1
|
Ciki K, Alavanda C. Dysmorphic Findings in SAHH Deficiency with a Novel Variant in the AHCY Gene. Mol Syndromol 2024; 15:531-536. [PMID: 39634240 PMCID: PMC11614430 DOI: 10.1159/000539280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction S-adenosylhomocysteine hydrolase (SAHH) is one of the enzymes involved in converting methionine to homocysteine with transmethylation processes. Methyltransfer reactions are impaired in SAHH deficiency. SAHH deficiency is multisystemic and antenatal onset disorder. It is also ultra rare disease. Only 19 cases have been reported so far. Case Presentation We report an eighteen-month-old female patient who was investigated due to elevated transaminase levels, coagulopathy, cataract, hypotonia, and global developmental delay. She also had dysmorphic findings. Significant methionine elevation and mild homocysteine elevation were detected. Other metabolic investigations and laboratory findings were unremarkable. Homozygous novel variant in the AHCY gene and heterozygous novel variant in the PITX3 gene were found by whole-exome sequencing (WES) analysis. Methionine restricted diet, phosphatidylcholine, and creatine supplements were advised. Conclusion In this report, a case with a novel variant in the AHCY gene and prominent dysmorphic findings was reported. More SAHH deficiency cases with different findings and phenotypes will be revealed through the use of WES and genetic panels.
Collapse
Affiliation(s)
- Kismet Ciki
- Department of Pediatric Metabolism, University of Health Sciences, Van Training and Research Hospital, Van, Turkey
| | - Ceren Alavanda
- Department of Medical Genetics, University of Health Sciences, Van Training and Research Hospital, Van, Turkey
| |
Collapse
|
2
|
Lipari Pinto P, Dixon M, Sudhakar S, Baric I, Baruteau J. Asymptomatic pediatric presentation of S-adenosylhomocysteine hydrolase deficiency. JIMD Rep 2024; 65:371-381. [PMID: 39512434 PMCID: PMC11540567 DOI: 10.1002/jmd2.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/29/2024] [Accepted: 08/27/2024] [Indexed: 11/15/2024] Open
Abstract
S-adenosylhomocysteine hydrolase deficiency is an autosomal recessive inborn error of metabolism affecting methylation by disrupting the methionine cycle. Its clinical spectrum spans from severe perinatal encephalomyopathy and liver failure to asymptomatic course in patients with isolated hypermethioninemia. We present two new cases of S-adenosylhomocysteine hydrolase deficiency from Pakistani origin clinically asymptomatic at presentation. Both siblings showed mild chronic liver failure and elevation of creatine kinase. The older patient presented at 6 years of age with isolated verbal processing difficulty and mild diffuse leukodystrophy, reversible 12 months after introduction of methionine dietary restriction. The patient showed subtle atrophy in the muscle MRI at the age of 7 years. S-adenosylhomocysteine hydrolase deficiency was confirmed with homozygous missense variant c.146G>A (p.Arg49His) in the AHCY gene, a genotype previously reported in Pakistani patients with mild presentation. Dietary methionine restriction decreased plasma methionine but not plasma S-adenosylhomocysteine and S-adenosylmethionine. This work expands the mild spectrum of S-adenosylhomocysteine hydrolase deficiency with no noticeable clinical symptoms in children, highlighting a specific hotspot variant from South Asia. This mild form of the disease is likely underdiagnosed and raises the question of therapeutic management to prevent long-term complications documented in the literature, such as hepatocellular carcinoma and myopathy in early adulthood.
Collapse
Affiliation(s)
- Patrícia Lipari Pinto
- Hereditary Metabolic Disease Reference Center, Metabolic Unit, Pediatric DepartmentSanta Maria's Hospital‐Lisbon North University Hospital Center, EPE, Pediatric University Clinic, Faculty of Medicine, University of LisbonLisbonPortugal
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Sniya Sudhakar
- Department of RadiologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Ivo Baric
- Department of PediatricsUniversity Hospital Center Zagreb and University of Zagreb, School of Medicine ZagrebZagrebCroatia
| | - Julien Baruteau
- Department of Paediatric Metabolic MedicineGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- National Institute of Health Research Great Ormond Street Biomedical Research CentreLondonUK
- Great Ormond Street Institute of Child Health, University college LondonLondonUK
| |
Collapse
|
3
|
Fan S, Xie L, Wang R, Chen Q, Zhang X. Novel homozygous ADK out-of-frame deletion causes adenosine kinase deficiency with rare phenotypes of sepsis, metabolites disruption and neutrophil dysfunction. Gene 2024; 914:148313. [PMID: 38447681 DOI: 10.1016/j.gene.2024.148313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Adenosine kinase deficiency (OMIM #614300) is a type of inborn errors of metabolism with multiorgan symptoms primarily neurological disorders, hepatic impairment, global developmental delay, and mild dysmorphism. The genetic causes of adenosine kinase deficiency are homozygous or compound heterozygous loss-of-function variants of ADK. To date, fewer than 25 cases of adenosine kinase deficiency have been reported worldwide and none have been reported in China. In this research, trio whole-exome sequencing (Trio-WES) identified a novel homozygous ADK (NM_001123.4) out-of-frame deletion, c.518_519delCA (p.Thr173Serfs*15), in a Chinese patient with rare phenotypes of sepsis, metabolites disruption and neutrophil dysfunction. This variant was dysfunctional, with marked reduction of ADK level in both the patient's peripheral blood and cells transfected with the corresponding variant. Additionally, metabolomics detected by high-throughput mass spectrometry showed disturbances in the methionine (Met) and energy pathway. RNA sequencing (RNA-seq) of the patient's peripheral blood suggested a defective anti-inflammatory response characterized by impaired neutrophil activation, migration, and degranulation, which might be the primary cause for the sepsis. To our knowledge, we identified the first Chinese patient of adenosine kinase deficiency with a novel homozygous out-of-frame deletion in ADK causing multiorgan disorders, metabolites disruption, rare phenotypes of sepsis, and neutrophil dysfunction. Our findings broaden the genetic spectrum and pathogenic mechanisms of adenosine kinase deficiency.
Collapse
Affiliation(s)
- Shiqi Fan
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Lina Xie
- Department of Neurology, the Affiliated Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qian Chen
- Department of Neurology, the Affiliated Hospital of Capital Institute of Pediatrics, Beijing, China.
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Caracausi M, Ramacieri G, Catapano F, Cicilloni M, Lajin B, Pelleri MC, Piovesan A, Vitale L, Locatelli C, Pirazzoli GL, Strippoli P, Antonaros F, Vione B. The functional roles of S-adenosyl-methionine and S-adenosyl-homocysteine and their involvement in trisomy 21. Biofactors 2024; 50:709-724. [PMID: 38353465 DOI: 10.1002/biof.2044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 08/09/2024]
Abstract
The one-carbon metabolism pathway is involved in critical human cellular functions such as cell proliferation, mitochondrial respiration, and epigenetic regulation. In the homocysteine-methionine cycle S-adenosyl-methionine (SAM) and S-adenosyl-homocysteine (SAH) are synthetized, and their levels are finely regulated to ensure proper functioning of key enzymes which control cellular growth and differentiation. Here we review the main biological mechanisms involving SAM and SAH and the known related human diseases. It was recently demonstrated that SAM and SAH levels are altered in plasma of subjects with trisomy 21 (T21) but how this metabolic dysregulation influences the clinical manifestation of T21 phenotype has not been previously described. This review aims at providing an overview of the biological mechanisms which are altered in response to changes in the levels of SAM and SAH observed in DS.
Collapse
Affiliation(s)
- Maria Caracausi
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giuseppe Ramacieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Speciality School of Child Neuropsychiatry-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesca Catapano
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Michela Cicilloni
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Bassam Lajin
- Institute of Chemistry, ChromICP, University of Graz, Graz, Austria
| | - Maria Chiara Pelleri
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Bologna, Italy
| | | | - Pierluigi Strippoli
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Antonaros
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Beatrice Vione
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Leela N, Prommana P, Kamchonwongpaisan S, Taechalertpaisarn T, Shaw PJ. Antimalarial target vulnerability of the putative Plasmodium falciparum methionine synthase. PeerJ 2024; 12:e16595. [PMID: 38239295 PMCID: PMC10795524 DOI: 10.7717/peerj.16595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/14/2023] [Indexed: 01/22/2024] Open
Abstract
Background Plasmodium falciparum possesses a cobalamin-dependent methionine synthase (MS). MS is putatively encoded by the PF3D7_1233700 gene, which is orthologous and syntenic in Plasmodium. However, its vulnerability as an antimalarial target has not been assessed. Methods We edited the PF3D7_1233700 and PF3D7_0417200 (dihydrofolate reductase-thymidylate synthase, DHFR-TS) genes and obtained transgenic P. falciparum parasites expressing epitope-tagged target proteins under the control of the glmS ribozyme. Conditional loss-of-function mutants were obtained by treating transgenic parasites with glucosamine. Results DHFR-TS, but not MS mutants showed a significant proliferation defect over 96 h, suggesting that P. falciparum MS is not a vulnerable antimalarial target.
Collapse
Affiliation(s)
- Nirut Leela
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Bangkok, Thailand
| | - Parichat Prommana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Tana Taechalertpaisarn
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Bangkok, Thailand
| | - Philip J. Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
6
|
Thapa P, Olek K, Kowalska A, Serwa RA, Pokrzywa W. SAM, SAH and C. elegans longevity: insights from a partial AHCY deficiency model. NPJ AGING 2023; 9:27. [PMID: 38052822 PMCID: PMC10698036 DOI: 10.1038/s41514-023-00125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/22/2023] [Indexed: 12/07/2023]
Abstract
Supplementation with S-adenosylhomocysteine (SAH) extends the lifespan of model organisms. To explore the impact of SAH on aging, we generated a Caenorhabditis elegans model by introducing the S-adenosylhomocysteine hydrolase (AHCY-1) variant Y145C, corresponding to the human AHCY Y143C pathogenic mutation. This mutation is anticipated to impair SAH hydrolysis, resulting in its increased levels. Our findings revealed that animals with this endogenous mutation exhibited delayed aging, accompanied by decreased S-adenosylmethionine (SAM) and moderately increased SAH levels. The extended lifespan of these worms depends on the AMP-activated protein kinase (AMPK), its activator Vaccinia virus-related kinase (VRK-1), and the DAF-16 transcription factor. The results underline the complex nature of SAH's influence on aging, proposing that the balance between SAM and SAH might play a pivotal role in defining the lifespan of C. elegans. Moreover, our partial AHCY-1 deficiency model offers a tool for studying the intersection of methionine metabolism and aging.
Collapse
Affiliation(s)
- Pankaj Thapa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Katarzyna Olek
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Agata Kowalska
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
7
|
Pavičić I, Rokić F, Vugrek O. Effects of S-Adenosylhomocysteine Hydrolase Downregulation on Wnt Signaling Pathway in SW480 Cells. Int J Mol Sci 2023; 24:16102. [PMID: 38003292 PMCID: PMC10671441 DOI: 10.3390/ijms242216102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
S-adenosylhomocysteine hydrolase (AHCY) deficiency results mainly in hypermethioninemia, developmental delay, and is potentially fatal. In order to shed new light on molecular aspects of AHCY deficiency, in particular any changes at transcriptome level, we enabled knockdown of AHCY expression in the colon cancer cell line SW480 to simulate the environment occurring in AHCY deficient individuals. The SW480 cell line is well known for elevated AHCY expression, and thereby represents a suitable model system, in particular as AHCY expression is regulated by MYC, which, on the other hand, is involved in Wnt signaling and the regulation of Wnt-related genes, such as the β-catenin co-transcription factor LEF1 (lymphoid enhancer-binding factor 1). We selected LEF1 as a potential target to investigate its association with S-adenosylhomocysteine hydrolase deficiency. This decision was prompted by our analysis of RNA-Seq data, which revealed significant changes in the expression of genes related to the Wnt signaling pathway and genes involved in processes responsible for epithelial-mesenchymal transition (EMT) and cell proliferation. Notably, LEF1 emerged as a common factor in these processes, showing increased expression both on mRNA and protein levels. Additionally, we show alterations in interconnected signaling pathways linked to LEF1, causing gene expression changes with broad effects on cell cycle regulation, tumor microenvironment, and implications to cell invasion and metastasis. In summary, we provide a new link between AHCY deficiency and LEF1 serving as a mediator of changes to the Wnt signaling pathway, thereby indicating potential connections of AHCY expression and cancer cell phenotype, as Wnt signaling is frequently associated with cancer development, including colorectal cancer (CRC).
