1
|
Tommasini D, Fox R, Ngo KJ, Hinman JD, Fogel BL. Alterations in oligodendrocyte transcriptional networks reveal region-specific vulnerabilities to neurological disease. iScience 2023; 26:106358. [PMID: 36994077 PMCID: PMC10040735 DOI: 10.1016/j.isci.2023.106358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/22/2022] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Neurological disease is characterized the by dysfunction of specific neuroanatomical regions. To determine whether region-specific vulnerabilities have a transcriptional basis at cell-type-specific resolution, we analyzed gene expression in mouse oligodendrocytes across various brain regions. Oligodendrocyte transcriptomes cluster in an anatomical arrangement along the rostrocaudal axis. Moreover, regional oligodendrocyte populations preferentially regulate genes implicated in diseases that target their region of origin. Systems-level analyses identify five region-specific co-expression networks representing distinct molecular pathways in oligodendrocytes. The cortical network exhibits alterations in mouse models of intellectual disability and epilepsy, the cerebellar network in ataxia, and the spinal network in multiple sclerosis. Bioinformatic analyses reveal potential molecular regulators of these networks, which were confirmed to modulate network expression in vitro in human oligodendroglioma cells, including reversal of the disease-associated transcriptional effects of a pathogenic Spinocerebellar ataxia type 1 allele. These findings identify targetable region-specific vulnerabilities to neurological disease mediated by oligodendrocytes.
Collapse
Affiliation(s)
- Dario Tommasini
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachel Fox
- Department of Human Genetics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kathie J. Ngo
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jason D. Hinman
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brent L. Fogel
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Ruskamo S, Raasakka A, Pedersen JS, Martel A, Škubník K, Darwish T, Porcar L, Kursula P. Human myelin proteolipid protein structure and lipid bilayer stacking. Cell Mol Life Sci 2022; 79:419. [PMID: 35829923 PMCID: PMC9279222 DOI: 10.1007/s00018-022-04428-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022]
Abstract
The myelin sheath is an essential, multilayered membrane structure that insulates axons, enabling the rapid transmission of nerve impulses. The tetraspan myelin proteolipid protein (PLP) is the most abundant protein of compact myelin in the central nervous system (CNS). The integral membrane protein PLP adheres myelin membranes together and enhances the compaction of myelin, having a fundamental role in myelin stability and axonal support. PLP is linked to severe CNS neuropathies, including inherited Pelizaeus-Merzbacher disease and spastic paraplegia type 2, as well as multiple sclerosis. Nevertheless, the structure, lipid interaction properties, and membrane organization mechanisms of PLP have remained unidentified. We expressed, purified, and structurally characterized human PLP and its shorter isoform DM20. Synchrotron radiation circular dichroism spectroscopy and small-angle X-ray and neutron scattering revealed a dimeric, α-helical conformation for both PLP and DM20 in detergent complexes, and pinpoint structural variations between the isoforms and their influence on protein function. In phosphatidylcholine membranes, reconstituted PLP and DM20 spontaneously induced formation of multilamellar myelin-like membrane assemblies. Cholesterol and sphingomyelin enhanced the membrane organization but were not crucial for membrane stacking. Electron cryomicroscopy, atomic force microscopy, and X-ray diffraction experiments for membrane-embedded PLP/DM20 illustrated effective membrane stacking and ordered organization of membrane assemblies with a repeat distance in line with CNS myelin. Our results shed light on the 3D structure of myelin PLP and DM20, their structure-function differences, as well as fundamental protein-lipid interplay in CNS compact myelin.
Collapse
Affiliation(s)
- Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Anne Martel
- Institut Laue-Langevin (ILL), Grenoble, France
| | - Karel Škubník
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tamim Darwish
- National Deuteration Facility, The Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW, 2232, Australia
| | | | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
3
|
Chen V, Bruno AE, Britt LL, Hernandez CC, Gimenez LE, Peisley A, Cone RD, Millhauser GL. Membrane orientation and oligomerization of the melanocortin receptor accessory protein 2. J Biol Chem 2020; 295:16370-16379. [PMID: 32943551 DOI: 10.1074/jbc.ra120.015482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
The melanocortin receptor accessory protein 2 (MRAP2) plays a pivotal role in the regulation of several G protein-coupled receptors that are essential for energy balance and food intake. MRAP2 loss-of-function results in obesity in mammals. MRAP2 and its homolog MRAP1 have an unusual membrane topology and are the only known eukaryotic proteins that thread into the membrane in both orientations. In this study, we demonstrate that the conserved polybasic motif that dictates the membrane topology and dimerization of MRAP1 does not control the membrane orientation and dimerization of MRAP2. We also show that MRAP2 dimerizes through its transmembrane domain and can form higher-order oligomers that arrange MRAP2 monomers in a parallel orientation. Investigating the molecular details of MRAP2 structure is essential for understanding the mechanism by which it regulates G protein-coupled receptors and will aid in elucidating the pathways involved in metabolic dysfunction.
