1
|
Pinna G, Ponomareva O, Stalcup GL, Rasmusson AM. Neuroactive steroids and the pathophysiology of PTSD: Biomarkers for treatment targeting. Neurosci Biobehav Rev 2025; 172:106085. [PMID: 40024353 DOI: 10.1016/j.neubiorev.2025.106085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Posttraumatic stress disorder (PTSD) is a disabling psychiatric disorder that arises after acute or chronic exposure to threatened death, serious injury, or sexual violence. The pathophysiology of PTSD is complex and involves dysregulation of multiple interacting brain regions and neurobiological systems including the sympathetic nervous system, the hypothalamic-pituitary-adrenal (HPA) axis, and the immune system. Deficient biosynthesis of neurosteroids that positively modulate GABAA receptor function, including allopregnanolone (Allo) and its equipotent stereoisomer pregnanolone (PA), also affects a subpopulation of individuals with PTSD and is associated with increased PTSD risk, severity, chronicity and treatment resistance. The synthesis of these neuroactive steroids by the brain, adrenal glands, and gonads may be influenced by stress, drugs, social isolation and other factors with impact on the balance of inhibitory versus excitatory (I/E) neurotransmission in brain. These neuroactive steroids are thus considered a potential target for new PTSD therapeutics. In this review, we first present studies in humans and rodents performed over the past 20 years that have shaped our current understanding of the role of Allo and PA in the pathophysiology of PTSD. We will also discuss the means by which rigorous measurement of neurosteroids can be used to identify individually-variable dysfunctional patterns of neurosteroidogenesis that could be targeted to prevent or treat PTSD. This broadened precision medicine approach to diagnosis of neuroendocrinopathies associated with PTSD may aid in reducing PTSD risk and facilitating the effective prescribing of PTSD therapeutics. We hope that such an approach will also forestall development of individually variable but common psychiatric, substance abuse, and medical PTSD-comorbidities.
Collapse
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL, USA; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL, USA; Center for Alcohol Research in Epigenetics (CARE), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL, USA.
| | - Olga Ponomareva
- McLean Hospital and Department of Psychiatry, Harvard Medical School
| | - George L Stalcup
- OAA Psychiatry/Neuroscience Research Fellow in the Neuropsychiatry Translational Research Fellowship (NeTReF) Program, VA Boston Healthcare System, USA
| | - Ann M Rasmusson
- VA National Center for PTSD, Women's Health Science Division, VA Boston Healthcare System, Boston, MA 02130, USA; Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
2
|
Osborne LM, Etyemez S, Pinna G, Alemani R, Standeven LR, Wang XQ, Payne JL. Neuroactive steroid biosynthesis during pregnancy predicts future postpartum depression: a role for the 3α and/or 3β-HSD neurosteroidogenic enzymes? Neuropsychopharmacology 2025; 50:904-912. [PMID: 39885361 PMCID: PMC12032070 DOI: 10.1038/s41386-025-02052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
Postpartum depression (PPD) affects ~10-15% of childbearing individuals, with deleterious consequences for two generations. Recent research has explored the biological mechanisms of PPD, particularly neuroactive steroids (NAS). We sought here to investigate associations between NAS levels and ratios during pregnancy and the subsequent development of depressive symptoms with postpartum onset. NAS levels and psychological scales were measured in individuals with and without mood disorders at up to eight visits across pregnancy and postpartum. Generalized linear mixed-effects regression models were used to assess relationships in euthymic pregnant individuals between each of the NAS biomarkers and ratios and subsequent PPD. Participants with a one-unit increase in the log isoallopregnanolone/pregnanolone ratio at the third trimester (T3) had higher odds (OR = 1.64, 95% CI: 1.13-2.37, FDR adjusted p = 0.038, C-index = 0.82), and those with a one-unit increase in the log pregnanolone/progesterone ratio at T3 had lower odds (OR = 0.64, 95% CI: 0.47-0.88, FDR adjusted p = 0.036, C-index = 0.82) of developing PPD; those with a one-unit increase in the log progesterone level at T3 had higher odds of developing PPD (OR = 4.00, 95% CI: 1.54-10.37, FDR adjusted p = 0.035, C-index = 0.80). We found key differences in the progesterone metabolic pathway at the third trimester, indicating likely decreased activity/expression of the 3α-HSD enzyme and/or increased activity/expression of 3β-HSD.
Collapse
Affiliation(s)
- Lauren M Osborne
- Department of Obstetrics & Gynecology, Weill Cornell Medical College, New York, NY, USA.
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA.
| | - Semra Etyemez
- Department of Obstetrics & Gynecology, Weill Cornell Medical College, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Graziano Pinna
- Department of Psychiatry, The Psychiatric Institute, University of Illinois, Chicago, IL, USA
| | - Rebecca Alemani
- Department of Psychiatry, The Psychiatric Institute, University of Illinois, Chicago, IL, USA
| | - Lindsay R Standeven
- Department of Psychiatry, University of Colorado School of Medicine, Denver, CO, USA
| | - Xin-Qun Wang
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Jennifer L Payne
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Takahashi A. The role of social isolation stress in escalated aggression in rodent models. Neurosci Res 2025; 211:75-84. [PMID: 35917930 DOI: 10.1016/j.neures.2022.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
Anti-social behavior and violence are major public health concerns. Globally, violence contributes to more than 1.6 million deaths each year. Previous studies have reported that social rejection or neglect exacerbates aggression. In rodent models, social isolation stress is used to demonstrate the adverse effects of social deprivation on physiological, endocrinological, immunological, and behavioral parameters, including aggressive behavior. This review summarizes recent rodent studies on the effect of social isolation stress during different developmental periods on aggressive behavior and the underlying neural mechanisms. Social isolation during adulthood affects the levels of neurosteroids and neuropeptides and increases aggressive behavior. These changes are ethologically relevant for the adaptation to changes in local environmental conditions in the natural habitats. Chronic deprivation of social interaction after weaning, especially during the juvenile to adolescent periods, leads to the disruption of the development of appropriate social behavior and the maladaptive escalation of aggressive behavior. The understanding of neurobiological mechanisms underlying social isolation-induced escalated aggression will aid in the development of therapeutic interventions for escalated aggression.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neurobiology, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
4
|
Cadeddu R, Braccagni G, Floris G, Branca C, Corridori E, Salviati S, Sánchez P, Santovito LS, Torres JM, Ortega E, Pinna G, Moos PJ, Scheggi S, Bortolato M. Prefrontal 5α-reductase 2 mediates male-specific acute stress response. SCIENCE ADVANCES 2025; 11:eadr0563. [PMID: 39841836 PMCID: PMC11753402 DOI: 10.1126/sciadv.adr0563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
A key response to acute stress is the increased brain synthesis of the neurosteroid allopregnanolone (AP). Although the rate-limiting step of this reaction is catalyzed by 5α-reductase (5αR), the role of its two primary isoenzymes, 5αR1 and 5αR2, in stress reactivity remains unclear. Here, we found that acute stress led to increased levels of 5αR2, but not 5αR1, in the medial prefrontal cortex (mPFC) of male, but not female, rats. Down-regulation of 5αR2 in the mPFC significantly reduced stress response in males, and similar sexual dimorphic effects were observed in a novel line of 5αR2 knockout rats. Notably, 5αR1 regulated baseline AP synthesis, whereas 5αR2 enabled AP production under stress. Acute AP administration restored stress response in 5αR2 knockdown rats. Single-nucleus transcriptomics showed that 5αR2 enabled stress-induced protein translation in neurons and glia. These results highlight the crucial role of 5αR2 in mediating sex-specific differences in acute stress reactivity.
Collapse
Affiliation(s)
- Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Giulia Braccagni
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Caterina Branca
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Eleonora Corridori
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sara Salviati
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Pilar Sánchez
- Department of Biochemistry, Molecular Biology 3 and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Luca Spiro Santovito
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jesus M. Torres
- Department of Biochemistry, Molecular Biology 3 and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Esperanza Ortega
- Department of Biochemistry, Molecular Biology 3 and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- UI Center on Depression and Resilience (UICDR), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Center for Alcohol Research in Epigenetics (CARE), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Philip J. Moos
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
5
|
Izumi Y, Reiersen AM, Lenze EJ, Mennerick SJ, Zorumski CF. Sertraline modulates hippocampal plasticity via sigma 1 receptors, cellular stress and neurosteroids. Transl Psychiatry 2024; 14:474. [PMID: 39572523 PMCID: PMC11582653 DOI: 10.1038/s41398-024-03185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
In addition to modulating serotonin transport, selective serotonin reuptake inhibitors (SSRIs) have multiple other mechanisms that may contribute to clinical effects, and some of these latter actions prompt repurposing of SSRIs for non-psychiatric indications. In a recent study of the SSRIs fluvoxamine, fluoxetine and sertraline we found that, unlike the other two SSRIs, sertraline acutely inhibited LTP at a low micromolar concentration through inverse agonism of sigma 1 receptors (S1Rs). In the present studies, we pursued mechanisms contributing to sertraline modulation of LTP in rat hippocampal slices. We found that sertraline partially inhibits synaptic responses mediated by N-methyl-D-aspartate receptors (NMDARs) via effects on NMDARs that contain GluN2B subunits. A selective S1R antagonist (NE-100), but not an S1R agonist (PRE-084) blocked effects on NMDARs, even though both S1R ligands were previously shown to prevent LTP inhibition. Both NE-100 and PRE-084, however, prevented adverse effects of sertraline on one-trial learning. Because of the important role that S1Rs play in modulating endoplasmic reticulum stress, we examined whether inhibitors of cellular stress alter effects of sertraline. We found that two stress inhibitors, ISRIB and quercetin, prevented LTP inhibition, as did inhibitors of the synthesis of endogenous neurosteroids, which are homeostatic regulators of cellular stress. These studies highlight complex effects of sertraline, S1Rs and neurosteroids on hippocampal function and have relevance for understanding therapeutic and adverse drug actions.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Angela M Reiersen
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric J Lenze
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven J Mennerick
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Scheggi S, Concas L, Corsi S, Carta M, Melis M, Frau R. Expanding the therapeutic potential of neuro(active)steroids: a promising strategy for hyperdopaminergic behavioral phenotypes. Neurosci Biobehav Rev 2024; 164:105842. [PMID: 39103066 DOI: 10.1016/j.neubiorev.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Imbalances in dopamine activity significantly contribute to the pathophysiology of several neuropsychiatric disorders, including addiction, ADHD, schizophrenia, impulse control disorders, and Parkinson's Disease. Neuro(active)steroids, comprising endogenous steroids that finely modulate neuronal activity, are considered crucial regulators of brain function and behavior, with implications in various physiological processes and pathological conditions. Specifically, subclasses of Neuro(active)steroids belonging to the 5α reductase pathway are prominently involved in brain disorders characterized by dopaminergic signaling imbalances. This review highlights the neuromodulatory effects of Neuro(active)steroids on the dopamine system and related aberrant behavioral phenotypes. We critically appraise the role of pregnenolone, progesterone, and allopregnanolone on dopamine signaling. Additionally, we discuss the impact of pharmacological interventions targeting 5α reductase activity in neuropsychiatric conditions characterized by excessive activation of the dopaminergic system, ranging from psychotic (endo)phenotypes and motor complications to decision-making problems and addiction.
