1
|
Bai J, Kondo R, Mayasari NI, Shigeoka T, Isotani A, Ikawa M, Sashida G, Kawaichi M, Ishida Y. Diphtheria toxin-mediated transposon-driven poly (A)-trapping efficiently disrupts transcriptionally silent genes in embryonic stem cells. Genesis 2020; 58:e23386. [PMID: 32645254 DOI: 10.1002/dvg.23386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 11/10/2022]
Abstract
Random gene trapping is the application of insertional mutagenesis techniques that are conventionally used to inactivate protein-coding genes in mouse embryonic stem (ES) cells. Transcriptionally silent genes are not effectively targeted by conventional random gene trapping techniques, thus we herein developed an unbiased poly (A) trap (UPATrap) method using a Tol2 transposon, which preferentially integrated into active genes rather than silent genes in ES cells. To achieve efficient trapping at transcriptionally silent genes using random insertional mutagenesis in ES cells, we generated a new diphtheria toxin (DT)-mediated trapping vector, DTrap that removed cells, through the expression of DT that was induced by the promoter activity of the trapped genes, and selected trapped clones using the neomycin-resistance gene of the vector. We found that a double-DT, the dDT vector, dominantly induced the disruption of silent genes, but not active genes, and showed more stable integration in ES cells than the UPATrap vector. The dDT vector disrupted differentiated cell lineage genes, which were silent in ES cells, and labeled trapped clone cells by the expression of EGFP upon differentiation. Thus, the dDT vector provides a systematic approach to disrupt silent genes and examine the cellular functions of trapped genes in the differentiation of target cells and development.
Collapse
Affiliation(s)
- Jie Bai
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan.,Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryohei Kondo
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan.,Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - N Ika Mayasari
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan.,Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Jalan Agatis Kampus IPB Darmaga, Bogor, West Java, Indonesia
| | - Toshiaki Shigeoka
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ayako Isotani
- Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masashi Kawaichi
- Division of Educational Development, Nara Institute of Science and Technology, Nara, Japan
| | - Yasumasa Ishida
- Laboratory of Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
2
|
Yamanishi A, Matsuba A, Kondo R, Akamatsu R, Tanaka S, Tokunaga M, Horie K, Kokubu C, Ishida Y, Takeda J. Collection of homozygous mutant mouse embryonic stem cells arising from autodiploidization during haploid gene trap mutagenesis. Nucleic Acids Res 2019; 46:e63. [PMID: 29554276 PMCID: PMC6007410 DOI: 10.1093/nar/gky183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/09/2018] [Indexed: 12/22/2022] Open
Abstract
Haploid mouse embryonic stem cells (ESCs), in which a single hit mutation is sufficient to produce loss-of-function phenotypes, have provided a powerful tool for forward genetic screening. This strategy, however, can be hampered by undesired autodiploidization of haploid ESCs. To overcome this obstacle, we designed a new methodology that facilitates enrichment of homozygous mutant ESC clones arising from autodiploidization during haploid gene trap mutagenesis. Haploid mouse ESCs were purified by fluorescence-activated cell sorting to maintain their haploid property and then transfected with the Tol2 transposon-based biallelically polyA-trapping (BPATrap) vector that carries an invertible G418 plus puromycin double selection cassette. G418 plus puromycin double selection enriched biallelic mutant clones that had undergone autodiploidization following a single vector insertion into the haploid genome. Using this method, we successfully generated 222 homozygous mutant ESCs from 2208 clones by excluding heterozygous ESCs and ESCs with multiple vector insertions. This relatively low efficiency of generating homozygous mutant ESCs was partially overcome by cell sorting of haploid ESCs after Tol2 BPATrap transfection. These results demonstrate the feasibility of our approach to provide an efficient platform for mutagenesis of ESCs and functional analysis of the mammalian genome.