Collapse
Affiliation(s)
- Valerie Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| | - Antonio E Bruno
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| | - Laura L Britt
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| | - Ciria C Hernandez
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Luis E Gimenez
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alys Peisley
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger D Cone
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA.
| |
Collapse
|
4
|
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev 2019; 99:1381-1431. [PMID: 31066630 DOI: 10.1152/physrev.00031.2018] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.
Collapse
Affiliation(s)
- Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Sebastian Timmler
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Mikael Simons
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| |
Collapse
|
5
|
Kuenze G, Duran AM, Woods H, Brewer KR, McDonald EF, Vanoye CG, George AL, Sanders CR, Meiler J. Upgraded molecular models of the human KCNQ1 potassium channel. PLoS One 2019; 14:e0220415. [PMID: 31518351 PMCID: PMC6743773 DOI: 10.1371/journal.pone.0220415] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022] Open
Abstract
The voltage-gated potassium channel KCNQ1 (KV7.1) assembles with the KCNE1 accessory protein to generate the slow delayed rectifier current, IKS, which is critical for membrane repolarization as part of the cardiac action potential. Loss-of-function (LOF) mutations in KCNQ1 are the most common cause of congenital long QT syndrome (LQTS), type 1 LQTS, an inherited genetic predisposition to cardiac arrhythmia and sudden cardiac death. A detailed structural understanding of KCNQ1 is needed to elucidate the molecular basis for KCNQ1 LOF in disease and to enable structure-guided design of new anti-arrhythmic drugs. In this work, advanced structural models of human KCNQ1 in the resting/closed and activated/open states were developed by Rosetta homology modeling guided by newly available experimentally-based templates: X. leavis KCNQ1 and various resting voltage sensor structures. Using molecular dynamics (MD) simulations, the capacity of the models to describe experimentally established channel properties including state-dependent voltage sensor gating charge interactions and pore conformations, PIP2 binding sites, and voltage sensor–pore domain interactions were validated. Rosetta energy calculations were applied to assess the utility of each model in interpreting mutation-evoked KCNQ1 dysfunction by predicting the change in protein thermodynamic stability for 50 experimentally characterized KCNQ1 variants with mutations located in the voltage-sensing domain. Energetic destabilization was successfully predicted for folding-defective KCNQ1 LOF mutants whereas wild type-like mutants exhibited no significant energetic frustrations, which supports growing evidence that mutation-induced protein destabilization is an especially common cause of KCNQ1 dysfunction. The new KCNQ1 Rosetta models provide helpful tools in the study of the structural basis for KCNQ1 function and can be used to generate hypotheses to explain KCNQ1 dysfunction.
Collapse
Affiliation(s)
- Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Amanda M. Duran
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Hope Woods
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kathryn R. Brewer
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Eli Fritz McDonald
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Charles R. Sanders
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
6
|
Drug screening for Pelizaeus-Merzbacher disease by quantifying the total levels and membrane localization of PLP1. Mol Genet Metab Rep 2019; 20:100474. [PMID: 31110947 PMCID: PMC6510973 DOI: 10.1016/j.ymgmr.2019.100474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/28/2019] [Indexed: 01/01/2023] Open
Abstract
Background Pelizaeus-Merzbacher disease (PMD) is caused by point mutations or copy number changes in the proteolipid protein 1 gene (PLP1). PLP1 is exclusively localized in the myelin sheath of oligodendrocytes. Amino acid-substituted PLP1 protein is unable to fold properly and is subsequently degraded and/or restrictedly translated, resulting in a decrease in the PLP1 protein level and a failure to localize to the membrane. Furthermore, misfolded proteins increase the burden on the intracellular quality control system and trafficking, finally resulting in cell apoptosis. The objective of this study was to identify therapeutic chemicals for PMD by quantifying the total levels and membrane localization of PLP1. Method We established a cell line stably expressing PLP1A243V fused with green fluorescent protein in oligodendrocyte-derived MO3.13 cells. We screened a chemical library composed of drugs approved for central nervous system disorders that increased both the total intensity of PLP1A243V in the whole cell and the cell membrane localization. We analyzed the change in the endoplasmic reticulum (ER) stress and the gene expression of candidate chemicals using a micro-array analysis. Finally, we tested the in vivo effectiveness using myelin synthesis deficient (msd) mice with PlpA243V. Results and conclusion Piracetam significantly increased the PLP1A243V intensity and membrane localization and decreased the ER stress. It was also shown to reverse the gene expression changes induced by PLP1A243V in a micro-array analysis. However, in vivo treatment of piracetam did not improve the survival of msd mice (Plp1A243V).