Collapse
Affiliation(s)
| | | | - Oliver Vugrek
- Laboratory for Advanced Genomics, Divison of Molecular Medicine, Institute Ruđer Bošković, Bijenička Cesta 54, 10000 Zagreb, Croatia; (I.P.); (F.R.)
| |
Collapse
|
8
|
Wang P, Gao R, Wu T, Zhang J, Sun X, Fan F, Wang C, Qian S, Li B, Zou Y, Huo Y, Fassett J, Chen Y, Ge J, Sun A. Accumulation of endogenous adenosine improves cardiomyocyte metabolism via epigenetic reprogramming in an ischemia-reperfusion model. Redox Biol 2023; 67:102884. [PMID: 37725888 PMCID: PMC10507380 DOI: 10.1016/j.redox.2023.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023] Open
Abstract
Adenosine kinase (ADK) plays the major role in cardiac adenosine metabolism, so that inhibition of ADK increases myocardial adenosine levels. While the cardioprotective actions of extracellular adenosine against ischemia/reperfusion (I/R) are well-established, the role of cellular adenosine in protection against I/R remains unknown. Here we investigated the role of cellular adenosine in epigenetic regulation on cardiomyocyte gene expression, glucose metabolism and tolerance to I/R. Evans blue/TTC staining and echocardiography were used to assess the extent of I/R injury in mice. Glucose metabolism was evaluated by positron emission tomography and computed tomography (PET/CT). Methylated DNA immunoprecipitation (MeDIP) and bisulfite sequencing PCR (BSP) were used to evaluate DNA methylation. Lentiviral/adenovirus transduction was used to overexpress DNMT1, and the OSI-906 was administered to inhibit IGF-1. Cardiomyocyte-specific ADK/IGF-1-knockout mice were used for mechanistic experiments.Cardiomyocyte-specific ADK knockout enhanced glucose metabolism and ameliorated myocardial I/R injury in vivo. Mechanistically, ADK deletion caused cellular adenosine accumulation, decreased DNA methyltransferase 1 (DNMT1) expression and caused hypomethylation of multiple metabolic genes, including insulin growth factor 1 (IGF-1). DNMT1 overexpression abrogated these beneficial effects by enhancing apoptosis and decreasing IGF-1 expression. Inhibition of IGF-1 signaling with OSI-906 or genetic knocking down of IGF-1 also abrogated the cardioprotective effects of ADK knockout, revealing the therapeutic potential of increasing IGF-1 expression in attenuating myocardial I/R injury. In conclusion, the present study demonstrated that cardiomyocyte ADK deletion ameliorates myocardial I/R injury via epigenetic upregulation of IGF-1 expression via the cardiomyocyte adenosine/DNMT1/IGF-1 axis.
Collapse
Affiliation(s)
- Peng Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Rifeng Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Cardiac Surgery Department, The Second Affiliated Hospital Zhejiang University School of Medicine, China
| | - Tingting Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinyan Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolei Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fan Fan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sanli Qian
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bingyu Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John Fassett
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Yingjie Chen
- Department of Physiology & Biophysics, University Mississippi Medical Center, MS, 39216, USA
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Fryar-Williams S, Tucker G, Strobel J, Huang Y, Clements P. Molecular Mechanism Biomarkers Predict Diagnosis in Schizophrenia and Schizoaffective Psychosis, with Implications for Treatment. Int J Mol Sci 2023; 24:15845. [PMID: 37958826 PMCID: PMC10650772 DOI: 10.3390/ijms242115845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Diagnostic uncertainty and relapse rates in schizophrenia and schizoaffective disorder are relatively high, indicating the potential involvement of other pathological mechanisms that could serve as diagnostic indicators to be targeted for adjunctive treatment. This study aimed to seek objective evidence of methylenetetrahydrofolate reductase MTHFR C677T genotype-related bio markers in blood and urine. Vitamin and mineral cofactors related to methylation and indolamine-catecholamine metabolism were investigated. Biomarker status for 67 symptomatically well-defined cases and 67 asymptomatic control participants was determined using receiver operating characteristics, Spearman's correlation, and logistic regression. The 5.2%-prevalent MTHFR 677 TT genotype demonstrated a 100% sensitive and specific case-predictive biomarkers of increased riboflavin (vitamin B2) excretion. This was accompanied by low plasma zinc and indicators of a shift from low methylation to high methylation state. The 48.5% prevalent MTHFR 677 CC genotype model demonstrated a low-methylation phenotype with 93% sensitivity and 92% specificity and a negative predictive value of 100%. This model related to lower vitamin cofactors, high histamine, and HPLC urine indicators of lower vitamin B2 and restricted indole-catecholamine metabolism. The 46.3%-prevalent CT genotype achieved high predictive strength for a mixed methylation phenotype. Determination of MTHFR C677T genotype dependent functional biomarker phenotypes can advance diagnostic certainty and inform therapeutic intervention.
Collapse
Affiliation(s)
- Stephanie Fryar-Williams
- Youth in Mind Research Institute, Unley, SA 5061, Australia
- The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
- Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
- Department of Nanoscale BioPhotonics, Faculty of Health and Medical Sciences, School of Biomedicine, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Graeme Tucker
- Department of Public Health, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Jörg Strobel
- Department of Psychiatry, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Yichao Huang
- Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Peter Clements
- Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia
- Department of Paediatrics, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
10
|
Camici M, Garcia-Gil M, Allegrini S, Pesi R, Bernardini G, Micheli V, Tozzi MG. Inborn Errors of Purine Salvage and Catabolism. Metabolites 2023; 13:787. [PMID: 37512494 PMCID: PMC10383617 DOI: 10.3390/metabo13070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all.
Collapse
Affiliation(s)
- Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Mercedes Garcia-Gil
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- LND Famiglie Italiane ODV-Via Giovanetti 15-20, 16149 Genova, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
11
|
Froguel P, Bonnefond A. The discovery of human agouti-induced obesity and its implication for genetic diagnosis. Nat Metab 2022; 4:1614-1615. [PMID: 36536131 DOI: 10.1038/s42255-022-00695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Philippe Froguel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
- Department of Metabolism, Imperial College London, London, UK
| | - Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.
- Université de Lille, Lille, France.
- Department of Metabolism, Imperial College London, London, UK.
| |
Collapse
|
12
|
Fernández-Ramos D, Lopitz-Otsoa F, Millet O, Alonso C, Lu SC, Mato JM. One Carbon Metabolism and S-Adenosylmethionine in Non-Alcoholic Fatty Liver Disease Pathogenesis and Subtypes. LIVERS 2022; 2:243-257. [PMID: 37123053 PMCID: PMC10137169 DOI: 10.3390/livers2040020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
One carbon metabolism (1CM) can be defined as the transfer of a carbon unit from one metabolite to another and its replenishment by different sources of labile methyl-group nutrients: primarily choline, methionine, betaine, and serine. This flow of carbon units allows the biosynthesis of nucleotides, amino acids, formylated methionyl-tRNA, polyamines, glutathione, phospholipids, detoxification reactions, maintenance of the redox status and the concentration of NAD, and methylation reactions including epigenetic modifications. That is, 1CM functions as a nutrient sensor and integrator of cellular metabolism. A critical process in 1CM is the synthesis of S-adenosylmethionine (SAMe), the source of essentially all the hundreds of millions of daily methyl transfer reactions in a cell. This versatility of SAMe imposes a tight control in its synthesis and catabolism. Much of our knowledge concerning 1CM has been gained from studies in the production and prevention of nonalcoholic fatty liver disease (NAFLD). Here, we discuss in detail the function of the most important enzymes for their quantitative contribution to maintaining the flux of carbon units through 1CM in the liver and discuss how alterations in their enzymatic activity contribute to the development of NAFLD. Next, we discuss NAFLD subtypes based on serum lipidomic profiles with different risk of cardiovascular disease. Among the latter, we highlight the so-called subtype A for its serum lipidomic profile phenocopying that of mice deficient in SAMe synthesis and because its high frequency (about 50% of the NAFLD patients).
Collapse
Affiliation(s)
- David Fernández-Ramos
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Cristina Alonso
- OWL Metabolomics, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - José M. Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
- Correspondence: ; Tel.: +34-944-061300; Fax: +34-944-0611301
| |
Collapse
|
13
|
Huang Y, Chang R, Abdenur JE. The biochemical profile and dietary management in S-adenosylhomocysteine hydrolase deficiency. Mol Genet Metab Rep 2022; 32:100885. [PMID: 35789945 PMCID: PMC9249945 DOI: 10.1016/j.ymgmr.2022.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 12/03/2022] Open
Abstract
S-Adenosylhomocysteine (SAH) hydrolase deficiency is an autosomal recessive disorder in methionine metabolism caused by pathogenic variants in the gene AHCY. To date, only 15 patients with this disorder have been reported, including several patients treated with dietary management. In this study, we report a new case with SAH hydrolase deficiency and conduct a literature review with a focus on the biochemical profiles and the efficacy of dietary management. The biochemical markers associated with SAH hydrolase deficiency includes elevated levels of methionine, creatine kinase (CK), SAH, and S-Adenosylmethionine (SAM). However, half of the cases (6/12) had normal methionine levels at the initial evaluation. In contrary, SAM and SAH were markedly elevated in all reported patients at the initial evaluation (SAM: range 1.7× -53×, median 21.5×; SAH: range 4.9× −193.8×, median 98.1×). Nine patients were treated with methionine-restricted diet, which markedly reduced SAM and SAH in all patients but the levels did not normalize. CK and liver function did not show significant improvement with dietary treatment. The majority of patients (5/8) demonstrated clinical improvements with dietary management, such as increase in muscle strength; but all patients continued to experience developmental delay and two deaths were reported from cardiopulmonary arrest. This study suggests that methionine is not a reliable diagnostic biochemical marker for SAH hydrolase deficiency and SAM/SAH levels should be considered in the workup in neonates with unexplained hypotonia, liver dysfunction, or elevated CK. Dietary restriction of methionine demonstrates clinical benefits in some affected patients and should be trialed in patients with SAH hydrolase deficiency.
