1
|
Peng Y, Chang L, Wang Y, Wang R, Hu L, Zhao Z, Geng L, Liu Z, Gong Y, Li J, Li X, Zhang C. Genome-wide differential expression of long noncoding RNAs and mRNAs in ovarian follicles of two different chicken breeds. Genomics 2018; 111:1395-1403. [PMID: 30268779 DOI: 10.1016/j.ygeno.2018.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 01/27/2023]
Abstract
Bashang long-tail chickens are an indigenous breed with dual purpose in China (meat and eggs) but have low egg laying performance. To improve the low egg laying performance, a genome-wide analysis of mRNAs and long noncoding RNAs (lncRNAs) from Bashang long-tail chickens and Hy-Line brown layers was performed. A total of 16,354 mRNAs and 8691 lncRNAs were obtained from ovarian follicles. Between the breeds, 160 mRNAs and 550 lncRNAs were found to be significantly differentially expressed. Integrated network analysis suggested some differentially expressed genes were involved in ovarian follicular development through oocyte meiosis, progesterone-mediated oocyte maturation, and cell cycle. The impact of lncRNAs on cis and trans target genes, indicating some lncRNAs may play important roles in ovarian follicular development. The current results provided a catalog of chicken ovarian follicular lncRNAs and genes for further study to understand their roles in regulation of egg laying performance.
Collapse
Affiliation(s)
- Yongdong Peng
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Li Chang
- College of Animal Science and Technology, Agricultural University of Hebei Province, Baoding 071001, Hebei, People's Republic of China; Qinhuangdao Animal Disease Control Center, Qinhuangdao 066001, Hebei, People's Republic of China
| | - Yaqi Wang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Ruining Wang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Lulu Hu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Ziya Zhao
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Liying Geng
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Zhengzhu Liu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Yuanfang Gong
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Jingshi Li
- College of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Xianglong Li
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China.
| | - Chuansheng Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China.
| |
Collapse
|
2
|
Fujioka YA, Onuma A, Fujii W, Sugiura K, Naito K. Contributions of UBE2C and UBE2S to meiotic progression of porcine oocytes. J Reprod Dev 2018; 64:253-259. [PMID: 29576589 PMCID: PMC6021604 DOI: 10.1262/jrd.2018-006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vertebrate oocytes arrested at the first meiotic prophase must proceed to the second meiotic metaphase (MII) before fertilization. This meiotic process requires the precise control of
protein degradation. Part of the protein degradation in oocytes is controlled by members of the ubiquitin-conjugating enzyme family, UBE2C and UBE2S, which are known to participate in
mono-ubiquitination and poly-ubiquitination, respectively. Although UBE2 enzymes have been well studied in mitosis, their contribution to mammalian oocyte meiosis is relatively unknown and
has been studied only in mice. Here, we investigated the contribution of UBE2C and UBE2S to porcine oocyte maturation using an RNA injection method. Overexpression of UBE2S prevented MII
arrest of oocytes and led to the formation of a pronucleus (PN) at 48 h of culture. This effect was also observed for prolonged cultures of UBE2C-overexpressing oocytes, suggesting the
effectiveness of poly-ubiquitination in the rapid escape from M-phase in porcine oocytes. Although the inhibition of either UBE2C or UBE2S by antisense RNA (asRNA) injection had no effect on
oocyte maturation, asRNA-injected oocytes showed inhibited PN formation after parthenogenetic activation. These results indicated that ubiquitination of certain factors by UBE2S and UBE2C
plays a role in the escape from MII arrest in porcine oocytes. Further investigations to identify the factors and how mono- and/or poly-ubiquitination contributes to protein degradation
could provide a better understanding of UBE2 roles in oocyte maturation.
Collapse
Affiliation(s)
- Yoshie A Fujioka
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Asuka Onuma
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Koji Sugiura
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kunihiko Naito
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Heim A, Rymarczyk B, Mayer TU. Regulation of Cell Division. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:83-116. [PMID: 27975271 DOI: 10.1007/978-3-319-46095-6_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The challenging task of mitotic cell divisions is to generate two genetically identical daughter cells from a single precursor cell. To accomplish this task, a complex regulatory network evolved, which ensures that all events critical for the duplication of cellular contents and their subsequent segregation occur in the correct order, at specific intervals and with the highest possible fidelity. Transitions between cell cycle stages are triggered by changes in the phosphorylation state and levels of components of the cell cycle machinery. Entry into S-phase and M-phase are mediated by cyclin-dependent kinases (Cdks), serine-threonine kinases that require a regulatory cyclin subunit for their activity. Resetting the system to the interphase state is mediated by protein phosphatases (PPs) that counteract Cdks by dephosphorylating their substrates. To avoid futile cycles of phosphorylation and dephosphorylation, Cdks and PPs must be regulated in a manner such that their activities are mutually exclusive.
Collapse
Affiliation(s)
- Andreas Heim
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Beata Rymarczyk
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Thomas U Mayer
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany.
| |
Collapse
|
4
|
Fujioka YA, Onuma A, Fujii W, Sugiura K, Naito K. Analyses of EMI functions on meiotic maturation of porcine oocytes. Mol Reprod Dev 2016; 83:983-992. [PMID: 27649288 DOI: 10.1002/mrd.22738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/09/2016] [Indexed: 11/05/2022]
Abstract
Cyclin B (CCNB) accumulation is essential for regulating maturation/M-phase promoting factor activity during vertebrate oocyte maturation. Anaphase-promoting-complex/cyclosome (APC/C) degrades CCNB, allowing the cell cycle to progress; this complex is inhibited by Early mitotic inhibitors 1 and 2 (EMI1 and EMI2). The involvement of both EMI proteins in meiotic maturation has been reported in Xenopus and mouse oocytes, although a recent study described a marked difference in their respective function during meiotic resumption. Mouse is currently the only mammal in which the contribution of EMI to the oocyte maturation has been analyzed, so we used RNA injection methods to overexpress and knock down EMI1 and EMI2 to investigate their roles during porcine oocyte maturation. Up-regulation of either porcine EMI promoted precocious germinal vesicle breakdown (GVBD) with early CCNB1 accumulation in oocytes-which is consistent with their activities in mouse but not Xenopus oocytes. Knockdown of EMI1, but not EMI2, delayed GVBD and meiotic progression of oocytes from GVBD to meiotic metaphase I (MI). In contrast, knockdown of EMI2, but not EMI1, released oocytes from meiotic metaphase II (MII) arrest to produce a pronucleus. When injected oocytes were parthenogenetically activated, the up-regulation of EMI2, but not EMI1, prevented pronucleus formation. These results point to the similarities and differences of porcine EMI function with those of mouse versus Xenopus EMI, and generally contribute to our understanding of EMI function during mammalian oocyte maturation. Mol. Reprod. Dev. 83: 983-992, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yoshie A Fujioka
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Asuka Onuma
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
64Cu-ATSM therapy targets regions with activated DNA repair and enrichment of CD133+ cells in an HT-29 tumor model: Sensitization with a nucleic acid antimetabolite. Cancer Lett 2016; 376:74-82. [DOI: 10.1016/j.canlet.2016.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 02/07/2023]
|
6
|
Sato KI. Transmembrane signal transduction in oocyte maturation and fertilization: focusing on Xenopus laevis as a model animal. Int J Mol Sci 2014; 16:114-34. [PMID: 25546390 PMCID: PMC4307238 DOI: 10.3390/ijms16010114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022] Open
Abstract
Fertilization is a cell biological phenomenon of crucial importance for the birth of new life in a variety of multicellular and sexual reproduction species such as algae, animal and plants. Fertilization involves a sequence of events, in which the female gamete "egg" and the male gamete "spermatozoon (sperm)" develop, acquire their functions, meet and fuse with each other, to initiate embryonic and zygotic development. Here, it will be briefly reviewed how oocyte cytoplasmic components are orchestrated to undergo hormone-induced oocyte maturation and sperm-induced activation of development. I then review how sperm-egg membrane interaction/fusion and activation of development in the fertilized egg are accomplished and regulated through egg coat- or egg plasma membrane-associated components, highlighting recent findings and future directions in the studies using Xenopus laevis as a model experimental animal.