Collapse
Affiliation(s)
- Ayako Yamanishi
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Matsuba
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ryohei Kondo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Rie Akamatsu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Sachiyo Tanaka
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Tokunaga
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Chikara Kokubu
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasumasa Ishida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Junji Takeda
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Kotoku T, Kosaka K, Nishio M, Ishida Y, Kawaichi M, Matsuda E. CIBZ Regulates Mesodermal and Cardiac Differentiation of by Suppressing T and Mesp1 Expression in Mouse Embryonic Stem Cells. Sci Rep 2016; 6:34188. [PMID: 27659197 PMCID: PMC5034229 DOI: 10.1038/srep34188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/08/2016] [Indexed: 11/24/2022] Open
Abstract
The molecular mechanisms underlying mesodermal and cardiac specification from embryonic stem cells (ESCs) are not fully understood. Here, we showed that the BTB domain-containing zinc finger protein CIBZ is expressed in mouse ESCs but is dramatically downregulated during ESC differentiation. CIBZ deletion in ESCs induced specification toward mesoderm phenotypes and their differentiation into cardiomyocytes, whereas overexpression of CIBZ delayed these processes. During ESC differentiation, CIBZ loss-and-gain-of-function data indicate that CIBZ negatively regulates the expressions of Brachyury (T) and Mesp1, the key transcriptional factors responsible for the specification of mammalian mesoderm and cardiac progenitors, respectively. Chromatin immunoprecipitation assays showed that CIBZ binds to T and Mesp1 promoters in undifferentiated ESCs, and luciferase assays indicate that CIBZ suppresses T and Mesp1 promoters. These findings demonstrate that CIBZ is a novel regulator of mesodermal and cardiac differentiation of ESCs, and suggest that CIBZ-mediated cardiac differentiation depends on the regulation of these two genes.
Collapse
Affiliation(s)
| | - Koji Kosaka
- Division of Gene Function in Animals, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Miki Nishio
- Functional Genomics and Medicine, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Yasumasa Ishida
- Functional Genomics and Medicine, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Masashi Kawaichi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eishou Matsuda
- Division of Gene Function in Animals, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
4
|
Li L, Liu P, Sun L, Bin Zhou, Fei J. PiggyBac transposon-based polyadenylation-signal trap for genome-wide mutagenesis in mice. Sci Rep 2016; 6:27788. [PMID: 27292714 PMCID: PMC4904408 DOI: 10.1038/srep27788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/23/2016] [Indexed: 12/12/2022] Open
Abstract
We designed a new type of polyadenylation-signal (PAS) trap vector system in living mice, the piggyBac (PB) (PAS-trapping (EGFP)) gene trapping vector, which takes advantage of the efficient transposition ability of PB and efficient gene trap and insertional mutagenesis of PAS-trapping. The reporter gene of PB(PAS-trapping (EGFP)) is an EGFP gene with its own promoter, but lacking a poly(A) signal. Transgenic mouse lines carrying PB(PAS-trapping (EGFP)) and protamine 1 (Prm1) promoter-driven PB transposase transgenes (Prm1-PBase) were generated by microinjection. Male mice doubly positive for PB(PAS-trapping (EGFP)) and Prm1-PBase were crossed with WT females, generating offspring with various insertion mutations. We found that 44.8% (26/58) of pups were transposon-positive progenies. New transposon integrations comprised 26.9% (7/26) of the transposon-positive progenies. We found that 100% (5/5) of the EGFP fluorescence-positive mice had new trap insertions mediated by a PB transposon in transcriptional units. The direction of the EGFP gene in the vector was consistent with the direction of the endogenous gene reading frame. Furthermore, mice that were EGFP-PCR positive, but EGFP fluorescent negative, did not show successful gene trapping. Thus, the novel PB(PAS-trapping (EGFP)) system is an efficient genome-wide gene-trap mutagenesis in mice.
Collapse
Affiliation(s)
- Limei Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of vascular surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangliang Sun
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, PR China
| | - Bin Zhou
- Department of vascular surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Fei
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Metastasis research institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| |
Collapse
|
5
|
Smith CL, Eppig JT. The Mammalian Phenotype Ontology as a unifying standard for experimental and high-throughput phenotyping data. Mamm Genome 2012; 23:653-68. [PMID: 22961259 PMCID: PMC3463787 DOI: 10.1007/s00335-012-9421-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/24/2012] [Indexed: 01/16/2023]
Abstract
The Mammalian Phenotype Ontology (MP) is a structured vocabulary for describing mammalian phenotypes and serves as a critical tool for efficient annotation and comprehensive retrieval of phenotype data. Importantly, the ontology contains broad and specific terms, facilitating annotation of data from initial observations or screens and detailed data from subsequent experimental research. Using the ontology structure, data are retrieved inclusively, i.e., data annotated to chosen terms and to terms subordinate in the hierarchy. Thus, searching for "abnormal craniofacial morphology" also returns annotations to "megacephaly" and "microcephaly," more specific terms in the hierarchy path. The development and refinement of the MP is ongoing, with new terms and modifications to its organization undergoing continuous assessment as users and expert reviewers propose expansions and revisions. A wealth of phenotype data on mouse mutations and variants annotated to the MP already exists in the Mouse Genome Informatics database. These data, along with data curated to the MP by many mouse mutagenesis programs and mouse repositories, provide a platform for comparative analyses and correlative discoveries. The MP provides a standard underpinning to mouse phenotype descriptions for existing and future experimental and large-scale phenotyping projects. In this review we describe the MP as it presently exists, its application to phenotype annotations, the relationship of the MP to other ontologies, and the integration of the MP within large-scale phenotyping projects. Finally we discuss future application of the MP in providing standard descriptors of the phenotype pipeline test results from the International Mouse Phenotype Consortium projects.