Collapse
Affiliation(s)
- Yue Huang
- Division of Metabolic Disorders, CHOC Children's Hospital, Orange, CA, USA
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Richard Chang
- Division of Metabolic Disorders, CHOC Children's Hospital, Orange, CA, USA
- Department of Pediatrics, University of California Irvine, Orange, CA, USA
| | - Jose E. Abdenur
- Division of Metabolic Disorders, CHOC Children's Hospital, Orange, CA, USA
- Department of Pediatrics, University of California Irvine, Orange, CA, USA
- Corresponding author.
| |
Collapse
|
14
|
Monné M, Marobbio CMT, Agrimi G, Palmieri L, Palmieri F. Mitochondrial transport and metabolism of the major methyl donor and versatile cofactor S-adenosylmethionine, and related diseases: A review †. IUBMB Life 2022; 74:573-591. [PMID: 35730628 DOI: 10.1002/iub.2658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022]
Abstract
S-adenosyl-L-methionine (SAM) is a coenzyme and the most commonly used methyl-group donor for the modification of metabolites, DNA, RNA and proteins. SAM biosynthesis and SAM regeneration from the methylation reaction product S-adenosyl-L-homocysteine (SAH) take place in the cytoplasm. Therefore, the intramitochondrial SAM-dependent methyltransferases require the import of SAM and export of SAH for recycling. Orthologous mitochondrial transporters belonging to the mitochondrial carrier family have been identified to catalyze this antiport transport step: Sam5p in yeast, SLC25A26 (SAMC) in humans, and SAMC1-2 in plants. In mitochondria SAM is used by a vast number of enzymes implicated in the following processes: the regulation of replication, transcription, translation, and enzymatic activities; the maturation and assembly of mitochondrial tRNAs, ribosomes and protein complexes; and the biosynthesis of cofactors, such as ubiquinone, lipoate, and molybdopterin. Mutations in SLC25A26 and mitochondrial SAM-dependent enzymes have been found to cause human diseases, which emphasizes the physiological importance of these proteins.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carlo M T Marobbio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| |
Collapse
|
15
|
Bravo AC, Aguilera MNL, Marziali NR, Moritz L, Wingert V, Klotz K, Schumann A, Grünert SC, Spiekerkoetter U, Berger U, Lederer AK, Huber R, Hannibal L. Analysis of S-Adenosylmethionine and S-Adenosylhomocysteine: Method Optimisation and Profiling in Healthy Adults upon Short-Term Dietary Intervention. Metabolites 2022; 12:373. [PMID: 35629877 PMCID: PMC9143066 DOI: 10.3390/metabo12050373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
S-adenosylmethionine (SAM) is essential for methyl transfer reactions. All SAM is produced de novo via the methionine cycle. The demethylation of SAM produces S-adenosylhomocysteine (SAH), an inhibitor of methyltransferases and the precursor of homocysteine (Hcy). The measurement of SAM and SAH in plasma has value in the diagnosis of inborn errors of metabolism (IEM) and in research to assess methyl group homeostasis. The determination of SAM and SAH is complicated by the instability of SAM under neutral and alkaline conditions and the naturally low concentration of both SAM and SAH in plasma (nM range). Herein, we describe an optimised LC-MS/MS method for the determination of SAM and SAH in plasma, urine, and cells. The method is based on isotopic dilution and employs 20 µL of plasma or urine, or 500,000 cells, and has an instrumental running time of 5 min. The reference ranges for plasma SAM and SAH in a cohort of 33 healthy individuals (age: 19-60 years old; mean ± 2 SD) were 120 ± 36 nM and 21.5 ± 6.5 nM, respectively, in accordance with independent studies and diagnostic determinations. The method detected abnormal concentrations of SAM and SAH in patients with inborn errors of methyl group metabolism. Plasma and urinary SAM and SAH concentrations were determined for the first time in a randomised controlled trial of 53 healthy adult omnivores (age: 18-60 years old), before and after a 4 week intervention with a vegan or meat-rich diet, and revealed preserved variations of both metabolites and the SAM/SAH index.
Collapse
Affiliation(s)
- Aida Corrillero Bravo
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| | - Maria Nieves Ligero Aguilera
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| | - Nahuel R. Marziali
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| | - Lennart Moritz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| | - Victoria Wingert
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| | - Katharina Klotz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| | - Anke Schumann
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.C.G.); (U.S.)
| | - Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.C.G.); (U.S.)
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.C.G.); (U.S.)
| | - Urs Berger
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| | - Ann-Kathrin Lederer
- Center for Complementary Medicine, Department of Internal Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.-K.L.); (R.H.)
| | - Roman Huber
- Center for Complementary Medicine, Department of Internal Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.-K.L.); (R.H.)
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.B.); (M.N.L.A.); (N.R.M.); (L.M.); (V.W.); (K.K.); (A.S.); (U.B.)
| |
Collapse
|
16
|
Dai X, Liu S, Cheng L, Huang T, Guo H, Wang D, Xia M, Ling W, Xiao Y. Epigenetic Upregulation of H19 and AMPK Inhibition Concurrently Contribute to S-Adenosylhomocysteine Hydrolase Deficiency-Promoted Atherosclerotic Calcification. Circ Res 2022; 130:1565-1582. [PMID: 35410483 DOI: 10.1161/circresaha.121.320251] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND S-adenosylhomocysteine (SAH) is a risk factor of cardiovascular disease; inhibition of SAH hydrolase (SAHH) results in SAH accumulation and induces endothelial dysfunction and atherosclerosis. However, the effect and mechanism of SAHH in atherosclerotic calcification is still unclear. We aimed to explore the role and mechanism of SAHH in atherosclerotic calcification. METHODS The relationship between SAHH and atherosclerotic calcification was investigated in patients with coronary atherosclerotic calcification. Different in vivo genetic models were used to examine the effect of SAHH deficiency on atherosclerotic calcification. Human aortic and murine vascular smooth muscle cells (VSMCs) were cultured to explore the underlying mechanism of SAHH on osteoblastic differentiation of VSMCs. RESULTS The expression and activity of SAHH were decreased in calcified human coronary arteries and inversely associated with coronary atherosclerotic calcification severity, whereas plasma SAH and total homocysteine levels were positively associated with coronary atherosclerotic calcification severity. Heterozygote knockout of SAHH promoted atherosclerotic calcification. Specifically, VSMC-deficient but not endothelial cell-deficient or macrophage-deficient SAHH promoted atherosclerotic calcification. Mechanistically, SAHH deficiency accumulated SAH levels and induced H19-mediated Runx2 (runt-related transcription factor 2)-dependent osteoblastic differentiation of VSMCs by inhibiting DNMT3b (DNA methyltransferase 3 beta) and leading to hypomethylation of the H19 promoter. On the other hand, SAHH deficiency resulted in lower intracellular levels of adenosine and reduced AMPK (AMP-activated protein kinase) activation. Adenosine supplementation activated AMPK and abolished SAHH deficiency-induced expression of H19 and Runx2 and osteoblastic differentiation of VSMCs. Finally, AMPK activation by adenosine inhibited H19 expression by inducing Sirt1-mediated histone H3 hypoacetylation and DNMT3b-mediated hypermethylation of the H19 promoter in SAHH deficiency VSMCs. CONCLUSIONS We have confirmed a novel correlation between SAHH deficiency and atherosclerotic calcification and clarified a new mechanism that epigenetic upregulation of H19 and AMPK inhibition concurrently contribute to SAHH deficiency-promoted Runx2-dependent atherosclerotic calcification.
Collapse
Affiliation(s)
- Xin Dai
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Si Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Lokyu Cheng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Ting Huang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, China (H.G.)
| | - Dongliang Wang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (D.W., M.X., W.L.)
| | - Min Xia
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (D.W., M.X., W.L.)
| | - Wenhua Ling
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (D.W., M.X., W.L.)
| | - Yunjun Xiao
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| |
Collapse
|
17
|
Van Gorkom CR, Black ED, Karlik JB. Anesthetic Management of a Patient With S-Adenosylhomocysteine Hydrolase Deficiency: A Case Report. A A Pract 2022; 16:e01578. [DOI: 10.1213/xaa.0000000000001578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Tang Y, Chen X, Chen Q, Xiao J, Mi J, Liu Q, You Y, Chen Y, Ling W. Association of serum methionine metabolites with non-alcoholic fatty liver disease: a cross-sectional study. Nutr Metab (Lond) 2022; 19:21. [PMID: 35303918 PMCID: PMC8932073 DOI: 10.1186/s12986-022-00647-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Background and project Non-alcoholic fatty liver disease (NAFLD) is viewed as the hepatic manifestation of metabolic syndrome. Methionine metabolites have been linked to metabolic syndrome and its related diseases. Whether serum methionine metabolites levels are associated with NAFLD remains unclear. The study aimed to assess the association between methionine metabolites and NAFLD. Methods This cross-sectional study included a total of 2814 individuals aged 40–75 years old. All participants underwent anthropometric measurements, laboratory tests, dietary assessment and abdominal ultrasonography. Multivariable logistic regression analysis was performed to estimate the association of methionine metabolites with NAFLD. Results Overall, 1446 with and 1368 without NAFLD were enrolled in this study. Participants with NAFLD had significantly higher serum S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and homocysteine (Hcy) levels, and a lower S-adenosylmethionine/S-adenosylhomocysteine (SAM/SAH) ratio than those without NAFLD (all P < 0.001). After adjusting multiple confounders, odds ratios (95% confidence interval) for quartile 4 versus quartile 1 of SAH, Hcy and SAM/SAH ratio were 1.65 (1.27–2.14), 1.63 (1.26–2.12) and 0.63 (0.49–0.83), respectively (all P for trend < 0.01). In addition, serum SAH, Hcy levels and SAM/SAH ratio were significantly correlated with the degree of hepatic steatosis (all P for trend < 0.001). Conclusion Elevated serum SAH, Hcy levels and lower SAM/SAH ratio may be independently associated with the presence of NAFLD in middle-aged and elder Chinese. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00647-7.
Collapse
Affiliation(s)
- Yi Tang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Qian Chen
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jinghe Xiao
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Jiaxin Mi
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Qiannan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Yiran You
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Yuming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China. .,Department of Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, Guangdong Province, People's Republic of China. .,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| |
Collapse
|
19
|
May T, de la Haye B, Nord G, Klatt K, Stephenson K, Adams S, Bollinger L, Hanchard N, Arning E, Bottiglieri T, Maleta K, Manary M, Jahoor F. One-carbon metabolism in children with marasmus and kwashiorkor. EBioMedicine 2022; 75:103791. [PMID: 35030356 PMCID: PMC8761690 DOI: 10.1016/j.ebiom.2021.103791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Kwashiorkor is a childhood syndrome of edematous malnutrition. Its precise nutritional precipitants remain uncertain despite nine decades of study. Remarkably, kwashiorkor's disturbances resemble the effects of experimental diets that are deficient in one-carbon nutrients. This similarity suggests that kwashiorkor may represent a nutritionally mediated syndrome of acute one-carbon metabolism dysfunction. Here we report findings from a cross-sectional exploration of serum one-carbon metabolites in Malawian children. METHODS Blood was collected from children aged 12-60 months before nutritional rehabilitation: kwashiorkor (N = 94), marasmic-kwashiorkor (N = 43) marasmus (N = 118), moderate acute malnutrition (N = 56) and controls (N = 46). Serum concentrations of 16 one-carbon metabolites were quantified using LC/MS techniques, and then compared across participant groups. FINDINGS Twelve of 16 measured one-carbon metabolites differed significantly between participant groups. Measured outputs of one-carbon metabolism, asymmetric dimethylarginine (ADMA) and cysteine, were lower in marasmic-kwashiorkor (median µmol/L (± SD): 0·549 (± 0·217) P = 0·00045 & 90 (± 40) P < 0·0001, respectively) and kwashiorkor (0·557 (± 0·195) P < 0·0001 & 115 (± 50) P < 0·0001), relative to marasmus (0·698 (± 0·212) & 153 (± 42)). ADMA and cysteine were well correlated with methionine in both kwashiorkor and marasmic-kwashiorkor. INTERPRETATION Kwashiorkor and marasmic-kwashiorkor were distinguished by evidence of one-carbon metabolism dysfunction. Correlative observations suggest that methionine deficiency drives this dysfunction, which is implicated in the syndrome's pathogenesis. The hypothesis that kwashiorkor can be prevented by fortifying low quality diets with methionine, along with nutrients that support efficient methionine use, such as choline, requires further investigation. FUNDING The Hickey Family Foundation, the American College of Gastroenterology, the NICHD, and the USDA/ARS.