Collapse
Key Words
- CNS, Central nervous systems
- Drug screening
- EGFP, Enhanced green fluorescent protein
- ER, Endoplasmic reticulum
- ER-associated degradation
- Gene expression
- IPA, Ingenuity pathways analysis
- IRE1 α, Inositol requiring enzyme 1 α
- Membrane protein
- Oligodendrocyte
- PLP1
- PLP1, Proteolipid protein 1
- PMD, Pelizaeus-Merzbacher disease
- UPR, Unfolded protein response
- XBP1, X-box binding protein 1
- msd, Myelin synthesis deficient
Collapse
|
7
|
Oh SH, Sung YH, Kim I, Sim CK, Lee JH, Baek M, Pack CG, Seok C, Seo EJ, Lee MS, Kim KM. Novel Compound Heterozygote Mutation in IL10RA in a Patient With Very Early-Onset Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:498-509. [PMID: 30462267 DOI: 10.1093/ibd/izy353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Very early-onset inflammatory bowel disease (VEO-IBD) is often associated with monogenetic disorders. IL-10RA deficiency is one of the major causal mutations in VEO-IBD. Here, we aimed to identify the causal mutation associated with severe IBD in a 1-year-old patient, validate the pathogenicity of the mutation, and characterize the mutant protein. METHODS To identify the causal mutation, targeted exome sequencing (ES) was performed using the genomic DNA from the patient. To validate the pathogenicity, IL-10RA functional tests were performed using the patient's peripheral blood mononuclear cells (PBMCs). Additionally, flow cytometry analysis, confocal microscopy on overexpressed green fluorescent protein-fused mutants, and computational analysis on the structures of IL-10RA proteins were performed. RESULTS We identified a novel compound heterozygote mutation p.[Tyr91Cys];[Pro146Alafs*40] in the IL10RA gene of the patient. The missense variant p.Tyr91Cys was previously identified but not functionally tested, and a frameshift variant, p.Pro146Alafs*40, is novel and nonfunctional. PBMCs from the patient showed defective signal transducer and activator of transcription 3 activation. The p.Tyr91Cys mutant protein failed to properly localize on the plasma membrane. The p.Tyr91Cys mutation seems to disrupt the hydrophobic core structure surrounding the tyrosine 91 residue, causing structural instability. CONCLUSIONS Targeted ES and linkage analysis identified novel compound heterozygous mutations p.[Tyr91Cys];[Pro146Alafs*40] in the IL10RA gene of a child with severe VEO-IBD. p.Tyr91Cys proteins were functionally defective in IL-10RA signaling and failed to properly localize on the plasma membrane, probably due to its structural instability.
Collapse
Affiliation(s)
- Seak Hee Oh
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Hoon Sung
- Department of Convergence Medicine, Asan Institutes for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Inki Kim
- Department of Convergence Medicine, Asan Institutes for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chan Kyu Sim
- Lab of Molecular Immunology and Medicine, Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Hoon Lee
- Lab of Molecular Immunology and Medicine, Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Minkyung Baek
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine, Asan Institutes for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Eul Ju Seo
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Myeong Sup Lee
- Lab of Molecular Immunology and Medicine, Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Inoue K. Pelizaeus-Merzbacher Disease: Molecular and Cellular Pathologies and Associated Phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:201-216. [PMID: 31760646 DOI: 10.1007/978-981-32-9636-7_13] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pelizaeus-Merzbacher disease (PMD) represents a group of disorders known as hypomyelinating leukodystrophies, which are characterized by abnormal development and maintenance of myelin in the central nervous system. PMD is caused by different types of mutations in the proteolipid protein 1 (PLP1) gene, which encodes a major myelin membrane lipoprotein. These mutations in the PLP1 gene result in distinct cellular and molecular pathologies and a spectrum of clinical phenotypes. In this chapter, I discuss the historical aspects and current understanding of the mechanisms underlying how different PLP1 mutations disrupt the normal process of myelination and result in PMD and other disorders.
Collapse
Affiliation(s)
- Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| |
Collapse
|
9
|
Abstract
Pelizaeus-Merzbacher disease (PMD) is an X-linked disorder caused by mutations in the PLP1 gene, which encodes the proteolipid protein of myelinating oligodendroglia. PMD exhibits phenotypic variability that reflects its considerable genotypic heterogeneity, but all forms of the disease result in central hypomyelination associated with early neurologic dysfunction, progressive deterioration, and ultimately death. PMD has been classified into three major subtypes, according to the age of presentation: connatal PMD, classic PMD, and transitional PMD, combining features of both connatal and classic forms. Two other less severe phenotypes were subsequently described, including the spastic paraplegia syndrome and PLP1-null disease. These disorders may be associated with duplications, as well as with point, missense, and null mutations within the PLP1 gene. A number of clinically similar Pelizaeus-Merzbacher-like disorders (PMLD) are considered in the differential diagnosis of PMD, the most prominent of which is PMLD-1, caused by misexpression of the GJC2 gene encoding connexin-47. No effective therapy for PMD exists. Yet, as a relatively pure central nervous system hypomyelinating disorder, with limited involvement of the peripheral nervous system and little attendant neuronal pathology, PMD is an attractive therapeutic target for neural stem cell and glial progenitor cell transplantation, efforts at which are now underway in a number of centers internationally.
