1
|
Two modes of cis-activation of switch transcription by the IgH superenhancer. Proc Natl Acad Sci U S A 2019; 116:14708-14713. [PMID: 31266889 DOI: 10.1073/pnas.1902250116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
B cell isotype switching plays an important role in modulating adaptive immune responses. It occurs in response to specific signals that often induce different isotype (I) promoters driving transcription of switch regions, located upstream of the Ig heavy chain (IgH) constant genes. The transcribed switch regions can recombine, leading to a change of the constant gene and, consequently, of antibody isotype. Switch transcription is controlled by the superenhancer 3' regulatory region (3'RR) that establishes long-range chromatin cis-interactions with I promoters. Most stimuli induce more than one I promoter, and switch transcription can occur on both chromosomes. Therefore, it is presently unknown whether induced I promoters compete for the 3'RR on the same chromosome. Here we performed single-chromosome RT-qPCR assays to examine switch transcription monoallelically in the endogenous context. We show that there are two modes of 3'RR-mediated activation of I promoters: coactivation and competition. The nature of the inducing signal plays a pivotal role in determining the mode of activation. Furthermore, we provide evidence that, in its endogenous setting, the 3'RR has a bidirectional activity. We propose that the coactivation and competition modes mediated by the 3'RR may have evolved to cope with the different kinetics of primary immune responses.
Collapse
|
2
|
Cadiz-Rivera B, Fromm G, de Vries C, Fields J, McGrath KE, Fiering S, Bulger M. The chromatin "landscape" of a murine adult β-globin gene is unaffected by deletion of either the gene promoter or a downstream enhancer. PLoS One 2014; 9:e92947. [PMID: 24817273 PMCID: PMC4015891 DOI: 10.1371/journal.pone.0092947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/27/2014] [Indexed: 01/11/2023] Open
Abstract
In mammals, the complex tissue- and developmental-specific expression of genes within the β-globin cluster is known to be subject to control by the gene promoters, by a locus control region (LCR) located upstream of the cluster, and by sequence elements located across the intergenic regions. Despite extensive investigation, however, the complement of sequences that is required for normal regulation of chromatin structure and gene expression within the cluster is not fully defined. To further elucidate regulation of the adult β-globin genes, we investigate the effects of two deletions engineered within the endogenous murine β-globin locus. First, we find that deletion of the β2-globin gene promoter, while eliminating β2-globin gene expression, results in no additional effects on chromatin structure or gene expression within the cluster. Notably, our observations are not consistent with competition among the β-globin genes for LCR activity. Second, we characterize a novel enhancer located 3′ of the β2-globin gene, but find that deletion of this sequence has no effect whatsoever on gene expression or chromatin structure. This observation highlights the difficulty in assigning function to enhancer sequences identified by the chromatin “landscape” or even by functional assays.
Collapse
Affiliation(s)
- Brenda Cadiz-Rivera
- Department of Pediatrics, University of Rochester Medical Center and Center for Pediatric Biomedical Research, Rochester, New York, United States of America
| | - George Fromm
- Department of Pediatrics, University of Rochester Medical Center and Center for Pediatric Biomedical Research, Rochester, New York, United States of America
- National Institute for Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
| | - Christina de Vries
- Department of Pediatrics, University of Rochester Medical Center and Center for Pediatric Biomedical Research, Rochester, New York, United States of America
| | - Jennifer Fields
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Kathleen E. McGrath
- Department of Pediatrics, University of Rochester Medical Center and Center for Pediatric Biomedical Research, Rochester, New York, United States of America
| | - Steven Fiering
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Michael Bulger
- Department of Pediatrics, University of Rochester Medical Center and Center for Pediatric Biomedical Research, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
3
|
Bartnikas TB, Parker CC, Cheng R, Campagna DR, Lim JE, Palmer AA, Fleming MD. QTLs for murine red blood cell parameters in LG/J and SM/J F(2) and advanced intercross lines. Mamm Genome 2012; 23:356-66. [PMID: 22322356 PMCID: PMC3358495 DOI: 10.1007/s00335-012-9393-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
Red blood cells are essential for oxygen transport and other physiologic processes. Red cell characteristics are typically determined by complete blood counts which measure parameters such as hemoglobin levels and mean corpuscular volumes; these parameters reflect the quality and quantity of red cells in the circulation at any particular moment. To identify the genetic determinants of red cell parameters, we performed genome-wide association analysis on LG/J×SM/J F2 and F34 advanced intercross lines using single nucleotide polymorphism genotyping and a novel algorithm for mapping in the combined populations. We identified significant quantitative trait loci for red cell parameters on chromosomes 6, 7, 8, 10, 12, and 17; our use of advanced intercross lines reduced the quantitative trait loci interval width from 1.6- to 9.4-fold. Using the genomic sequences of LG/J and SM/J mice, we identified nonsynonymous coding single nucleotide polymorphisms in candidate genes residing within quantitative trait loci and performed sequence alignments and molecular modeling to gauge the potential impact of amino acid substitutions. These results should aid in the identification of genes critical for red cell physiology and metabolism and demonstrate the utility of advanced intercross lines in uncovering genetic determinants of inherited traits.