Collapse
Affiliation(s)
- Thaddaeus May
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA.
| | | | | | - Kevin Klatt
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA,Center for Precision Environmental Health, Baylor College of Medicine
| | | | | | - Lucy Bollinger
- Washington University in St. Louis School of Medicine, USA
| | - Neil Hanchard
- National Institutes of Health, USA,National Human Genome Research Institute, Nationl Institutes of Health
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute
| | | | - Mark Manary
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA,The University of Malawi College of Medicine, Malawi,Washington University in St. Louis School of Medicine, USA
| | - Farook Jahoor
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA
| |
Collapse
|
20
|
Petković Ramadža D, Kuhtić I, Žarković K, Lochmüller H, Čavka M, Kovač I, Barić I, Prutki M. Case Report: Advanced Skeletal Muscle Imaging in S-Adenosylhomocysteine Hydrolase Deficiency and Further Insight Into Muscle Pathology. Front Pediatr 2022; 10:847445. [PMID: 35463910 PMCID: PMC9026168 DOI: 10.3389/fped.2022.847445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION S-Adenosylhomocysteine hydrolase deficiency (SAHHD) is a rare inherited multisystemic disease with muscle involvement as one of the most prominent and poorly understood features. To get better insight into muscle involvement, skeletal muscles were analyzed by magnetic resonance imaging (MRI) and MR spectroscopy (MRS) in three brothers with SAHHD in the different age group. METHOD The study was based on analysis of MRI and MRS of skeletal muscles of the lower and the proximal muscle groups of the upper extremities in three SAHHD patients. RESULTS Three siblings presented in early infancy with similar signs and symptoms, including motor developmental delay. All manifested myopathy, more pronounced in the lower extremities and the proximal skeletal muscle groups, and permanently elevated creatine kinase. At the time of MRI and MRS study, the brothers were at the age of 13, 11, and 8 years, respectively. MRI revealed lipid infiltration, and the MRS curve showed an elevated muscle lipid fraction (higher peak of lipid), which increased with age, and was more prominent in the proximal skeletal muscles of the lower extremities. These results were consistent with muscle biopsy findings in two of them, while the third patient had no specific pathological changes in the examined muscle tissue. CONCLUSIONS These findings demonstrate that an accessible and non-invasive method of MRI and MRS is useful for an insight into the extent of muscle involvement, monitoring disease progression, and response to treatment in SAHHD.
Collapse
Affiliation(s)
- Danijela Petković Ramadža
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Kuhtić
- Department of Radiology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Kamelija Žarković
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Pathology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Mislav Čavka
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Radiology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ida Kovač
- Department of Rehabilitation and Orthopaedic Devices, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ivo Barić
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Maja Prutki
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Radiology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
21
|
Knežević S, Ognjanović M, Gavrović Jankulović M, Đurašinović T, Antić B, Djurić SV, Stanković DM. S‐Adenosyl‐L‐Homocysteine Hydrolase Immobilized on Citric Acid‐capped Gallium Oxyhydroxide on SWCNTs Modified Electrode for AdoHcy Impedimetric Sensing. ELECTROANAL 2022. [DOI: 10.1002/elan.202100362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sara Knežević
- Faculty of Chemistry University of Belgrade Studentski Trg 12–16 11000 Belgrade Serbia
| | - Miloš Ognjanović
- “VINČA” Institute of Nuclear Sciences – National Institute of the Republic of Serbia University of Belgrade Mike Petrovića Alasa 12–14 11000 Belgrade Serbia
| | | | - Tatjana Đurašinović
- Institute of Medical Biochemistry Military Medical Academy Crnotravska 17 11000 Belgrade Serbia
| | - Bratislav Antić
- “VINČA” Institute of Nuclear Sciences – National Institute of the Republic of Serbia University of Belgrade Mike Petrovića Alasa 12–14 11000 Belgrade Serbia
| | - Sanja Vranješ Djurić
- “VINČA” Institute of Nuclear Sciences – National Institute of the Republic of Serbia University of Belgrade Mike Petrovića Alasa 12–14 11000 Belgrade Serbia
| | - Dalibor M. Stanković
- Faculty of Chemistry University of Belgrade Studentski Trg 12–16 11000 Belgrade Serbia
- “VINČA” Institute of Nuclear Sciences – National Institute of the Republic of Serbia University of Belgrade Mike Petrovića Alasa 12–14 11000 Belgrade Serbia
| |
Collapse
|
22
|
Dhanjal DS, Bhardwaj S, Chopra C, Singh R, Patocka J, Plucar B, Nepovimova E, Valis M, Kuca K. Millennium Nutrient N,N-Dimethylglycine (DMG) and its Effectiveness in Autism Spectrum Disorders. Curr Med Chem 2021; 29:2632-2651. [PMID: 34823458 DOI: 10.2174/0929867328666211125091811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
Autism is a neurodevelopmental disorder belonging to the autism spectrum disorder (ASD). In ASDs, the individuals show substantial impairments in social communication, repetitive behaviours, and sensory behaviours deficits in the early stages of their life. Globally, the prevalence of autism is estimated to be less than 1%, especially in high-income countries. In recent decades, there has been a drastic increase in the incidence of ASD, which has put ASD into the category of epidemics. Presently, two US Food and Drug Administration-approved drugs, aripiprazole and risperidone are used to treat symptoms of agitation and irritability in autistic children. However, to date, no medication has been found to treat the core symptoms of ASD. The adverse side effects of conventional medicine and limited treatment options have led families and parents of autistic children to turn to complementary and alternative medicine (CAM) treatments, which are perceived as relatively safe compared to conventional medicine. Recently, N,N-dimethylglycine (DMG), a dietary supplement, has emerged as a useful supplement to improve the mental and physical state of children with ASD. The current review discusses ASD, the prevalence of ASD, CAM approach and efficacy of CAM treatment in children with ASD. Moreover, it highlights the chemistry, pharmacological effect, and clinical studies of DMG, highlighting its potential for improving the lifestyle of children with ASD.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara. India
| | - Sonali Bhardwaj
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara. India
| | - Chirag Chopra
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara. India
| | - Reena Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara. India
| | - Jiri Patocka
- Department of Radiology, Toxicology and Population Protection, Faculty of Health and Social Studies, University of South Bohemia in Ceske Budejovice. Czech Republic
| | - Bohumir Plucar
- Reflex Therapy Laboratory, Udolni 393/18, 602 00 Brno. Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove. Czech Republic
| | - Martin Valis
- University Hospital Hradec Kralove, Hradec Kralove. Czech Republic
| | - Kamil Kuca
- University Hospital Hradec Kralove, Hradec Kralove. Czech Republic
| |
Collapse
|
23
|
Seminotti B, Roginski AC, Zanatta Â, Amaral AU, Fernandes T, Spannenberger KP, da Silva LHR, Ribeiro RT, Leipnitz G, Wajner M. S-adenosylmethionine induces mitochondrial dysfunction, permeability transition pore opening and redox imbalance in subcellular preparations of rat liver. J Bioenerg Biomembr 2021; 53:525-539. [PMID: 34347214 DOI: 10.1007/s10863-021-09914-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/17/2021] [Indexed: 01/03/2023]
Abstract
S-adenosylmethionine (AdoMet) predominantly accumulates in tissues and biological fluids of patients affected by liver dysmethylating diseases, particularly glycine N-methyltransferase, S-adenosylhomocysteine hydrolase and adenosine kinase deficiencies, as well as in some hepatic mtDNA depletion syndromes, whose pathogenesis of liver dysfunction is still poorly established. Therefore, in the present work, we investigated the effects of S-adenosylmethionine (AdoMet) on mitochondrial functions and redox homeostasis in rat liver. AdoMet decreased mitochondrial membrane potential and Ca2+ retention capacity, and these effects were fully prevented by cyclosporin A and ADP, indicating mitochondrial permeability transition (mPT) induction. It was also verified that the thiol-alkylating agent NEM prevented AdoMet-induced ΔΨm dissipation, implying a role for thiol oxidation in the mPT pore opening. AdoMet also increased ROS production and provoked protein and lipid oxidation. Furthermore, AdoMet reduced GSH levels and the activities of aconitase and α-ketoglutarate dehydrogenase. Free radical scavengers attenuated AdoMet effects on lipid peroxidation and GSH levels, supporting a role of ROS in these effects. It is therefore presumed that disturbance of mitochondrial functions associated with mPT and redox unbalance may represent relevant pathomechanisms of liver damage provoked by AdoMet in disorders in which this metabolite accumulates.
Collapse
Affiliation(s)
- Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Cristina Roginski
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ângela Zanatta
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Avenida Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | - Thabata Fernandes
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kaleb Pinto Spannenberger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas Henrique Rodrigues da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio 21111, Porto Alegre, RS, 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio 21111, Porto Alegre, RS, 90035-003, Brazil. .,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil.
| |
Collapse
|
24
|
Žigman T, Petković Ramadža D, Šimić G, Barić I. Inborn Errors of Metabolism Associated With Autism Spectrum Disorders: Approaches to Intervention. Front Neurosci 2021; 15:673600. [PMID: 34121999 PMCID: PMC8193223 DOI: 10.3389/fnins.2021.673600] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence suggests that the autism spectrum disorder (ASD) may be associated with inborn errors of metabolism, such as disorders of amino acid metabolism and transport [phenylketonuria, homocystinuria, S-adenosylhomocysteine hydrolase deficiency, branched-chain α-keto acid dehydrogenase kinase deficiency, urea cycle disorders (UCD), Hartnup disease], organic acidurias (propionic aciduria, L-2 hydroxyglutaric aciduria), cholesterol biosynthesis defects (Smith-Lemli-Opitz syndrome), mitochondrial disorders (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes-MELAS syndrome), neurotransmitter disorders (succinic semialdehyde dehydrogenase deficiency), disorders of purine metabolism [adenylosuccinate lyase (ADSL) deficiency, Lesch-Nyhan syndrome], cerebral creatine deficiency syndromes (CCDSs), disorders of folate transport and metabolism (cerebral folate deficiency, methylenetetrahydrofolate reductase deficiency), lysosomal storage disorders [Sanfilippo syndrome, neuronal ceroid lipofuscinoses (NCL), Niemann-Pick disease type C], cerebrotendinous xanthomatosis (CTX), disorders of copper metabolism (Wilson disease), disorders of haem biosynthesis [acute intermittent porphyria (AIP)] and brain iron accumulation diseases. In this review, we briefly describe etiology, clinical presentation, and therapeutic principles, if they exist, for these conditions. Additionally, we suggest the primary and elective laboratory work-up for their successful early diagnosis.
Collapse
Affiliation(s)
- Tamara Žigman
- Department of Paediatrics, University Hospital Center Zagreb and University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danijela Petković Ramadža
- Department of Paediatrics, University Hospital Center Zagreb and University of Zagreb School of Medicine, Zagreb, Croatia
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivo Barić
- Department of Paediatrics, University Hospital Center Zagreb and University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
25
|
Huang W, Li N, Zhang Y, Wang X, Yin M, Lei QY. AHCYL1 senses SAH to inhibit autophagy through interaction with PIK3C3 in an MTORC1-independent manner. Autophagy 2021; 18:309-319. [PMID: 33993848 DOI: 10.1080/15548627.2021.1924038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
S-adenosyl-l-homocysteine (SAH), an amino acid derivative, is a key intermediate metabolite in methionine metabolism, which is normally considered as a harmful by-product and hydrolyzed quickly once formed. AHCY (adenosylhomocysteinase) converts SAH into homocysteine and adenosine. There are two other members in the AHCY family, AHCYL1 (adenosylhomocysteinase like 1) and AHCYL2 (adenosylhomocysteinase like 2). Here we define AHCYL1 function as a SAH sensor to inhibit macroautophagy/autophagy through PIK3C3. The C terminus of AHCYL1 interacts with SAH specifically and the interaction with SAH promotes the binding of the N terminus to the catalytic domain of PIK3C3, resulting in inhibition of PIK3C3. More importantly, this observation was further validated in vivo, indicating that SAH functions as a signaling molecule. Our study uncovers a new axis of SAH-AHCYL1-PIK3C3, which senses the intracellular level of SAH to inhibit autophagy in an MTORC1-independent manner.Abbreviations: ADOX: adenosine dialdehyde; AHCY: adenosylhomocysteinase; AHCYL1: adenosylhomocysteinase like 1; cLEU: cycloleucine; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; SAH: S-adenosyl-l-homocysteine; SAM: S-adenosyl-l-methionine.