Collapse
Affiliation(s)
- Simona Scheggi
- Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Luca Concas
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Sara Corsi
- Dept. of Developmental and Regenerative Neurobiology, Lund University, Sweden
| | - Manolo Carta
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Miriam Melis
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Roberto Frau
- Dept. Of Biomedical Sciences, University of Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
7
|
Sánchez-Lafuente CL, Johnston JN, Reive BS, Scheil KKA, Halvorson CS, Jimenez M, Colpitts D, Kalynchuk LE, Caruncho HJ. A single intravenous reelin injection restores corticosterone-induced neurochemical and behavioral alterations in dams during the post-partum period. Front Mol Neurosci 2024; 17:1442332. [PMID: 39228796 PMCID: PMC11369980 DOI: 10.3389/fnmol.2024.1442332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Treatment with the synaptic plasticity protein reelin has rapid antidepressant-like effects in adult corticosterone (CORT)-induced depressed rats, whether administered repeatedly or acutely. However, these effects remain unexplored in the context of post-partum depression (PPD). Methods This study investigated the antidepressant-like effect of a single injection of reelin in a CORT-induced model of PPD. Long-Evans female dams received either daily subcutaneous CORT (40 mg/kg) or saline injections (controls) from the post-partum day (PD) 2 to 22, and on PD22 were treated with a single intravenous reelin (3 μg) or vehicle injection. Results Reelin treatment fully normalized to control levels the CORT-induced increase in Forced Swim Test (FST) immobility and the decrease in reelin-positive cells in the subgranular zone of the intermediate hippocampus. It also increased the number of oxytocin-positive cells in the paraventricular nucleus (PVN), the number of reelin-positive cells in the dorsal and ventral hippocampus, and the dendritic complexity of newborn neurons in the intermediate hippocampus, causing a partial recovery compared to controls. None of these changes were associated with fluctuations in estrogen levels measured peripherally. Discussion This study brings new insights into the putative antidepressant-like effect of peripherally administered reelin in an animal model of PPD. Future studies should be conducted to investigate these effects on a dose-response paradigm and to further elucidate the mechanisms underlying the antidepressant-like effects of reelin.
Collapse
|
8
|
Choudhary D, Sasibhushana RB, Shankaranarayana Rao BS, Srikumar BN. Mifepristone blocks the anxiolytic- and antidepressant-like effects of allopregnanolone in male rats. Int J Neurosci 2024; 134:839-848. [PMID: 36469636 DOI: 10.1080/00207454.2022.2153047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Allopregnanolone (3α, 5α-tetrahydroprogesterone) is an inhibitory neurosteroid synthesized from progesterone via 5α-reductase activity in the brain and has anxiolytic, antidepressant, sedative, anticonvulsant, and analgesic activity. Altered levels of allopregnanolone cause anxiety, depression, premenstrual syndrome, and psychiatric disorders. Although allopregnanolone exerts most of its actions by modulating GABAA receptor, NMDA receptor, BDNF expression, and PXR activity, a recent study showed its effects are blocked by mifepristone on lordosis behavior which indicates the involvement of progestin or glucocorticoid receptors in the effects of allopregnanolone since mifepristone blocks both these receptors. However, whether these receptors are involved in acute anxiolytic or antidepressant-like effects is unknown. METHODS Adult male Wistar rats were used to study whether the prior administration of mifepristone would alter the effects of allopregnanolone in the elevated plus maze (EPM) and forced swim test (FST) was evaluated. RESULTS 10 mg/Kg dose of allopregnanolone increased percent open arm entries in the EPM, whereas 3 mg/Kg dose of allopregnanolone decreased percent immobility in the FST. Mifepristone administration resulted in a U-shaped response in the FST (with 1 mg/Kg, s.c., decreasing the immobility time) without significantly impacting the behavior in the EPM. In combination studies, mifepristone blocked the anxiolytic and antidepressant effects of allopregnanolone. CONCLUSION The current study provides evidence for the first time that progestin or glucocorticoid receptors are involved in the acute anxiolytic and antidepressant effects of allopregnanolone. Understanding the mechanism of action of allopregnanolone will help us design better therapeutic strategies to treat neuropsychiatric diseases such as depression and anxiety.
Collapse
Affiliation(s)
- Divya Choudhary
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, India
| | - R B Sasibhushana
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| |
Collapse
|
9
|
Branca C, Bortolato M. The role of neuroactive steroids in tic disorders. Neurosci Biobehav Rev 2024; 160:105637. [PMID: 38519023 PMCID: PMC11121756 DOI: 10.1016/j.neubiorev.2024.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Tics are sudden, repetitive movements or vocalizations. Tic disorders, such as Tourette syndrome (TS), are contributed by the interplay of genetic risk factors and environmental variables, leading to abnormalities in the functioning of the cortico-striatal-thalamo-cortical (CSTC) circuitry. Various neurotransmitter systems, such as gamma-aminobutyric acid (GABA) and dopamine, are implicated in the pathophysiology of these disorders. Building on the evidence that tic disorders are predominant in males and exacerbated by stress, emerging research is focusing on the involvement of neuroactive steroids, including dehydroepiandrosterone sulfate (DHEAS) and allopregnanolone, in the ontogeny of tics and other phenotypes associated with TS. Emerging evidence indicates that DHEAS levels are significantly elevated in the plasma of TS-affected boys, and the clinical onset of this disorder coincides with the period of adrenarche, the developmental stage characterized by a surge in DHEAS synthesis. On the other hand, allopregnanolone has garnered particular attention for its potential to mediate the adverse effects of acute stress on the exacerbation of tic severity and frequency. Notably, both neurosteroids act as key modulators of GABA-A receptors, suggesting a pivotal role of these targets in the pathophysiology of various clinical manifestations of tic disorders. This review explores the potential mechanisms by which these and other neuroactive steroids may influence tic disorders and discusses the emerging therapeutic strategies that target neuroactive steroids for the management of tic disorders.
Collapse
Affiliation(s)
- Caterina Branca
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
Izumi Y, Reiersen AM, Lenze EJ, Mennerick SJ, Zorumski CF. Sertraline modulates hippocampal plasticity and learning via sigma 1 receptors, cellular stress and neurosteroids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576911. [PMID: 38328198 PMCID: PMC10849579 DOI: 10.1101/2024.01.23.576911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
In addition to modulating serotonin transport, selective serotonin reuptake inhibitors (SSRIs) have multiple other effects that may contribute to clinical effects, and some of these latter actions prompt repurposing of SSRIs for non-psychiatric indications. We recently observed that the SSRIs fluvoxamine and fluoxetine prevent the acute adverse effects of pro-inflammatory stimulation on long-term potentiation (LTP) in the CA1 hippocampal region. Sertraline showed markedly different effects, acutely inhibiting LTP at a low micromolar concentration through inverse agonism of sigma 1 receptors (S1Rs). In the present studies, we pursued mechanisms contributing to sertraline modulation of LTP in rat hippocampal slices. We found that sertraline partially inhibits synaptic responses mediated by N-methyl-D-aspartate receptors (NMDARs) via effects on NMDARs that express GluN2B subunits. A selective S1R antagonist (NE-100), but not an S1R agonist (PRE-084) blocked effects on NMDARs, despite the fact that both S1R ligands were previously shown to prevent LTP inhibition. Both NE-100 and PRE-084, however, prevented adverse effects of sertraline on one-trial learning. Because of the important role that S1Rs play in modulating endoplasmic reticulum stress, we examined whether inhibitors of cellular stress alter effects of sertraline. We found that two stress inhibitors, ISRIB and quercetin, prevented LTP inhibition, as did inhibitors of the synthesis of endogenous neurosteroids, which are homeostatic regulators of cellular stress. These studies highlight complex effects of sertraline, S1Rs and neurosteroids on hippocampal function and have relevance for understanding therapeutic and adverse drug actions.
Collapse
|
11
|
Thompson SM. Modulators of GABA A receptor-mediated inhibition in the treatment of neuropsychiatric disorders: past, present, and future. Neuropsychopharmacology 2024; 49:83-95. [PMID: 37709943 PMCID: PMC10700661 DOI: 10.1038/s41386-023-01728-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
The predominant inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), acts at ionotropic GABAA receptors to counterbalance excitation and regulate neuronal firing. GABAA receptors are heteropentameric channels comprised from subunits derived from 19 different genes. GABAA receptors have one of the richest and well-developed pharmacologies of any therapeutic drug target, including agonists, antagonists, and positive and negative allosteric modulators (PAMs, NAMs). Currently used PAMs include benzodiazepine sedatives and anxiolytics, barbiturates, endogenous and synthetic neurosteroids, and general anesthetics. In this article, I will review evidence that these drugs act at several distinct binding sites and how they can be used to alter the balance between excitation and inhibition. I will also summarize existing literature regarding (1) evidence that changes in GABAergic inhibition play a causative role in major depression, anxiety, postpartum depression, premenstrual dysphoric disorder, and schizophrenia and (2) whether and how GABAergic drugs exert beneficial effects in these conditions, focusing on human studies where possible. Where these classical therapeutics have failed to exert benefits, I will describe recent advances in clinical and preclinical drug development. I will also highlight opportunities to advance a generation of GABAergic therapeutics, such as development of subunit-selective PAMs and NAMs, that are engendering hope for novel tools to treat these devastating conditions.
Collapse
Affiliation(s)
- Scott M Thompson
- Center for Novel Therapeutics, Department of Psychiatry, University of Colorado School of Medicine, 12700 E. 19th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Nishimoto-Kusunose S, Hirakawa A, Tanaka A, Yoshizawa K, Makino K, Takahashi H, Higashi T. Drugs possessing aryloxypropanamine pharmacophore, duloxetine, dapoxetine and propranolol, increase allopregnanolone in rat brain: Possible involvement of allopregnanolone in their central nervous system effects. Steroids 2023; 198:109272. [PMID: 37468115 DOI: 10.1016/j.steroids.2023.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Allopregnanolone (AP) is a neurosteroid synthesized in the brain and a positive allosteric modulator of γ-aminobutyric acid (GABA) type A receptors. Some drugs possessing the aryloxypropanamine (AOPA) pharmacophore, such as fluoxetine, exert their central nervous system (CNS) effects by increasing the brain AP. Although duloxetine (DLX), dapoxetine (DPX), atomoxetine (ATX) and propranolol (PRL) also possess the AOPA pharmacophore and are used to treat some psychiatric disorders, the capabilities of these drugs to increase the brain AP and the possible involvement of AP in their CNS effects remain to be fully elucidated. To clarify these points, we first developed a method for quantifying AP in the rat brain by liquid chromatography/electrospray ionization-tandem mass spectrometry. Analysis of the changes in the brain AP levels using this method revealed that the intraperitoneal administration of DLX (10 mg/kg), DPX (10 mg/kg) and PRL (20 mg/kg) significantly increased the brain AP (DLX: < 0.40-2.74 ng/g tissue, DPX: 1.48-3.83 ng/g tissue and PRL: < 0.40-2.09 ng/g tissue) compared to the saline administration (<0.40 ng/g tissue). These results suggested the possible involvement of the GABAergic neurosteroid, AP, in the central actions of DLX, DPX and PRL. In contrast, ATX (10 mg/kg) did not affect the AP levels in the brain. In addition, the brain and serum AP levels had a remarkably high positive correlation after the administration of DLX, DPX and PRL. Thus, this study proposed the AP-related novel mechanism of actions of DLX, DPX and PRL in the CNS.