Collapse
Affiliation(s)
- Thomas B Bartnikas
- Department of Pathology, Children's Hospital, Enders 1110, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Balbuena TS, He R, Salvato F, Gang DR, Thelen JJ. Large-scale proteome comparative analysis of developing rhizomes of the ancient vascular plant equisetum hyemale. FRONTIERS IN PLANT SCIENCE 2012; 3:131. [PMID: 22740841 PMCID: PMC3382741 DOI: 10.3389/fpls.2012.00131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/01/2012] [Indexed: 05/08/2023]
Abstract
Horsetail (Equisetum hyemale) is a widespread vascular plant species, whose reproduction is mainly dependent on the growth and development of the rhizomes. Due to its key evolutionary position, the identification of factors that could be involved in the existence of the rhizomatous trait may contribute to a better understanding of the role of this underground organ for the successful propagation of this and other plant species. In the present work, we characterized the proteome of E. hyemale rhizomes using a GeLC-MS spectral-counting proteomics strategy. A total of 1,911 and 1,860 non-redundant proteins were identified in the rhizomes apical tip and elongation zone, respectively. Rhizome-characteristic proteins were determined by comparisons of the developing rhizome tissues to developing roots. A total of 87 proteins were found to be up-regulated in both horsetail rhizome tissues in relation to developing roots. Hierarchical clustering indicated a vast dynamic range in the regulation of the 87 characteristic proteins and revealed, based on the regulation profile, the existence of nine major protein groups. Gene ontology analyses suggested an over-representation of the terms involved in macromolecular and protein biosynthetic processes, gene expression, and nucleotide and protein binding functions. Spatial difference analysis between the rhizome apical tip and the elongation zone revealed that only eight proteins were up-regulated in the apical tip including RNA-binding proteins and an acyl carrier protein, as well as a KH domain protein and a T-complex subunit; while only seven proteins were up-regulated in the elongation zone including phosphomannomutase, galactomannan galactosyltransferase, endoglucanase 10 and 25, and mannose-1-phosphate guanyltransferase subunits alpha and beta. This is the first large-scale characterization of the proteome of a plant rhizome. Implications of the findings were discussed in relation to other underground organs and related species.