Collapse
Affiliation(s)
- Wei Huang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology, the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology, the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology, the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xu Wang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology, the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology, the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology, the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Gupta A, Storey KB. Coordinated expression of Jumonji and AHCY under OCT transcription factor control to regulate gene methylation in wood frogs during anoxia. Gene 2021; 788:145671. [PMID: 33887369 DOI: 10.1016/j.gene.2021.145671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
Wood frogs (Rana sylvatica) can survive extended periods of whole body freezing. Freezing imparts multiple stresses on cells that include anoxia and dehydration, but these can also be experienced as independent stresses. Under anoxia stress, energy metabolism is suppressed, and pro-survival pathways are prioritized to differentially regulate some transcription factors including OCT1 and OCT4. Jumonji C domain proteins (JMJD1A and JMJD2C) are hypoxia responsive demethylases whose expression is accelerated by OCT1 and OCT4 which act to demethylate genes related to the methionine cycle. The responses by these factors to 24 h anoxia exposure and 4 h aerobic recovery was analyzed in liver and skeletal muscle of wood frogs to assess their involvement in metabolic adaptation to oxygen limitation. Immunoblot results showed a decrease in JMJD1A levels under anoxia in liver and muscle, but an increase was observed in JMJD2C demethylase protein in anoxic skeletal muscle. Protein levels of adenosylhomocysteinase (AHCY) and methionine adenosyl transferase (MAT), enzymes of the methionine cycle, also showed an increase in the reoxygenated liver, whereas the levels decreased in muscle. A transcription factor ELISA showed a decrease in DNA binding by OCT1 in the reoxygenated liver and anoxic skeletal muscle, and transcript levels also showed tissue specific gene expression. The present study provides the first analysis of the role of the OCT1 transcription factor, associated proteins, and lysine demethylases in mediating responses to anoxia by wood frog tissues.
Collapse
Affiliation(s)
- Aakriti Gupta
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada.
| |
Collapse
|
27
|
Migazzi A, Scaramuzzino C, Anderson EN, Tripathy D, Hernández IH, Grant RA, Roccuzzo M, Tosatto L, Virlogeux A, Zuccato C, Caricasole A, Ratovitski T, Ross CA, Pandey UB, Lucas JJ, Saudou F, Pennuto M, Basso M. Huntingtin-mediated axonal transport requires arginine methylation by PRMT6. Cell Rep 2021; 35:108980. [PMID: 33852844 PMCID: PMC8132453 DOI: 10.1016/j.celrep.2021.108980] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/09/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
The huntingtin (HTT) protein transports various organelles, including vesicles containing neurotrophic factors, from embryonic development throughout life. To better understand how HTT mediates axonal transport and why this function is disrupted in Huntington's disease (HD), we study vesicle-associated HTT and find that it is dimethylated at a highly conserved arginine residue (R118) by the protein arginine methyltransferase 6 (PRMT6). Without R118 methylation, HTT associates less with vesicles, anterograde trafficking is diminished, and neuronal death ensues-very similar to what occurs in HD. Inhibiting PRMT6 in HD cells and neurons exacerbates mutant HTT (mHTT) toxicity and impairs axonal trafficking, whereas overexpressing PRMT6 restores axonal transport and neuronal viability, except in the presence of a methylation-defective variant of mHTT. In HD flies, overexpressing PRMT6 rescues axonal defects and eclosion. Arginine methylation thus regulates HTT-mediated vesicular transport along the axon, and increasing HTT methylation could be of therapeutic interest for HD.
Collapse
Affiliation(s)
- Alice Migazzi
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy; Dulbecco Telethon Institute, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy; Department of Biomedical Sciences (DBS), University of Padova, Padova 35131, Italy
| | - Chiara Scaramuzzino
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble 38000, France
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Debasmita Tripathy
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Ivó H Hernández
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Rogan A Grant
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Michela Roccuzzo
- Advanced Imaging Core Facility, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Laura Tosatto
- Institute of Biophysics, National Research Council (CNR) Trento unit, Trento 38123, Italy
| | - Amandine Virlogeux
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble 38000, France
| | - Chiara Zuccato
- Department of Biosciences, University of Milan, Milan, Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan 20122, Italy
| | | | - Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Udai B Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - José J Lucas
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble 38000, France.
| | - Maria Pennuto
- Dulbecco Telethon Institute, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy; Department of Biomedical Sciences (DBS), University of Padova, Padova 35131, Italy; Veneto Institute of Molecular Medicine (VIMM), via Orus 2, Padova 35129, Italy; Padova Neuroscience Center (PNC), Padova 35131, Italy; Myology Center (CIR-Myo), Padova 35131, Italy.
| | - Manuela Basso
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy.
| |
Collapse
|
28
|
Vizán P, Di Croce L, Aranda S. Functional and Pathological Roles of AHCY. Front Cell Dev Biol 2021; 9:654344. [PMID: 33869213 PMCID: PMC8044520 DOI: 10.3389/fcell.2021.654344] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
Adenosylhomocysteinase (AHCY) is a unique enzyme and one of the most conserved proteins in living organisms. AHCY catalyzes the reversible break of S-adenosylhomocysteine (SAH), the by-product and a potent inhibitor of methyltransferases activity. In mammals, AHCY is the only enzyme capable of performing this reaction. Controlled subcellular localization of AHCY is believed to facilitate local transmethylation reactions, by removing excess of SAH. Accordingly, AHCY is recruited to chromatin during replication and active transcription, correlating with increasing demands for DNA, RNA, and histone methylation. AHCY deletion is embryonic lethal in many organisms (from plants to mammals). In humans, AHCY deficiency is associated with an incurable rare recessive disorder in methionine metabolism. In this review, we focus on the AHCY protein from an evolutionary, biochemical, and functional point of view, and we discuss the most recent, relevant, and controversial contributions to the study of this enzyme.
Collapse
Affiliation(s)
- Pedro Vizán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
29
|
Genetic variants in S-adenosyl-methionine synthesis pathway and nonsyndromic cleft lip with or without cleft palate in Chile. Pediatr Res 2021; 89:1020-1025. [PMID: 32492698 DOI: 10.1038/s41390-020-0994-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/25/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND The S-adenosyl-methionine (SAM) availability is crucial for DNA methylation, an epigenetic mechanism involved in nonsyndromic cleft lip with or without cleft palate (NSCL/P) expression. The aim of this study was to assess the association between single-nucleotide polymorphisms (SNPs) of genes involved in SAM synthesis and NSCL/P in a Chilean population. METHODS In 234 cases and 309 controls, 18 SNPs in AHCY, MTR, MTRR, and MAT2A were genotyped, and the association between them and the phenotype was evaluated based on additive (allele), dominant, recessive and haplotype models, by odds ratio (OR) computing. RESULTS Three deep intronic SNPs of MTR showed a protective effect on NSCL/P expression: rs10925239 (OR 0.68; p = 0.0032; q = 0.0192), rs10925254 (OR 0.66; p = 0.0018; q = 0.0162), and rs3768142 (OR 0.66; p = 0.0015; q = 0.0162). Annotations in expression database demonstrate that the protective allele of the three SNPs is associated with a reduction of MTR expression summed to the prediction by bioinformatic tools of its potentiality to modify splicing sites. CONCLUSIONS The protective effect against NSCL/P of these intronic MTR SNPs seems to be related to a decrease in MTR enzyme expression, modulating the SAM availability for proper substrate methylation. However, functional analyses are necessary to confirm our findings. IMPACT SAM synthesis pathway genetic variants are factors associated to NSCL/P. This article adds new evidence for folate related genes in NSCL/P in Chile. Its impact is to contribute with potential new markers for genetic counseling.
Collapse
|
30
|
Singhal A, Virmani R, Naz S, Arora G, Gaur M, Kundu P, Sajid A, Misra R, Dabla A, Kumar S, Nellissery J, Molle V, Gerth U, Swaroop A, Sharma K, Nandicoori VK, Singh Y. Methylation of two-component response regulator MtrA in mycobacteria negatively modulates its DNA binding and transcriptional activation. Biochem J 2020; 477:4473-4489. [PMID: 33175092 PMCID: PMC11374129 DOI: 10.1042/bcj20200455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022]
Abstract
Post-translational modifications such as phosphorylation, nitrosylation, and pupylation modulate multiple cellular processes in Mycobacterium tuberculosis. While protein methylation at lysine and arginine residues is widespread in eukaryotes, to date only two methylated proteins in Mtb have been identified. Here, we report the identification of methylation at lysine and/or arginine residues in nine mycobacterial proteins. Among the proteins identified, we chose MtrA, an essential response regulator of a two-component signaling system, which gets methylated on multiple lysine and arginine residues to examine the functional consequences of methylation. While methylation of K207 confers a marginal decrease in the DNA-binding ability of MtrA, methylation of R122 or K204 significantly reduces the interaction with the DNA. Overexpression of S-adenosyl homocysteine hydrolase (SahH), an enzyme that modulates the levels of S-adenosyl methionine in mycobacteria decreases the extent of MtrA methylation. Most importantly, we show that decreased MtrA methylation results in transcriptional activation of mtrA and sahH promoters. Collectively, we identify novel methylated proteins, expand the list of modifications in mycobacteria by adding arginine methylation, and show that methylation regulates MtrA activity. We propose that protein methylation could be a more prevalent modification in mycobacterial proteins.
Collapse
Affiliation(s)
- Anshika Singhal
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Richa Virmani
- Department of Zoology, University of Delhi, Delhi 110007, India
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Saba Naz
- Department of Zoology, University of Delhi, Delhi 110007, India
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gunjan Arora
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Mohita Gaur
- Department of Zoology, University of Delhi, Delhi 110007, India
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Parijat Kundu
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Andaleeb Sajid
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Richa Misra
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Ankita Dabla
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Suresh Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jacob Nellissery
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Virginie Molle
- DIMNP, CNRS, University of Montpellier, Montpellier, France
| | - Ulf Gerth
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, D-17487 Greifswald, Germany
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Kirti Sharma
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Vinay K Nandicoori
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi 110007, India
| |
Collapse
|
31
|
Kožich V, Stabler S. Lessons Learned from Inherited Metabolic Disorders of Sulfur-Containing Amino Acids Metabolism. J Nutr 2020; 150:2506S-2517S. [PMID: 33000152 DOI: 10.1093/jn/nxaa134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
The metabolism of sulfur-containing amino acids (SAAs) requires an orchestrated interplay among several dozen enzymes and transporters, and an adequate dietary intake of methionine (Met), cysteine (Cys), and B vitamins. Known human genetic disorders are due to defects in Met demethylation, homocysteine (Hcy) remethylation, or cobalamin and folate metabolism, in Hcy transsulfuration, and Cys and hydrogen sulfide (H2S) catabolism. These disorders may manifest between the newborn period and late adulthood by a combination of neuropsychiatric abnormalities, thromboembolism, megaloblastic anemia, hepatopathy, myopathy, and bone and connective tissue abnormalities. Biochemical features include metabolite deficiencies (e.g. Met, S-adenosylmethionine (AdoMet), intermediates in 1-carbon metabolism, Cys, or glutathione) and/or their accumulation (e.g. S-adenosylhomocysteine, Hcy, H2S, or sulfite). Treatment should be started as early as possible and may include a low-protein/low-Met diet with Cys-enriched amino acid supplements, pharmacological doses of B vitamins, betaine to stimulate Hcy remethylation, the provision of N-acetylcysteine or AdoMet, or experimental approaches such as liver transplantation or enzyme replacement therapy. In several disorders, patients are exposed to long-term markedly elevated Met concentrations. Although these conditions may inform on Met toxicity, interpretation is difficult due to the presence of additional metabolic changes. Two disorders seem to exhibit Met-associated toxicity in the brain. An increased risk of demyelination in patients with Met adenosyltransferase I/III (MATI/III) deficiency due to biallelic mutations in the MATIA gene has been attributed to very high blood Met concentrations (typically >800 μmol/L) and possibly also to decreased liver AdoMet synthesis. An excessively high Met concentration in some patients with cystathionine β-synthase deficiency has been associated with encephalopathy and brain edema, and direct toxicity of Met has been postulated. In summary, studies in patients with various disorders of SAA metabolism showed complex metabolic changes with distant cellular consequences, most of which are not attributable to direct Met toxicity.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Sally Stabler
- Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
32
|
Fling RR, Doskey CM, Fader KA, Nault R, Zacharewski TR. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) dysregulates hepatic one carbon metabolism during the progression of steatosis to steatohepatitis with fibrosis in mice. Sci Rep 2020; 10:14831. [PMID: 32908189 PMCID: PMC7481292 DOI: 10.1038/s41598-020-71795-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant, induces steatosis that can progress to steatohepatitis with fibrosis, pathologies that parallel stages in the development of non-alcoholic fatty liver disease (NAFLD). Coincidently, one carbon metabolism (OCM) gene expression and metabolites are often altered during NAFLD progression. In this study, the time- and dose-dependent effects of TCDD were examined on hepatic OCM in mice. Despite AhR ChIP-seq enrichment at 2 h, OCM gene expression was not changed within 72 h following a bolus dose of TCDD. Dose-dependent repression of methionine adenosyltransferase 1A (Mat1a), adenosylhomocysteinase (Achy) and betaine-homocysteine S-methyltransferase (Bhmt) mRNA and protein levels following repeated treatments were greater at 28 days compared to 8 days. Accordingly, levels of methionine, betaine, and homocysteic acid were dose-dependently increased, while S-adenosylmethionine, S-adenosylhomocysteine, and cystathionine exhibited non-monotonic dose-dependent responses consistent with regulation by OCM intermediates and repression of glycine N-methyltransferase (Gnmt). However, the dose-dependent effects on SAM-dependent metabolism of polyamines and creatine could not be directly attributed to alterations in SAM levels. Collectively, these results demonstrate persistent AhR activation disrupts hepatic OCM metabolism at the transcript, protein and metabolite levels within context of TCDD-elicited progression of steatosis to steatohepatitis with fibrosis.