Collapse
Affiliation(s)
- Ken-ichi Sato
- Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.
| |
Collapse
|
7
|
Philippe L, Tosca L, Zhang WL, Piquemal M, Ciapa B. Different routes lead to apoptosis in unfertilized sea urchin eggs. Apoptosis 2013; 19:436-50. [DOI: 10.1007/s10495-013-0950-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Hörmanseder E, Tischer T, Mayer TU. Modulation of cell cycle control during oocyte-to-embryo transitions. EMBO J 2013; 32:2191-203. [PMID: 23892458 DOI: 10.1038/emboj.2013.164] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/03/2013] [Indexed: 12/17/2022] Open
Abstract
Ex ovo omnia--all animals come from eggs--this statement made in 1651 by the English physician William Harvey marks a seminal break with the doctrine that all essential characteristics of offspring are contributed by their fathers, while mothers contribute only a material substrate. More than 360 years later, we now have a comprehensive understanding of how haploid gametes are generated during meiosis to allow the formation of diploid offspring when sperm and egg cells fuse. In most species, immature oocytes are arrested in prophase I and this arrest is maintained for few days (fruit flies) or for decades (humans). After completion of the first meiotic division, most vertebrate eggs arrest again at metaphase of meiosis II. Upon fertilization, this second meiotic arrest point is released and embryos enter highly specialized early embryonic divisions. In this review, we discuss how the standard somatic cell cycle is modulated to meet the specific requirements of different developmental stages. Specifically, we focus on cell cycle regulation in mature vertebrate eggs arrested at metaphase II (MII-arrest), the first mitotic cell cycle, and early embryonic divisions.
Collapse
Affiliation(s)
- Eva Hörmanseder
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | | |
Collapse
|
9
|
Vinod P, Zhou X, Zhang T, Mayer TU, Novak B. The role of APC/C inhibitor Emi2/XErp1 in oscillatory dynamics of early embryonic cell cycles. Biophys Chem 2013; 177-178:1-6. [DOI: 10.1016/j.bpc.2013.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
10
|
Tischer T, Hörmanseder E, Mayer TU. The APC/C inhibitor XErp1/Emi2 is essential for Xenopus early embryonic divisions. Science 2012; 338:520-4. [PMID: 23019610 DOI: 10.1126/science.1228394] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mitotic divisions result from the oscillating activity of cyclin-dependent kinase 1 (Cdk1). Cdk1 activity is terminated by the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets cyclin B for destruction. In somatic divisions, the early mitotic inhibitor 1 (Emi1) and the spindle assembly checkpoint (SAC) regulate cell cycle progression by inhibiting the APC/C. Early embryonic divisions lack these APC/C-inhibitory components, which raises the question of how those cycles are controlled. We found that the APC/C-inhibitory activity of XErp1 (also known as Emi2) was essential for early divisions in Xenopus embryos. Loss of XErp1 resulted in untimely destruction of APC/C substrates and embryonic lethality. XErp1's APC/C-inhibitory function was negatively regulated by Cdk1 and positively by protein phosphatase 2A (PP2A). Thus, Cdk1 and PP2A operate at the core of early mitotic cell cycles by antagonistically controlling XErp1 activity, which results in oscillating APC/C activity.
Collapse
Affiliation(s)
- Thomas Tischer
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | | | | |
Collapse
|
11
|
Kronja I, Orr-Weaver TL. Translational regulation of the cell cycle: when, where, how and why? Philos Trans R Soc Lond B Biol Sci 2012; 366:3638-52. [PMID: 22084390 DOI: 10.1098/rstb.2011.0084] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Translational regulation contributes to the control of archetypal and specialized cell cycles, such as the meiotic and early embryonic cycles. Late meiosis and early embryogenesis unfold in the absence of transcription, so they particularly rely on translational repression and activation of stored maternal mRNAs. Here, we present examples of cell cycle regulators that are translationally controlled during different cell cycle and developmental transitions in model organisms ranging from yeast to mouse. Our focus also is on the RNA-binding proteins that affect cell cycle progression by recognizing special features in untranslated regions of mRNAs. Recent research highlights the significance of the cytoplasmic polyadenylation element-binding protein (CPEB). CPEB determines polyadenylation status, and consequently translational efficiency, of its target mRNAs in both transcriptionally active somatic cells as well as in transcriptionally silent mature Xenopus oocytes and early embryos. We discuss the role of CPEB in mediating the translational timing and in some cases spindle-localized translation of critical regulators of Xenopus oogenesis and early embryogenesis. We conclude by outlining potential directions and approaches that may provide further insights into the translational control of the cell cycle.
Collapse
Affiliation(s)
- Iva Kronja
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
12
|
Gotoh T, Villa LM, Capelluto DGS, Finkielstein CV. Regulatory pathways coordinating cell cycle progression in early Xenopus development. Results Probl Cell Differ 2011; 53:171-99. [PMID: 21630146 DOI: 10.1007/978-3-642-19065-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The African clawed frog, Xenopus laevis, is used extensively as a model organism for studying both cell development and cell cycle regulation. For over 20 years now, this model organism has contributed to answering fundamental questions concerning the mechanisms that underlie cell cycle transitions--the cellular components that synthesize, modify, repair, and degrade nucleic acids and proteins, the signaling pathways that allow cells to communicate, and the regulatory pathways that lead to selective expression of subsets of genes. In addition, the remarkable simplicity of the Xenopus early cell cycle allows for tractable manipulation and dissection of the basic components driving each transition. In this organism, early cell divisions are characterized by rapid cycles alternating phases of DNA synthesis and division. The post-blastula stages incorporate gap phases, lengthening progression, and allowing more time for DNA repair. Various cyclin/Cdk complexes are differentially expressed during the early cycles with orderly progression being driven by both the combined action of cyclin synthesis and degradation and the appropriate selection of specific substrates by their Cdk components. Like other multicellular organisms, chief developmental events in early Xenopus embryogenesis coincide with profound remodeling of the cell cycle, suggesting that cell proliferation and differentiation events are linked and coordinated through crosstalk mechanisms acting on signaling pathways involving the expression of cell cycle control genes.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
13
|
McLean JR, Chaix D, Ohi MD, Gould KL. State of the APC/C: organization, function, and structure. Crit Rev Biochem Mol Biol 2011; 46:118-36. [PMID: 21261459 DOI: 10.3109/10409238.2010.541420] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ubiquitin-proteasome protein degradation system is involved in many essential cellular processes including cell cycle regulation, cell differentiation, and the unfolded protein response. The anaphase-promoting complex/cyclosome (APC/C), an evolutionarily conserved E3 ubiquitin ligase, was discovered 15 years ago because of its pivotal role in cyclin degradation and mitotic progression. Since then, we have learned that the APC/C is a very large, complex E3 ligase composed of 13 subunits, yielding a molecular machine of approximately 1 MDa. The intricate regulation of the APC/C is mediated by the Cdc20 family of activators, pseudosubstrate inhibitors, protein kinases and phosphatases and the spindle assembly checkpoint. The large size, complexity, and dynamic nature of the APC/C represent significant obstacles toward high-resolution structural techniques; however, over the last decade, there have been a number of lower resolution APC/C structures determined using single particle electron microscopy. These structures, when combined with data generated from numerous genetic and biochemical studies, have begun to shed light on how APC/C activity is regulated. Here, we discuss the most recent developments in the APC/C field concerning structure, substrate recognition, and catalysis.
