, Tanaka N, Ohno S, Nakamura M, Senda T, Moriguchi T, Asai N, Sekine M, Yokogawa T, Nishikawa K, Nakamura KT. Structural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms. Nucleic Acids Res 2007; 35:4289-300. [PMID: 17576676 PMCID: PMC1934993 DOI: 10.1093/nar/gkm417] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/08/2007] [Accepted: 05/08/2007] [Indexed: 11/13/2022] Open
Abstract
The specific aminoacylation of tRNA by tyrosyl-tRNA synthetases (TyrRSs) relies on the identity determinants in the cognate tRNA(Tyr)s. We have determined the crystal structure of Saccharomyces cerevisiae TyrRS (SceTyrRS) complexed with a Tyr-AMP analog and the native tRNA(Tyr)(GPsiA). Structural information for TyrRS-tRNA(Tyr) complexes is now full-line for three kingdoms. Because the archaeal/eukaryotic TyrRSs-tRNA(Tyr)s pairs do not cross-react with their bacterial counterparts, the recognition modes of the identity determinants by the archaeal/eukaryotic TyrRSs were expected to be similar to each other but different from that by the bacterial TyrRSs. Interestingly, however, the tRNA(Tyr) recognition modes of SceTyrRS have both similarities and differences compared with those in the archaeal TyrRS: the recognition of the C1-G72 base pair by SceTyrRS is similar to that by the archaeal TyrRS, whereas the recognition of the A73 by SceTyrRS is different from that by the archaeal TyrRS but similar to that by the bacterial TyrRS. Thus, the lack of cross-reactivity between archaeal/eukaryotic and bacterial TyrRS-tRNA(Tyr) pairs most probably lies in the different sequence of the last base pair of the acceptor stem (C1-G72 vs G1-C72) of tRNA(Tyr). On the other hand, the recognition mode of Tyr-AMP is conserved among the TyrRSs from the three kingdoms.
Collapse
Affiliation(s)
- Masaru Tsunoda
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshio Kusakabe
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Nobutada Tanaka
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Satoshi Ohno
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Masashi Nakamura
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Toshiya Senda
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Tomohisa Moriguchi
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Norio Asai
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Mitsuo Sekine
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Takashi Yokogawa
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kazuya Nishikawa
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kazuo T. Nakamura
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
27
|
Fukunaga JI, Gouda M, Umeda K, Ohno S, Yokogawa T, Nishikawa K. Use of RNase P for efficient preparation of yeast tRNATyr transcript and its mutants. J Biochem 2007; 139:123-7. [PMID: 16428327 DOI: 10.1093/jb/mvj005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Because T7 RNA polymerase has a strong preference for particular sequences to initiate transcription, some RNAs having pyrimidine-rich sequences at their 5'-end (yeast tRNA(Tyr), for example) are hardly transcribed by this enzyme. To circumvent this inconvenience, we have developed an efficient method for in vitro preparation of such tRNAs. The RNA of interest is first transcribed as a precursor form that has purine-rich extra sequences at its 5'-end, then processed with RNase P to generate the objective tRNAs. By using this protocol, we were able to prepare easily and efficiently yeast tRNA(Tyr) transcript and its mutants harboring base substitutions within the anticodon loop and/or acceptor stem regions. Aminoacylation analyses of these tRNA transcripts with yeast tyrosyl-tRNA synthetase revealed that the replacement of G34 by C34 (mutation to amber suppressor) severely impaired the aminoacylation, whereas the replacement of the U4:G69 wobble base-pair in the acceptor stem region by C4:G69 normal Watson-Crick type base-pair improved it.
Collapse
Affiliation(s)
- Jun-Ichi Fukunaga
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Cell-free translation systems have developed significantly over the last two decades and improvements in yield have resulted in their use for protein production in the laboratory. These systems have protein engineering applications, such as the production of proteins containing unnatural amino acids and development of proteins exhibiting novel functions. Recently, it has been suggested that cell-free translation systems might be used as the fundamental basis for cell-like systems. We review recent progress in the field of cell-free translation systems and describe their use as tools for protein production and engineering.