Collapse
Affiliation(s)
- Russell R Fling
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Claire M Doskey
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kelly A Fader
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rance Nault
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Tim R Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
33
|
Arthur-Farraj P, Moyon S. DNA methylation in Schwann cells and in oligodendrocytes. Glia 2020; 68:1568-1583. [PMID: 31958184 DOI: 10.1002/glia.23784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
DNA methylation is one of many epigenetic marks, which directly modifies base residues, usually cytosines, in a multiple-step cycle. It has been linked to the regulation of gene expression and alternative splicing in several cell types, including during cell lineage specification and differentiation processes. DNA methylation changes have also been observed during aging, and aberrant methylation patterns have been reported in several neurological diseases. We here review the role of DNA methylation in Schwann cells and oligodendrocytes, the myelin-forming glia of the peripheral and central nervous systems, respectively. We first address how methylation and demethylation are regulating myelinating cells' differentiation during development and repair. We then mention how DNA methylation dysregulation in diseases and cancers could explain their pathogenesis by directly influencing myelinating cells' proliferation and differentiation capacities.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah Moyon
- Neuroscience Initiative Advanced Science Research Center, CUNY, New York, New York
| |
Collapse
|
34
|
Grudzinska Pechhacker MK, Di Scipio M, Vig A, Tumber A, Roslin N, Tavares E, Vincent A, Hèon E. CRB1-related retinopathy overlapping the ocular phenotype of S-adenosylhomocysteine hydrolase deficiency. Ophthalmic Genet 2020; 41:457-464. [PMID: 32689861 DOI: 10.1080/13816810.2020.1790013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND S-adenosylhomocysteine hydrolase deficiency due to pathologic variants in AHCY gene is a rare neurometabolic disease for which no eye phenotype has been documented. Pathologic variants in CRB1 gene are known to cause a wide spectrum of autosomal recessive retinal diseases with Leber's congenital amaurosis as a most common. The aim of this study is to report co-inheritance of neurometabolic disease and eye disease in a pedigree. MATERIALS AND METHODS Comprehensive eye examination was performed in available family members together with color vision test, visual fields, fundus images, OCT, electroretinogram and visual evoked potentials. Genetic testing included whole-exome sequencing (WES), retinal dystrophy gene panel and segregation analysis. RESULTS Two children from a family not known to be consanguineous were affected with neurometabolic disease and one of them presented with reduced vision due to maculopathy. The mother had symptoms of retinal degeneration of unspecified cause. Clinical WES revealed homozygous missense pathologic variants in AHCY gene c.148G>A, p.(Ala50Thr) as a cause of S-adenosylhomocysteine hydrolase deficiency. Retinal dystrophy gene panel sequencing revealed two heterozygous missense pathologic variants in CRB1 gene c.1831T>C, p.(Ser611Pro) and c.3955T>C, p.(Phe1319Leu) in the proband and her mother. These variants segregated with disease phenotype in family members. CONCLUSIONS Establishing an ocular genetic diagnosis may be challenging with the co-existence of a rare systemic genetic disease with previously unknown eye involvement. Extensive phenotyping and genotyping of available family members showed that the proband and her mother shared a CRB1-related retinopathy at different stages while the brother did not.
Collapse
Affiliation(s)
- Monika K Grudzinska Pechhacker
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children , Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto , Toronto, Canada
| | - Matteo Di Scipio
- Genetics and Genome Biology, The Hospital for Sick Children , Toronto, Canada
| | - Anjali Vig
- Genetics and Genome Biology, The Hospital for Sick Children , Toronto, Canada
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children , Toronto, Canada
| | - Nicole Roslin
- Genetics and Genome Biology, The Hospital for Sick Children , Toronto, Canada
| | - Erika Tavares
- Genetics and Genome Biology, The Hospital for Sick Children , Toronto, Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children , Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto , Toronto, Canada.,Genetics and Genome Biology, The Hospital for Sick Children , Toronto, Canada
| | - Elise Hèon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children , Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto , Toronto, Canada.,Genetics and Genome Biology, The Hospital for Sick Children , Toronto, Canada
| |
Collapse
|
35
|
Alegre S, Pascual J, Trotta A, Angeleri M, Rahikainen M, Brosche M, Moffatt B, Kangasjärvi S. Evolutionary conservation and post-translational control of S-adenosyl-L-homocysteine hydrolase in land plants. PLoS One 2020; 15:e0227466. [PMID: 32678822 PMCID: PMC7367456 DOI: 10.1371/journal.pone.0227466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/30/2020] [Indexed: 02/01/2023] Open
Abstract
Trans-methylation reactions are intrinsic to cellular metabolism in all living organisms. In land plants, a range of substrate-specific methyltransferases catalyze the methylation of DNA, RNA, proteins, cell wall components and numerous species-specific metabolites, thereby providing means for growth and acclimation in various terrestrial habitats. Trans-methylation reactions consume vast amounts of S-adenosyl-L-methionine (SAM) as a methyl donor in several cellular compartments. The inhibitory reaction by-product, S-adenosyl-L-homocysteine (SAH), is continuously removed by SAH hydrolase (SAHH), which essentially maintains trans-methylation reactions in all living cells. Here we report on the evolutionary conservation and post-translational control of SAHH in land plants. We provide evidence suggesting that SAHH forms oligomeric protein complexes in phylogenetically divergent land plants and that the predominant protein complex is composed by a tetramer of the enzyme. Analysis of light-stress-induced adjustments of SAHH in Arabidopsis thaliana and Physcomitrella patens further suggests that regulatory actions may take place on the levels of protein complex formation and phosphorylation of this metabolically central enzyme. Collectively, these data suggest that plant adaptation to terrestrial environments involved evolution of regulatory mechanisms that adjust the trans-methylation machinery in response to environmental cues.
Collapse
Affiliation(s)
- Sara Alegre
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Jesús Pascual
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Andrea Trotta
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
- Institute of Biosciences and Bioresources, National Research Council of Italy, Sesto Fiorentino, Firenze, Italy
| | - Martina Angeleri
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Moona Rahikainen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Mikael Brosche
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Barbara Moffatt
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Saijaliisa Kangasjärvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
36
|
Wang Z, Neupane A, Vo R, White J, Wang X, Marzano SYL. Comparing Gut Microbiome in Mothers' Own Breast Milk- and Formula-Fed Moderate-Late Preterm Infants. Front Microbiol 2020; 11:891. [PMID: 32528425 PMCID: PMC7264382 DOI: 10.3389/fmicb.2020.00891] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Gut microbiome plays an important role in adult human health and diseases. However, how nutritional factors shape the initial colonization of gut bacteria in infants, especially in preterm infants, is still not completely known. In this study, we compared the effects of feeding with mothers' own breast milk (MBM) and formula on the initial composition and gene expression of gut bacteria in moderate-late preterm infants. Fecal samples were collected from ten formula-fed and ten MBM healthy infants born between 32 and 37 weeks' gestation after they reached full-volume enteral feedings. Total DNAs were extracted from fecal samples for amplicon sequencing of 16S ribosomal RNA (rRNA) gene and total RNA with rRNA depletion for metatranscriptome RNA-Seq 16S rRNA gene amplicon sequencing results showed that the alpha-diversity was similar between the MBM- and formula-fed preterm infants, but the beta-diversity showed a significant difference in composition (p = 0.002). The most abundant taxa were Veillonella (18.4%) and Escherichia/Shigella (15.2%) in MBM infants, whereas the most abundant taxa of formula-fed infants were Streptococcus (18.6%) and Klebsiella (17.4%). The genera Propionibacterium, Streptococcus, and Finegoldia and order Clostridiales had significantly higher relative abundance in the MBM group than the formula group, whereas bacteria under family Enterobacteriaceae, genera Enterococcus and Veillonella, and class Bacilli were more abundant in the formula group. In general, microbiomes from both diet groups exhibited high functional levels of catalytic activity and metabolic processing when analyzed for gene ontology using a comparative metatranscriptome approach. Statistically, the microbial genes in the MBM group had an upregulation in expression related to glycine reductase, periplasmic acid stress response in Enterobacteria, acid resistance mechanisms, and L-fucose utilization. In contrast, the formula-fed group had upregulations in genes associated with methionine and valine degradation functions. Our data suggest that the nutritional source plays a role in shaping the moderate-late preterm gut microbiome as evidenced by the differences in bacterial composition and gene expression profiles in the fecal samples. The MBM group enriched Propionibacterium. Glycine reductase was highly upregulated in the microbiota from MBM along with the upregulated acid stress tolerance genes, suggesting that the intensity of fermentation process was enhanced.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Richard Vo
- Department of Pediatrics, Sanford Children’s Hospital, Sanford USD Medical Center, Sioux Falls, SD, United States
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Jessica White
- Department of Pediatrics, Sanford Children’s Hospital, Sanford USD Medical Center, Sioux Falls, SD, United States
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Xiuqing Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Shin-Yi Lee Marzano
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
37
|
Fustin JM, Ye S, Rakers C, Kaneko K, Fukumoto K, Yamano M, Versteven M, Grünewald E, Cargill SJ, Tamai TK, Xu Y, Jabbur ML, Kojima R, Lamberti ML, Yoshioka-Kobayashi K, Whitmore D, Tammam S, Howell PL, Kageyama R, Matsuo T, Stanewsky R, Golombek DA, Johnson CH, Kakeya H, van Ooijen G, Okamura H. Methylation deficiency disrupts biological rhythms from bacteria to humans. Commun Biol 2020; 3:211. [PMID: 32376902 PMCID: PMC7203018 DOI: 10.1038/s42003-020-0942-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
The methyl cycle is a universal metabolic pathway providing methyl groups for the methylation of nuclei acids and proteins, regulating all aspects of cellular physiology. We have previously shown that methyl cycle inhibition in mammals strongly affects circadian rhythms. Since the methyl cycle and circadian clocks have evolved early during evolution and operate in organisms across the tree of life, we sought to determine whether the link between the two is also conserved. Here, we show that methyl cycle inhibition affects biological rhythms in species ranging from unicellular algae to humans, separated by more than 1 billion years of evolution. In contrast, the cyanobacterial clock is resistant to methyl cycle inhibition, although we demonstrate that methylations themselves regulate circadian rhythms in this organism. Mammalian cells with a rewired bacteria-like methyl cycle are protected, like cyanobacteria, from methyl cycle inhibition, providing interesting new possibilities for the treatment of methylation deficiencies. Fustin et al. reveal the evolutionarily conserved link between methyl metabolism and biological clocks. This study suggests the possibility of translating fundamental understanding of methylation deficiencies to clinical applications.