Collapse
Affiliation(s)
- Shoichi Nishimoto-Kusunose
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ayaka Hirakawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Asuka Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kazumi Yoshizawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kosho Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Faculty of Pharmacy, Musashino University, 1-1-20 Shin-machi, Nishitokyo, Tokyo 202-8585, Japan
| | - Hideyo Takahashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tatsuya Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
13
|
Reddy DS, Mbilinyi RH, Estes E. Preclinical and clinical pharmacology of brexanolone (allopregnanolone) for postpartum depression: a landmark journey from concept to clinic in neurosteroid replacement therapy. Psychopharmacology (Berl) 2023; 240:1841-1863. [PMID: 37566239 PMCID: PMC10471722 DOI: 10.1007/s00213-023-06427-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
This article describes the critical role of neurosteroids in postpartum depression (PPD) and outlines the landmark pharmacological journey of brexanolone as a first-in-class neurosteroid antidepressant with significant advantages over traditional antidepressants. PPD is a neuroendocrine disorder that affects about 20% of mothers after childbirth and is characterized by symptoms including persistent sadness, fatigue, dysphoria, as well as disturbances in cognition, emotion, appetite, and sleep. The main pathology behind PPD is the postpartum reduction of neurosteroids, referred to as neurosteroid withdrawal, a concept pioneered by our preclinical studies. We developed neurosteroid replacement therapy (NRT) as a rational approach for treating PPD and other conditions related to neurosteroid deficiency, unveiling the power of neurosteroids as novel anxiolytic-antidepressants. The neurosteroid, brexanolone (BX), is a progesterone-derived allopregnanolone that rapidly relieves anxiety and mood deficits by activating GABA-A receptors, making it a transformational treatment for PPD. In 2019, the FDA approved BX, an intravenous formulation of allopregnanolone, as an NRT to treat PPD. In clinical studies, BX significantly improved PPD symptoms within hours of administration, with tolerable side effects including headache, dizziness, and somnolence. We identified the molecular mechanism of BX in a neuronal PPD-like milieu. The mechanism of BX involves activation of both synaptic and extrasynaptic GABA-A receptors, which promote tonic inhibition and serve as a key target for PPD and related conditions. Neurosteroids offer several advantages over traditional antidepressants, including rapid onset, unique mechanism, and lack of tolerance upon repeated use. Some limitations of BX therapy include lack of aqueous solubility, limited accessibility, hospitalization for treatment, lack of oral product, and serious adverse events at high doses. However, the unmet need for synthetic neurosteroids to address this critical condition supersedes these limitations. Recently, we developed novel hydrophilic neurosteroids with a superior profile and improved drug delivery. Overall, approval of BX is a major milestone in the field of neurotherapeutics, paving the way for the development of novel synthetic neurosteroids to treat depression, epilepsy, and status epilepticus.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA.
- Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| | - Robert H Mbilinyi
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA
| | - Emily Estes
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA
| |
Collapse
|
14
|
Cadeddu R, Van Zandt M, Santovito LS, Odeh K, Anderson CJ, Flanagan D, Nordkild P, Pinna G, Pittenger C, Bortolato M. Prefrontal allopregnanolone mediates the adverse effects of acute stress in a mouse model of tic pathophysiology. Neuropsychopharmacology 2023; 48:1288-1299. [PMID: 37198434 PMCID: PMC10354086 DOI: 10.1038/s41386-023-01603-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Ample evidence suggests that acute stress can worsen symptom severity in Tourette syndrome (TS); however, the neurobiological underpinnings of this phenomenon remain poorly understood. We previously showed that acute stress exacerbates tic-like and other TS-associated responses via the neurosteroid allopregnanolone (AP) in an animal model of repetitive behavioral pathology. To verify the relevance of this mechanism to tic pathophysiology, here we tested the effects of AP in a mouse model recapitulating the partial depletion of dorsolateral cholinergic interneurons (CINs) seen in post-mortem studies of TS. Mice underwent targeted depletion of striatal CINs during adolescence and were tested in young adulthood. Compared with controls, partially CIN-depleted male mice exhibited several TS-relevant abnormalities, including deficient prepulse inhibition (PPI) and increased grooming stereotypies after a 30-min session of spatial confinement - a mild acute stressor that increases AP levels in the prefrontal cortex (PFC). These effects were not seen in females. Systemic and intra-PFC AP administration dose-dependently worsened grooming stereotypies and PPI deficits in partially CIN-depleted males. Conversely, both AP synthesis inhibition and pharmacological antagonism reduced the effects of stress. These results further suggest that AP in the PFC mediates the adverse effects of stress on the severity of tics and other TS-related manifestations. Future studies will be necessary to confirm these mechanisms in patients and define the circuitry responsible for the effects of AP on tics.
Collapse
Affiliation(s)
- Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Meghan Van Zandt
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
| | - Luca Spiro Santovito
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Karen Odeh
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Collin J Anderson
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Engineering, University of Sydney, Camperdown, NSW, Australia
| | - Deirdre Flanagan
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
| | | | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- UI Center on Depression and Resilience (UICDR), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Center for Alcohol Research in Epigenetics (CARE), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher Pittenger
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Psychology, School of Arts and Sciences, Yale University, New Haven, CT, USA.
- Child Study Center, School of Medicine, Yale University, New Haven, CT, USA.
- Center for Brain and Mind Health, School of Medicine, Yale University, New Haven, CT, USA.
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
15
|
Cutler AJ, Mattingly GW, Maletic V. Understanding the mechanism of action and clinical effects of neuroactive steroids and GABAergic compounds in major depressive disorder. Transl Psychiatry 2023; 13:228. [PMID: 37365161 PMCID: PMC10293235 DOI: 10.1038/s41398-023-02514-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The pathophysiology of major depressive disorder (MDD) is thought to result from impaired connectivity between key brain networks. Gamma-aminobutyric acid (GABA) is the key inhibitory neurotransmitter in the brain, working primarily via GABAA receptors, with an important role in virtually all physiologic functions in the brain. Some neuroactive steroids (NASs) are positive allosteric modulators (PAMs) of GABAA receptors and potentiate phasic and tonic inhibitory responses via activation of synaptic and extrasynaptic GABAA receptors, respectively. This review first discusses preclinical and clinical data that support the association of depression with diverse defects in the GABAergic system of neurotransmission. Decreased levels of GABA and NASs have been observed in adults with depression compared with healthy controls, while treatment with antidepressants normalized the altered levels of GABA and NASs. Second, as there has been intense interest in treatment approaches for depression that target dysregulated GABAergic neurotransmission, we discuss NASs approved or currently in clinical development for the treatment of depression. Brexanolone, an intravenous NAS and a GABAA receptor PAM, is approved by the U.S. Food and Drug Administration for the treatment of postpartum depression (PPD) in patients 15 years and older. Other NASs include zuranolone, an investigational oral GABAA receptor PAM, and PH10, which acts on nasal chemosensory receptors; clinical data to date have shown improvement in depressive symptoms with these investigational NASs in adults with MDD or PPD. Finally, the review discusses how NAS GABAA receptor PAMs may potentially address the unmet need for novel and effective treatments with rapid and sustained antidepressant effects in patients with MDD.
Collapse
|
16
|
Umminger LF, Rojczyk P, Seitz-Holland J, Sollmann N, Kaufmann E, Kinzel P, Zhang F, Kochsiek J, Langhein M, Kim CL, Wiegand TLT, Kilts JD, Naylor JC, Grant GA, Rathi Y, Coleman MJ, Bouix S, Tripodis Y, Pasternak O, George MS, McAllister TW, Zafonte R, Stein MB, O'Donnell LJ, Marx CE, Shenton ME, Koerte IK. White Matter Microstructure Is Associated with Serum Neuroactive Steroids and Psychological Functioning. J Neurotrauma 2023; 40:649-664. [PMID: 36324218 PMCID: PMC10061338 DOI: 10.1089/neu.2022.0111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Military service members are at increased risk for mental health issues, and comorbidity with mild traumatic brain injury (mTBI) is common. Largely overlapping symptoms between conditions suggest a shared pathophysiology. The present work investigates the associations among white matter microstructure, psychological functioning, and serum neuroactive steroids that are part of the stress-response system. Diffusion-weighted brain imaging was acquired from 163 participants (with and without military affiliation) and free-water-corrected fractional anisotropy (FAT) was extracted. Associations between serum neurosteroid levels of allopregnanolone (ALLO) and pregnenolone (PREGNE), psychological functioning, and whole-brain white matter microstructure were assessed using regression models. Moderation models tested the effect of mTBI and comorbid post-traumatic stress disorder (PTSD) and mTBI on these associations. ALLO is associated with whole-brain white matter FAT (β = 0.24, t = 3.05, p = 0.006). This association is significantly modulated by PTSD+mTBI comorbidity (β = 0.00, t = 2.50, p = 0.027), although an mTBI diagnosis alone did not significantly impact this association (p = 0.088). There was no significant association between PREGNE and FAT (p = 0.380). Importantly, lower FAT is associated with poor psychological functioning (β = -0.19, t = -2.35, p = 0.020). This study provides novel insight into a potential common pathophysiological mechanism of neurosteroid dysregulation underlying the high risk for mental health issues in military service members. Further, comorbidity of PTSD and mTBI may bring the compensatory effects of the brain's stress response to their limit. Future research is needed to investigate whether neurosteroid regulation may be a promising tool for restoring brain health and improving psychological functioning.
Collapse
Affiliation(s)
- Lisa F. Umminger
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philine Rojczyk
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nico Sollmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elisabeth Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Neurology, Epilepsy Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philipp Kinzel
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Fan Zhang
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Janna Kochsiek
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mina Langhein
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cara L. Kim
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Tim L. T. Wiegand
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jason D. Kilts
- VA Mid-Atlantic Mental Illness Research and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NorthCarolina, USA
- Department of Psychiatry and Behavior Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jennifer C. Naylor
- VA Mid-Atlantic Mental Illness Research and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NorthCarolina, USA
- Department of Psychiatry and Behavior Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gerald A. Grant
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J. Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark S. George
- Psychiatry Department, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Thomas W. McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Murray B. Stein
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- School of Public Health, University of California San Diego, La Jolla, California, USA
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Lauren J. O'Donnell
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine E. Marx
- VA Mid-Atlantic Mental Illness Research and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NorthCarolina, USA
- Department of Psychiatry and Behavior Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Inga K. Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
17
|
Izumi Y, Reiersen AM, Lenze EJ, Mennerick SJ, Zorumski CF. SSRIs differentially modulate the effects of pro-inflammatory stimulation on hippocampal plasticity and memory via sigma 1 receptors and neurosteroids. Transl Psychiatry 2023; 13:39. [PMID: 36737431 PMCID: PMC9897619 DOI: 10.1038/s41398-023-02343-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Certain selective serotonin reuptake inhibitors (SSRIs) have anti-inflammatory effects in preclinical models, and recent clinical studies suggest that fluvoxamine can prevent deterioration in patients with COVID-19, possibly through activating sigma 1 receptors (S1Rs). Here we examined potential mechanisms contributing to these effects of fluvoxamine and other SSRIs using a well-characterized model of pro-inflammatory stress in rat hippocampal slices. When hippocampal slices are exposed acutely to lipopolysaccharide (LPS), a strong pro-inflammatory stimulus, basal synaptic transmission in the CA1 region remains intact, but induction of long-term potentiation (LTP), a form of synaptic plasticity thought to contribute to learning and memory, is completely disrupted. Administration of low micromolar concentrations of fluvoxamine and fluoxetine prior to and during LPS administration overcame this LTP inhibition. Effects of fluvoxamine required both activation of S1Rs and local synthesis of 5-alpha reduced neurosteroids. In contrast, the effects of fluoxetine did not involve S1Rs but required neurosteroid production. The ability of fluvoxamine to modulate LTP and neurosteroid production was mimicked by a selective S1R agonist. Additionally, fluvoxamine and fluoxetine prevented learning impairments induced by LPS in vivo. Sertraline differed from the other SSRIs in blocking LTP in control slices likely via S1R inverse agonism. These results provide strong support for the hypothesis that S1Rs and neurosteroids play key roles in the anti-inflammatory effects of certain SSRIs and that these SSRIs could be beneficial in disorders involving inflammatory stress including psychiatric and neurodegenerative illnesses.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.,Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Angela M Reiersen
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.,Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric J Lenze
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.,Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven J Mennerick
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.,Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA. .,Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Pinna G. Biomarkers and treatments for mood disorders encompassing the neurosteroid and endocannabinoid systems. J Neuroendocrinol 2023; 35:e13226. [PMID: 36625096 DOI: 10.1111/jne.13226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Mood disorders, including major depressive disorder, postpartum depression, post-traumatic stress disorder and suicidality are highly prevalent, associated with a significant economic burden, and remain poorly diagnosed and poorly treated psychiatric conditions. In part, this may result from the lack of biomarkers that can guide precision medicine with individualized treatments for millions of individuals who suffer these debilitating conditions worldwide. While several biomarker candidates have been proposed for mood disorders, none has been implemented in clinical practice and the treatment still relies in the prescription of selective serotonin reuptake inhibitors that shows mixed efficacy and significant side effects. Both neurosteroid biosynthesis and the endocannabinoid system have recently provided evidence for pharmacological targets to improve mood symptoms and the neuroactive steroid allopregnanolone has recently been approved by the USA Food and Drug Administration for the treatment of post-partum depression. Clinical studies also show efficacy for the management of major depression and more studies are being conducted to study efficacy in post-traumatic stress disorder. Likewise, the endocannabinoid-like modulator, N-palmioyl ethanolamide (PEA) has shown efficacy in the treatment of major depression and bipolar disorder. While these new agents are coming forward in the field of neuropsychopharmacology as a new generation of fast-acting antidepressants, the hypothesis of whether their deficits underlying mood disorders could constitute valid predictive biomarkers to facilitate diagnosis and treatment of these conditions is under consideration.