Collapse
|
6
|
Song G, Li Q, Long Y, Hackett PB, Cui Z. Effective Expression-Independent Gene Trapping and Mutagenesis Mediated by Sleeping Beauty Transposon. J Genet Genomics 2012; 39:503-20. [DOI: 10.1016/j.jgg.2012.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/21/2012] [Accepted: 05/28/2012] [Indexed: 01/12/2023]
|
7
|
Shigeoka T, Kato S, Kawaichi M, Ishida Y. Evidence that the Upf1-related molecular motor scans the 3'-UTR to ensure mRNA integrity. Nucleic Acids Res 2012; 40:6887-97. [PMID: 22554850 PMCID: PMC3413143 DOI: 10.1093/nar/gks344] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Upf1 is a highly conserved RNA helicase essential for nonsense-mediated mRNA decay (NMD), an mRNA quality-control mechanism that degrades aberrant mRNAs harboring premature termination codons (PTCs). For the activation of NMD, UPF1 interacts first with a translation–terminating ribosome and then with a downstream exon–junction complex (EJC), which is deposited at exon–exon junctions during splicing. Although the helicase activity of Upf1 is indispensable for NMD, its roles and substrates have yet to be fully elucidated. Here we show that stable RNA secondary structures between a PTC and a downstream exon–exon junction increase the levels of potential NMD substrates. We also demonstrate that a stable secondary structure within the 3′-untranslated region (UTR) induces the binding of Upf1 to mRNA in a translation-dependent manner and that the Upf1-related molecules are accumulated at the 5′-side of such a structure. Furthermore, we present evidence that the helicase activity of Upf1 is used to bridge the spatial gap between a translation–termination codon and a downstream exon–exon junction for the activation of NMD. Based on these findings, we propose a model that the Upf1-related molecular motor scans the 3′-UTR in the 5′-to-3′ direction for the mRNA-binding factors including EJCs to ensure mRNA integrity.
Collapse
Affiliation(s)
- Toshiaki Shigeoka
- Division of Gene Function in Animals, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan
| | | | | | | |
Collapse
|
8
|
Mayasari NI, Mukougawa K, Shigeoka T, Kawakami K, Kawaichi M, Ishida Y. Mixture of differentially tagged Tol2 transposons accelerates conditional disruption of a broad spectrum of genes in mouse embryonic stem cells. Nucleic Acids Res 2012; 40:e97. [PMID: 22447447 PMCID: PMC3401447 DOI: 10.1093/nar/gks262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among the insertional mutagenesis techniques used in the current international knockout mouse project (KOMP) on the inactivation of all mouse genes in embryonic stem (ES) cells, random gene trapping has been playing a major role. Gene-targeting experiments have also been performed to individually and conditionally knockout the remaining ‘difficult-to-trap’ genes. Here, we show that transcriptionally silent genes in ES cells are severely underrepresented among the randomly trapped genes in KOMP. Our conditional poly(A)-trapping vector with a common retroviral backbone also has a strong bias to be integrated into constitutively transcribed genome loci. Most importantly, conditional gene disruption could not be successfully accomplished by using the retrovirus vector because of the frequent development of intra-vector deletions/rearrangements. We found that one of the cut and paste-type DNA transposons, Tol2, can serve as an ideal platform for gene-trap vectors that ensures identification and conditional disruption of a broad spectrum of genes in ES cells. We also solved a long-standing problem associated with multiple vector integration into the genome of a single cell by incorporating a mixture of differentially tagged Tol2 transposons. We believe our strategy indicates a straightforward approach to mass-production of conditionally disrupted alleles for genes in the target cells.