Collapse
Affiliation(s)
- M Joana Osório
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Steven A Goldman
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| |
Collapse
|
10
|
Inoue K. Cellular Pathology of Pelizaeus-Merzbacher Disease Involving Chaperones Associated with Endoplasmic Reticulum Stress. Front Mol Biosci 2017; 4:7. [PMID: 28286750 PMCID: PMC5323380 DOI: 10.3389/fmolb.2017.00007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/09/2017] [Indexed: 11/23/2022] Open
Abstract
Disease-causing mutations in genes encoding membrane proteins may lead to the production of aberrant polypeptides that accumulate in the endoplasmic reticulum (ER). These mutant proteins have detrimental conformational changes or misfolding events, which result in the triggering of the unfolded protein response (UPR). UPR is a cellular pathway that reduces ER stress by generally inhibiting translation, increasing ER chaperones levels, or inducing cell apoptosis in severe ER stress. This process has been implicated in the cellular pathology of many neurological disorders, including Pelizaeus-Merzbacher disease (PMD). PMD is a rare pediatric disorder characterized by the failure in the myelination process of the central nervous system (CNS). PMD is caused by mutations in the PLP1 gene, which encodes a major myelin membrane protein. Severe clinical PMD phenotypes appear to be the result of cell toxicity, due to the accumulation of PLP1 mutant proteins and not due to the lack of functional PLP1. Therefore, it is important to clarify the pathological mechanisms by which the PLP1 mutants negatively impact the myelin-generating cells, called oligodendrocytes, to overcome this devastating disease. This review discusses how PLP1 mutant proteins change protein homeostasis in the ER of oligodendrocytes, especially focusing on the reaction of ER chaperones against the accumulation of PLP1 mutant proteins that cause PMD.
Collapse
Affiliation(s)
- Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry Kodaira, Japan
| |
Collapse
|
11
|
Palavicini JP, Wang C, Chen L, Ahmar S, Higuera JD, Dupree JL, Han X. Novel molecular insights into the critical role of sulfatide in myelin maintenance/function. J Neurochem 2016; 139:40-54. [PMID: 27417284 DOI: 10.1111/jnc.13738] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 01/19/2023]
Abstract
Cerebroside sulfotransferase (CST) catalyzes the production of sulfatide, a major class of myelin-specific lipids. CST knockout (CST(-/-) ) mice in which sulfatide is completely depleted are born healthy, but display myelin abnormalities and progressive tremors starting at 4-6 weeks of age. Although these phenotypes suggest that sulfatide plays a critical role in myelin maintenance/function, the underlying mechanisms remain largely unknown. We analyzed the major CNS myelin proteins and the major lipids enriched in the myelin in a spatiotemporal manner. We found a one-third reduction of the major compact myelin proteins (myelin basic protein, myelin basic protein, and proteolipid protein, PLP) and an equivalent post-developmental loss of myelin lipids, providing the molecular basis behind the thinner myelin sheaths. Our lipidomics data demonstrated that the observed global reduction of myelin lipid content was not because of an increase of lipid degradation but rather to the reduction of their synthesis by oligodendrocytes. We also showed that sulfatide depletion leads to region-specific effects on non-compact myelin, dramatically affecting the paranode (neurofascin 155) and the major inner tongue myelin protein (myelin-associated glycoprotein). Moreover, we demonstrated that sulfatide promotes the interaction between adjacent PLP extracellular domains, evidenced by a progressive decline of high molecular weight PLP complexes in CST(-/-) mice, providing an explanation at a molecular level regarding the uncompacted myelin sheaths. Finally, we proposed that the dramatic losses of neurofascin 155 and PLP interactions are responsible for the progressive tremors and eventual ataxia. In summary, we unraveled novel molecular insights into the critical role of sulfatide in myelin maintenance/function. Cerebroside sulfotransferase (CST) catalyzes the production of sulfatide, a major class of myelin-specific lipids. CST knockout (CST(-/-) ) mice in which sulfatide is completely depleted are born healthy, but display myelin abnormalities We show in our study that sulfatide depletion leads to losses of myelin proteins and lipids, and impairment of myelin functions, unraveling novel molecular insights into the critical role of sulfatide in myelin maintenance/function.