Collapse
Affiliation(s)
- Yoshihiro Shimizu
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba, Japan
| | | | | | | | | |
Collapse
|
29
|
Abstract
Recently, a method to encode unnatural amino acids with diverse physicochemical and biological properties genetically in bacteria, yeast and mammalian cells was developed. Over 30 unnatural amino acids have been co-translationally incorporated into proteins with high fidelity and efficiency using a unique codon and corresponding transfer-RNA:aminoacyl-tRNA-synthetase pair. This provides a powerful tool for exploring protein structure and function in vitro and in vivo, and for generating proteins with new or enhanced properties.
Collapse
Affiliation(s)
- Jianming Xie
- Department of Chemistry and Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
30
|
Abstract
Recently, a general method was developed that makes it possible to genetically encode unnatural amino acids with diverse physical, chemical, or biological properties in Escherichia coli, yeast, and mammalian cells. More than 30 unnatural amino acids have been incorporated into proteins with high fidelity and efficiency by means of a unique codon and corresponding tRNA/aminoacyl-tRNA synthetase pair. These include fluorescent, glycosylated, metal-ion-binding, and redox-active amino acids, as well as amino acids with unique chemical and photochemical reactivity. This methodology provides a powerful tool both for exploring protein structure and function in vitro and in vivo and for generating proteins with new or enhanced properties.
Collapse
Affiliation(s)
- Lei Wang
- The Jack H. Skirball Center for Chemical Biology & Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
31
|
Fukunaga JI, Yokogawa T, Ohno S, Nishikawa K. Misacylation of yeast amber suppressor tRNA(Tyr) by E. coli lysyl-tRNA synthetase and its effective repression by genetic engineering of the tRNA sequence. J Biochem 2006; 139:689-96. [PMID: 16672269 DOI: 10.1093/jb/mvj078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Through an exhaustive search for Escherichia coli aminoacyl-tRNA synthetase(s) responsible for the misacylation of yeast suppressor tRNA(Tyr), E. coli lysyl-tRNA synthetase was found to have a weak activity to aminoacylate yeast amber suppressor tRNA(Tyr) (CUA) with L-lysine. Since our protein-synthesizing system for site-specific incorporation of unnatural amino acids into proteins is based on the use of yeast suppressor tRNA(Tyr)/tyrosyl-tRNA synthetase (TyrRS) pair as the "carrier" of unusual amino acid in E. coli translation system, this misacylation must be repressed as low as possible. We have succeeded in effectively repressing the misacylation by changing several nucleotides in this tRNA by genetic engineering. This "optimized" tRNA together with our mutant TyrRS should serve as an efficient and faithful tool for site-specific incorporation of unnatural amino acids into proteins in a protein-synthesizing system in vitro or in vivo.
Collapse
Affiliation(s)
- Jun-ichi Fukunaga
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193
| | | | | | | |
Collapse
|
32
|
Fukunaga JI, Ohno S, Nishikawa K, Yokogawa T. A base pair at the bottom of the anticodon stem is reciprocally preferred for discrimination of cognate tRNAs by Escherichia coli lysyl- and glutaminyl-tRNA synthetases. Nucleic Acids Res 2006; 34:3181-8. [PMID: 16772402 PMCID: PMC1483225 DOI: 10.1093/nar/gkl414] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 12/02/2022] Open
Abstract
Although the yeast amber suppressor tRNA(Tyr) is a good candidate for a carrier of unnatural amino acids into proteins, slight misacylation with lysine was found to occur in an Escherichia coli protein synthesis system. Although it was possible to restrain the mislysylation by genetically engineering the anticodon stem region of the amber suppressor tRNA(Tyr), the mutant tRNA showing the lowest acceptance of lysine was found to accept a trace level of glutamine instead. Moreover, the glutamine-acceptance of various tRNA(Tyr) transcripts substituted at the anticodon stem region varied in reverse proportion to the lysine-acceptance, similar to a 'seesaw'. The introduction of a C31-G39 base pair at the site was most effective for decreasing the lysine-acceptance and increasing the glutamine-acceptance. When the same substitution was introduced into E.coli tRNA(Lys) transcripts, the lysine-accepting activity was decreased by 100-fold and faint acceptance of glutamine was observed. These results may support the idea that there are some structural element(s) in the anticodon stem of tRNA, which are not shared by aminoacyl-tRNA synthetases that have similar recognition sites in the anticodon, such as E.coli lysyl- and glutaminyl-tRNA synthetases.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Anticodon/chemistry