Collapse
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, UI Center on Depression and Resilience (UICDR), Center for Alcohol Research in Epigenetics (CARE), Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Matrisciano F, Pinna G. The Strategy of Targeting Peroxisome Proliferator-Activated Receptor (PPAR) in the Treatment of Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:513-535. [PMID: 36949324 DOI: 10.1007/978-981-19-7376-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nonsteroid nuclear receptors and transcription factors that regulate several neuroinflammatory and metabolic processes, recently involved in several neuropsychiatric conditions, including Alzheimer's disease, Parkinson's disease, major depressive disorder, post-traumatic stress disorder (PTSD), schizophrenia spectrum disorders, and autism spectrum disorders. PPARs are ligand-activated receptors that, following stimulation, induce neuroprotective effects by decreasing neuroinflammatory processes through inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) expression and consequent suppression of pro-inflammatory cytokine production. PPARs heterodimerize with the retinoid X-receptor (RXR) and bind to PPAR-responsive regulatory elements (PPRE) in the promoter region of target genes involved in lipid metabolism, synthesis of cholesterol, catabolism of amino acids, and inflammation. Interestingly, PPARs are considered functionally part of the extended endocannabinoid (eCB) system that includes the classic eCB, anandamide, which act at cannabinoid receptor types 1 (CB1) and 2 (CB2) and are implicated in the pathophysiology of stress-related neuropsychiatric disorders. In preclinical studies, PPAR stimulation improves anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. The peculiar functional role of PPARs by exerting anti-inflammatory and neuroprotective effects and their expression localization in neurons and glial cells of corticolimbic circuits make them particularly interesting as novel therapeutic targets for several neuropsychiatric disorders characterized by underlying neuroinflammatory/neurodegenerative mechanisms. Herein, we discuss the pathological hallmarks of neuropsychiatric conditions associated with neuroinflammation, as well as the pivotal role of PPARs with a special emphasis on the subtype alpha (PPAR-α) as a suitable molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - Graziano Pinna
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Suseelan S, Pinna G. Heterogeneity in major depressive disorder: The need for biomarker-based personalized treatments. Adv Clin Chem 2022; 112:1-67. [PMID: 36642481 DOI: 10.1016/bs.acc.2022.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major Depressive Disorder (MDD) or depression is a pathological mental condition affecting millions of people worldwide. Identification of objective biological markers of depression can provide for a better diagnostic and intervention criteria; ultimately aiding to reduce its socioeconomic health burden. This review provides a comprehensive insight into the major biomarker candidates that have been implicated in depression neurobiology. The key biomarker categories are covered across all the "omics" levels. At the epigenomic level, DNA-methylation, non-coding RNA and histone-modifications have been discussed in relation to depression. The proteomics system shows great promise with inflammatory markers as well as growth factors and neurobiological alterations within the endocannabinoid system. Characteristic lipids implicated in depression together with the endocrine system are reviewed under the metabolomics section. The chapter also examines the novel biomarkers for depression that have been proposed by studies in the microbiome. Depression affects individuals differentially and explicit biomarkers identified by robust research criteria may pave the way for better diagnosis, intervention, treatment, and prediction of treatment response.
Collapse
Affiliation(s)
- Shayam Suseelan
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
21
|
Blair RS, Acca GM, Tsao B, Stevens N, Maren S, Nagaya N. Estrous cycle contributes to state-dependent contextual fear in female rats. Psychoneuroendocrinology 2022; 141:105776. [PMID: 35489312 DOI: 10.1016/j.psyneuen.2022.105776] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Abstract
The increased susceptibility of women to stress and trauma-related disorders compared to men suggests a role for ovarian hormones in modulating fear and anxiety. In both humans and rodents, estrogen and progesterone have been shown to influence fear learning during acquisition, expression, and extinction. Recently, we showed that allopregnanolone (ALLO), a progesterone (PROG) metabolite and GABAA receptor potentiator, confers state-dependent contextual fear when infused into the bed nucleus of the stria terminalis of male rats. In order to determine whether estrous cycle-related fluctuations in circulating PROG confer state-dependent contextual fear in female rats, animals received Pavlovian fear conditioning during an estrous cycle phase when PROG was either low (late diestrus) or high (late proestrus). After conditioning, animals were tested for contextual fear in either the same or different estrous cycle phase. Subjects conditioned in diestrus and tested in proestrus showed lower levels of contextual fear compared to subjects conditioned and tested in the same estrous cycle phase (either diestrus or proestrus), suggesting a state-dependent effect of estrous cycle phase on fear learning. This state dependence was asymmetric, however, as animals trained in proestrus and tested in diestrus exhibited high levels of contextual fear. In ovariectomized (OVX) females treated acutely with either PROG or vehicle, state dependence was not observed. These results suggest that the hormonal state in diestrus may play a role in conferring state dependence to conditioned fear in naturally cycling female rats but not in an OVX model.
Collapse
Affiliation(s)
- R Shelby Blair
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Gillian M Acca
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Barbara Tsao
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Naomi Stevens
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA; Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Naomi Nagaya
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA; Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
22
|
Concas A, Serra M, Porcu P. How hormonal contraceptives shape brain and behavior: A review of preclinical studies. Front Neuroendocrinol 2022; 66:101017. [PMID: 35843303 DOI: 10.1016/j.yfrne.2022.101017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022]
Abstract
Steroid hormones influence different aspects of brain function, including development, neurogenesis, neuronal excitability, and plasticity, thus affecting emotional states, cognition, sociality, and reward. In women, their levels fluctuate across the lifespan and through the reproductive stages but are also altered by exogenous administration of hormonal contraceptives (HC). HC are widely used by women throughout their fertile life both for contraceptive and therapeutic benefits. However, awareness of their effects on brain function and behavior is still poorly appreciated, despite the emerging evidence of their action at the level of the central nervous system. Here, we summarize results obtained in preclinical studies, mostly conducted in intact female rodents, aimed at investigating the neurobiological effects of HC. HC can alter neuroactive hormones, neurotransmitters, neuropeptides, as well as emotional states, cognition, social and sexual behaviors. Animal studies provide insights into the neurobiological effects of HC with the aim to improve women's health and well-being.
Collapse
Affiliation(s)
- Alessandra Concas
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy.
| |
Collapse
|
23
|
Belardo C, Alessio N, Pagano M, De Dominicis E, Infantino R, Perrone M, Iannotta M, Galderisi U, Rinaldi B, Scuteri D, Bagetta G, Palazzo E, Maione S, Luongo L. PEA-OXA ameliorates allodynia, neuropsychiatric and adipose tissue remodeling induced by social isolation. Neuropharmacology 2022; 208:108978. [PMID: 35157898 DOI: 10.1016/j.neuropharm.2022.108978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 01/30/2022] [Indexed: 12/28/2022]
Abstract
Chronic social isolation generates a persistent state of stress associated with obesity along with some neuro-endocrine disorders and central behavioral sequelae (eg anxiety, depression, aggression, and allodynia). In this study, we evaluated the effect of social isolation on body weight, depressive- and anxious-aggressive-like behavior, as well as on phenotypic changes of adipocytes from visceral adipose tissue of control (group-housed) or socially isolated (single-housed) male mice. The effect of treatment with pentadecyl-2-oxazoline (PEA-OXA), a natural alpha2 antagonist and histamine H3 protean partial agonist, on these alterations was also evaluated. Single or group-housed mice treated with vehicle or PEA-OXA underwent body weight, mechanical allodynia, anxious-, depressive- and aggressive-like behavior measurements. Proliferation rate, apoptosis, senescence, expression of fat lineage genes, lipid droplets and proinflammatory cytokines were measured on white adipose tissue adipocytes from group- or single-housed mice. Single housed mice developed weight gain, mechanical allodynia at the von Frey test, aggressiveness in the resident intruder test, depression- and anxiety-like behavior in the tail suspension and hole drop tests, respectively. Single housed mice receiving PEA-OXA showed a general resolution of both, physical-metabolic and behavioral alterations associated with social isolation. Furthermore, adipocytes from the adipose tissue of socially isolated mice showed an evident inflamed phenotype (i.e. a reduced rate of proliferation, apoptosis, senescence, and ROS hyper-production together with an increased expression of IL-1β, IL-10, IL-17, and TNF-α and a decrease of IL-6). The treatment with PEA-OXA on adipocytes from single housed mice produced a protective/anti-inflammatory phenotype with an increased expression of brown adipose tissue biomarker. This study confirms that persistent stress caused by social isolation predisposes to obesity and neuropsychiatric disorders. PEA-OXA, through its multi-target activity on alpha2 adrenoceptor and histamine H3 receptors, which have recently aroused great interest in the neuropsychiatric field, reduces weight gain, systemic pro-inflammatory state, allodynia, and affective disorders associated with social isolation.
Collapse
Affiliation(s)
- Carmela Belardo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Pagano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuela De Dominicis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosmara Infantino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michela Perrone
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Barbara Rinaldi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Damiana Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Giacinto Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
24
|
Lambert PM, Lu X, Zorumski CF, Mennerick S. Physiological markers of rapid antidepressant effects of allopregnanolone. J Neuroendocrinol 2022; 34:e13023. [PMID: 34423498 PMCID: PMC8807818 DOI: 10.1111/jne.13023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023]
Abstract
The rise of ketamine and brexanolone as rapid antidepressant treatments raises the question of common mechanisms. Both drugs act without the long onset time of traditional antidepressants such as selective serotonin reuptake inhibitors. The drugs also share the interesting feature of benefit that persists beyond the initial drug lifetime. Here, we briefly review literature on functional changes that may mark the triggering mechanism of rapid antidepressant actions. Because ketamine has a longer history of study as a rapid antidepressant, we use this literature as a template to guide hypotheses about common action. Brexanolone has the complication of being a formulation of a naturally occurring neurosteroid; thus, endogenous levels need to be considered when studying the impact of exogenous administration. We conclude that network disinhibition and increased high-frequency oscillations are candidates to mediate acute triggering effects of rapid antidepressants.