Collapse
Affiliation(s)
- N Ika Mayasari
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Nishii T, Oikawa Y, Ishida Y, Kawaichi M, Matsuda E. CtBP-interacting BTB zinc finger protein (CIBZ) promotes proliferation and G1/S transition in embryonic stem cells via Nanog. J Biol Chem 2012; 287:12417-24. [PMID: 22315219 DOI: 10.1074/jbc.m111.333856] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mouse embryonic stem cells (ESCs) require transcriptional regulation to ensure rapid proliferation that allows for self-renewal. However, the molecular mechanism by which transcriptional factors regulate this rapid proliferation remains largely unknown. Here we present data showing that CIBZ, a BTB domain zinc finger transcriptional factor, is a key transcriptional regulator for regulation of ESC proliferation. Here we show that deletion or siRNA knockdown of CIBZ inhibits ESC proliferation. Cell cycle analysis shows that loss of CIBZ delays the progression of ESCs through the G1 to S phase transition. Conversely, constitutive ectopic expression of exogenous CIBZ in ESCs promotes proliferation and accelerates G1/S transition. These findings suggest that regulation of the G1/S transition explains, in part, CIBZ-associated ESC proliferation. Our data suggest that CIBZ acts through the post-transcriptionally regulates the expression of Nanog, a positive regulator of ESC proliferation and G1/S transition, but does not affect Oct3/4 and Sox2 protein expression. Notably, constitutive overexpression of Nanog partially rescued the proliferation defect caused by CIBZ knockdown, indicating the role of CIBZ in ESC proliferation and G1/S transition at least in part depends on the Nanog protein level.
Collapse
Affiliation(s)
- Tomonori Nishii
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
10
|
Guan C, Ye C, Yang X, Gao J. A review of current large-scale mouse knockout efforts. Genesis 2010; 48:73-85. [PMID: 20095055 DOI: 10.1002/dvg.20594] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After the successful completion of the human genome project (HGP), biological research in the postgenome era urgently needs an efficient approach for functional analysis of genes. Utilization of knockout mouse models has been powerful for elucidating the function of genes as well as finding new therapeutic interventions for human diseases. Gene trapping and gene targeting are two independent techniques for making knockout mice from embryonic stem (ES) cells. Gene trapping is high-throughput, random, and sequence-tagged while gene targeting enables the knockout of specific genes. It has been about 20 years since the first gene targeting and gene trapping mice were generated. In recent years, new tools have emerged for both gene targeting and gene trapping, and organizations have been formed to knock out genes in the mouse genome using either of the two methods. The knockout mouse project (KOMP) and the international gene trap consortium (IGTC) were initiated to create convenient resources for scientific research worldwide and knock out all the mouse genes. Organizers of KOMP regard it as important as the HGP. Gene targeting methods have changed from conventional gene targeting to high-throughput conditional gene targeting. The combined advantages of trapping and targeting elements are improving the gene trapping spectrum and gene targeting efficiency. As a newly-developed insertional mutation system, transposons have some advantages over retrovirus in trapping genes. Emergence of the international knockout mouse consortium (IKMP) is the beginning of a global collaboration to systematically knock out all the genes in the mouse genome for functional genomic research.
Collapse
Affiliation(s)
- Chunmei Guan
- College of Life Science, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | | | | | | |
Collapse
|
11
|
Abstract
Gene trapping in mouse embryonic stem (ES) cells is an efficient method for the mutagenesis of the mammalian genome. Insertion of a gene trap vector disrupts gene function, reports gene expression, and provides a convenient tag for the identification of the insertion site. The trap vector can be delivered to ES cells by electroporation of a plasmid, by retroviral infection, or by transposon-mediated insertion. Recent developments in trapping technology involve the utilization of site-specific recombination sites, which allow the induced modification of trap alleles in vitro and in vivo. Gene trapping strategies have also been successfully developed to screen for genes that are acting in specific biological pathways. In this chapter, we review different applications of gene trapping, and we provide detailed experimental protocols for gene trapping in ES cells by retroviral and transposon gene trap vectors.
Collapse
Affiliation(s)
- Roland H Friedel
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, USA
| | | |
Collapse
|
12
|
Abstract
Gene trapping is a technology originally developed for the simultaneous identification and mutation of genes by random integration in embryonic stem (ES) cells. While gene trapping was developed before efficient and high-throughput gene targeting, a significant proportion of the publically available mutant ES cell lines and mice were generated through a number of large-scale gene trapping initiatives. Moreover, elements of gene trap vectors continue to be incorporated into gene targeting vectors as a means to increase the efficiency of homologous recombination. Here, we review the current state of gene trapping technology and the applications of specific types of gene trap vector. As a component of this analysis, we consider the behavior of specific vector types both from the perspective of their application and how they can inform our annotation of the mammalian transcriptome. We consider the utility of gene trap vectors as tools for cell-based expression analysis, targeted screening in embryonic differentiation, and for use in cell lines derived from different lineages.