- Base Pairing
- Base Sequence
- Escherichia coli/enzymology
- Glutamine/metabolism
- Lysine/metabolism
- Lysine-tRNA Ligase/metabolism
- Molecular Sequence Data
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/genetics
- RNA, Transfer, Tyr/metabolism
- Substrate Specificity
- Suppression, Genetic
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
- Jun-ichi Fukunaga
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 YanagidoGifu 501-1193, Japan
| | - Satoshi Ohno
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 YanagidoGifu 501-1193, Japan
| | - Kazuya Nishikawa
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 YanagidoGifu 501-1193, Japan
| | - Takashi Yokogawa
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 YanagidoGifu 501-1193, Japan
| |
Collapse
|
33
|
Bernard D, Akochy PM, Beaulieu D, Lapointe J, Roy PH. Two residues in the anticodon recognition domain of the aspartyl-tRNA synthetase from Pseudomonas aeruginosa are individually implicated in the recognition of tRNAAsn. J Bacteriol 2006; 188:269-74. [PMID: 16352843 PMCID: PMC1317590 DOI: 10.1128/jb.188.1.269-274.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many organisms, the formation of asparaginyl-tRNA is not done by direct aminoacylation of tRNA(Asn) but by specific tRNA-dependent transamidation of aspartyl-tRNA(Asn). This transamidation pathway involves a nondiscriminating aspartyl-tRNA synthetase (AspRS) that charges both tRNA(Asp) and tRNA(Asn) with aspartic acid. Recently, it has been shown for the first time in an organism (Pseudomonas aeruginosa PAO1) that the transamidation pathway is the only route of synthesis of Asn-tRNA(Asn) but does not participate in Gln-tRNA(Gln) formation. P. aeruginosa PAO1 has a nondiscriminating AspRS. We report here the identification of two residues in the anticodon recognition domain (H31 and G83) which are implicated in the recognition of tRNA(Asn). Sequence comparisons of putative discriminating and nondiscriminating AspRSs (based on the presence or absence of the AdT operon and of AsnRS) revealed that bacterial nondiscriminating AspRSs possess a histidine at position 31 and usually a glycine at position 83, whereas discriminating AspRSs possess a leucine at position 31 and a residue other than a glycine at position 83. Mutagenesis of these residues of P. aeruginosa AspRS from histidine to leucine and from glycine to lysine increased the specificity of tRNA(Asp) charging over that of tRNA(Asn) by 3.5-fold and 4.2-fold, respectively. Thus, we show these residues to be determinants of the relaxed specificity of this nondiscriminating AspRS. Using available crystallographic data, we found that the H31 residue could interact with the central bases of the anticodons of the tRNA(Asp) and tRNA(Asn). Therefore, these two determinants of specificity of P. aeruginosa AspRS could be important for all bacterial AspRSs.
Collapse
Affiliation(s)
- Dominic Bernard
- Centre de Recherche en Infectiologie, CHU Laval, 2705 Boulevard Laurier, RC-709, Sainte-Foy, Quebec, Canada G1V 4G2
| | | | | | | | | |
Collapse
|
34
|
Xie J, Schultz PG. Adding amino acids to the genetic repertoire. Curr Opin Chem Biol 2005; 9:548-54. [PMID: 16260173 DOI: 10.1016/j.cbpa.2005.10.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 10/12/2005] [Indexed: 11/23/2022]
Abstract
Considerable progress has been made in expanding the number and nature of genetically encoded amino acids in Escherichia coli, yeast and mammalian cells in the past four years. To date, over 30 unnatural amino acids have been cotranslationally incorporated into proteins with high fidelity and efficiency by means of a unique codon and corresponding orthogonal tRNA-aminoacyl-tRNA synthetase pair. The incorporated amino acids contain spectroscopic probes, post-translational modifications, metal chelators, photoaffinity labels and unique functional groups. The ability to genetically encode additional amino acids, beyond the common 20, provides a powerful approach for probing protein structure and function both in vitro and in vivo, as well as generating proteins with new or enhanced properties.