Collapse
Affiliation(s)
- Peter M Lambert
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St Louis School of Medicine, St Louis, MO, USA
| |
Collapse
|
25
|
Bortolato M, Coffey BJ, Gabbay V, Scheggi S. Allopregnanolone: The missing link to explain the effects of stress on tic exacerbation? J Neuroendocrinol 2022; 34:e13022. [PMID: 34423500 PMCID: PMC8800948 DOI: 10.1111/jne.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
The neurosteroid allopregnanolone (3α-hydroxy-5α-pregnan-20-one; AP) elicits pleiotropic effects in the central nervous system, ranging from neuroprotective and anti-inflammatory functions to the regulation of mood and emotional responses. Several lines of research show that the brain rapidly produces AP in response to acute stress to reduce the allostatic load and enhance coping. These effects not only are likely mediated by GABAA receptor activation but also result from the contributions of other mechanisms, such as the stimulation of membrane progesterone receptors. In keeping with this evidence, AP has been shown to exert rapid, potent antidepressant properties and has been recently approved for the therapy of moderate-to-severe postpartum depression. In addition to depression, emerging evidence points to the potential of AP as a therapy for other neuropsychiatric disorders, including anxiety, seizures, post-traumatic stress disorder and cognitive problems. Although this evidence has spurred interest in further therapeutic applications of AP, some investigations suggest that this neurosteroid may also be associated with adverse events in specific disorders. For example, our group has recently documented that AP increases tic-like manifestations in several animal models of tic disorders; furthermore, our results indicate that inhibiting AP synthesis and signalling reduces the exacerbation of tic severity associated with acute stress. Although the specific mechanisms of these effects remain partially elusive, our findings point to the possibility that the GABAergic activation by AP may also lead to disinhibitory effects, which could interfere with the ability of patients to suppress their tics. Future studies will be necessary to verify whether these mechanisms may apply to other externalising manifestations, such as impulse-control problems and manic symptoms.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and ToxicologyCollege of PharmacyUniversity of UtahSalt Lake CityUTUSA
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
| | - Barbara J. Coffey
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
- Department of Psychiatry and Behavioral ScienceMiller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Vilma Gabbay
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
- Department of Psychiatry and Behavioral SciencesAlbert Einstein College of MedicineBronxNYUSA
| | - Simona Scheggi
- Department of Molecular and Developmental MedicineSchool of MedicineUniversity of SienaSienaItaly
| |
Collapse
|
26
|
Belelli D, Phillips GD, Atack JR, Lambert JJ. Relating neurosteroid modulation of inhibitory neurotransmission to behaviour. J Neuroendocrinol 2022; 34:e13045. [PMID: 34644812 DOI: 10.1111/jne.13045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
Studies in the 1980s revealed endogenous metabolites of progesterone and deoxycorticosterone to be potent, efficacious, positive allosteric modulators (PAMs) of the GABAA receptor (GABAA R). The discovery that such steroids are locally synthesised in the central nervous system (CNS) promoted the thesis that neural inhibition in the CNS may be "fine-tuned" by these neurosteroids to influence behaviour. In preclinical studies, these neurosteroids exhibited anxiolytic, anticonvulsant, analgesic and sedative properties and, at relatively high doses, induced a state of general anaesthesia, a profile consistent with their interaction with GABAA Rs. However, realising the therapeutic potential of either endogenous neurosteroids or synthetic "neuroactive" steroids has proven challenging. Recent approval by the Food and Drug Administration of the use of allopregnanolone (brexanolone) to treat postpartum depression has rekindled enthusiasm for exploring their potential as new medicines. Although neurosteroids are selective for GABAA Rs, they exhibit little or no selectivity across the many GABAA R subtypes. Nevertheless, a relatively minor population of receptors incorporating the δ-subunit (δ-GABAA Rs) appears to be an important contributor to their behavioural effects. Here, we consider how neurosteroids acting upon GABAA Rs influence neuronal signalling, as well as how such effects may acutely and persistently influence behaviour, and explore the case for developing selective PAMs of δ-GABAA R subtypes for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Delia Belelli
- Neuroscience, Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Grant D Phillips
- Neuroscience, Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - John R Atack
- Medicines Discovery Institute, Cardiff University, Cardiff, UK
| | - Jeremy J Lambert
- Neuroscience, Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
27
|
Nassif JB, Felthous AR. Mapping the neurocircuitry of impulsive aggression through the pharmacologic review of anti-impulsive aggressive agents. J Forensic Sci 2022; 67:844-853. [PMID: 35106768 DOI: 10.1111/1556-4029.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
Abstract
Impulsive aggression, in contradistinction to premeditated aggression in humans or predatory aggression in animals, corresponds to defensive aggression in animal models. At the core of the neurocircuitry of impulsive aggression, from murine to feline to human species, it is the medial amygdala-mediobasal hypothalamus-dorsal periaqueductal gray pathway. Here, we update current knowledge on the neurocircuitry of impulsive aggression by placing the neurocircuitry and its neurophysiological substrates into the top-down/bottom-up hypothesis of impulsive aggression. We then reverse the neurotranslational approach, which applies neuroscience to developing therapeutic drugs, and apply current understanding of potential mechanisms of anti-impulsive aggression agents to further clarify, at least heuristically and hypothetically, the dynamic biochemical components of the neurocircuitry of impulsive aggression. To do this, we searched the medical literature for studies attempting to clarify the neurobiological and neurochemical effects of the five most widely studied anti-impulsive aggressive agents, particularly as they pertain to the top-down/bottom-up hypothesis. Multiple different mechanisms are discussed, all of which fitting in the hypothesis by way of either promoting the "top-down" part (i.e., enhancing inhibitory neurotransmitters), or suppressing the "bottom-up" part (i.e., decreasing excitatory neurotransmitters). The hypothesis appears consistent with the current psychopharmacological understanding of these agents, as well as to account for the likely multifactorial etiology of the condition. Limitations of the hypothesis and future directions are finally discussed.
Collapse
Affiliation(s)
- Joe Bou Nassif
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Alan R Felthous
- Forensic Psychiatry Division, Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
28
|
Targeting PSD95/nNOS by ZL006 alleviates social isolation-induced heightened attack behavior in mice. Psychopharmacology (Berl) 2022; 239:267-276. [PMID: 34661719 PMCID: PMC8521491 DOI: 10.1007/s00213-021-06000-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/10/2021] [Indexed: 11/23/2022]
Abstract
RATIONALE Deregulated attack behaviors have devastating social consequences; however, satisfactory clinical management for the behavior is still an unmet need so far. Social isolation (SI) has been common during the COVID-19 pandemic and may have detrimental effects on mental health, including eliciting heightened attack behavior. OBJECTIVES This study aims to explore whether injection of ZL006 can alleviate SI-induced escalation of attack behavior in mice. METHODS Pharmacological tools, biochemical methods, and behavioral tests were used to explore the potential therapeutic effects of ZL006 targeting postsynaptic density 95 (PSD95)/neuronal nitric oxide synthase (nNOS) pathway on escalation of attack behavior induced by SI in mice. RESULTS ZL006 mitigated SI-induced escalated attack behaviors and elevated nitric oxide (NO) level in the cortex of the SI mice. The beneficial effects of ZL006 lasted for at least 72 h after a single injection of ZL006. Potentiation of NO levels by L-arginine blocked the effects of ZL006. Moreover, a sub-effective dose of 7-NI in combination with a sub-effective dose of ZL006 decreased both SI-induced escalated attack behaviors and NO levels in mice subjected to SI. CONCLUSIONS Our study highlights the importance of the PSD95/nNOS pathway in mediating SI-induced escalation of attack behavior. ZL006 may be a promising therapeutic strategy for treating aggressive behaviors.
Collapse
|
29
|
Matrisciano F, Pinna G. PPAR-α Hypermethylation in the Hippocampus of Mice Exposed to Social Isolation Stress Is Associated with Enhanced Neuroinflammation and Aggressive Behavior. Int J Mol Sci 2021; 22:ijms221910678. [PMID: 34639019 PMCID: PMC8509148 DOI: 10.3390/ijms221910678] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 12/18/2022] Open
Abstract
Social behavioral changes, including social isolation or loneliness, increase the risk for stress-related disorders, such as major depressive disorder, posttraumatic stress disorder (PTSD), and suicide, which share a strong neuroinflammatory etiopathogenetic component. The peroxisome-proliferator activated receptor (PPAR)-α, a newly discovered target involved in emotional behavior regulation, is a ligand-activated nuclear receptor and a transcription factor that, following stimulation by endogenous or synthetic ligands, may induce neuroprotective effects by modulating neuroinflammation, and improve anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. How stress affects epigenetic mechanisms with downstream effects on inflammation and emotional behavior remains poorly understood. We studied the effects of 4-week social isolation, using a mouse model of PTSD/suicide-like behavior, on hippocampal PPAR-α epigenetic modification. Decreased PPAR-α expression in the hippocampus of socially isolated mice was associated with increased levels of methylated cytosines of PPAR-α gene CpG-rich fragments and deficient neurosteroid biosynthesis. This effect was associated with increased histone deacetylases (HDAC)1, methyl-cytosine binding protein (MeCP)2 and decreased ten-eleven translocator (TET)2 expression, which favor hypermethylation. These alterations were associated with increased TLR-4 and pro-inflammatory markers (e.g., TNF-α,), mediated by NF-κB signaling in the hippocampus of aggressive mice. This study contributes the first evidence of stress-induced brain PPAR-α epigenetic regulation. Social isolation stress may constitute a risk factor for inflammatory-based psychiatric disorders associated with neurosteroid deficits, and targeting epigenetic marks linked to PPAR-α downregulation may offer a valid therapeutic approach.
Collapse
|
30
|
Wenzel ES, Pinna G, Eisenlohr-Moul T, Bernabe BP, Tallon RR, Nagelli U, Davis J, Maki PM. Neuroactive steroids and depression in early pregnancy. Psychoneuroendocrinology 2021; 134:105424. [PMID: 34607173 PMCID: PMC8943472 DOI: 10.1016/j.psyneuen.2021.105424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Progesterone (P4) can be metabolized to two general classes of neuroactive steroids (NAS) -those like allopregnanolone (ALLO) and pregnanolone (PA) which are positive allosteric modulators of the Gamma Aminobutyric Acid type A (GABAA) receptor and those like isoallopregnanolone (ISOALLO) and epipregnanolone (EPI) which are negative allosteric modulators of the GABAA receptor. While exogenous administration of ALLO is effective in treating postpartum depression, knowledge gaps remain in the dynamic interplay of NAS across the perinatal period. In particular little is known about ALLO and PA in relation to depression earlier in pregnancy, and the role of ISOALLO and EPI in relation to depression at any point in the perinatal period. In a prospective, nested case/control study in low-income women of color, we compared the metabolism of P4 to four NAS (i.e., ratios ALLO:P4, PA:P4, ISOALLO:P4, EPI:P4) in pregnant women with depression at either or both of the first and second trimesters (cases) and women without depression at either time point (controls). Fifty women (36% depressed, 56% Black, 28% Latina) completed depression screening using a computerized adaptive test of mental health (CAT-MH™) and provided blood serum samples in both trimesters. In longitudinal mixed effects models of both trimesters, PND cases showed higher ratios of ALLO:P4 (p = .002) and PA:P4 (p = .03) compared to controls. In regression models of only first trimester data, there was no significant difference in NAS ratios between cases and controls (p > .05). Conversely, in models of the second trimester, ratios of PA:P4 (p = .002) and ISOALLO:P4 (p = .01) were significantly higher in cases compared to controls, and ratios of ALLO:P4 (p = .08) and EPI:P4 (p = .1) also trended higher in cases. The most severe cases, those with depression at both trimesters, showed an increase in ALLO:P4 (p = .06) and EPI:P4 (p < .001) ratios from the first to the second trimester, whereas controls showed a decrease in these ratios. Secondary analyses confirmed higher levels of ALLO (p = .04) and PA (p = .07) overall in cases compared to controls, along with higher levels of PA (p = .005) and ISOALLO (p = .02) in the second trimester alone. This work suggests a dynamic relationship between NAS and PND; whereas low ALLO levels have been previously associated with postpartum depression, earlier in pregnancy a higher metabolism of P4 to ALLO (and higher ALLO levels) is associated with depression. Some women may show a hormone-sensitive depressive response to acute increases in NAS metabolism in early pregnancy.