Collapse
Affiliation(s)
- Joshua M Brickman
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
13
|
A potent enhancer element in the 5′-UTR intron is crucial for transcriptional regulation of the human ubiquitin C gene. Gene 2009; 448:88-101. [DOI: 10.1016/j.gene.2009.08.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/26/2009] [Accepted: 08/28/2009] [Indexed: 02/01/2023]
|
14
|
Tsakiridis A, Tzouanacou E, Rahman A, Colby D, Axton R, Chambers I, Wilson V, Forrester L, Brickman JM. Expression-independent gene trap vectors for random and targeted mutagenesis in embryonic stem cells. Nucleic Acids Res 2009; 37:e129. [PMID: 19692586 PMCID: PMC2770648 DOI: 10.1093/nar/gkp640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/13/2009] [Accepted: 07/17/2009] [Indexed: 12/04/2022] Open
Abstract
Promoterless gene trap vectors have been widely used for high-efficiency gene targeting and random mutagenesis in embryonic stem (ES) cells. Unfortunately, such vectors are only effective for genes expressed in ES cells and this has prompted the development of expression-independent vectors. These polyadenylation (poly A) trap vectors employ a splice donor to capture an endogenous gene's polyadenylation sequence and provide transcript stability. However, the spectrum of mutations generated by these vectors appears largely restricted to the last intron of target loci due to nonsense-mediated mRNA decay (NMD) making them unsuitable for gene targeting applications. Here, we present novel poly A trap vectors that overcome the effect of NMD and also employ RNA instability sequences to improve splicing efficiency. The set of random insertions generated with these vectors show a significantly reduced insertional bias and the vectors can be targeted directly to a 5' intron. We also show that this relative positional independence is linked to the human beta-actin promoter and is most likely a result of its transcriptional activity in ES cells. Taken together our data indicate that these vectors are an effective tool for insertional mutagenesis that can be used for either gene trapping or gene targeting.
Collapse
Affiliation(s)
- Anestis Tsakiridis
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Elena Tzouanacou
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Afifah Rahman
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Douglas Colby
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Richard Axton
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Lesley Forrester
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Joshua M. Brickman
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| |
Collapse
|
15
|
Deb KD, Jayaprakash AD, Sharma V, Totey S. Embryonic stem cells: from markers to market. Rejuvenation Res 2008; 11:19-37. [PMID: 17973601 DOI: 10.1089/rej.2007.0558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Embryonic stem cells are considered the mother of all kinds of tissues and cells and it is envisioned as the holy grail of regenerative medicine. However, their use in cell replacement therapies (CRT) has so far been limited and their potentials are yet to be fully realized. The use of human embryonic stem cells (hESC) involves many safety issues pertaining to culture conditions and epigenetic changes. The role and importance of an epigenomic signature in derivation and maintenance of hESC are discussed. We provide a list of important epigenetic markers, which should be studied for evaluation of safety in hESC-based cell replacement therapies. These genes also need to be screened to determine an epigenetic signature for pluripotency in the hESCs. Finally a comprehensive list of all known stemness signature genes and the marker genes for different germ line lineages are presented. This review aims at summing up most of the intriguing molecules that can play a role in the maintenance of pluripotency and can help in determining hESC differentiation to various lineages. Extensive understanding of these markers will eventually help the researchers to transform the hESC research from bench to the bedside. The use of hESCs in CRTs is still in its infancy; much effort is warranted to turn them into the much dreamed about magic wand of regenerative medicine.