Collapse
Affiliation(s)
- Juan Pablo Palavicini
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Chunyan Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Linyuan Chen
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Sareen Ahmar
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Juan Diego Higuera
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA.,Research Division, McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA.
| |
Collapse
|
12
|
Appadu A, Jelokhani-Niaraki M, DeBruin L. Conformational Changes and Association of Membrane-Interacting Peptides in Myelin Membrane Models: A Case of the C-Terminal Peptide of Proteolipid Protein and the Antimicrobial Peptide Melittin. J Phys Chem B 2015; 119:14821-30. [DOI: 10.1021/acs.jpcb.5b07375] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ashtina Appadu
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| | - Masoud Jelokhani-Niaraki
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| | - Lillian DeBruin
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| |
Collapse
|
13
|
Formoso K, García MD, Frasch AC, Scorticati C. Filopodia formation driven by membrane glycoprotein M6a depends on the interaction of its transmembrane domains. J Neurochem 2015; 134:499-512. [PMID: 25940868 DOI: 10.1111/jnc.13153] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 12/19/2022]
Abstract
Membrane glycoprotein M6a, which belongs to the tetraspan proteolipid protein family, promotes structural plasticity in neurons and cell lines by unknown mechanisms. This glycoprotein is encoded by Gpm6a, a stress-regulated gene. The hippocampus of animals chronically stressed by either psychosocial or physical stressors shows decreased M6a expression. Stressed Gpm6a-null mice develop a claustrophobia-like phenotype. In humans, de novo duplication of GPM6A results in learning/behavioral abnormalities, and two single-nucleotide polymorphisms (SNPs) in the non-coding region are linked to mood disorders. Here, we studied M6a dimerization in neuronal membranes and its functional relevance. We showed that the self-interaction of M6a transmembrane domains (TMDs) might be driving M6a dimerization, which is required to induce filopodia formation. Glycine mutants located in TMD2 and TMD4 of M6a affected its dimerization, thus preventing M6a-induced filopodia formation in neurons. In silico analysis of three non-synonymous SNPs located in the coding region of TMDs suggested that these mutations induce protein instability. Indeed, these SNPs prevented M6a from being functional in neurons, owing to decreased stability, dimerization or improper folding. Interestingly, SNP3 (W141R), which caused endoplasmic reticulum retention, is equivalent to that mutated in PLP1, W161L, which causes demyelinating Pelizaeus-Merzbacher disease. In this work we analyzed the functional contribution of transmembrane domains (TMDs) of the neuronal membrane glycoprotein M6a. We determined that certain glycines present in TMD2 and TMD4 are critical for filopodia induction in neurons. In addition, three nsSNPs located in the coding region of TMD2 and TMD3 of GPM6A impair M6a function by affecting its stability, folding and dimer formation.
Collapse
Affiliation(s)
- Karina Formoso
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Micaela D García
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| |
Collapse
|
14
|
Saher G, Stumpf SK. Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1083-94. [PMID: 25724171 DOI: 10.1016/j.bbalip.2015.02.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/05/2015] [Accepted: 02/12/2015] [Indexed: 02/05/2023]
Abstract
The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Gesine Saher
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | - Sina Kristin Stumpf
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
15
|
Ng DP, Deber CM. Terminal residue hydrophobicity modulates transmembrane helix-helix interactions. Biochemistry 2014; 53:3747-57. [PMID: 24857611 DOI: 10.1021/bi500317h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Central to the formation of tertiary structure in membrane protein folding is the presence of amino acid sequence motifs (such as "small-XXX-small" segments) in the TM segments that promote interaction-compatible surfaces through which the TM α-helices interact. Here, we sought to elucidate additional factors that may work in tandem to dictate the ultimate interaction fate of TM-embedded segments. In this context, we used proteolipid protein (PLP), the major protein from central nervous system myelin for which mutant-dependent non-native oligomerization has been implicated in neurological disorders, to explore the specific effects of TM boundary residues (the membrane entry and exit points), keying on the secondary structure and self-association of peptides corresponding to the PLP TM2 α-helix (wild-type sequence ⁶⁶AFQYVIYGTASFFFLYGALLLAEGF⁹⁰). Using gel electrophoresis, circular dichroism, and Förster resonance energy transfer in the membrane-mimetic detergent sodium dodecyl sulfate (SDS), we found that mutation of F90 to residues such as A, I, L, or V maintains the onset of TM2-TM2 dimerization, whereas mutation to E, G, Q, N, S, or T abrogates dimer formation. We attribute this sensitivity to changes in local hydrophobicity, viz., a decrease in hydrophobicity reduces local lipid-peptide interactions, which in turn disrupts peptide α-helicity and hence the effectiveness of an incipient interaction-compatible surface. Our results show that the secondary structure and oligomeric state of PLP TM2 Lys-tagged peptides are significantly modulated by the specific nature of their C-terminal boundary residue, thus providing insight as to how point mutations, particularly where they produce disease states, can compromise the folding process.