Collapse
Affiliation(s)
- Jean-Michel Fustin
- Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Metabology, Kyoto University, Kyoto, Japan. .,The University of Manchester, Faculty of Biology, Medicine and Health, Oxford Road, Manchester, M13 9PL, UK.
| | - Shiqi Ye
- Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Metabology, Kyoto University, Kyoto, Japan
| | - Christin Rakers
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kensuke Kaneko
- Graduate School of Pharmaceutical Sciences, Department of System Chemotherapy and Molecular Sciences, Kyoto University, Kyoto, Japan
| | - Kazuki Fukumoto
- Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Metabology, Kyoto University, Kyoto, Japan
| | - Mayu Yamano
- Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Metabology, Kyoto University, Kyoto, Japan
| | - Marijke Versteven
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Ellen Grünewald
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - T Katherine Tamai
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yao Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Maria Luísa Jabbur
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Melisa L Lamberti
- Department of Science and Technology, National University of Quilmes/CONICET, Buenos Aires, Argentina
| | | | - David Whitmore
- Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London, UK
| | - Stephanie Tammam
- Molecular Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada
| | - P Lynne Howell
- Molecular Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takuya Matsuo
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Diego A Golombek
- Department of Science and Technology, National University of Quilmes/CONICET, Buenos Aires, Argentina
| | | | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Department of System Chemotherapy and Molecular Sciences, Kyoto University, Kyoto, Japan
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hitoshi Okamura
- Graduate School of Pharmaceutical Sciences, Laboratory of Molecular Brain Science, Kyoto University, Kyoto, Japan. .,Kyoto University, Graduate School of Medicine, Department of Neuroscience, Division of Physiology and Neurobiology, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
38
|
Bas H, Cilingir O, Tekin N, Saylisoy S, Durak Aras B, Uzay E, Erzurumluoglu Gokalp E, Artan S. A Turkish patient with novel AHCY variants and presumed diagnosis of S-adenosylhomocysteine hydrolase deficiency. Am J Med Genet A 2020; 182:740-745. [PMID: 31957987 DOI: 10.1002/ajmg.a.61489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 11/08/2022]
Abstract
S-adenosylhomocysteine hydrolase deficiency is an autosomal recessive neurometabolic disorder affecting the muscles, liver, and nervous system. The disease occurs by pathogenic variants of AHCY gene encoding S-adenosylhomocysteine hydrolase (AHCY) enzyme. This article reports a patient with presumed AHCY deficiency who was diagnosed by whole exome sequencing due to compound heterozygosity of novel p.T57I (c.170C>T) and p.V217M (c.649G>A) variants of AHCY gene. The patient had diffuse edema, coagulopathy, central nervous system abnormalities, and hypotonia. She died in 3 months due to cardiovascular collapse. Clinical findings of the present case were compatible with previously reported AHCY deficiency patients and the novel variants we found are considered to be the cause of the symptoms. This article also compiles the previous reports and expands clinical spectrum of AHCY deficiency by adding new features.
Collapse
Affiliation(s)
- Hasan Bas
- Department of Medical Genetics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Oguz Cilingir
- Department of Medical Genetics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Neslihan Tekin
- Division of Neonatology, Department of Pediatrics, Eskisehir Osmangazi University, Faculty of Medicine, Eskisehir, Turkey
| | - Suzan Saylisoy
- Department of Radiology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Beyhan Durak Aras
- Department of Medical Genetics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Elif Uzay
- Department of Medical Genetics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ebru Erzurumluoglu Gokalp
- Department of Medical Genetics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sevilhan Artan
- Department of Medical Genetics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
39
|
Matson AW, Hosny N, Swanson ZA, Hering BJ, Burlak C. Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system. PLoS One 2019; 14:e0226107. [PMID: 31821359 PMCID: PMC6903732 DOI: 10.1371/journal.pone.0226107] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/18/2019] [Indexed: 02/03/2023] Open
Abstract
The CRISPR/Cas9 gene editing system has enhanced the development of genetically engineered animals for use in xenotransplantation. Potential limitations to the CRISPR/Cas9 system impacting the development of genetically engineered cells and animals include the creation of off-target mutations. We sought to develop a method to reduce the likelihood of off-target mutation while maintaining a high efficiency rate of desired genetic mutations for the GGTA1 gene. Extension of sgRNA length, responsible for recognition of the target DNA sequence for Cas9 cleavage, resulted in improved specificity for the GGTA1 gene and less off-target DNA cleavage. Three PAM sites were selected within exon 1 of the porcine GGTA1 gene and ten sgRNA of variable lengths were designed across these three sites. The sgRNA was tested against synthetic double stranded DNA templates replicating both the native GGTA1 DNA template and the two most likely off-target binding sites in the porcine genome. Cleavage ability for native and off-target DNA was determined by in vitro cleavage assays. Resulting cleavage products were analyzed to determine the cleavage efficiency of the Cas9/sgRNA complex. Extension of sgRNA length did not have a statistical impact on the specificity of the Cas9/sgRNA complex for PAM1 and PAM2 sites. At the PAM3 site, however, an observed increase in specificity for native versus off-target templates was seen with increased sgRNA length. In addition, distance between PAM site and the start codon had a significant impact on cleavage efficiency and target specificity, regardless of sgRNA length. Although the in vitro assays showed off-target cleavage, Sanger sequencing revealed that no off-target mutations were found in GGTA1 knockout cell lines or piglet. These results demonstrate an optimized method for improvement of the CRIPSR/Cas9 gene editing system by reducing the likelihood of damaging off-target mutations in GGTA1 knocked out cells destined for xenotransplant donor production.
Collapse
Affiliation(s)
- Anders W. Matson
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota School of Medicine, Minneapolis, MN, United States of America
| | - Nora Hosny
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota School of Medicine, Minneapolis, MN, United States of America
- Department of Medical Biochemistry and Molecular Biology, Suez Canal University, Faculty of Medicine, Ismailia, Egypt
| | - Zachary A. Swanson
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota School of Medicine, Minneapolis, MN, United States of America
| | - Bernhard J. Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota School of Medicine, Minneapolis, MN, United States of America
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota School of Medicine, Minneapolis, MN, United States of America
| |
Collapse
|
40
|
Abstract
Using neXtProt release 2019-01-11, we manually curated a list of 1837 functionally uncharacterized human proteins. Using OrthoList 2, we found that 270 of them have homologues in Caenorhabditis elegans, including 60 with a one-to-one orthology relationship. According to annotations extracted from WormBase, the vast majority of these 60 worm genes have RNAi experimental data or mutant alleles, but manual inspection shows that only 15% have phenotypes that could be interpreted in terms of a specific function. One third of the worm orthologs have protein-protein interaction data, and two of these interactions are conserved in humans. The combination of phenotypic, protein-protein interaction, and gene expression data provides functional hypotheses for 8 uncharacterized human proteins. Experimental validation in human or orthologs is necessary before they can be considered for annotation.
Collapse
Affiliation(s)
- Paula Duek
- CALIPHO Group , SIB-Swiss Institute of Bioinformatics, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland
| | - Lydie Lane
- CALIPHO Group , SIB-Swiss Institute of Bioinformatics, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine , University of Geneva, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland
| |
Collapse
|
41
|
Froese DS, Fowler B, Baumgartner MR. Vitamin B 12 , folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J Inherit Metab Dis 2019; 42:673-685. [PMID: 30693532 DOI: 10.1002/jimd.12009] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022]
Abstract
Vitamin B12 (cobalamin, Cbl) is a nutrient essential to human health. Due to its complex structure and dual cofactor forms, Cbl undergoes a complicated series of absorptive and processing steps before serving as cofactor for the enzymes methylmalonyl-CoA mutase and methionine synthase. Methylmalonyl-CoA mutase is required for the catabolism of certain (branched-chain) amino acids into an anaplerotic substrate in the mitochondrion, and dysfunction of the enzyme itself or in production of its cofactor adenosyl-Cbl result in an inability to successfully undergo protein catabolism with concomitant mitochondrial energy disruption. Methionine synthase catalyzes the methyl-Cbl dependent (re)methylation of homocysteine to methionine within the methionine cycle; a reaction required to produce this essential amino acid and generate S-adenosylmethionine, the most important cellular methyl-donor. Disruption of methionine synthase has wide-ranging implications for all methylation-dependent reactions, including epigenetic modification, but also for the intracellular folate pathway, since methionine synthase uses 5-methyltetrahydrofolate as a one-carbon donor. Folate-bound one-carbon units are also required for deoxythymidine monophosphate and de novo purine synthesis; therefore, the flow of single carbon units to each of these pathways must be regulated based on cellular needs. This review provides an overview on Cbl metabolism with a brief description of absorption and intracellular metabolic pathways. It also provides a description of folate-mediated one-carbon metabolism and its intersection with Cbl at the methionine cycle. Finally, a summary of recent advances in understanding of how both pathways are regulated is presented.
Collapse
Affiliation(s)
- D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Brian Fowler
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
42
|
Heo G, Ko KS. Long-Term Feeding of Soy Protein Attenuates Choline Deficient-Induced Adverse Effects in Wild Type Mice and Prohibitin 1 Deficient Mice Response More Sensitively. Prev Nutr Food Sci 2019; 24:32-40. [PMID: 31008094 PMCID: PMC6456240 DOI: 10.3746/pnf.2019.24.1.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, however the exact cause of NAFLD remains unknown. Methionine, an essential amino acid, is the first limiting amino acid of soy protein, and its deficiency is suggested to cause hepatocyte damage and NAFLD. The objective of this study is to examine the changes in NAFLD susceptibility with soy protein consumption and deterioration due to prohibitin 1 (PHB1) deficiency, an important protein in hepatic mitochondrial function. In this study, liver-specific phb1 +/- mice and wild-type mice were fed a normal diet, choline-deficient diet (CDD), or soy protein diet without choline (SPD) for 16 weeks. Using hematoxylin and eosin staining, we showed that SPD attenuates symptoms of hepatocyte damage and lipid accumulation induced by CDD in mouse liver. The liver damage in mice fed the SPD was alleviated by decreasing lipogenic markers and by increasing anti-inflammatory markers. Furthermore, mRNA expression of genes involved in hepatic methionine metabolism was significantly lower in liver-specific phb1 +/- mice fed with a SPD compared with wild-type mice fed with a SPD. These data suggest a CDD can cause non-alcohol related liver damage, which can be attenuated by a SPD in wild-type mice. These phenomena were not observed in liver-specific phb1 +/- mice. It may therefore be concluded that SPD attenuates CDD-induced liver damage in wild-type mice, and that PHB1 deficiency blocks the beneficial effects of SPD against CDD-induced liver damage.