Collapse
Affiliation(s)
- Kaushik Dilip Deb
- Embryonic Stem Cells Program, Manipal Institute of Regenerative Medicine, Manipal University Branch Campus, Bangalore, India
| | | | | | | |
Collapse
|
16
|
Oikawa Y, Matsuda E, Nishii T, Ishida Y, Kawaichi M. Down-regulation of CIBZ, a novel substrate of caspase-3, induces apoptosis. J Biol Chem 2008; 283:14242-7. [PMID: 18375381 DOI: 10.1074/jbc.m802257200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We previously identified and characterized a murine BTB domain-containing protein, CIBZ (ZBTB38 in human), that interacts with CtBP and binds to methylated CpGs. However, its physiological function remained unknown. As CtBP is reportedly involved in p53-independent programmed cell death, we examine here whether CIBZ is associated with apoptosis. We found that CIBZ was highly expressed in proliferating C2C12 cells but that its expression levels decreased upon induction of apoptosis by serum starvation. Knockdown of CIBZ by small interfering RNA in C2C12 cells induced apoptosis, as determined by an increase of annexin V/propidium iodide labeling, activation of caspase-3, and cleavage of poly(ADP-ribose) polymerase. CIBZ inhibition also activated caspase-7 and caspase-9, suggesting that CIBZ-associated apoptosis occurs through the mitochondrial pathway. Notably, knockdown of CIBZ in p53(-/-) mouse embryonic fibroblast cells also activated caspase-3 and cleavage of poly(ADP-ribose) polymerase, indicating that CIBZ-associated apoptosis is mediated by a p53-independent pathway; however, because both common and distinct targets are regulated by CIBZ- and CtBP-associated apoptosis, we conclude that more than one pathway is involved. Finally, using mutagenesis and an in vitro caspase cleavage assay, we show that CIBZ is a novel substrate of caspase-3 and identify two caspase-3 recognition sites. These findings indicate, collectively, that CIBZ plays an important role by participating in the negative regulation of apoptosis in murine cells.
Collapse
Affiliation(s)
- Yu Oikawa
- Division of Gene Function in Animals, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | | | |
Collapse
|
17
|
Lin Q, Donahue SL, Moore-Jarrett T, Cao S, Osipovich AB, Ruley HE. Mutagenesis of diploid mammalian genes by gene entrapment. Nucleic Acids Res 2006; 34:e139. [PMID: 17062627 PMCID: PMC1635309 DOI: 10.1093/nar/gkl728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The present study describes a genome-wide method for biallelic mutagenesis in mammalian cells. Novel poly(A) gene trap vectors, which contain features for direct cloning vector–cell fusion transcripts and for post-entrapment genome engineering, were used to generate a library of 979 mutant ES cells. The entrapment mutations generally disrupted gene expression and were readily transmitted through the germline, establishing the library as a resource for constructing mutant mice. Cells homozygous for most entrapment loci could be isolated by selecting for enhanced expression of an inserted neomycin-resistance gene that resulted from losses of heterozygosity (LOH). The frequencies of LOH measured at 37 sites in the genome ranged from 1.3 × 10−5 to 1.2 × 10−4 per cell and increased with increasing distance from the centromere, implicating mitotic recombination in the process. The ease and efficiency of obtaining homozygous mutations will (i) facilitate genetic studies of gene function in cultured cells, (ii) permit genome-wide studies of recombination events that result in LOH and mediate a type of chromosomal instability important in carcinogenesis, and (iii) provide new strategies for phenotype-driven mutagenesis screens in mammalian cells.
Collapse
Affiliation(s)
| | | | | | | | | | - H. Earl Ruley
- To whom correspondence should be addressed. Tel: +615 343 1379; Fax: +615 343 7392;
| |
Collapse
|
18
|
Sivasubbu S, Balciunas D, Davidson AE, Pickart MA, Hermanson SB, Wangensteen KJ, Wolbrink DC, Ekker SC. Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development. Mech Dev 2006; 123:513-29. [PMID: 16859902 DOI: 10.1016/j.mod.2006.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 06/02/2006] [Accepted: 06/02/2006] [Indexed: 12/11/2022]
Abstract
We report a novel gene tagging, identification and mutagenicity ('gene-breaking') method for the zebrafish, Danio rerio. This modular approach consists of two distinct and separable molecular cassettes. The first is a gene-finding cassette. In this study, we employed a 3' gene-tagging approach that selectively 'traps' transcripts regardless of expression status, and we show that this cassette identifies both known and novel endogenous transcripts in transgenic zebrafish. The second is a transcriptional termination mutagenicity cassette assembled from a combination of a splice acceptor and polyadenylation signal to disrupt tagged transcripts upon integration into intronic sequence. We identified both novel and conserved loci as linked phenotypic mutations using this gene-breaking strategy, generating molecularly null mutations in both larval lethal and adult viable loci. We show that the Histone 2a family member z (H2afza) variant is essential for larval development through the generation of a lethal locus with a truncation of conserved carboxy-terminal residues in the protein. In principle this gene-breaking strategy is scalable for functional genomics screens and can be used in Sleeping Beauty transposon and other gene delivery systems in the zebrafish.