Collapse
Affiliation(s)
- Derek P Ng
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children , Toronto, Ontario M5G 0A4, Canada
| | | |
Collapse
|
16
|
Identification of GPM6A and GPM6B as potential new human lymphoid leukemia-associated oncogenes. Cell Oncol (Dordr) 2014; 37:179-91. [PMID: 24916915 DOI: 10.1007/s13402-014-0171-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Previously, we found that the Graffi murine leukemia virus (MuLV) is able to induce a wide spectrum of hematologic malignancies in vivo. Using high-density oligonucleotide microarrays, we established the gene expression profiles of several of these malignancies, thereby specifically focusing on genes deregulated in the lymphoid sub-types. We observed over-expression of a variety of genes, including Arntl2, Bfsp2, Gfra2, Gpm6a, Gpm6b, Nln, Fbln1, Bmp7, Etv5 and Celsr1 and, in addition, provided evidence that Fmn2 and Parm-1 may act as novel oncogenes. In the present study, we assessed the expression patterns of eight selected human homologs of these genes in primary human B-cell malignancies, and explored the putative oncogenic potential of GPM6A and GPM6B. METHODS The gene expression levels of the selected human homologs were tested in human B-cell malignancies by semi-quantitative RT-PCR. The protein expression profiles of human GPM6A and GPM6B were analyzed by Western blotting. The localization and the effect of GPM6A and GPM6B on the cytoskeleton were determined using confocal and indirect immunofluorescence microscopy. To confirm the oncogenic potential of GPM6A and GPM6B, classical colony formation assays in soft agar and focus forming assays were used. The effects of these proteins on the cell cycle were assessed by flow cytometry analysis. RESULTS Using semi-quantitative RT-PCR, we found that most of the primary B-cell malignancies assessed showed altered expression patterns of the genes tested, including GPM6A and GPM6B. Using confocal microscopy, we found that the GPM6A protein (isoform 3) exhibits a punctate cytoplasmic localization and that the GPM6B protein (isoform 4) exhibits a peri-nuclear and punctate cytoplasmic localization. Interestingly, we found that exogenous over-expression of both proteins in NIH/3T3 cells alters the actin and microtubule networks and induces the formation of long filopodia-like protrusions. Additionally, we found that these over-expressing NIH/3T3 cells exhibit anchorage-independent growth and enhanced proliferation rates. Cellular transformation (i.e., loss of contact inhibition) was, however, only observed after exogenous over-expression of GPM6B. CONCLUSIONS Our results indicate that several human homologs of the genes found to be deregulated in Graffi MuLV experimental mouse models may serve as candidate biomarkers for human B-cell malignancies. In addition, we found that GPM6A and GPM6B may act as novel oncogenes in the development of these malignancies.
Collapse
|
17
|
Monk KR, Voas MG, Franzini-Armstrong C, Hakkinen IS, Talbot WS. Mutation of sec63 in zebrafish causes defects in myelinated axons and liver pathology. Dis Model Mech 2013; 6:135-45. [PMID: 22864019 PMCID: PMC3529346 DOI: 10.1242/dmm.009217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 07/19/2012] [Indexed: 12/17/2022] Open
Abstract
Mutations in SEC63 cause polycystic liver disease in humans. Sec63 is a member of the endoplasmic reticulum (ER) translocon machinery, although it is unclear how mutations in SEC63 lead to liver cyst formation in humans. Here, we report the identification and characterization of a zebrafish sec63 mutant, which was discovered in a screen for mutations that affect the development of myelinated axons. Accordingly, we show that disruption of sec63 in zebrafish leads to abnormalities in myelinating glia in both the central and peripheral nervous systems. In the vertebrate nervous system, segments of myelin are separated by the nodes of Ranvier, which are unmyelinated regions of axonal membrane containing a high density of voltage-gated sodium channels. We show that sec63 mutants have morphologically abnormal and reduced numbers of clusters of voltage-gated sodium channels in the spinal cord and along peripheral nerves. Additionally, we observed reduced myelination in both the central and peripheral nervous systems, as well as swollen ER in myelinating glia. Markers of ER stress are upregulated in sec63 mutants. Finally, we show that sec63 mutants develop liver pathology. As in glia, the primary defect, detectable at 5 dpf, is fragmentation and swelling of the ER, indicative of accumulation of proteins in the lumen. At 8 dpf, ER swelling is severe; other pathological features include disrupted bile canaliculi, altered cytoplasmic matrix and accumulation of large lysosomes. Together, our analyses of sec63 mutant zebrafish highlight the possible role of ER stress in polycystic liver disease and suggest that these mutants will serve as a model for understanding the pathophysiology of this disease and other abnormalities involving ER stress.