Collapse
Affiliation(s)
- Gieun Heo
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Kwang Suk Ko
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
43
|
Dissecting metabolism using zebrafish models of disease. Biochem Soc Trans 2019; 47:305-315. [PMID: 30700500 DOI: 10.1042/bst20180335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
Zebrafish (Danio rerio) are becoming an increasingly powerful model organism to study the role of metabolism in disease. Since its inception, the zebrafish model has relied on unique attributes such as the transparency of embryos, high fecundity and conservation with higher vertebrates, to perform phenotype-driven chemical and genetic screens. In this review, we describe how zebrafish have been used to reveal novel mechanisms by which metabolism regulates embryonic development, obesity, fatty liver disease and cancer. In addition, we will highlight how new approaches in advanced microscopy, transcriptomics and metabolomics using zebrafish as a model system have yielded fundamental insights into the mechanistic underpinnings of disease.
Collapse
|
44
|
Internal standard metabolites for obtaining absolute quantitative information on the components of bloodstains by standardization of samples. Forensic Sci Int 2019; 294:69-75. [PMID: 30469133 DOI: 10.1016/j.forsciint.2018.10.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/25/2023]
Abstract
Analysis of the components of bloodstains found at crime scenes can provide important information for solving the crime. However, components of blood and bloodstains vary with volume and various other unpredictable factors. Therefore, it is necessary to specify the volume of the initial liquid blood droplet and standardize the analysis. In this study, internal standard metabolites that remained constant in a certain amount of bloodstain, long after deposition of the stain, were identified. Liquid chromatography-electrospray ionization-tandem mass spectrometry of the metabolites extracted from the bloodstain samples at various time points (0, 7, 14, 21, and 28 days) was performed. The coefficient of variation (CV) of the obtained molecular features was calculated for each criterion: time point, subject, and all data (time and subject, triplicate of each). Five molecular features with average CVs of less than or equal to 5% were selected as candidates. Partial least squares discriminant analysis and principal component analysis showed that the effect on the candidates was very low over time. The fold-change value of abundances was confirmed according to time. Stigmasterol exhibited the most stable pattern; l-methionine remained stable until day 14 and after day 21. This study was the first attempt to identify internal standard metabolites that were maintained at a constant level in a bloodstain for a sufficiently long time. Analysis of internal standard metabolites in bloodstains will facilitate determination of the initial blood volume from which the bloodstain was made. Moreover, this method will provide an approach for standardization of bloodstains to obtain absolute quantitative information of bloodstain components at crime scenes.
Collapse
|
45
|
Abstract
Amino acids serve as key building blocks and as an energy source for cell repair, survival, regeneration and growth. Each amino acid has an amino group, a carboxylic acid, and a unique carbon structure. Human utilize 21 different amino acids; most of these can be synthesized endogenously, but 9 are "essential" in that they must be ingested in the diet. In addition to their role as building blocks of protein, amino acids are key energy source (ketogenic, glucogenic or both), are building blocks of Kreb's (aka TCA) cycle intermediates and other metabolites, and recycled as needed. A metabolic defect in the metabolism of tyrosine (homogentisic acid oxidase deficiency) historically defined Archibald Garrod as key architect in linking biochemistry, genetics and medicine and creation of the term 'Inborn Error of Metabolism' (IEM). The key concept of a single gene defect leading to a single enzyme dysfunction, leading to "intoxication" with a precursor in the metabolic pathway was vital to linking genetics and metabolic disorders and developing screening and treatment approaches as described in other chapters in this issue. Amino acid disorders also led to the evolution of the field of metabolic nutrition and offending amino acid restricted formula and foods. This review will discuss the more common disorders caused by inborn errors in amino acid metabolism.
Collapse
Affiliation(s)
- Ermal Aliu
- Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shibani Kanungo
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Georgianne L Arnold
- Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Li Y, Li H, Li YF, Zhao J, Guo J, Wang R, Li B, Zhang Z, Gao Y. Evidence for molecular antagonistic mechanism between mercury and selenium in rice (Oryza sativa L.): A combined study using 1, 2-dimensional electrophoresis and SR-XRF techniques. J Trace Elem Med Biol 2018; 50:435-440. [PMID: 29066364 DOI: 10.1016/j.jtemb.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/25/2017] [Accepted: 10/13/2017] [Indexed: 11/16/2022]
Abstract
Mercury (Hg) is a hazardous chemical in the environment and can accumulate in the food chain. Selenium (Se) is a necessary element for human health and has antagonistic effects on Hg toxicity. In this work, we investigated the effect of Se on Hg containing and Hg-responsive proteins in rice using 1, 2-dimensional electrophoresis combined with SR-XRF techniques. Two weeks old rice seedlings were exposed to Hg and/or Se compounds. After 21days proteins in the rice roots were separated by electrophoresis and their metal contents were determined by X-ray fluorescence to identify Hg and Se responsive biomolecules. The results show that under Hg stress alone Hg is bound to proteins with molecular weights of 15-25kDa. With the addition of Se, a new Hg-containing protein band in the 55-70kDa range was also found, while the content of Hg in the 15-25kDa proteins decreased. Ten and nine new protein spots were identified after adding Se to inorganic Hg and methylmercury exposed roots, respectively. Adding Se regulates the abundance of proteins associated with carbohydrate and energy metabolism, stress response, cell cycle, and DNA replication indicating that these proteins mediate the antagonism of Se against Hg toxicity. This study helps us to better understand the molecular mechanism of Hg tolerance as well as the molecular antagonism between Hg and Se in rice plants.
Collapse
Affiliation(s)
- Yunyun Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China; College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hong Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China
| | - Yu-Feng Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China
| | - Jiating Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China.
| | - Jingxia Guo
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Ru Wang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Bai Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China
| | - Yuxi Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
47
|
Knock-down of AHCY and depletion of adenosine induces DNA damage and cell cycle arrest. Sci Rep 2018; 8:14012. [PMID: 30228286 PMCID: PMC6143609 DOI: 10.1038/s41598-018-32356-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/03/2018] [Indexed: 01/09/2023] Open
Abstract
Recently, functional connections between S-adenosylhomocysteine hydrolase (AHCY) activity and cancer have been reported. As the properties of AHCY include the hydrolysis of S-adenosylhomocysteine and maintenance of the cellular methylation potential, the connection between AHCY and cancer is not obvious. The mechanisms by which AHCY influences the cell cycle or cell proliferation have not yet been confirmed. To elucidate AHCY-driven cancer-specific mechanisms, we pursued a multi-omics approach to investigate the effect of AHCY-knockdown on hepatocellular carcinoma cells. Here, we show that reduced AHCY activity causes adenosine depletion with activation of the DNA damage response (DDR), leading to cell cycle arrest, a decreased proliferation rate and DNA damage. The underlying mechanism behind these effects might be applicable to cancer types that have either significant levels of endogenous AHCY and/or are dependent on high concentrations of adenosine in their microenvironments. Thus, adenosine monitoring might be used as a preventive measure in liver disease, whereas induced adenosine depletion might be the desired approach for provoking the DDR in diagnosed cancer, thus opening new avenues for targeted therapy. Additionally, including AHCY in mutational screens as a potential risk factor may be a beneficial preventive measure.
Collapse
|
48
|
Pajares MA, Pérez-Sala D. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxid Redox Signal 2018; 29:408-452. [PMID: 29186975 DOI: 10.1089/ars.2017.7237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transsulfuration allows conversion of methionine into cysteine using homocysteine (Hcy) as an intermediate. This pathway produces S-adenosylmethionine (AdoMet), a key metabolite for cell function, and provides 50% of the cysteine needed for hepatic glutathione synthesis. The route requires the intake of essential nutrients (e.g., methionine and vitamins) and is regulated by their availability. Transsulfuration presents multiple interconnections with epigenetics, adenosine triphosphate (ATP), and glutathione synthesis, polyol and pentose phosphate pathways, and detoxification that rely mostly in the exchange of substrates or products. Major hepatic diseases, rare diseases, and sensorineural disorders, among others that concur with oxidative stress, present impaired transsulfuration. Recent Advances: In contrast to the classical view, a nuclear branch of the pathway, potentiated under oxidative stress, is emerging. Several transsulfuration proteins regulate gene expression, suggesting moonlighting activities. In addition, abnormalities in Hcy metabolism link nutrition and hearing loss. CRITICAL ISSUES Knowledge about the crossregulation between pathways is mostly limited to the hepatic availability/removal of substrates and inhibitors. However, advances regarding protein-protein interactions involving oncogenes, identification of several post-translational modifications (PTMs), and putative moonlighting activities expand the potential impact of transsulfuration beyond methylations and Hcy. FUTURE DIRECTIONS Increasing the knowledge on transsulfuration outside the liver, understanding the protein-protein interaction networks involving these enzymes, the functional role of their PTMs, or the mechanisms controlling their nucleocytoplasmic shuttling may provide further insights into the pathophysiological implications of this pathway, allowing design of new therapeutic interventions. Antioxid. Redox Signal. 29, 408-452.
Collapse
Affiliation(s)
- María A Pajares
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain .,2 Molecular Hepatology Group, Instituto de Investigación Sanitaria La Paz (IdiPAZ) , Madrid, Spain
| | - Dolores Pérez-Sala
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain
| |
Collapse
|
49
|
Seminotti B, Zanatta Â, Ribeiro RT, da Rosa MS, Wyse ATS, Leipnitz G, Wajner M. Disruption of Brain Redox Homeostasis, Microglia Activation and Neuronal Damage Induced by Intracerebroventricular Administration of S-Adenosylmethionine to Developing Rats. Mol Neurobiol 2018; 56:2760-2773. [PMID: 30058022 DOI: 10.1007/s12035-018-1275-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023]
Abstract
S-Adenosylmethionine (AdoMet) concentrations are highly elevated in tissues and biological fluids of patients affected by S-adenosylhomocysteine hydrolase deficiency. This disorder is clinically characterized by severe neurological symptoms, whose pathophysiology is not yet established. Therefore, we investigated the effects of intracerebroventricular administration of AdoMet on redox homeostasis, microglia activation, synaptophysin levels, and TAU phosphorylation in cerebral cortex and striatum of young rats. AdoMet provoked significant lipid and protein oxidation, decreased glutathione concentrations, and altered the activity of important antioxidant enzymes in cerebral cortex and striatum. AdoMet also increased reactive oxygen (2',7'-dichlorofluorescein oxidation increase) and nitrogen (nitrate and nitrite levels increase) species generation in cerebral cortex. Furthermore, the antioxidants N-acetylcysteine and melatonin prevented most of AdoMet-induced pro-oxidant effects in both cerebral structures. Finally, we verified that AdoMet produced microglia activation by increasing Iba1 staining and TAU phosphorylation, as well as reduced synaptophysin levels in cerebral cortex. Taken together, it is presumed that impairment of redox homeostasis possibly associated with microglia activation and neuronal dysfunction caused by AdoMet may represent deleterious pathomechanisms involved in the pathophysiology of brain damage in S-adenosylhomocysteine hydrolase deficiency.
Collapse
Affiliation(s)
- Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ângela Zanatta
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mateus Struecker da Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil. .,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
50
|
Effect of Homocysteine on Biofilm Formation by Mycobacteria. Indian J Microbiol 2018; 58:287-293. [PMID: 30013272 DOI: 10.1007/s12088-018-0739-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/29/2022] Open
Abstract
Mycobacteria show peculiar aggregated outgrowth like biofilm on the surface of solid or liquid media. Biofilms harbor antibiotic resistant bacteria in a self-produced extracellular matrix that signifies the bacterial fate to sedentary existence. Despite years of research, very little is known about the mechanisms that contribute to biofilm formation. LuxS has been previously known to play a role in biofilm formation in Autoinducer-2 dependent manner. We here show the effect of LuxS product-homocysteine, on the biofilm forming ability of non-tuberculous mycobacteria, Mycobacterium smegmatis and Mycobacterium bovis BCG showing AI-2 independent phenotypic effect of LuxS. Exogenous supplementation of homocysteine in the culture media leads to aberrant cording, pellicle outgrowth, and biofilm formation. Thus, our study contributes to the better understanding of the mechanism of mycobacterial biofilm formation and sheds light on the role of LuxS product homocysteine. In addition, we highlight the contribution of activated methyl cycle in bacterial quorum sensing.
Collapse
|