Collapse
Affiliation(s)
- Sridhar Sivasubbu
- University of Minnesota, Department of Genetics, Cell Biology and Development, Arnold and Mabel Beckman Center for Transposon Research, 321 Church St SE, 6-160 Jackson Hall, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Gene trapping in embryonic stem cells (ESCs) generates random, sequence-tagged insertional mutations, which can often report the gene expression pattern of the mutated gene. This mutagenesis strategy has often been coupled to expression or function-based assays in gene discovery screens. The availability of the mouse genome sequence has shifted gene trapping from a gene discovery platform to a high-throughput mutagenesis platform. At present, a concerted worldwide effort is underway to develop a library of loss-of-function mutations in all mouse genes. The International Gene Trap Consortium (IGTC) is leading the way by making a first pass of the genome by random mutagenesis before a high-throughput gene targeting program takes over. In this chapter, we provide a methods guidebook to exploring and using the IGTC resource, explain the different kinds of vectors and insertions that reside in the different libraries, and provide advice and methods for investigators to design novel expression-based "cottage industry" screens.
Collapse
Affiliation(s)
- William L Stanford
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
20
|
Forrai A, Robb L. The gene trap resource: a treasure trove for hemopoiesis research. Exp Hematol 2005; 33:845-56. [PMID: 16038776 DOI: 10.1016/j.exphem.2005.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/23/2005] [Indexed: 11/16/2022]
Abstract
The laboratory mouse is an invaluable tool for functional gene discovery because of its genetic malleability and a biological similarity to human systems that facilitates identification of human models of disease. A number of mutagenic technologies are being used to elucidate gene function in the mouse. Gene trapping is an insertional mutagenesis strategy that is being undertaken by multiple research groups, both academic and private, in an effort to introduce mutations across the mouse genome. Large-scale, publicly funded gene trap programs have been initiated in several countries with the International Gene Trap Consortium coordinating certain efforts and resources. We outline the methodology of mammalian gene trapping and how it can be used to identify genes expressed in both primitive and definitive blood cells and to discover hemopoietic regulator genes. Mouse mutants with hematopoietic phenotypes derived using gene trapping are described. The efforts of the large-scale gene trapping consortia have now led to the availability of libraries of mutagenized ES cell clones. The identity of the trapped locus in each of these clones can be identified by sequence-based searching via the world wide web. This resource provides an extraordinary tool for all researchers wishing to use mouse genetics to understand gene function.
Collapse
Affiliation(s)
- Ariel Forrai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | |
Collapse
|
21
|
Sasai N, Matsuda E, Sarashina E, Ishida Y, Kawaichi M. Identification of a novel BTB-zinc finger transcriptional repressor, CIBZ, that interacts with CtBP corepressor. Genes Cells 2005; 10:871-85. [PMID: 16115196 DOI: 10.1111/j.1365-2443.2005.00885.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transcriptional corepressor C-terminal binding protein (CtBP) is thought to be involved in development and oncogenesis, but the regulation of its corepressor activity is largely unknown. We show here that a novel BTB-zinc finger protein, CIBZ (CtBP-interacting BTB zinc finger protein; a mouse ortholog of rat ZENON that was recently identified as an e-box/dyad binding protein), redistributes CtBP to pericentromeric foci from a diffuse nuclear localization in interphase cells. CIBZ physically associates with CtBP via a conserved CtBP binding motif, PLDLR. When heterologously targeted to DNA, CIBZ represses transcription via two independent repression domains, an N-terminal BTB domain and a PLDLR motif-containing RD2 region, in a histone deacetylase-independent and -dependent manner, respectively. Mutation in the PLDLR motif abolishes the CIBZ-CtBP interaction and transcriptional repression activity of RD2, but does not affect the repression activity of the BTB domain. Furthermore, this PLDLR-mutated CIBZ cannot target CtBP to pericentromeric foci, although it is localized to the pericentromeric foci itself. These results suggest that at least one repression mechanism mediated by CIBZ is recruitment of the CtBP/HDAC complex to pericentromeric foci, and that CIBZ may regulate pericentromeric targeting of CtBP.