Collapse
Affiliation(s)
- Tiago Santana Balbuena
- Department of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
- Institute of Biology, State University of CampinasCampinas, São Paulo, Brazil
- *Correspondence: Tiago Santana Balbuena, Instituto de Biologia-Bloco J, Universidade Estadual de Campinas, Rua Monteiro Lobato 970, CEP 13.083-970 Campinas, São Paulo, Brazil. e-mail:
| | - Ruifeng He
- Institute of Biological Chemistry, Washington State UniversityPullman, WA, USA
| | - Fernanda Salvato
- Department of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - David R. Gang
- Institute of Biological Chemistry, Washington State UniversityPullman, WA, USA
| | - Jay J. Thelen
- Department of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| |
Collapse
|
5
|
Histone hyperacetylation within the beta-globin locus is context-dependent and precedes high-level gene expression. Blood 2009; 114:3479-88. [PMID: 19690338 DOI: 10.1182/blood-2009-03-210690] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Active gene promoters are associated with covalent histone modifications, such as hyperacetylation, which can modulate chromatin structure and stabilize binding of transcription factors that recognize these modifications. At the beta-globin locus and several other loci, however, histone hyperacetylation extends beyond the promoter, over tens of kilobases; we term such patterns of histone modifications "hyperacetylated domains." Little is known of either the mechanism by which these domains form or their function. Here, we show that domain formation within the murine beta-globin locus occurs before either high-level gene expression or erythroid commitment. Analysis of beta-globin alleles harboring deletions of promoters or the locus control region demonstrates that these sequences are not required for domain formation, suggesting the existence of additional regulatory sequences within the locus. Deletion of embryonic globin gene promoters, however, resulted in the formation of a hyperacetylated domain over these genes in definitive erythroid cells, where they are otherwise inactive. Finally, sequences within beta-globin domains exhibit hyperacetylation in a context-dependent manner, and domains are maintained when transcriptional elongation is inhibited. These data narrow the range of possible mechanisms by which hyperacetylated domains form.
Collapse
|
6
|
Evidence for a bigenic chromatin subdomain in regulation of the fetal-to-adult hemoglobin switch. Mol Cell Biol 2008; 29:1635-48. [PMID: 19114559 DOI: 10.1128/mcb.01735-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During development, human beta-globin locus regulation undergoes two critical switches, the embryonic-to-fetal and fetal-to-adult hemoglobin switches. To define the role of the fetal (A)gamma-globin promoter in switching, human beta-globin-YAC transgenic mice were produced with the (A)gamma-globin promoter replaced by the erythroid porphobilinogen deaminase (PBGD) promoter (PBGD(A)gamma-YAC). Activation of the stage-independent PBGD(A)gamma-globin strikingly stimulated native (G)gamma-globin expression at the fetal and adult stages, identifying a fetal gene pair or bigenic cooperative mechanism. This impaired fetal silencing severely suppressed both delta- and beta-globin expression in PBGD(A)gamma-YAC mice from fetal to neonatal stages and altered kinetics and delayed switching of adult beta-globin. This regulation evokes the two human globin switching patterns in the mouse. Both patterns of DNA demethylation and chromatin immunoprecipitation analysis correlated with gene activation and open chromatin. Locus control region (LCR) interactions detected by chromosome conformation capture revealed distinct spatial fetal and adult LCR bigenic subdomains. Since both intact fetal promoters are critical regulators of fetal silencing at the adult stage, we concluded that fetal genes are controlled as a bigenic subdomain rather than a gene-autonomous mechanism. Our study also provides evidence for LCR complex interaction with spatial fetal or adult bigenic functional subdomains as a niche for transcriptional activation and hemoglobin switching.
Collapse
|
7
|
McCool KW, Xu X, Singer DB, Murdoch FE, Fritsch MK. The role of histone acetylation in regulating early gene expression patterns during early embryonic stem cell differentiation. J Biol Chem 2007; 282:6696-706. [PMID: 17204470 DOI: 10.1074/jbc.m609519200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have examined the role of histone acetylation in the very earliest steps of differentiation of mouse embryonic stem cells in response to withdrawal of leukemia inhibitory factor (LIF) as a differentiation signal. The cells undergo dramatic changes in morphology and an ordered program of gene expression changes representing differentiation to all three germ layers over the first 3-5 days of LIF withdrawal. We observed a global increase in acetylation on histone H4 and to a lesser extent on histone H3 over this time period. Treatment of the cells with trichostatin A (TSA), a histone deacetylase inhibitor, induced changes in morphology, gene expression, and histone acetylation that mimicked differentiation induced by withdrawal of LIF. We examined localized histone acetylation in the regulatory regions of genes that were transcriptionally either active in undifferentiated cells, induced during differentiation, or inactive under all treatments. There was striking concordance in the histone acetylation patterns of specific genes induced by both TSA and LIF withdrawal. Increased histone acetylation in local regions correlated best with induction of gene expression. Finally, TSA treatment did not support the maintenance or progression of differentiation. Upon removal of TSA, the cells reverted to the undifferentiated phenotype. We concluded that increased histone acetylation at specific genes played a role in their expression, but additional events are required for maintenance of differentiated gene expression and loss of the pluripotent state.