Collapse
Affiliation(s)
- Kelly R. Monk
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew G. Voas
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | - Ian S. Hakkinen
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - William S. Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Proteolipid protein dimerization at cysteine 108: Implications for protein structure. Neurosci Res 2012; 74:144-55. [PMID: 22902553 DOI: 10.1016/j.neures.2012.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 07/30/2012] [Accepted: 07/30/2012] [Indexed: 11/24/2022]
Abstract
Proteolipid protein (PLP) and its alternatively spliced isoform DM20 comprise ∼50% of central nervous system (CNS) myelin protein. The two proteins are identical in sequence except for the presence of a 35 amino sequence within the intracellular loop of PLP that is absent in DM20. In this work, we compared the expression of PLP/DM20 in transfected cells, oligodendrocytes and brain. In all 3 tissues, PLP exists as both a monomer and a disulfide-linked dimer; in contrast, DM20 is found mainly as a monomer. PLP dimers were increased by both chemical crosslinking and incubation with hydrogen peroxide, and were mediated by a cysteine at amino acid 108, located within the proximal intracellular loop of both PLP and DM20. The PLP-specific sequence thus influences the accessibility of this cysteine to chemical modification, perhaps as a result of altering protein structure. Consistent with these findings, several mutant PLPs known to cause Pelizaeus-Merzbacher disease form predominantly disulfide-linked, high molecular weight aggregates in transfected COS7 cells that are arrested in the ER and are associated with increased expression of CHOP, a part of the cellular response to unfolded proteins. In contrast, the same mutations in DM20 accumulate fewer high molecular weight disulfide-linked species that are expressed at the cell surface, and are not associated with increased CHOP. Taken together, these data suggest that mutant PLP multimerization, mediated in part by way of cysteine 108, may be part of the pathogenesis of Pelizaeus-Merzbacher disease.
Collapse
|
19
|
Misalignment of PLP/DM20 transmembrane domains determines protein misfolding in Pelizaeus-Merzbacher disease. J Neurosci 2011; 31:14961-71. [PMID: 22016529 DOI: 10.1523/jneurosci.2097-11.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A large number of genetic diseases have been associated with truncated or misfolded membrane proteins trapped in the endoplasmic reticulum (ER). In the ER, they activate the unfolded protein response, which can trigger cell death. Hence, a better understanding of protein misfolding features might help in developing novel therapies. Here, we have studied the molecular basis of Pelizaeus-Merzbacher disease, a leukodystrophy defined by mutations of the PLP1 gene and ER retention of two encoded tetraspan myelin proteins, PLP and DM20. In mouse oligodendroglial cells, mutant isoforms of PLP/DM20 with fewer than all four transmembrane (TM) domains are fully ER retained. Surprisingly, a truncated PLP with only two N-terminal TM domains shows normal cell-surface expression when coexpressed with a second truncated PLP harboring the two C-terminal TM domains. This striking ability to properly self-align the TM domains is disease relevant, as shown for the smaller splice isoform DM20. Here, the increased length of TM domain 3 allows for compensation of the effect of several PLP1 point mutations that impose a conformational constraint onto the adjacent extracellular loop region. We conclude that an important determinant in the quality control of polytopic membrane proteins is the free alignment of their TM domains.
Collapse
|
20
|
Ng DP, Poulsen BE, Deber CM. Membrane protein misassembly in disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1115-22. [PMID: 21840297 DOI: 10.1016/j.bbamem.2011.07.046] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022]
Abstract
Helix-helix interactions play a central role in the folding and assembly of integral α-helical membrane proteins and are fundamentally dictated by the amino acid sequence of the TM domain. It is not surprising then that missense mutations that target these residues are often linked to disease. In this review, we focus on the molecular mechanisms through which missense mutations lead to aberrant folding and/or assembly of these proteins, and then discuss pharmacological approaches that may potentially mitigate or reverse the negative effects of these mutations. Improving our understanding of how missense mutations affect the interactions between TM α-helices will increase our capability to develop effective therapeutic approaches to counter the misassembly of these proteins and, ultimately, disease. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Derek P Ng
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
21
|
Ng DP, Deber CM. Modulation of the oligomerization of myelin proteolipid protein by transmembrane helix interaction motifs. Biochemistry 2010; 49:6896-902. [PMID: 20695528 DOI: 10.1021/bi100739r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteolipid protein (PLP) is a highly hydrophobic 276-residue integral membrane protein that constitutes more than 50% of the total protein in central nervous system myelin. Previous studies have shown that this protein exists in myelin as an oligomer rather than as a monomer, and mutations in PLP that lead to neurological disorders such as Pelizaeus-Merzbacher disease and spastic paraplegia type 2 have been reported to affect its normal oligomerization. Here we employ peptide-based and in vivo approaches to examine the role of the TM domain in the formation of PLP quaternary structure through homo-oligomeric helix-helix interactions. Focusing on the TM4 alpha-helix (sequence (239)FIAAFVGAAATLVSLLTFMIAATY(262)), the site of several disease-causing point mutations that involve putative small residue helix-helix interaction motifs in the TM4 sequence, we used SDS-PAGE, fluorescence resonance energy transfer, size-exclusion chromatography, and TOXCAT assays in an Escherichia coli membrane to show that the PLP TM4 helix readily assembles into varying oligomeric states. In addition, through targeted studies of the PLP TM4 alpha-helix with point mutations that selectively eliminate these small residue motifs via substitution of Gly, Ala, or Ser residues with Ile residues, we describe a potential mechanism through which disease-causing point mutations can lead to aberrant PLP assembly. The overall results suggest that TM segments in misfolded PLP monomers that expose and/or create surface-exposed helix-helix interaction sites that are normally masked may have consequences for disease.