Collapse
Affiliation(s)
- Elizabeth S Wenzel
- University of Illinois at Chicago, Department of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA; University of Illinois at Chicago, Department of Psychology, 1007 W Harrison St, Chicago, IL 60607, USA
| | - Graziano Pinna
- University of Illinois at Chicago, Department of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA
| | - Tory Eisenlohr-Moul
- University of Illinois at Chicago, Department of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA
| | - Beatriz Penalver Bernabe
- University of Illinois at Chicago, Department of Biomedical Engineering, 820 S Wood St, Chicago, IL, 60612, USA
| | - Raquel Romay Tallon
- University of Illinois at Chicago, Department of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA
| | - Unnathi Nagelli
- University of Illinois at Chicago, Department of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA
| | - John Davis
- University of Illinois at Chicago, Department of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA
| | - Pauline M Maki
- University of Illinois at Chicago, Department of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA; University of Illinois at Chicago, Department of Psychology, 1007 W Harrison St, Chicago, IL 60607, USA; University of Illinois at Chicago, Department of Obstetrics and Gynecology, 820 S Wood St, Chicago, IL 60612, USA.
| |
Collapse
|
31
|
Takahashi A. Social Stress and Aggression in Murine Models. Curr Top Behav Neurosci 2021; 54:181-208. [PMID: 34432257 DOI: 10.1007/7854_2021_243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Throughout life, animals engage in a variety of social interactions ranging from the affiliative mother-offspring interaction and juvenile play to aggressive conflict. Deprivation of the appropriate social interaction during early development is stressful and disrupts the development of appropriate social behaviors and emotional responses later in life. Additionally, agonistic encounters can induce stress responses in both dominant and subordinate individuals. This review focuses on the social stress that escalates aggressive behavior of animals and discusses the known neurobiological and physiological mechanisms underlying the link between social stress and aggression. Social instigation, a brief exposure to a rival without physical contact, induces aggressive arousal in dominant animals and escalates aggressive behaviors in the following agonistic encounter. Furthermore, the experience of winning an aggressive encounter is known to be as rewarding as addictive drugs, and the experience of repeatedly winning induces addiction-like behavioral and neurobiological changes and leads to abnormal aggressive behaviors. Social isolation stress in early development from neonatal to juvenile and adolescent periods also affects aggressive behavior, but these effects largely depend on the strain, sex, and species as well as the stage of development in which isolation stress is experienced. In conclusion, understanding neurobiological mechanisms underlying the link between social stress and aggression will provide an important insight for the development of more effective and tolerable treatments for maladaptive aggression in humans.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
32
|
Almeida FB, Pinna G, Barros HMT. The Role of HPA Axis and Allopregnanolone on the Neurobiology of Major Depressive Disorders and PTSD. Int J Mol Sci 2021; 22:5495. [PMID: 34071053 PMCID: PMC8197074 DOI: 10.3390/ijms22115495] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022] Open
Abstract
Under stressful conditions, the hypothalamic-pituitary-adrenal (HPA) axis acts to promote transitory physiological adaptations that are often resolved after the stressful stimulus is no longer present. In addition to corticosteroids (e.g., cortisol), the neurosteroid allopregnanolone (3α,5α-tetrahydroprogesterone, 3α-hydroxy-5α-pregnan-20-one) participates in negative feedback mechanisms that restore homeostasis. Chronic, repeated exposure to stress impairs the responsivity of the HPA axis and dampens allopregnanolone levels, participating in the etiopathology of psychiatric disorders, such as major depressive disorder (MDD) and post-traumatic stress disorder (PTSD). MDD and PTSD patients present abnormalities in the HPA axis regulation, such as altered cortisol levels or failure to suppress cortisol release in the dexamethasone suppression test. Herein, we review the neurophysiological role of allopregnanolone both as a potent and positive GABAergic neuromodulator but also in its capacity of inhibiting the HPA axis. The allopregnanolone function in the mechanisms that recapitulate stress-induced pathophysiology, including MDD and PTSD, and its potential as both a treatment target and as a biomarker for these disorders is discussed.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Chronic Disease
- Corticosterone/metabolism
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/physiopathology
- Feedback, Physiological
- Female
- GABA-A Receptor Agonists/therapeutic use
- Humans
- Hypothalamo-Hypophyseal System/physiopathology
- Male
- Models, Biological
- Pituitary-Adrenal System/physiopathology
- Pregnanolone/biosynthesis
- Pregnanolone/physiology
- Receptors, GABA-A/physiology
- Sex Characteristics
- Stress Disorders, Post-Traumatic/physiopathology
- Stress, Physiological
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- gamma-Aminobutyric Acid/physiology
Collapse
Affiliation(s)
- Felipe Borges Almeida
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, RS, Brazil; (F.B.A.); (H.M.T.B.)
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor Str., Chicago, IL 60612, USA
| | - Helena Maria Tannhauser Barros
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, RS, Brazil; (F.B.A.); (H.M.T.B.)
| |
Collapse
|
33
|
Chen S, Gao L, Li X, Ye Y. Allopregnanolone in mood disorders: Mechanism and therapeutic development. Pharmacol Res 2021; 169:105682. [PMID: 34019980 DOI: 10.1016/j.phrs.2021.105682] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/23/2023]
Abstract
The neuroactive steroid allopregnanolone (ALLO) is an endogenous positive allosteric modulator of GABA type A receptor (GABAAR), and the down-regulation of its biosynthesis have been attributed to the development of mood disorders, such as depression, anxiety and post-traumatic stress disorder (PTSD). ALLO mediated depression/anxiety involves GABAergic mechanisms and appears to be related to brain-derived neurotrophic factor (BDNF), dopamine receptor, glutamate neurotransmission, and Ca2+ channel. In the clinical, brexanolone, as a newly developed intravenous ALLO preparation, has been approved for the treatment of postpartum depression (PPD). In addition, traditional antidepressants such as selective serotonin reuptake inhibitor (SSRI) could reverse ALLO decline. Recently, the translocation protein (TSPO, 18 kDa), which involves in the speed-limiting step of ALLO synthesis, and ALLO derivatization have been identified as new directions for antidepressant therapy. This review provides an overview of ALLO researches in animal model and patients, discusses its role in the development and treatment of depression/anxiety, and directs its therapeutic potential in future.
Collapse
Affiliation(s)
- Shiyi Chen
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Lijuan Gao
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Xiaoyu Li
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Yiping Ye
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
34
|
Vaht M. Variation rs6971 in the Translocator Protein Gene ( TSPO) is Associated with Aggressiveness and Impulsivity but Not with Anxiety in a Population-Representative Sample of Young Adults. The Journal of Genetic Psychology 2021; 182:149-162. [PMID: 33769215 DOI: 10.1080/00221325.2021.1896470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Expression of the 18-kDa translocator protein (TSPO), originally identified as a peripheral benzodiazepine receptor, has been found to be altered in several psychiatric disorders. A common single nucleotide polymorphism (rs6971) in the TSPO gene leads to an amino acid substitution, Ala147Thr, which dramatically alters the affinity with which TSPO binds drug ligands. As cholesterol also binds TSPO in the same transmembrane domain, it is suggested that this substitution may impair the ability of TSPO to bind or import cholesterol, and hence may affect steroid synthesis and hypothalamic-pituitary-adrenal function. The analysis was carried out on older birth cohort (n = 655) of the longitudinal Estonian Children Personality, Behavior and Health Study sample. Anxiety, aggressive behavior, impulsiveness, and history of stressful life events were self-reported in various data collection waves. Psychiatric assessment of lifetime prevalence of anxiety disorders was carried out at 25 years of age by experienced clinical psychologists. TSPO rs6971 was genotyped in all participants. TSPO rs6971 was not associated with self-reported levels of anxiety or lifetime prevalence of anxiety disorders. However, participants homozygous for the minor A allele displayed the highest aggressiveness and dysfunctional impulsivity scores. The positive, adaptive aspect of impulsivity was sensitive to stressful life events, as the AA genotype was associated with functional impulsivity only when the participants had experienced a low number of stressful life events during childhood. TSPO rs6971 polymorphism may be related to development of aggressiveness and impulsivity by adulthood, regardless of the participants' gender.