Collapse
Affiliation(s)
- Kevin W McCool
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
8
|
Hu X, Eszterhas S, Pallazzi N, Bouhassira EE, Fields J, Tanabe O, Gerber SA, Bulger M, Engel JD, Groudine M, Fiering S. Transcriptional interference among the murine beta-like globin genes. Blood 2006; 109:2210-6. [PMID: 17077320 PMCID: PMC1801066 DOI: 10.1182/blood-2006-06-029868] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian beta-globin loci contain multiple genes that are activated at different developmental stages. Studies have suggested that the transcription of one gene in a locus can influence the expression of the other locus genes. The prevalent model to explain this transcriptional interference is that all potentially active genes compete for locus control region (LCR) activity. To investigate the influence of transcription by the murine embryonic genes on transcription of the other beta-like genes, we generated mice with deletions of the promoter regions of Ey and betah1 and measured transcription of the remaining genes. Deletion of the Ey and betah1 promoters increased transcription of betamajor and betaminor 2-fold to 3-fold during primitive erythropoiesis. Deletion of Ey did not affect betah1 nor did deletion of betah1 affect Ey, but Ey deletion uniquely activated transcription from betah0, a beta-like globin gene immediately downstream of Ey. Protein analysis showed that betah0 encodes a translatable beta-like globin protein that can pair with alpha globin. The lack of transcriptional interference between Ey and betah1 and the gene-specific repression of betah0 did not support LCR competition among the embryonic genes and suggested that direct transcriptional interference from Ey suppressed betah0.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Microbiology/Immunology and Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03756, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Johnson RM, Prychitko T, Gumucio D, Wildman DE, Uddin M, Goodman M. Phylogenetic comparisons suggest that distance from the locus control region guides developmental expression of primate beta-type globin genes. Proc Natl Acad Sci U S A 2006; 103:3186-91. [PMID: 16488971 PMCID: PMC1413942 DOI: 10.1073/pnas.0511347103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic inferences drawn from comparative data on mammalian beta-globin gene clusters indicate that the ancestral primate cluster contained a locus control region (LCR) and five paralogously related beta-type globin loci (5'-LCR-epsilon-gamma-psieta-delta-beta-3'), with epsilon and gamma expressed solely during embryonic life. A gamma locus tandem duplication (5'-gamma(1)-gamma(2)-3') triggered gamma's evolution toward fetal expression but by a different trajectory in platyrrhines (New World monkeys) than in catarrhines (Old World monkeys and apes, including humans). In platyrrhine (e.g., Cebus) fetuses, gamma(1) at the ancestral distance from epsilon is down-regulated, whereas gamma(2) at increased distance is up-regulated. Catarrhine gamma(1) and gamma(2) acquired longer distances from epsilon (14 and 19 kb, respectively), and both are up-regulated throughout fetal life with gamma(1)'s expression predominating over gamma(2)'s. On enlarging the platyrrhine expression data, we find Aotus gamma is embryonic, Alouatta gamma is inactive at term, and in Callithrix, gamma(1) is down-regulated fetally, whereas gamma(2) is up-regulated. Of eight mammalian taxa now represented per taxon by embryonic, fetal, and postnatal beta-type globin gene expression data, four taxa are primates, and data for three of these primates are from this laboratory. Our results support a model in which a short distance (<10 kb) between epsilon and the adjacent gamma is a plesiomorphic character that allows the LCR to drive embryonic expression of both genes, whereas a longer distance (>10 kb) impedes embryonic activation of the downstream gene.
Collapse
Affiliation(s)
| | | | - Deborah Gumucio
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Derek E. Wildman
- Obstetrics and Gynecology, and
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Monica Uddin
- Anatomy and Cell Biology, and
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Morris Goodman
- Anatomy and Cell Biology, and
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201; and
| |
Collapse
|