Collapse
Affiliation(s)
- Janel R McLean
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
14
|
Ohe M, Kawamura Y, Ueno H, Inoue D, Kanemori Y, Senoo C, Isoda M, Nakajo N, Sagata N. Emi2 inhibition of the anaphase-promoting complex/cyclosome absolutely requires Emi2 binding via the C-terminal RL tail. Mol Biol Cell 2010; 21:905-13. [PMID: 20089832 PMCID: PMC2836971 DOI: 10.1091/mbc.e09-11-0974] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Emi2 (also called Erp1) inhibits the anaphase-promoting complex/cyclosome (APC/C) and thereby causes metaphase II arrest in unfertilized vertebrate eggs. Both the D-box and the zinc-binding region (ZBR) of Emi2 have been implicated in APC/C inhibition. However, it is not well known how Emi2 interacts with and hence inhibits the APC/C. Here we show that Emi2 binds the APC/C via the C-terminal tail, termed here the RL tail. When expressed in Xenopus oocytes and egg extracts, Emi2 lacking the RL tail fails to interact with and inhibit the APC/C. The RL tail itself can directly bind to the APC/C, and, when added to egg extracts, either an excess of RL tail peptides or anti-RL tail peptide antibody can dissociate endogenous Emi2 from the APC/C, thus allowing APC/C activation. Furthermore, and importantly, the RL tail-mediated binding apparently promotes the inhibitory interactions of the D-box and the ZBR (of Emi2) with the APC/C. Finally, Emi1, a somatic paralog of Emi2, also has a functionally similar RL tail. We propose that the RL tail of Emi1/Emi2 serves as a docking site for the APC/C, thereby promoting the interaction and inhibition of the APC/C by the D-box and the ZBR.
Collapse
Affiliation(s)
- Munemichi Ohe
- Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tategu M, Nakagawa H, Sasaki K, Yamauchi R, Sekimachi S, Suita Y, Watanabe N, Yoshid K. Transcriptional regulation of human polo-like kinases and early mitotic inhibitor. J Genet Genomics 2009; 35:215-24. [PMID: 18439978 DOI: 10.1016/s1673-8527(08)60030-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/08/2008] [Accepted: 01/09/2008] [Indexed: 10/22/2022]
Abstract
Human polo-like kinases (PLK1-PLK4) have been implicated in mitotic regulation and carcinogenesis. PLK1 phosphorylates early mitotic inhibitor 1 (Emi1) to ensure mitosis entry, whereas Emi2 plays a key role during the meiotic cell cycle. Transcription factor E2F is primarily considered to regulate the G(1)/S transition of the cell cycle but its involvement in the regulation of mitosis has also been recently suggested. A gap still exists between the molecular basis of E2F and mitotic regulation. The present study was designed to characterize the transcriptional regulation of human PLK and Emi genes. Adenoviral overexpression of E2F1 increased PLK1 and PLK3 mRNA levels in A549 cells. A reporter gene assay revealed that the putative promoter regions of PLK1, PLK3, and PLK4 genes were responsive to activators E2F, E2F1-E2F3. We further characterized the putative promoter regions of Emi1 and Emi2 genes, and these could be regulated by activators E2F and E2F1-E2F4, respectively. Finally, PLK1-PLK4, Emi1, and Emi2 mRNA expression levels in human adult, fetal tissues, and several cell lines indicated that each gene has a unique expression pattern but is uniquely expressed in common tissues and cells such as the testes and thymus. Collectively, these results indicate that E2F can integrate G(1)/S and G(2)/M to oscillate the cell cycle by regulating mitotic genes PLK and Emi, leading to determination of the cell fate.
Collapse
Affiliation(s)
- Moe Tategu
- Department of Life Sciences, Meiji University School of Agriculture, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wu JQ, Kornbluth S. Across the meiotic divide - CSF activity in the post-Emi2/XErp1 era. J Cell Sci 2009; 121:3509-14. [PMID: 18946022 DOI: 10.1242/jcs.036855] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Vertebrate eggs are arrested at the metaphase stage of meiosis II. Only upon fertilization will the metaphase-II-arrested eggs exit meiosis II and enter interphase. In 1971, Masui and Markert injected egg extracts into a two-cell-stage embryo and found that the injected blastomere arrested at the next mitosis. On the basis of these observations, they proposed the existence of an activity present in the eggs that is responsible for meiosis-II arrest and can induce mitotic arrest, and named this activity cytostatic factor (CSF). Although the existence of CSF was hypothesized more than 35 years ago, its precise identity remained unclear until recently. The discovery of the Mos-MAPK pathway and characterization of the anaphase-promoting complex/cyclosome (APC/C) as a central regulator of M-phase exit provided the framework for a molecular understanding of CSF. These pathways have now been linked by the discovery and characterization of the protein Emi2, a meiotic APC/C inhibitor, the activity and stability of which are controlled by the Mos-MAPK pathway. Continued investigation into the mechanism of action and mode of regulation of Emi2 promises to shed light not only on CSF function, but also on the general principles of APC/C regulation and the control of protein function by MAPK pathways.
Collapse
Affiliation(s)
- Judy Qiju Wu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
17
|
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit E3 ubiquitin ligase that triggers the degradation of multiple substrates during mitosis. Cdc20/Fizzy and Cdh1/Fizzy-related activate the APC/C and confer substrate specificity through complex interactions with both the core APC/C and substrate proteins. The regulation of Cdc20 and Cdh1 is critical for proper APC/C activity and occurs in multiple ways: targeted protein degradation, phosphorylation, and direct binding of inhibitory proteins. During the specialized divisions of meiosis, the activity of the APC/C must be modified to achieve proper chromosome segregation. Recent studies show that one way in which APC/C activity is modified is through the use of meiosis-specific APC/C activators. Furthermore, regulation of the APC/C during meiosis is carried out by both mitotic regulators of the APC/C as well as meiosis-specific regulators. Here, we review the regulation of APC/C activators during mitosis and the role and regulation of the APC/C during female meiosis.