Collapse
Affiliation(s)
- Mariliis Vaht
- Institute of Psychology, University of Tartu, Tartu, Estonia.,Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
35
|
Pinna G. Allopregnanolone (1938-2019): A trajectory of 80 years of outstanding scientific achievements. Neurobiol Stress 2020; 13:100246. [PMID: 32875009 PMCID: PMC7451447 DOI: 10.1016/j.ynstr.2020.100246] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor Street, Chicago, IL, 60612, USA
| |
Collapse
|
36
|
Kelly AM, Wilson LC. Aggression: Perspectives from social and systems neuroscience. Horm Behav 2020; 123:104523. [PMID: 31002771 DOI: 10.1016/j.yhbeh.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023]
Abstract
Exhibiting behavioral plasticity in order to mount appropriate responses to dynamic and novel social environments is crucial to the survival of all animals. Thus, how animals regulate flexibility in the timing, duration, and intensity of specific behaviors is of great interest to biologists. In this review, we discuss how animals rapidly respond to social challenges, with a particular focus on aggression. We utilize a conceptual framework to understand the neural mechanisms of aggression that is grounded in Wingfield and colleagues' Challenge Hypothesis, which has profoundly influenced how scientists think about aggression and the mechanisms that allow animals to exhibit flexible responses to social instability. Because aggressive behavior is rooted in social interactions, we propose that mechanisms modulating prosocial behavior may be intricately tied to mechanisms of aggression. Therefore, in order to better understand how aggressive behavior is mediated, we draw on perspectives from social neuroscience and discuss how social context, species-typical behavioral phenotype, and neural systems commonly studied in relation to prosocial behavior (i.e., neuropeptides) contribute to organizing rapid responses to social challenges. Because complex behaviors are not the result of one mechanism or a single neural system, we consider how multiple neural systems important for prosocial and aggressive behavior (i.e., neuropeptides and neurosteroids) interact in the brain to produce behavior in a rapid, context-appropriate manner. Applying a systems neuroscience perspective and seeking to understand how multiple systems functionally integrate to rapidly modulate behavior holds great promise for expanding our knowledge of the mechanisms underlying social behavioral plasticity.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| | - Leah C Wilson
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
37
|
Qiu ZK, Liu X, Chen Y, Wu RJ, Guan SF, Pan YY, Wang QB, Tang D, Zhu T, Chen JS. Translocator protein 18 kDa: a potential therapeutic biomarker for post traumatic stress disorder. Metab Brain Dis 2020; 35:695-707. [PMID: 32172519 DOI: 10.1007/s11011-020-00548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/10/2020] [Indexed: 11/11/2022]
Abstract
Post traumatic stress disorder (PTSD) is widely regarded as a stress-related and trauma disorder. The symptoms of PTSD are characterized as a spectrum of vulnerabilities after the exposure to an extremely traumatic stressor. Considering as one of complex mental disorders, little progress has been made toward its diagnostic biomarkers, despite the involvement of PTSD has been studied. Many studies into the underlying neurobiology of PTSD implicated the dysfunction of neurosteroids biosynthesis and neuorinflammatory processes. Translocator protein 18 kDa (TSPO) has been considered as one of the promising therapeutic biomarkers for neurological stress disorders (like PTSD, depression, anxiety, et al) without the benzodiazepine-like side effects. This protein participates in the formation of neurosteroids and modulation of neuroinflammation. The review outlines current knowledge involving the role of TSPO in the neuropathology of PTSD and the anti-PTSD-like effects of TSPO ligands.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Xu Liu
- Pharmacy Department of Medical Supplies Center of General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, People's Republic of China
| | - Yong Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Rong-Jia Wu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Shi-Feng Guan
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Yun-Yun Pan
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Qian-Bo Wang
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Dan Tang
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Tao Zhu
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
38
|
Pinna G. Allopregnanolone, the Neuromodulator Turned Therapeutic Agent: Thank You, Next? Front Endocrinol (Lausanne) 2020; 11:236. [PMID: 32477260 PMCID: PMC7240001 DOI: 10.3389/fendo.2020.00236] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Graziano Pinna
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
39
|
Matrisciano F, Pinna G. PPAR and functional foods: Rationale for natural neurosteroid-based interventions for postpartum depression. Neurobiol Stress 2020; 12:100222. [PMID: 32426424 PMCID: PMC7226878 DOI: 10.1016/j.ynstr.2020.100222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Allopregnanolone, a GABAergic neurosteroid and progesterone derivative, was recently approved by the Food and Drug Administration for the treatment of postpartum depression (PPD). Several mechanisms appear to be involved in the pathogenesis of PPD, including neuroendocrine dysfunction, neuroinflammation, neurotransmitter alterations, genetic and epigenetic modifications. Recent evidence highlights the higher risk for incidence of PPD in mothers exposed to unhealthy diets that negatively impact the microbiome composition and increase inflammation, all effects that are strongly correlated with mood disorders. Conversely, healthy diets have consistently been reported to decrease the risk of peripartum depression and to protect the body and brain against low-grade systemic chronic inflammation. Several bioactive micronutrients found in the so-called functional foods have been shown to play a relevant role in preventing neuroinflammation and depression, such as vitamins, minerals, omega-3 fatty acids and flavonoids. An intriguing molecular substrate linking functional foods with improvement of mood disorders may be represented by the peroxisome-proliferator activated receptor (PPAR) pathway, which can regulate allopregnanolone biosynthesis and brain-derived neurotropic factor (BDNF) and thereby may reduce inflammation and elevate mood. Herein, we discuss the potential connection between functional foods and PPAR and their role in preventing neuroinflammation and symptoms of PPD through neurosteroid regulation. We suggest that healthy diets by targeting the PPAR-neurosteroid axis and thereby decreasing inflammation may offer a suitable functional strategy to prevent and safely alleviate mood symptoms during the perinatal period.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| |
Collapse
|
40
|
Almeida FB, Nin MS, Barros HMT. The role of allopregnanolone in depressive-like behaviors: Focus on neurotrophic proteins. Neurobiol Stress 2020; 12:100218. [PMID: 32435667 PMCID: PMC7231971 DOI: 10.1016/j.ynstr.2020.100218] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
Allopregnanolone (3α,5α-tetrahydroprogesterone; pharmaceutical formulation: brexanolone) is a neurosteroid that has recently been approved for the treatment of postpartum depression, promising to fill part of a long-lasting gap in the effectiveness of pharmacotherapies for depressive disorders. In this review, we explore the experimental research that characterized the antidepressant-like effects of allopregnanolone, with a particular focus on the neurotrophic adaptations induced by this neurosteroid in preclinical studies. We demonstrate that there is a consistent decrease in allopregnanolone levels in limbic brain areas in rodents submitted to stress-induced models of depression, such as social isolation and chronic unpredictable stress. Further, both the drug-induced upregulation of allopregnanolone or its direct administration reduce depressive-like behaviors in models such as the forced swim test. The main drugs of interest that upregulate allopregnanolone levels are selective serotonin reuptake inhibitors (SSRIs), which present the neurosteroidogenic property even in lower, non-SSRI doses. Finally, we explore how these antidepressant-like behaviors are related to neurogenesis, particularly in the hippocampus. The protagonist in this mechanism is likely the brain-derived neurotrophic factor (BFNF), which is decreased in animal models of depression and may be restored by the normalization of allopregnanolone levels. The role of an interaction between GABA and the neurotrophic mechanisms needs to be further investigated.
Collapse
Key Words
- 3α,5α-tetrahydroprogesterone
- BDNF
- BDNF, brain-derived neurotrophic factor
- Brexanolone
- CSF, cerebrospinal fluid
- CUS, chronic unpredictable stress
- Depression
- EKR, extracellular signal-regulated kinase
- FST, forced swim test
- GABA, γ-aminobutyric acid
- GABAAR, GABA type A receptor
- HSD, hydroxysteroid dehydrogenase
- NGF, nerve growth factor
- Neurosteroid
- PTSD, post-traumatic stress disorder
- PXR, pregnane xenobiotic receptor
- SBSS, selective brain steroidogenic stimulant
- SSRI, selective serotonin reuptake inhibitor
- Selective brain steroidogenic stimulant
- THP, tetrahydroprogesterone
- TSPO, 18 kDa translocator protein
- TrkB, tropomyosin receptor kinase B
- USV, ultrasonic vocalization
Collapse
Affiliation(s)
- Felipe Borges Almeida
- Graduate Program in Health Sciences: Pharmacology and Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil
| | - Maurício Schüler Nin
- Graduate Program in Health Sciences: Pharmacology and Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil.,Centro Universitário Metodista do IPA, 90420-060, Porto Alegre, RS, Brazil.,Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul (UFRGS), 90040-060, Porto Alegre, RS, Brazil
| | - Helena Maria Tannhauser Barros
- Graduate Program in Health Sciences: Pharmacology and Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
41
|
Iba H, Watanabe T, Matsuzawa K, Saimiya M, Tanaka M, Nagao M, Moriyama H, Kubota K, Katsurabayashi S, Iwasaki K. Effect of Yokukansan and Yokukansankachimpihange on Aggressive Behavior, 5-HT Receptors and Arginine Vasopressin Expression in Social Isolation-Reared Mice. Biol Pharm Bull 2020; 42:2009-2015. [PMID: 31787717 DOI: 10.1248/bpb.b19-00499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The traditional herbal medicines yokukansan (YKS) and yokukansankachimpihange (YKSCH) are prescribed for neurosis, insomnia or night crying and irritability in children. YKSCH comprises YKS and two additional herbs, a chimpi and a hange, and is used to treat digestive function deficiencies. However, the differences between the effects of YKS and YKSCH on brain function are unclear. The present study examined the effects of YKS and YKSCH on aggressive behavior in mice reared under a social isolation (SI) condition. Mice were housed individually for 6 weeks. YKS and YKSCH were administered orally for 2 weeks before aggression tests. SI increased aggressive behavior against naïve mice, and YKS, but not YKSCH, significantly attenuated this aggressive behavior. Because serotonin (5-HT)2A and 5-HT3A receptor antagonists are reported to have anti-aggressive effects, the mRNA levels of these receptors were examined. YKS attenuated the SI-induced increase in 5-HT2A and 5-HT3A receptor mRNA in the amygdala. On the other hand, YKSCH attenuated the SI-induced increase in 5-HT1A receptor mRNA. YKS and YKSCH did not affect 5-HT and its metabolite 5-hydroxyindoleacetic acid content in the amygdala. However, YKSCH increased the mRNA level of arginine vasopressin (AVP), which is a neuropeptide that has been implicated in aggression, in the amygdala. These results suggest that YKS ameliorates aggressive behavior by decreasing 5-HT2A and 5-HT3A receptor expression. The YKSCH-induced increase in AVP may disrupt the anti-aggressive effect of YKS. YKS may be more effective than YKSCH for treating irritability if digestive function deficiencies are not considered.
Collapse
Affiliation(s)
- Hikari Iba
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University
| | - Kanae Matsuzawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Maki Saimiya
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Masako Tanaka
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Masaki Nagao
- A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University
| | - Hiroshi Moriyama
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University
| | | | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University
| |
Collapse
|
42
|
Naylor JC, Kilts JD, Shampine LJ, Parke GJ, Wagner HR, Szabo ST, Smith KD, Allen TB, Telford-Marx EG, Dunn CE, Cuffe BT, O’Loughlin SH, Marx CE. Effect of Pregnenolone vs Placebo on Self-reported Chronic Low Back Pain Among US Military Veterans: A Randomized Clinical Trial. JAMA Netw Open 2020; 3:e200287. [PMID: 32119096 PMCID: PMC7052727 DOI: 10.1001/jamanetworkopen.2020.0287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
IMPORTANCE In response to the national opioid public health crisis, there is an urgent need to develop nonopioid solutions for effective pain management. Neurosteroids are endogenous molecules with pleotropic actions that show promise for safe and effective treatment of chronic low back pain. OBJECTIVE To determine whether adjunctive pregnenolone has therapeutic utility for the treatment of chronic low back pain in Iraq- and Afghanistan-era US military veterans. DESIGN, SETTING, AND PARTICIPANTS Randomized, double-blind, placebo-controlled clinical trial that enrolled for 42 months, from September 2013 to April 2017. Participants were Iraq- and Afghanistan-era veterans aged 18 to 65 years with chronic low back pain who received treatment in the Durham VA Health Care System in Durham, North Carolina, over 6 weeks. Data analysis began in 2018 and was finalized in March, 2019. INTERVENTIONS Following a 1-week placebo lead-in, participants were randomized to pregnenolone or placebo for 4 weeks. Pregnenolone and placebo were administered at fixed, escalating doses of 100 mg for 1 week, 300 mg for 1 week, and 500 mg for 2 weeks. MAIN OUTCOMES AND MEASURES The primary outcome measure was the change in mean pain intensity ratings from a daily pain diary (numerical rating scale, 0-10) between visit 3 (baseline) and visit 6. Secondary outcomes included pain interference scores (Brief Pain Inventory, Short Form). Preintervention and postintervention neurosteroid levels were quantified by gas chromatography with tandem mass spectrometry. Hypotheses tested were formulated prior to data collection. RESULTS A total of 94 participants (84 [89.4%] male; mean [SD] age, 37.5 [9.8] years; 53 [56.4%] of self-reported Caucasian race and 31 [33.0%] of self-reported African American race) were included. Forty-eight participants were randomized to pregnenolone and 52 to placebo, of whom 45 and 49, respectively, were included in baseline demographic characteristics secondary to noncompliance with medications as per protocol. Veterans randomized to pregnenolone reported significant reductions in low back pain relative to those randomized to placebo. Baseline unadjusted mean (SE) pain diary ratings were 4.83 (0.23) and 5.24 (0.22) for the placebo- and pregnenolone-treated groups, respectively (baseline unadjusted mean [SE] ratings for pain recall were 4.78 [0.24] and 5.15 [0.23], respectively). Unadjusted mean (SE) ratings following treatment (visit 6) were 4.74 (0.26) in the placebo group and 4.19 (0.30) in the pregnenolone-treated group. Unadjusted mean (SE) ratings for pain recall following treatment were 4.86 (0.27) for placebo and 4.18 (0.29) for pregnenolone. Least-square mean (LSM) analysis showed that pain scores significantly improved in the pregnenolone-treated group compared with placebo (LSM [SE] change in pain diary rating, -0.56 [0.25]; P = .02; LSM [SE] change in pain recall, -0.70 [0.27]; P = .01). Pain interference scores for work (LSM [SE] change, 0.71 [0.12]; P = .04) and activity (LSM [SE] change, 0.71 [0.11]; P = .03) were also improved in veterans randomized to pregnenolone compared with placebo. Pregnenolone was well tolerated. CONCLUSIONS AND RELEVANCE Participants receiving pregnenolone reported a clinically meaningful reduction in low back pain and 2 pain interference domains compared with those receiving placebo. Pregnenolone may represent a novel, safe, and potentially efficacious treatment for the alleviation of chronic low back pain in Iraq- and Afghanistan-era veterans. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01898013.