Collapse
Affiliation(s)
- Jianming Xie
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
35
|
Abstract
A general method was recently developed that makes it possible to genetically encode unnatural amino acids (UAAs) with diverse physical, chemical or biological properties in Escherichia coli, yeast, and mammalian cells. Over 30 UAAs have been cotranslationally incorporated into proteins with high fidelity and efficiency by means of a unique codon and corresponding tRNA-synthetase pair. A key feature of this methodology is the orthogonality between the new translational components and their endogenous host counterparts. Specifically, the codon for the UAA should not encode a common amino acid; neither the new tRNA nor cognate aminoacyl tRNA synthetase should cross-react with any endogenous tRNA-synthetase pairs; and the new synthetase should recognize only the UAA and not any of the 20 common amino acids. This methodology provides a powerful tool for exploring protein structure and function both in vitro and in vivo, as well as generating proteins with new or enhanced properties.
Collapse
Affiliation(s)
- Jianming Xie
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
36
|
Porcher S, Pitsch S. Synthesis of 2′-O-[(Triisopropylsilyl)oxy]methyl (= tom)-Protected Ribonucleoside Phosphoramidites Containing Various Nucleobase Analogues. Helv Chim Acta 2005. [DOI: 10.1002/hlca.200590209] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Bonnefond L, Giegé R, Rudinger-Thirion J. Evolution of the tRNATyr/TyrRS aminoacylation systems. Biochimie 2005; 87:873-83. [PMID: 16164994 DOI: 10.1016/j.biochi.2005.03.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 02/18/2005] [Accepted: 03/17/2005] [Indexed: 11/29/2022]
Abstract
The tRNA identity rules ensuring fidelity of translation are globally conserved throughout evolution except for tyrosyl-tRNA synthetases (TyrRSs) that display species-specific tRNA recognition. This discrimination originates from the presence of a conserved identity pair, G1-C72, located at the top of the acceptor stem of tRNA(Tyr) from eubacteria that is invariably replaced by an unusual C1-G72 pair in archaeal and eubacterial tRNA(Tyr). In addition to the key role of pair 1-72 in tyrosylation, discriminator base A73, the anticodon triplet and the large variable region (present in eubacterial tRNA(Tyr) but not found in eukaryal tRNA(Tyr)) contribute to tyrosylation with variable strengths. Crystallographic structures of two tRNA(Tyr)/TyrRS complexes revealed different interaction modes in accordance with the phylum-specificity. Recent functional studies on the human mitochondrial tRNA(Tyr)/TyrRS system indicates strong deviations from the canonical tyrosylation rules. These differences are discussed in the light of the present knowledge on TyrRSs.
Collapse
Affiliation(s)
- Luc Bonnefond
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, 67084 Strasbourg cedex, France
| | | | | |
Collapse
|
38
|
Feng L, Yuan J, Toogood H, Tumbula-Hansen D, Söll D. Aspartyl-tRNA Synthetase Requires a Conserved Proline in the Anticodon-binding Loop for tRNAAsn Recognition in Vivo. J Biol Chem 2005; 280:20638-41. [PMID: 15781458 DOI: 10.1074/jbc.m500874200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most prokaryotes require Asp-tRNA(Asn) for the synthesis of Asn-tRNA(Asn). This misacylated tRNA species is synthesized by a non-discriminating aspartyl-tRNA synthetase (AspRS) that acylates both tRNA(Asp) and tRNA(Asn) with aspartate. In contrast, a discriminating AspRS forms only Asp-tRNA(Asp). Here we show that a conserved proline (position 77) in the L1 loop of the non-discriminating Deinococcus radiodurans AspRS2 is required for tRNA(Asn) recognition in vivo. Escherichia coli trpA34 was transformed with DNA from a library of D. radiodurans aspS2 genes with a randomized codon 77 and then subjected to in vivo selection for Asp-tRNA(Asn) formation by growth in minimal medium. Only proline codons were found at position 77 in the aspS2 genes isolated from 21 of the resulting viable colonies. However, when the aspS temperature-sensitive E. coli strain CS89 was transformed with the same DNA library and then screened for Asp-tRNA(Asp) formation in vivo by growth at the non-permissive temperature, codons for seven other amino acids besides proline were identified at position 77 in the isolates examined. Thus, replacement of proline 77 by cysteine, isoleucine, leucine, lysine, phenylalanine, serine, or valine resulted in mutant D. radiodurans AspRS2 enzymes still capable of forming Asp-tRNA(Asp) but unable to recognize tRNA(Asn). This strongly suggests that proline 77 is responsible for the non-discriminatory tRNA recognition properties of this enzyme.