Collapse
Affiliation(s)
- Nobuhiro Sasai
- Division of Gene Function in Animals, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
22
|
Seltmann M, Horsch M, Drobyshev A, Chen Y, de Angelis MH, Beckers J. Assessment of a systematic expression profiling approach in ENU-induced mouse mutant lines. Mamm Genome 2005; 16:1-10. [PMID: 15674728 DOI: 10.1007/s00335-004-3012-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 09/09/2004] [Indexed: 10/25/2022]
Abstract
Comparative genomewide expression profiling is a powerful tool in the effort to annotate the mouse genome with biological function. The systematic analysis of RNA expression data of mouse lines from the Munich ENU mutagenesis screen might support the understanding of the molecular biology of such mutants and provide new insights into mammalian gene function. In a direct comparison of DNA microarray experiments of individual versus pooled RNA samples of organs from ENU-induced mouse mutants, we provide evidence that individual RNA samples may outperform pools in some aspects. Genes with high biological variability in their expression levels (noisy genes) are identified as false positives in pooled samples. Evidence suggests that highly stringent housing conditions and standardized procedures for the isolation of organs significantly reduce biological variability in gene expression profiling experiments. Data on wild-type individuals demonstrate the positive effect of controlling variables such as social status, food intake before organ sampling, and stress with regard to reproducibility of gene expression patterns. Analyses of several organs from various ENU-induced mutant lines in general show low numbers of differentially expressed genes. We demonstrate the feasibility to detect transcriptionally affected organs employing RNA expression profiling as a tool for molecular phenotyping.
Collapse
Affiliation(s)
- Matthias Seltmann
- GSF-National Research Center for Environment and Health, Institute of Experimental Genetics, Ingolstaedter Landstr. 1, Neuherberg, D-85764, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Osipovich AB, Singh A, Ruley HE. Post-entrapment genome engineering: first exon size does not affect the expression of fusion transcripts generated by gene entrapment. Genome Res 2005; 15:428-35. [PMID: 15741512 PMCID: PMC551569 DOI: 10.1101/gr.3258105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gene trap mutagenesis in mouse embryonic stem cells has been widely used for genome-wide studies of mammalian gene function. However, while large numbers of genes can be disrupted, individual mutations may suffer from limitations due to the structure and/or placement of targeting vector. To extend the utility of gene trap mutagenesis, replaceable 3' [or poly(A)] gene trap vectors were developed that permit sequences inserted in individual entrapment clones to be engineered by Cre-mediated recombination. 3' traps incorporating different drug resistance genes could be readily exchanged, simply by selecting for the drug-resistance gene of the replacement vector. By substituting different 3' traps, we show that otherwise identical fusion genes containing a large first exon (804 nt) are not expressed at appreciably lower levels than genes expressing small first exons (384 and 151 nt). Thus, size appears to have less effect on the expression and processing of first exons than has been reported for internal exons. Finally, a retroviral poly(A) trap (consisting of a RNA polymerase II promoter, a neomycin-resistance gene, and 5'-splice site) typically produced mutagenized clones in which vector sequences spliced to the 3'-terminal exons of cellular transcription units, suggesting strong selection for fusion transcripts that evade nonsense-mediated decay. The efficient exchange of poly(A) traps should greatly extend the utility of mutant libraries generated by gene entrapment and provides new strategies to study the rules that govern the expression of exons inserted throughout the genome.
Collapse
Affiliation(s)
- Anna B Osipovich
- Department of Microbiology and Immunology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | | | |
Collapse
|
24
|
Shigeoka T, Kawaichi M, Ishida Y. Suppression of nonsense-mediated mRNA decay permits unbiased gene trapping in mouse embryonic stem cells. Nucleic Acids Res 2005; 33:e20. [PMID: 15687378 PMCID: PMC548380 DOI: 10.1093/nar/gni022] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
An international collaborative project has been proposed to inactivate all mouse genes in embryonic stem (ES) cells using a combination of random and targeted insertional mutagenesis techniques. Random gene trapping will be the first choice in the initial phase, and gene-targeting experiments will then be carried out to individually knockout the remaining ‘difficult-to-trap’ genes. One of the most favored techniques of random insertional mutagenesis is promoter trapping, which only disrupts actively transcribed genes. Polyadenylation (poly-A) trapping, on the other hand, can capture a broader spectrum of genes including those not expressed in the target cells, but we noticed that it inevitably selects for the vector integration into the last introns of the trapped genes. Here, we present evidence that this remarkable skewing is caused by the degradation of a selectable-marker mRNA used for poly-A trapping via an mRNA-surveillance mechanism, nonsense-mediated mRNA decay (NMD). We also report the development of a novel poly-A-trap strategy, UPATrap, which suppresses NMD of the selectable-marker mRNA and permits the trapping of transcriptionally silent genes without a bias in the vector-integration site. We believe the UPATrap technology enables a simple and straightforward approach to the unbiased inactivation of all mouse genes in ES cells.
Collapse
Affiliation(s)
| | | | - Yasumasa Ishida
- To whom correspondence should be addressed. Tel: +81 743 72 5531; Fax: +81 743 72 5539;
| |
Collapse
|
25
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2004. [PMCID: PMC2447433 DOI: 10.1002/cfg.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|