Collapse
Affiliation(s)
- Jillian A Pesin
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
18
|
Russo GL, Bilotto S, Ciarcia G, Tosti E. Phylogenetic conservation of cytostatic factor related genes in the ascidian Ciona intestinalis. Gene 2008; 429:104-11. [PMID: 18977421 DOI: 10.1016/j.gene.2008.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
Abstract
In all vertebrates, mature oocytes arrest at the metaphase of the II meiotic division, while some invertebrates arrest at metaphase-I, others at prophase-I. Fertilization induces completion of meiosis and entry into the first mitotic division. Several experimental models have been considered from both vertebrates and invertebrates in order to shed light on the peculiar aspects of meiotic division, such as the regulation of the cytostatic factor (CSF) and the maturation promoting factor (MPF) in metaphase I or II. Recently, we proposed the oocytes of ascidian Ciona intestinalis as a new model to study the meiotic division. Here, taking advantage of the recent publication of the C. intestinalis genome, we presented a phylogenetic analysis of key molecular components of the CSF-related machinery. We showed that the Mos/MAP kinase pathway is perfectly conserved in ascidians. We demonstrated the presence of a CSF-like activity in metaphase-I arrested C. intestinalis oocytes able to block cell division in two-cell embryos. We further investigated the regulation of CSF by demonstrating that both CSF and MPF inactivation, at the exit of metaphase-I, are independent from protein synthesis, indicating the absence of short-lived factors that regulate metaphase stability, as in other invertebrate species. The results obtained suggest that meiotic regulation in C. intestinalis resembles that of vertebrates, such as Xenopus accordingly to the position of this organism in the evolutionary tree.
Collapse
|
19
|
Nishiyama T, Ohsumi K, Kishimoto T. Phosphorylation of Erp1 by p90rsk is required for cytostatic factor arrest in Xenopus laevis eggs. Nature 2007; 446:1096-9. [PMID: 17410129 DOI: 10.1038/nature05696] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 02/19/2007] [Indexed: 11/08/2022]
Abstract
Until fertilization, the meiotic cell cycle of vertebrate eggs is arrested at metaphase of meiosis II by a cytoplasmic activity termed cytostatic factor (CSF), which causes inhibition of the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets mitotic cyclins-regulatory proteins of meiosis and mitosis-for degradation. Recent studies indicate that Erp1/Emi2, an inhibitor protein for the APC/C, has an essential role in establishing and maintaining CSF arrest, but its relationship to Mos, a mitogen-activated protein kinase (MAPK) kinase kinase that also has an essential role in establishing CSF arrest through activation of p90 ribosomal S6 kinase (p90rsk), is unclear. Here we report that in Xenopus eggs Erp1 is a substrate of p90rsk, and that Mos-dependent phosphorylation of Erp1 by p90rsk at Thr 336, Ser 342 and Ser 344 is crucial for both stabilizing Erp1 and establishing CSF arrest in meiosis II oocytes. Semi-quantitative analysis with CSF-arrested egg extracts reveals that the Mos-dependent phosphorylation of Erp1 enhances, but does not generate, the activity of Erp1 that maintains metaphase arrest. Our results also suggest that Erp1 inhibits cyclin B degradation by binding the APC/C at its carboxy-terminal destruction box, and this binding is also enhanced by the Mos-dependent phosphorylation. Thus, Mos and Erp1 collaboratively establish and maintain metaphase II arrest in Xenopus eggs. The link between Mos and Erp1 provides a molecular explanation for the integral mechanism of CSF arrest in unfertilized vertebrate eggs.
Collapse
Affiliation(s)
- Tomoko Nishiyama
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
20
|
Liu J, Grimison B, Maller JL. New insight into metaphase arrest by cytostatic factor: from establishment to release. Oncogene 2007; 26:1286-9. [PMID: 17322913 DOI: 10.1038/sj.onc.1210203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the discovery of cytostatic factor (CSF) 35 years ago, significant progress has been made in identifying molecular components of CSF activity and the mechanism of CSF-induced metaphase II arrest (CSF arrest). This short review focuses on recent discoveries in the field and discusses the implication of these results for a general picture of CSF establishment and release. One recent focus is on the cyclin E/Cdk2 pathway. The discovery of a downstream target for cyclin E/Cdk2, the spindle checkpoint protein Mps1, provides insight into how cyclin E/Cdk2 contributes to CSF arrest. The anaphase promoting complex/cyclosome (APC/C) inhibitor Emi2 is another recent focus of work in the field. It is now clear that not only is degradation of Emi2 critical for CSF release, but its abrupt accumulation during meiosis II (M II) is also required for the establishment of CSF arrest. Thus, by discrete pathways of APC/C inhibition operative during CSF arrest, the stability of cell cycle arrest in the egg appears to be reinforced by multiple mechanisms.
Collapse
Affiliation(s)
- J Liu
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, 12801 E. 17th Avenue, Aurora, CO 80045, USA
| | | | | |
Collapse
|
21
|
Wu Q, Guo Y, Yamada A, Perry JA, Wang MZ, Araki M, Freel CD, Tung JJ, Tang W, Margolis SS, Jackson PK, Yamano H, Asano M, Kornbluth S. A role for Cdc2- and PP2A-mediated regulation of Emi2 in the maintenance of CSF arrest. Curr Biol 2007; 17:213-24. [PMID: 17276914 PMCID: PMC2790409 DOI: 10.1016/j.cub.2006.12.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 12/11/2006] [Accepted: 12/17/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND Vertebrate oocytes are arrested in metaphase II of meiosis prior to fertilization by cytostatic factor (CSF). CSF enforces a cell-cycle arrest by inhibiting the anaphase-promoting complex (APC), an E3 ubiquitin ligase that targets Cyclin B for degradation. Although Cyclin B synthesis is ongoing during CSF arrest, constant Cyclin B levels are maintained. To achieve this, oocytes allow continuous slow Cyclin B degradation, without eliminating the bulk of Cyclin B, which would induce release from CSF arrest. However, the mechanism that controls this continuous degradation is not understood. RESULTS We report here the molecular details of a negative feedback loop wherein Cyclin B promotes its own destruction through Cdc2/Cyclin B-mediated phosphorylation and inhibition of the APC inhibitor Emi2. Emi2 bound to the core APC, and this binding was disrupted by Cdc2/Cyclin B, without affecting Emi2 protein stability. Cdc2-mediated phosphorylation of Emi2 was antagonized by PP2A, which could bind to Emi2 and promote Emi2-APC interactions. CONCLUSIONS Constant Cyclin B levels are maintained during a CSF arrest through the regulation of Emi2 activity. A balance between Cdc2 and PP2A controls Emi2 phosphorylation, which in turn controls the ability of Emi2 to bind to and inhibit the APC. This balance allows proper maintenance of Cyclin B levels and Cdc2 kinase activity during CSF arrest.