Collapse
Affiliation(s)
- Liang Feng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Abstract
Although chemists can synthesize virtually any small organic molecule, our ability to rationally manipulate the structures of proteins is quite limited, despite their involvement in virtually every life process. For most proteins, modifications are largely restricted to substitutions among the common 20 amino acids. Herein we describe recent advances that make it possible to add new building blocks to the genetic codes of both prokaryotic and eukaryotic organisms. Over 30 novel amino acids have been genetically encoded in response to unique triplet and quadruplet codons including fluorescent, photoreactive, and redox-active amino acids, glycosylated amino acids, and amino acids with keto, azido, acetylenic, and heavy-atom-containing side chains. By removing the limitations imposed by the existing 20 amino acid code, it should be possible to generate proteins and perhaps entire organisms with new or enhanced properties.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
41
|
Abstract
The coevolution theory of the genetic code, which postulates that prebiotic synthesis was an inadequate source of all twenty protein amino acids, and therefore some of them had to be derived from the coevolving pathways of amino acid biosynthesis, has been assessed in the light of the discoveries of the past three decades. Its four fundamental tenets regarding the essentiality of amino acid biosynthesis, role of pretran synthesis, biosynthetic imprint on codon allocations and mutability of the encoded amino acids are proven by the new knowledge. Of the factors that guided the evolutionary selection of the universal code, the relative contributions of Amino Acid Biosynthesis: Error Minimization: Stereochemical Interaction are estimated to first approximation as 40,000,000:400:1, which suggests that amino acid biosynthesis represents the dominant factor shaping the code. The utility of the coevolution theory is demonstrated by its opening up experimental expansions of the code and providing a basis for locating the root of life.
Collapse
Affiliation(s)
- J Tze-Fei Wong
- Applied Genomics Laboratory and Department of Biochemistry, Hong Kong University of Science & Technology, Hong Kong, China.
| |
Collapse
|
42
|
Budisa N. Prolegomena zum experimentellen Engineering des genetischen Codes durch Erweiterung seines Aminosäurerepertoires. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200300646] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Budisa N. Prolegomena to Future Experimental Efforts on Genetic Code Engineering by Expanding Its Amino Acid Repertoire. Angew Chem Int Ed Engl 2004; 43:6426-63. [PMID: 15578784 DOI: 10.1002/anie.200300646] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein synthesis and its relation to the genetic code was for a long time a central issue in biology. Rapid experimental progress throughout the past decade, crowned with the recently elucidated ribosomal structures, provided an almost complete description of this process. In addition important experiments provided solid evidence that the natural protein translation machinery can be reprogrammed to encode genetically a vast number of non-coded (i.e. noncanonical) amino acids. Indeed, in the set of 20 canonical amino acids as prescribed by the universal genetic code, many desirable functionalities, such as halogeno, keto, cyano, azido, nitroso, nitro, and silyl groups, as well as C=C or C[triple bond]C bonds, are absent. The ability to encode genetically such chemical diversity will enable us to reprogram living cells, such as bacteria, to express tailor-made proteins exhibiting functional diversity. Accordingly, genetic code engineering has developed into an exciting emerging research field at the interface of biology, chemistry, and physics.
Collapse
Affiliation(s)
- Nediljko Budisa
- Max-Planck-Institut für Biochemie, Junior Research Group "Moleculare Biotechnologie", Am Klopferspitz 18a, 82152 Martinsried bei München, Germany.
| |
Collapse
|
44
|
Köhrer C, Sullivan EL, RajBhandary UL. Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. Nucleic Acids Res 2004; 32:6200-11. [PMID: 15576346 PMCID: PMC535668 DOI: 10.1093/nar/gkh959] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 11/08/2004] [Accepted: 11/08/2004] [Indexed: 11/13/2022] Open
Abstract
We describe the generation of a complete set of orthogonal 21st synthetase-amber, ochre and opal suppressor tRNA pairs including the first report of a 21st synthetase-ochre suppressor tRNA pair. We show that amber, ochre and opal suppressor tRNAs, derived from Escherichia coli glutamine tRNA, suppress UAG, UAA and UGA termination codons, respectively, in a reporter mRNA in mammalian cells. Activity of each suppressor tRNA is dependent upon the expression of E.coli glutaminyl-tRNA synthetase, indicating that none of the suppressor tRNAs are aminoacylated by any of the twenty aminoacyl-tRNA synthetases in the mammalian cytoplasm. Amber, ochre and opal suppressor tRNAs with a wide range of activities in suppression (increases of up to 36, 156 and 200-fold, respectively) have been generated by introducing further mutations into the suppressor tRNA genes. The most active suppressor tRNAs have been used in combination to concomitantly suppress two or three termination codons in an mRNA. We discuss the potential use of these 21st synthetase-suppressor tRNA pairs for the site-specific incorporation of two or, possibly, even three different unnatural amino acids into proteins and for the regulated suppression of amber, ochre and opal termination codons in mammalian cells.