Collapse
Affiliation(s)
- Jennifer C. Naylor
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Jason D. Kilts
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Lawrence J. Shampine
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Gillian J. Parke
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - H. Ryan Wagner
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Steven T. Szabo
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Karen D. Smith
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Trina B. Allen
- Durham VA Health Care System, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | | | | | - Brian T. Cuffe
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Susan H. O’Loughlin
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Christine E. Marx
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| |
Collapse
|
43
|
Abstract
Understanding the neurobiological basis of post-traumatic stress disorder (PTSD) is fundamental to accurately diagnose this neuropathology and offer appropriate treatment options to patients. The lack of pharmacological effects, too often observed with the most currently used drugs, the selective serotonin reuptake inhibitors (SSRIs), makes even more urgent the discovery of new pharmacological approaches. Reliable animal models of PTSD are difficult to establish because of the present limited understanding of the PTSD heterogeneity and of the influence of various environmental factors that trigger the disorder in humans. We summarize knowledge on the most frequently investigated animal models of PTSD, focusing on both their behavioral and neurobiological features. Most of them can reproduce not only behavioral endophenotypes, including anxiety-like behaviors or fear-related avoidance, but also neurobiological alterations, such as glucocorticoid receptor hypersensitivity or amygdala hyperactivity. Among the various models analyzed, we focus on the social isolation mouse model, which reproduces some deficits observed in humans with PTSD, such as abnormal neurosteroid biosynthesis, changes in GABAA receptor subunit expression and lack of pharmacological response to benzodiazepines. Neurosteroid biosynthesis and its interaction with the endocannabinoid system are altered in PTSD and are promising neuronal targets to discover novel PTSD agents. In this regard, we discuss pharmacological interventions and we highlight exciting new developments in the fields of research for novel reliable PTSD biomarkers that may enable precise diagnosis of the disorder and more successful pharmacological treatments for PTSD patients.
Collapse
|
44
|
Zorumski CF, Paul SM, Covey DF, Mennerick S. Neurosteroids as novel antidepressants and anxiolytics: GABA-A receptors and beyond. Neurobiol Stress 2019; 11:100196. [PMID: 31649968 PMCID: PMC6804800 DOI: 10.1016/j.ynstr.2019.100196] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/24/2019] [Indexed: 01/22/2023] Open
Abstract
The recent FDA approval of the neurosteroid, brexanolone (allopregnanolone), as a treatment for women with postpartum depression, and successful trials of a related neuroactive steroid, SGE-217, for men and women with major depressive disorder offer the hope of a new era in treating mood and anxiety disorders based on the potential of neurosteroids as modulators of brain function. This review considers potential mechanisms contributing to antidepressant and anxiolytic effects of allopregnanolone and other GABAergic neurosteroids focusing on their actions as positive allosteric modulators of GABAA receptors. We also consider their roles as endogenous "stress" modulators and possible additional mechanisms contributing to their therapeutic effects. We argue that further understanding of the molecular, cellular, network and psychiatric effects of neurosteroids offers the hope of further advances in the treatment of mood and anxiety disorders.
Collapse
Affiliation(s)
- Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven M. Paul
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Douglas F. Covey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
45
|
Matsumoto K, Fujiwara H, Araki R, Yabe T. Post-weaning social isolation of mice: A putative animal model of developmental disorders. J Pharmacol Sci 2019; 141:111-118. [DOI: 10.1016/j.jphs.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023] Open
|
46
|
Yan Z, Kamiguri N, Isobe N, Kawakami SI. Blood Testosterone Concentration and Testosterone-induced Aggressive Behavior in Male Layer Chicks: Comparison between Isolated- and Grouped-Raising. J Poult Sci 2019; 56:290-297. [PMID: 32055227 PMCID: PMC7005400 DOI: 10.2141/jpsa.0180135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/20/2019] [Indexed: 01/08/2023] Open
Abstract
Testosterone (T) is known to induce aggressive behavior, mainly in male animals. Subcutaneous implantation of T-filled silastic tubes, rather than intramuscular injection of T, is generally recommended for long-term treatment using exogenous T. However, the effect of T implantation on chicken aggressive behavior has not been investigated. In addition, the concentration of T required to induce aggressive behavior or whether rearing conditions such as isolated- or grouped-raising affect T-induced aggressive behavior in chickens is not known. The present study aimed to examine the relationship between the lengths of T-filled tubes, blood T concentration, and aggressive behavior in group- and isolation-raised male layer chicks. The testes were bilaterally removed and silactic tubes of various lengths filled with crystalline T were subcutaneously implanted at 14 days of age. A social interaction test was performed to quantitatively assess chick aggressive behavior at 32 days of age. Comb weight and size were used to assess the activation of endogenous androgen receptors. Total aggression frequencies (TAF) and aggression establishment rate (AER) were used to evaluate aggressiveness. Significant positive correlations (P<0.001) were observed between the comb parameters and plasma T concentration. In the isolation-raised chicks, the TAF and AER were high irrespective of the lengths of the implanted T tubes or the corresponding plasma T concentrations. However, in the group-raised chicks, the AER tended to differ between the T-implanted aggressors (P=0.0902), and the AER significantly increased with implantation of 1.0-cm-long T-filled tubes (P<0.05), which corresponded to approximately 47 pg/mL plasma T concentration. These results suggest that both grouped raising and approximately 47 pg/mL plasma T concentration are required for the induction of T-dependent aggressive behavior, and that isolation-induced aggressive behavior is T-independent in male layer chicks.
Collapse
Affiliation(s)
- Zhiqun Yan
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Naomasa Kamiguri
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
- The Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Shin-Ichi Kawakami
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
- Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
- The Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
47
|
The brain as a target of hormonal contraceptives: Evidence from animal studies. Front Neuroendocrinol 2019; 55:100799. [PMID: 31614151 DOI: 10.1016/j.yfrne.2019.100799] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
Abstract
Hormonal contraceptives are frequently prescribed drugs among women, mainly for their reversible contraceptive purposes but also for beneficial effects in some gynecological pathologies. Despite extensive studies aimed at elucidating the physical effects of hormonal contraceptives and ameliorating some unwanted outcomes, little is known yet about the effects of these drugs on brain function and related behavior, which are known to be modulated by endogenous steroid hormones. We describe the current literature on preclinical studies in animals undertaken to investigate effects of hormonal contraceptives on brain function and behavior. These studies suggest that hormonal contraceptives influence neurohormones, neurotransmitters, neuropeptides, and emotional, cognitive, social and sexual behaviors. Animals allow examination of the basic biological mechanisms of these drugs, devoid of the psychological aspect often associated to hormonal contraceptives' use in women. Understanding the neurobiological effects of these drugs may improve women's health and may help women making informed choices on hormonal contraception.
Collapse
|
48
|
Cannabidiol attenuates aggressive behavior induced by social isolation in mice: Involvement of 5-HT1A and CB1 receptors. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109637. [PMID: 31054943 DOI: 10.1016/j.pnpbp.2019.109637] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 11/21/2022]
Abstract
Long-term single housing increases aggressive behavior in mice, a condition named isolation-induced aggression or territorial aggression, which can be attenuated by anxiolytic, antidepressant, and antipsychotic drugs. Preclinical and clinical findings indicate that cannabidiol (CBD), a non-psychotomimetic compound from Cannabis sativa, has anxiolytic, antidepressant, and antipsychotic properties. Few studies, however, have investigated the effects of CBD on aggressive behaviors. Here, we investigated whether CBD (5, 15, 30, and 60 mg/kg; i.p.) could attenuate social isolation-induced aggressive behavior in the resident-intruder test. Male Swiss mice (7-8 weeks) were single-housed for 10 days (resident mice) to induce aggressive behaviors, while conspecific mice of same sex and age (intruder mice) were group-housed. During the test, the intruder was placed into the resident's home-cage and aggressive behaviors initiated by the resident, including the latency for the first attack, number of attacks, and total duration of aggressive encounters, were recorded. The involvement of 5-HT1A and CB1 receptors (CB1R) in the effects of CBD was also investigated. All tested CBD doses induced anti-aggressive effects, indicated by a decrease in the number of attacks. CBD, at intermediary doses (15 and 30 mg/kg), also increased latency to attack the intruder and decreased the duration of aggressive encounters. No CBD dose interfered with locomotor behavior. CBD anti-aggressive effects were attenuated by the 5-HT1A receptor antagonist WAY100635 (0.3 mg/kg) and the CB1 antagonist AM251 (1 mg/kg), suggesting that CBD decreases social isolation-induced aggressive behaviors through a mechanism associated with the activation of 5-HT1A and CB1 receptors. Also, CBD decreased c-Fos protein expression, a neuronal activity marker, in the lateral periaqueductal gray (lPAG) in social-isolated mice exposed to the resident-intruder test, indicating a potential involvement of this brain region in the drug effects. Taken together, our findings suggest that CBD may be therapeutically useful to treat aggressive behaviors that are usually associated with psychiatric disorders.
Collapse
|
49
|
Peeters DG, de Boer SF, Terneusen A, Newman-Tancredi A, Varney MA, Verkes RJ, Homberg JR. Enhanced aggressive phenotype of Tph2 knockout rats is associated with diminished 5-HT1A receptor sensitivity. Neuropharmacology 2019; 153:134-141. [DOI: 10.1016/j.neuropharm.2019.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 05/05/2019] [Indexed: 11/28/2022]
|
50
|
Pisu MG, Boero G, Garau A, Casula C, Cisci S, Biggio F, Concas A, Follesa P, Maciocco E, Porcu P, Serra M. Are preconceptional stressful experiences crucial elements for the aetiology of autism spectrum disorder? Insights from an animal model. Neuropharmacology 2019; 157:107686. [PMID: 31247268 DOI: 10.1016/j.neuropharm.2019.107686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by changes in social interactions, impaired language and communication, fear responses and presence of repetitive behaviours. Although the genetic bases of ASD are well documented, the recent increase in clinical cases of idiopathic ASD indicates that several environmental risk factors could play a role in ASD aetiology. Among these, maternal exposure to psychosocial stressors during pregnancy has been hypothesized to affect the risk for ASD in offspring. Here, we tested the hypothesis that preconceptional stressful experiences might also represent crucial elements in the aetiology of ASD. We previously showed that social isolation stress during adolescence results in a marked decrease in the brain and plasma concentrations of progesterone and in the quality of maternal care that these female rats later provide to their young. Here we report that male offspring of socially isolated parents showed decreased agonistic behaviour and social transmission of flavour preference, impairment in reversal learning, increased seizure susceptibility, reduced plasma oxytocin levels, and increased plasma and brain levels of BDNF, all features resembling an ASD-like phenotype. These alterations came with no change in spatial learning, aggression, anxiety and testosterone plasma levels, and were sex-dependent. Altogether, the results suggest that preconceptional stressful experiences should be considered as crucial elements for the aetiology of ASD, and indicate that male offspring of socially isolated parents may be a useful animal model to further study the neurobiological bases of ASD, avoiding the adaptations that may occur in other genetic or pharmacologic experimental models of these disorders.
Collapse
Affiliation(s)
| | - Giorgia Boero
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anna Garau
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Claudia Casula
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Sonia Cisci
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Francesca Biggio
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Alessandra Concas
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Elisabetta Maciocco
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| |
Collapse
|