Collapse
Affiliation(s)
- Qiju Wu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yanxiang Guo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ayumi Yamada
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jennifer A. Perry
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael Z. Wang
- School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marito Araki
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christopher D. Freel
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey J. Tung
- Tumor Biology & Angiogenesis Department, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wanli Tang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Seth S. Margolis
- Division of Neuroscience, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Peter K. Jackson
- Tumor Biology & Angiogenesis Department, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hiroyuki Yamano
- Marie Curie Research Institute, The Chart, Oxted, Surrey, RH8 0TL, UK
| | - Maki Asano
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Sally Kornbluth
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
22
|
Madgwick S, Jones KT. How eggs arrest at metaphase II: MPF stabilisation plus APC/C inhibition equals Cytostatic Factor. Cell Div 2007; 2:4. [PMID: 17257429 PMCID: PMC1794241 DOI: 10.1186/1747-1028-2-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 11/10/2022] Open
Abstract
Oocytes from higher chordates, including man and nearly all mammals, arrest at metaphase of the second meiotic division before fertilization. This arrest is due to an activity that has been termed 'Cytostatic Factor'. Cytostatic Factor maintains arrest through preventing loss in Maturation-Promoting Factor (MPF; CDK1/cyclin B). Physiologically, Cytostatic Factor – induced metaphase arrest is only broken by a Ca2+ rise initiated by the fertilizing sperm and results in degradation of cyclin B, the regulatory subunit of MPF through the Anaphase-Promoting Complex/Cyclosome (APC/C). Arrest at metaphase II may therefore be viewed as being maintained by inhibition of the APC/C, and Cytostatic Factor as being one or more pathways, one of which inhibits the APC/C, consorting in the preservation of MPF activity. Many studies over several years have implicated the c-Mos/MEK/MAPK pathway in the metaphase arrest of the two most widely studied vertebrates, frog and mouse. Murine downstream components of this cascade are not known but in frog involve members of the spindle assembly checkpoint, which act to inhibit the APC/C. Interesting these downstream components appear not to be involved in the arrest of mouse eggs, suggesting a lack of conservation with respect to c-Mos targets. However, the recent discovery of Emi2 as an egg specific APC/C inhibitor whose degradation is Ca2+ dependent has greatly increased our understanding of MetII arrest. Emi2 is involved in both the establishment and maintenance of metaphase II arrest in frog and mouse suggesting a conservation of metaphase II arrest. Its identity as the physiologically relevant APC/C inhibitor involved in Cytostatic Factor arrest prompted us to re-evaluate the role of the c-Mos pathway in metaphase II arrest. This review presents a model of Cytostatic Factor arrest, which is primarily induced by Emi2 mediated APC/C inhibition but which also requires the c-Mos pathway to set MPF levels within physiological limits, not too high to induce an arrest that cannot be broken, or too low to induce parthenogenesis.
Collapse
Affiliation(s)
- Suzanne Madgwick
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, England, UK
| | - Keith T Jones
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, England, UK
| |
Collapse
|
23
|
Marangos P, Verschuren EW, Chen R, Jackson PK, Carroll J. Prophase I arrest and progression to metaphase I in mouse oocytes are controlled by Emi1-dependent regulation of APC(Cdh1). J Cell Biol 2007; 176:65-75. [PMID: 17190794 PMCID: PMC2063628 DOI: 10.1083/jcb.200607070] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 11/30/2006] [Indexed: 11/25/2022] Open
Abstract
Mammalian oocytes are arrested in prophase of the first meiotic division. Progression into the first meiotic division is driven by an increase in the activity of maturation-promoting factor (MPF). In mouse oocytes, we find that early mitotic inhibitor 1 (Emi1), an inhibitor of the anaphase-promoting complex (APC) that is responsible for cyclin B destruction and inactivation of MPF, is present at prophase I and undergoes Skp1-Cul1-F-box/betaTrCP-mediated destruction immediately after germinal vesicle breakdown (GVBD). Exogenous Emi1 or the inhibition of Emi1 destruction in prophase-arrested oocytes leads to a stabilization of cyclin B1-GFP that is sufficient to trigger GVBD. In contrast, the depletion of Emi1 using morpholino oligonucleotides increases cyclin B1-GFP destruction, resulting in an attenuation of MPF activation and a delay of entry into the first meiotic division. Finally, we show that Emi1-dependent effects on meiosis I require the presence of Cdh1. These observations reveal a novel mechanism for the control of entry into the first meiotic division: an Emi1-dependent inhibition of APC(Cdh1).
Collapse
Affiliation(s)
- Petros Marangos
- Department of Physiology, University College London, London WC1E 6BT, England, UK.
| | | | | | | | | |
Collapse
|
24
|
Liu J, Grimison B, Lewellyn AL, Maller JL. The anaphase-promoting complex/cyclosome inhibitor Emi2 is essential for meiotic but not mitotic cell cycles. J Biol Chem 2006; 281:34736-41. [PMID: 16982610 DOI: 10.1074/jbc.m606607200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrate oocytes awaiting fertilization are arrested at metaphase of meiosis II by cytostatic factor (CSF). This arrest is due to inhibition of the anaphase-promoting complex/cyclosome, in part by a newly identified protein, Emi2 (xErp1). Emi2 is required for maintenance of CSF arrest in egg extracts, but its function in CSF establishment in oocytes and the normal embryonic cell cycle is unknown. Here we show that during oocyte maturation, Emi2 appears only after metaphase I, and its level peaks at CSF arrest (metaphase II). In M phase, Emi2 undergoes a phosphorylation-dependent electrophoretic shift. Microinjection of antisense oligonucleotides against Emi2 into stage VI oocytes blocks progression through meiosis II and the establishment of CSF arrest. Recombinant Emi2 rescues CSF arrest in these oocytes and also causes CSF arrest in egg extracts and in blastomeres of two-cell embryos. Fertilization triggers rapid, complete degradation of Emi2, but it is resynthesized in the first embryonic cell cycle to reach levels 5-fold lower than during CSF arrest. However, depletion of the protein from cycling egg extracts does not prevent mitotic cell cycle progression. Thus, Emi2 plays an essential role in meiotic but not mitotic cell cycles.
Collapse
Affiliation(s)
- Junjun Liu
- Howard Hughes Medical Institute (HHMI) and Department of Pharmacology, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
25
|
Peters JM. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 2006; 7:644-56. [PMID: 16896351 DOI: 10.1038/nrm1988] [Citation(s) in RCA: 1013] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C) is a ubiquitin ligase that has essential functions in and outside the eukaryotic cell cycle. It is the most complex molecular machine that is known to catalyse ubiquitylation reactions, and it contains more than a dozen subunits that assemble into a large 1.5-MDa complex. Recent discoveries have revealed an unexpected multitude of mechanisms that control APC/C activity, and have provided a first insight into how this unusual ubiquitin ligase recognizes its substrates.
Collapse
Affiliation(s)
- Jan-Michael Peters
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.
| |
Collapse
|
26
|
Reis A, Levasseur M, Chang HY, Elliott DJ, Jones KT. The CRY box: a second APCcdh1-dependent degron in mammalian cdc20. EMBO Rep 2006; 7:1040-5. [PMID: 16878123 PMCID: PMC1618383 DOI: 10.1038/sj.embor.7400772] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/28/2006] [Accepted: 07/06/2006] [Indexed: 11/09/2022] Open
Abstract
Cdc20 and cdh1 are coactivators of the anaphase-promoting complex (APC). APC(cdc20) is necessary for the metaphase-anaphase transition and, at the end of mitosis, vertebrate cdc20 itself becomes a target for degradation through KEN-box-dependent APC(cdh1) activity. By studying the degradation of fluorescent protein chimaeras in mammalian oocytes and early embryos, we found that cdc20 was degraded through two independent degradation signals (degrons), the KEN box and a newly described CRY box. In both oocytes and G1-stage embryos, the rate of degradation through the CRY box was greater than through the KEN box, although both were mediated by APC(cdh1). Thus, mammalian oocytes and embryos have the capacity to recognize two degrons in cdc20.