Collapse
Affiliation(s)
- Caroline Köhrer
- Department of Biology, Room 68-671, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
45
|
Köhrer C, Yoo JH, Bennett M, Schaack J, RajBhandary UL. A possible approach to site-specific insertion of two different unnatural amino acids into proteins in mammalian cells via nonsense suppression. ACTA ACUST UNITED AC 2004; 10:1095-102. [PMID: 14652077 DOI: 10.1016/j.chembiol.2003.10.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The site-specific insertion of an unnatural amino acid into proteins in vivo via nonsense suppression has resulted in major advances in recent years. The ability to incorporate two different unnatural amino acids in vivo would greatly increase the scope and impact of unnatural amino acid mutagenesis. Here, we show the concomitant suppression of an amber and an ochre codon in a single mRNA in mammalian cells by importing a mixture of aminoacylated amber and ochre suppressor tRNAs. This result provides a possible approach to site-specific insertion of two different unnatural amino acids into any protein of interest in mammalian cells. To our knowledge, this result also represents the only demonstration of concomitant suppression of two different termination codons in a single gene in vivo.
Collapse
Affiliation(s)
- Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
46
|
Rappaport HP. The fidelity of replication of the three-base-pair set adenine/thymine, hypoxanthine/cytosine and 6-thiopurine/5-methyl-2-pyrimidinone with T7 DNA polymerase. Biochem J 2004; 381:709-17. [PMID: 15078225 PMCID: PMC1133880 DOI: 10.1042/bj20031776] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 04/06/2004] [Accepted: 04/13/2004] [Indexed: 11/17/2022]
Abstract
With the goal of constructing a genetic alphabet consisting of a set of three base pairs, the fidelity of replication of the three base pairs T(H) (5-methyl-2-pyrimidinone)/H(S) (6-thiopurine; thiohypoxanthine), C/H (hypoxanthine) and T/A was evaluated using T7 DNA polymerase, a polymerase with a strong 3'-->5' exonuclease activity. An evaluation of the suitability of a new base pair for replication should include both the contribution of the fidelity of a polymerase activity and the contribution of proofreading by a 3'-->5' exonuclease activity. Using a steady-state kinetics method that included the contribution of the 3'-->5' exonuclease activity, the fidelity of replication was determined. The method determined the ratio of the apparent rate constant for the addition of a deoxynucleotide to the primer across from a template base by the polymerase activity and the rate constant for removal of the added deoxynucleotide from the primer by the 3'-->5' exonuclease activity. This ratio was designated the eni (efficiency of net incorporation). The eni of the base pair C/H was equal to or greater than the eni of T/A. The eni of the base pair T(H)/H(S) was 0.1 times that of A/T for T(H) in the template and 0.01 times that of A/T for H(S) in the template. The ratio of the eni of a mismatched deoxynucleotide to the eni of a matched deoxynucleotide was a measure of the error frequency. The error frequencies were as follows: thymine or T(H) opposite a template hypoxanthine, 2x10(-6); H(S) opposite a template cytosine, <3x10(-4). The remaining 24 mismatched combinations of bases gave no detectable net incorporation. Two mismatches, hypoxanthine opposite a template thymine or a template T(H), showed trace incorporation in the presence of a standard dNTP complementary to the next template base. T7 DNA polymerase extended the primer beyond each of the matched base pairs of the set. The level of fidelity of replication of the three base pairs with T7 DNA polymerase suggests that they are adequate for a three-base-pair alphabet for DNA replication.