Collapse
Affiliation(s)
- Alexandra Reis
- Institute for Cell and Molecular Biosciences, The Medical School, Framlington Place, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE2 4HH, UK
| | - Mark Levasseur
- Institute for Cell and Molecular Biosciences, The Medical School, Framlington Place, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE2 4HH, UK
| | - Heng-Yu Chang
- Institute for Cell and Molecular Biosciences, The Medical School, Framlington Place, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE2 4HH, UK
| | - David J Elliott
- Institute of Human Genetics, International Centre for Life, University of Newcastle-upon-Tyne, Central Parkway, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Keith T Jones
- Institute for Cell and Molecular Biosciences, The Medical School, Framlington Place, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE2 4HH, UK
- Tel: +44 191 222 6963; Fax: +44 191 222 7424; E-mail:
| |
Collapse
|
27
|
Schmidt A, Rauh NR, Nigg EA, Mayer TU. Cytostatic factor: an activity that puts the cell cycle on hold. J Cell Sci 2006; 119:1213-8. [PMID: 16554437 DOI: 10.1242/jcs.02919] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fertilization is the fundamental process in which two gametes - sperm and oocyte - fuse to generate a zygote that will form a new multicellular organism. In most vertebrates, oocytes await fertilization while arrested at metaphase of meiosis II. This resting state can be stable for many hours and depends on a cytoplasmic activity termed cytostatic factor (CSF). Recently, members of the novel Emi/Erp family of proteins have been put forward as important components of CSF. These proteins inhibit the anaphase-promoting complex/cyclosome (APC/C), which acts at the very core of the cell cycle regulatory machinery. Initially, Xenopus early mitotic inhibitor 1 (Emi1) was proposed to be a component of CSF, but newer work suggests that a structural relative, Emi-related protein 1 (Erp1/Emi2), is essential for maintenance of CSF arrest in Xenopus. Most importantly, studies on Erp1/Emi2 regulation have led to a detailed molecular understanding of the Ca2+-mediated release from CSF arrest that occurs upon fertilization.
Collapse
Affiliation(s)
- Andreas Schmidt
- Chemical Genetics, Independent Research Group, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
28
|
Chesnel F, Vignaux F, Richard-Parpaillon L, Huguet A, Kubiak JZ. Differences in regulation of the first two M-phases in Xenopus laevis embryo cell-free extracts. Dev Biol 2006; 285:358-75. [PMID: 16087172 DOI: 10.1016/j.ydbio.2005.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 06/21/2005] [Accepted: 06/23/2005] [Indexed: 11/28/2022]
Abstract
The first embryonic M-phase is special, being the time when paternal and maternal chromosomes mix together for the first time. Reports from a variety of species suggest that the regulation of first M-phase has many particularities; however, no systematic comparative study of the biochemical aspects of first and the following M-phases has been previously undertaken. Here, we ask whether the regulation of the first embryonic M-phase is modified, using Xenopus cell-free extracts. We developed new types of extract specific for the first and the second M-phase obtained either from parthenogenetic or from in vitro fertilized embryos. Analyses of these extracts confirmed that the amplitude of histone H1 kinase activity reflecting CDK1/cyclin B (or MPF for M-phase Promoting Factor) activity is higher and persists longer than during the second M-phase, and that levels of cyclins B1 and B2 are correspondingly higher during the first than the second embryonic M-phase. Inhibition of protein synthesis shortly before M-phase entry reduced mitotic histone H1 kinase amplitude, shortened the period of mitotic phosphorylation of chosen marker proteins, and reduced cyclin B1 and B2 levels, suggesting a role of B-type cyclins in regulating the duration of mitotic events. Moreover, addition of exogenous cyclin B to the extract prior the second mitosis brought forward the activation of mitotic histone H1 kinase but prolonged the duration of this activity. We also confirmed that the inhibitory phosphorylation of CDK1 on tyrosine 15 oscillates between the first two embryonic M-phases, but is clearly more pronounced before the first than the second mitosis, while the MAP kinase ERK2 tended to show greater activation during the first embryonic M-phase but with a similar duration of activation. We conclude that discrete differences exist between the first two M-phases in Xenopus embryo and that higher CDK1/cyclin B activity and B-type cyclin levels could account for the different characteristics of these M-phases.
Collapse
Affiliation(s)
- Franck Chesnel
- UMR 6061 CNRS, Biology and Genetics of Development, Mitosis and Meiosis Group, IFR140 GFAS, University of Rennes 1, Faculty of Medicine, 2 Ave. Prof. Léon Bernard, CS 34317, 35043 Rennes cedex, France
| | | | | | | | | |
Collapse
|
29
|
Castro A, Lorca T. Exploring meiotic division in Cargèse. Meeting on meiotic divisions and checkpoints. EMBO Rep 2006; 6:821-5. [PMID: 16113644 PMCID: PMC1369168 DOI: 10.1038/sj.embor.7400504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 07/12/2005] [Indexed: 11/09/2022] Open
Affiliation(s)
- Anna Castro
- Centre de Recherche de Biochimie Macromoléculaire, CNRS FRE 2593, 1919 Route de Mende, 34293 Montpellier cedex 5, France.
| | | |
Collapse
|
30
|
Liu J, Maller JL. Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor. Curr Biol 2006; 15:1458-68. [PMID: 16040245 DOI: 10.1016/j.cub.2005.07.030] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 06/30/2005] [Accepted: 07/08/2005] [Indexed: 11/29/2022]
Abstract
BACKGROUND Vertebrate oocytes are arrested at second meiotic metaphase by cytostatic factor (CSF) while awaiting fertilization. Accumulating evidence has suggested that inhibition of the anaphase-promoting complex/cyclosome (APC/C) is responsible for this arrest. Xenopus polo-like kinase 1 (Plx1) is required for activation of the APC/C at the metaphase-anaphase transition, and calcium elevation, upon fertilization/activation of eggs, acting through calmodulin-dependent kinase II (CaMKII) is sufficient to activate the APC/C and terminate CSF arrest. However, connections between the Plx1 pathway and the CaMKII pathway have not been identified. RESULTS Overexpression of Plx1 causes CSF release in the absence of calcium, and depletion of Plx1 from egg extracts blocks induction of CSF release by calcium and CaMKII. Prior phosphorylation of the APC/C inhibitor XErp1/Emi2 by CaMK II renders it a good substrate for Plx1, and phosphorylation by both kinases together promotes its degradation in egg extracts. The pathway is enhanced by the ability of Plx1 to cause calcium-independent activation of CaMKII. The results identify the targets of CaMKII and Plx1 that promote egg activation and define the first known pathway of CSF release in which an APC/C inhibitor is targeted for degradation only when both CaMKII and Plx1 are active after calcium elevation at fertilization. CONCLUSIONS Plx1 with an intact polo-box domain is necessary for release of CSF arrest and sufficient when overexpressed. It acts at the same level as CaMKII in the pathway of calcium-induced CSF release by cooperating with CaMKII to regulate APC/C regulator(s), such as XErp1/Emi2, rather than by directly activating the APC/C itself.
Collapse
Affiliation(s)
- Junjun Liu
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | |
Collapse
|
31
|
Shoji S, Yoshida N, Amanai M, Ohgishi M, Fukui T, Fujimoto S, Nakano Y, Kajikawa E, Perry ACF. Mammalian Emi2 mediates cytostatic arrest and transduces the signal for meiotic exit via Cdc20. EMBO J 2006; 25:834-45. [PMID: 16456547 PMCID: PMC1383546 DOI: 10.1038/sj.emboj.7600953] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 12/08/2005] [Indexed: 11/08/2022] Open
Abstract
Fertilizable mammalian oocytes are arrested at the second meiotic metaphase (mII) by the cyclinB-Cdc2 heterodimer, maturation promoting factor (MPF). MPF is stabilized via the activity of an unidentified cytostatic factor (CSF), thereby suspending meiotic progression until fertilization. We here present evidence that a conserved 71 kDa mammalian orthologue of Xenopus XErp1/Emi2, which we term endogenous meiotic inhibitor 2 (Emi2) is an essential CSF component. Depletion in situ of Emi2 by RNA interference elicited precocious meiotic exit in maturing mouse oocytes. Reduction of Emi2 released mature mII oocytes from cytostatic arrest, frequently inducing cytodegeneration. Mos levels autonomously declined to undetectable levels in mII oocytes. Recombinant Emi2 reduced the propensity of mII oocytes to exit meiosis in response to activating stimuli. Emi2 and Cdc20 proteins mutually interact and Cdc20 ablation negated the ability of Emi2 removal to induce metaphase release. Consistent with this, Cdc20 removal prevented parthenogenetic or sperm-induced meiotic exit. These studies show in intact oocytes that the interaction of Emi2 with Cdc20 links activating stimuli to meiotic resumption at fertilization and during parthenogenesis in mammals.
Collapse
Affiliation(s)
- Shisako Shoji
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Naoko Yoshida
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Manami Amanai
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Maki Ohgishi
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Tomoyuki Fukui
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Satoko Fujimoto
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Yoshikazu Nakano
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Eriko Kajikawa
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Anthony C F Perry
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan. Tel.: +81 78 306 3054; Fax: +81 78 306 3144; E-mail:
| |
Collapse
|
32
|
Hansen DV, Tung JJ, Jackson PK. CaMKII and polo-like kinase 1 sequentially phosphorylate the cytostatic factor Emi2/XErp1 to trigger its destruction and meiotic exit. Proc Natl Acad Sci U S A 2006; 103:608-13. [PMID: 16407128 PMCID: PMC1325965 DOI: 10.1073/pnas.0509549102] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In vertebrate meiosis, unfertilized eggs are arrested in metaphase II by cytostatic factor (CSF), which is required to maintain mitotic cyclin-dependent kinase activity. Fertilization triggers a transient increase in cytosolic free Ca(2+), which leads to CSF inactivation and ubiquitin-dependent cyclin destruction through the anaphase promoting complex or cyclosome (APC/C). The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and the Polo-like kinase Plx1 are essential factors for Ca(2+)-induced meiotic exit, but the critical targets of these kinases were unknown. The APC/C inhibitor Emi2 or XErp1 has recently been characterized as a pivotal CSF component, required to maintain metaphase II arrest and rapidly destroyed in response to Ca(2+) signaling through phosphorylation by Plx1 and ubiquitination by the SCF(betaTrCP) complex. An important question is how the increase in free Ca(2+) targets Plx1 activity toward Emi2. Here, we demonstrate that CaMKII is required for Ca(2+)-induced Emi2 destruction, and that CaMKII functions as a "priming kinase," directly phosphorylating Emi2 at a specific motif to induce a strong interaction with the Polo Box domain of Plx1. We show that the strict requirement for CaMKII to phosphorylate Emi2 is a specific feature of CSF arrest, and we also use phosphatase inhibitors to demonstrate an additional mode of Emi2 inactivation independent of its destruction. We firmly establish the CSF component Emi2 as the first-known critical and direct target of CaMKII in CSF release, providing a detailed molecular mechanism explaining how CaMKII and Plx1 coordinately direct APC/C activation and meiotic exit upon fertilization.
Collapse
Affiliation(s)
- David V Hansen
- Program in Cancer Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
33
|
Abstract
Mammalian eggs arrest at metaphase of the second meiotic division (MetII). Sperm break this arrest by inducing a series of Ca2+spikes that last for several hours. During this time cell cycle resumption is induced, sister chromatids undergo anaphase and the second polar body is extruded. This is followed by decondensation of the chromatin and the formation of pronuclei. Ca2+spiking is both the necessary and solely sufficient sperm signal to induce full egg activation. How MetII arrest is established, how the Ca2+spiking is induced and how the signal is transduced into cell cycle resumption are the topics of this review. Although the roles of most components of the signal transduction pathway remain to be fully investigated, here I present a model in which a sperm-specific phospholipase C (PLCζ) generates Ca2+spikes to activate calmodulin-dependent protein kinase II and so switch on the Anaphase-Promoting Complex/Cyclosome (APC/C). APC/C activation leads to securin and cyclin B1 degradation and in so doing allows sister chromatids to be segregated and to decondense.
Collapse
Affiliation(s)
- Keith T Jones
- Institute for Cell and Molecular Biosciences, The Medical School, Framlington Place, University of Newcastle, Newcastle, NE2 4HH, UK.
| |
Collapse
|
34
|
|
35
|
Rauh NR, Schmidt A, Bormann J, Nigg EA, Mayer TU. Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 2005; 437:1048-52. [PMID: 16127448 DOI: 10.1038/nature04093] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 08/05/2005] [Indexed: 11/10/2022]
Abstract
Vertebrate eggs awaiting fertilization are arrested at metaphase of meiosis II by a biochemical activity termed cytostatic factor (CSF). This activity inhibits the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that triggers anaphase onset and mitotic/meiotic exit by targeting securin and M-phase cyclins for destruction. On fertilization a transient rise in free intracellular calcium causes release from CSF arrest and thus APC/C activation. Although it has previously been shown that calcium induces the release of APC/C from CSF inhibition through calmodulin-dependent protein kinase II (CaMKII), the relevant substrates of this kinase have not been identified. Recently, we characterized XErp1 (Emi2), an inhibitor of the APC/C and key component of CSF activity in Xenopus egg extract. Here we show that calcium-activated CaMKII triggers exit from meiosis II by sensitizing the APC/C inhibitor XErp1 for polo-like kinase 1 (Plx1)-dependent degradation. Phosphorylation of XErp1 by CaMKII leads to the recruitment of Plx1 that in turn triggers the destruction of XErp1 by phosphorylating a site known to serve as a phosphorylation-dependent degradation signal. These results provide a molecular explanation for how the fertilization-induced calcium increase triggers exit from meiosis II.