Collapse
|
47
|
Strømgaard A, Jensen AA, Strømgaard K. Site-Specific Incorporation of Unnatural Amino Acids into Proteins. Chembiochem 2004; 5:909-16. [PMID: 15239046 DOI: 10.1002/cbic.200400060] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anne Strømgaard
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
48
|
Zhang Z, Alfonta L, Tian F, Bursulaya B, Uryu S, King DS, Schultz PG. Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells. Proc Natl Acad Sci U S A 2004; 101:8882-7. [PMID: 15187228 PMCID: PMC428441 DOI: 10.1073/pnas.0307029101] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Indexed: 11/18/2022] Open
Abstract
An orthogonal tryptophanyl-transfer RNA (tRNA) synthetase (TrpRS)-mutant opal suppressor tRNA(Trp) (mutRNA(UCA)(Trp)) pair was generated for use in mammalian cells. The anticodon loop of the Bacillus subtilis tRNA(Trp) was mutated to UCA, three positions in the D arm were mutated to generate an internal promoter sequence, and the mutRNA(UCA)(Trp) gene was inserted between the 5' and 3' flanking sequences of the tRNA(Trp-1) gene from Arabidopsis to enhance its expression in mammalian cells. In vitro aminoacylation assays and in vivo opal suppression assays showed that B. subtilis TrpRS (BsTrpRS) charges only the cognate mutRNA(UCA)(Trp) and no endogenous mammalian tRNAs. Similarly, the mutRNA(UCA)(Trp) is specifically charged by B. subtilis TrpRS and not by endogenous synthetases in mammalian cells. Site-directed mutagenesis was then used to alter the specificity of BsTrpRS to uniquely charge 5-hydoxy-l-tryptophan. The resulting mutant BsTrpRS-mutRNA(UCA)(Trp) pair allows the efficient and selective incorporation of 5-hydroxy-l-tryptophan into mammalian proteins in response to the codon, TGA. This amino acid can be used as a fluorescence probe and also undergoes electrochemical oxidation in situ to generate an efficient protein crosslinking.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The genetic code is established by the aminoacylation of transfer RNA, reactions in which each amino acid is linked to its cognate tRNA that, in turn, harbors the nucleotide triplet (anticodon) specific to the amino acid. The accuracy of aminoacylation is essential for building and maintaining the universal tree of life. The ability to manipulate and expand the code holds promise for the development of new methods to create novel proteins and to understand the origins of life. Recent efforts to manipulate the genetic code have fulfilled much of this potential. These efforts have led to incorporation of nonnatural amino acids into proteins for a variety of applications and have demonstrated the plausibility of specific proposals for early evolution of the code.
Collapse
Affiliation(s)
- Tamara L Hendrickson
- Department of Chemistry, 1Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA.
| | | | | |
Collapse
|
50
|
Bentin T, Hamzavi R, Salomonsson J, Roy H, Ibba M, Nielsen PE. Photoreactive bicyclic amino acids as substrates for mutant Escherichia coli phenylalanyl-tRNA synthetases. J Biol Chem 2004; 279:19839-45. [PMID: 15004015 DOI: 10.1074/jbc.m401278200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unnatural amino acids carrying reactive groups that can be selectively activated under non-invasive biologically benign conditions are of interest in protein engineering as biological tools for the analysis of protein-protein and protein-nucleic acids interactions. The double ring system phenylalanine analogues benzofuranylalanine and benzotriazolylalanine were synthesized, and their photolability was tested by UV irradiation at 254, 320, and 365 nm. Although both showed photo reactivity, benzofuranylalanine appeared as the most promising compound because this amino acid was activated by UVA (long wavelength) irradiation. These amino acids were also tested for in vitro charging of tRNA(Phe) and for protein mutagenesis via the phenylalanyl-tRNA synthetase variant alphaA294G that is able to facilitate in vivo protein synthesis using a range of para-substituted phenylalanine analogues. The results demonstrate that benzofuranylalanine, but not benzotriazolylalanine, is a substrate for phenylalanine tRNA synthetase alphaA294G, and matrix-assisted laser desorption ionization time-of-flight analysis showed it to be incorporated into a model protein with high efficiency. The in vivo incorporation into a target protein of a bicyclic phenylalanine analogue, as described here, demonstrates the applicability of phenylalanine tRNA synthetase variants in expanding the scope of protein engineering.
Collapse
Affiliation(s)
- Thomas Bentin
- Department of Medical Biochemistry and Genetics, The Panum Institute, University of Copenhagen, Blegdamsvej 3c, 2200 Copenhagen N, Denmark
| | | | | | | | | | | |
Collapse
|