Collapse
Affiliation(s)
- Nadine R Rauh
- Chemical Biology, Independent Research Group, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
36
|
Yamamoto TM, Iwabuchi M, Ohsumi K, Kishimoto T. APC/C-Cdc20-mediated degradation of cyclin B participates in CSF arrest in unfertilized Xenopus eggs. Dev Biol 2005; 279:345-55. [PMID: 15733663 DOI: 10.1016/j.ydbio.2004.12.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 12/17/2004] [Accepted: 12/17/2004] [Indexed: 12/19/2022]
Abstract
In vertebrates, unfertilized eggs are arrested at meiotic metaphase II (meta-II) by cytostatic factor (CSF), with Cdc2 activity maintained at a constant, high level. CSF is thought to suppress cyclin B degradation through the inhibition of the anaphase-promoting complex/cyclosome (APC/C)-Cdc20 while cyclin B synthesis continues in unfertilized eggs. Thus, it is a mystery how Cdc2 activity is kept constant during CSF arrest. Here, we show that the APC/C-Cdc20 can mediate cyclin B degradation in CSF-arrested Xenopus eggs and extracts, in such a way that when Cdc2 activity is elevated beyond a critical level, APC/C-Cdc20-dependent cyclin B degradation is activated and Cdc2 activity consequently declines to the critical level. This feedback control of Cdc2 activity is shown to be required for keeping Cdc2 activity constant during meta-II arrest. We have also shown that Mos/MAPK pathway is essential for preventing the cyclin B degradation from inactivating Cdc2 below the critical level required to sustain meta-II arrest. Our results indicate that under CSF arrest, Mos/MAPK activity suppresses cyclin B degradation, preventing Cdc2 activity from falling below normal meta-II levels, whereas activation of APC/C-Cdc20-mediated cyclin B degradation at elevated levels of Cdc2 activity prevents Cdc2 activity from reaching excessively high levels.
Collapse
Affiliation(s)
- Tomomi M Yamamoto
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Midoriku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
37
|
Izawa D, Goto M, Yamashita A, Yamano H, Yamamoto M. Fission yeast Mes1p ensures the onset of meiosis II by blocking degradation of cyclin Cdc13p. Nature 2005; 434:529-33. [PMID: 15791259 DOI: 10.1038/nature03406] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 01/27/2005] [Indexed: 11/09/2022]
Abstract
Meiosis is a special form of nuclear division to generate eggs, sperm and spores in eukaryotes. Meiosis consists of the first (MI) and the second (MII) meiotic divisions, which occur consecutively. MI is reductional, in which homologous chromosomes derived from parents segregate. MI is supported by an elaborate mechanism involving meiosis-specific cohesin and its protector. MII is equational, in which replicated sister-chromatids separate as in mitosis. MII is generally considered to mimic mitosis in mechanism. However, fission yeast Mes1p is essential for MII but dispensable for mitosis. The mes1-B44 mutant arrests before MII. Transcription of mes1 is low in vegetative cells and boosted in a narrow window between late MI and late MII. The mes1 mRNA undergoes meiosis-specific splicing. Here we show that Mes1p is a factor that suppresses the degradation of cyclin Cdc13p at anaphase I. Mes1p binds to Slp1p, an activator of APC/C (anaphase promoting complex/cyclosome), and counteracts its function to engage Cdc13p in proteolysis. Inhibition of APC/C-dependent degradation of Cdc13p by Mes1p was reproduced in a Xenopus egg extract. We therefore propose that Mes1p has a key function in saving a sufficient level of MPF (M-phase-promoting factor) activity required for the execution of MII.
Collapse
Affiliation(s)
- Daisuke Izawa
- Department of Biophysics and Biochemistry, Graduate School of Science, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
38
|
Schmidt A, Duncan PI, Rauh NR, Sauer G, Fry AM, Nigg EA, Mayer TU. Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes Dev 2005; 19:502-13. [PMID: 15713843 PMCID: PMC548950 DOI: 10.1101/gad.320705] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metaphase-to-anaphase transition is a fundamental step in cell cycle progression where duplicated sister-chromatids segregate to the future daughter cells. The anaphase-promoting complex/cyclosome (APC/C) is a highly regulated ubiquitin-ligase that triggers anaphase onset and mitotic exit by targeting securin and mitotic cyclins for destruction. It was previously shown that the Xenopus polo-like kinase Plx1 is essential to activate APC/C upon release from cytostatic factor (CSF) arrest in Xenopus egg extract. Although the mechanism by which Plx1 regulates APC/C activation remained unclear, the existence of a putative APC/C inhibitor was postulated whose activity would be neutralized by Plx1 upon CSF release. Here we identify XErp1, a novel Plx1-regulated inhibitor of APC/C activity, and we demonstrate that XErp1 is required to prevent anaphase onset in CSF-arrested Xenopus egg extract. Inactivation of XErp1 leads to premature APC/C activation. Conversely, addition of excess XErp1 to Xenopus egg extract prevents APC/C activation. Plx1 phosphorylates XErp1 in vitro at a site that targets XErp1 for degradation upon CSF release. Thus, our data lead to a model of APC/C activation in Xenopus egg extract in which Plx1 targets the APC/C inhibitor XErp1 for degradation.
Collapse
Affiliation(s)
- Andreas Schmidt
- Chemical Biology, Independent Research Group, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Tung JJ, Hansen DV, Ban KH, Loktev AV, Summers MK, Adler JR, Jackson PK. A role for the anaphase-promoting complex inhibitor Emi2/XErp1, a homolog of early mitotic inhibitor 1, in cytostatic factor arrest of Xenopus eggs. Proc Natl Acad Sci U S A 2005; 102:4318-23. [PMID: 15753281 PMCID: PMC552977 DOI: 10.1073/pnas.0501108102] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unfertilized vertebrate eggs are arrested in metaphase of meiosis II with high cyclin B/Cdc2 activity to prevent parthenogenesis. Until fertilization, exit from metaphase is blocked by an activity called cytostatic factor (CSF), which stabilizes cyclin B by inhibiting the anaphase-promoting complex (APC) ubiquitin ligase. The APC inhibitor early mitotic inhibitor 1 (Emi1) was recently found to be required for maintenance of CSF arrest. We show here that exogenous Emi1 is unstable in CSF-arrested Xenopus eggs and is destroyed by the SCF(betaTrCP) ubiquitin ligase, suggesting that endogenous Emi1, an apparent 44-kDa protein, requires a stabilizing factor. However, anti-Emi1 antibodies crossreact with native Emi2/Erp1/FBXO43, a homolog of Emi1 and conserved APC inhibitor. Emi2 is stable in CSF-arrested eggs, is sufficient to prevent CSF release, and is rapidly degraded in a Polo-like kinase 1-dependent manner in response to calcium-mediated egg activation. These results identify Emi2 as a candidate CSF maintenance protein.
Collapse
Affiliation(s)
- Jeffrey J Tung
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Vertebrate eggs prevent parthenogenetic development by producing cytostatic factor (CSF), which blocks exit from metaphase of meiosis II until fertilization. CSF was never purified but recently suspected to inhibit the anaphase-promoting complex (APC), an ubiquitin ligase required for entry into anaphase. In a recent paper in Genes & Development, Schmidt et al. describe the Xenopus APC inhibitor Erp1, which seems to be the best candidate yet for the downstream effector of CSF activity.
Collapse
Affiliation(s)
- Wolfgang Zachariae
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|