Collapse
Affiliation(s)
- Derek P Ng
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
22
|
Espinosa-Jeffrey A, Hitoshi S, Zhao P, Awosika O, Agbo C, Olaniyan E, Garcia J, Valera R, Thomassian A, Chang-Wei R, Yamaguchi M, de Vellis J, Ikenaka K. Functional central nervous system myelin repair in an adult mouse model of demyelination caused by proteolipid protein overexpression. J Neurosci Res 2010; 88:1682-94. [PMID: 20127853 DOI: 10.1002/jnr.22334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Two types of interventions to remyelinate the adult demyelinated central nervous system were investigated in heterozygous transgenic mice overexpressing the proteolipid protein gene. 1) A cocktail of trophic factors, "TS1," was directed toward the activation of the endogenous pool of neural progenitors to increase the number of myelinating oligodendrocytes (OL) in the brain. 2) A combinatorial approach in which OL progenitors were coinjected with TS1 into the corpus callosum of wild-type and He4e transgenic mice that displayed hindlimb paralysis. The levels of locomotor ability in these mice were evaluated after a single treatment. The data showed that a single administration of either one of the interventions had similar therapeutic effects, alleviating the symptoms of demyelination and leading to the recovery of hindlimb function. Histological and immunofluorescent examination of brain sections showed extensive remyelination that was sufficient to reverse hindlimb paralysis in transgenic mice. When the interventions were administered prior to hindlimb paralysis, He4e mice were able to walk up to 1 year of age without paralysis.
Collapse
Affiliation(s)
- A Espinosa-Jeffrey
- IDDRCsp, Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lim SJ, Tan TW, Tong JC. Computational Epigenetics: the new scientific paradigm. Bioinformation 2010; 4:331-7. [PMID: 20978607 PMCID: PMC2957762 DOI: 10.6026/97320630004331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/13/2010] [Accepted: 01/21/2010] [Indexed: 12/25/2022] Open
Abstract
Epigenetics has recently emerged as a critical field for studying how non-gene factors can influence the traits and functions of an organism. At the core of this new wave of research is the use of computational tools that play critical roles not only in directing the selection of key experiments, but also in formulating new testable hypotheses through detailed analysis of complex genomic information that is not achievable using traditional approaches alone. Epigenomics, which combines traditional genomics with computer science, mathematics, chemistry, biochemistry and proteomics for the large-scale analysis of heritable changes in phenotype, gene function or gene expression that are not dependent on gene sequence, offers new opportunities to further our understanding of transcriptional regulation, nuclear organization, development and disease. This article examines existing computational strategies for the study of epigenetic factors. The most important databases and bioinformatic tools in this rapidly growing field have been reviewed.
Collapse
Affiliation(s)
- Shen Jean Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597
| | | | | |
Collapse
|
24
|
Barron MJ, Brookes SJ, Kirkham J, Shore RC, Hunt C, Mironov A, Kingswell NJ, Maycock J, Shuttleworth CA, Dixon MJ. A mutation in the mouse Amelx tri-tyrosyl domain results in impaired secretion of amelogenin and phenocopies human X-linked amelogenesis imperfecta. Hum Mol Genet 2010; 19:1230-47. [PMID: 20067920 PMCID: PMC2838535 DOI: 10.1093/hmg/ddq001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Amelogenesis imperfecta (AI) describes a broad group of clinically and genetically heterogeneous inherited defects of dental enamel bio-mineralization. Despite identification of a number of genetic mutations underlying AI, the precise causal mechanisms have yet to be determined. Using a multi-disciplinary approach, we describe here a mis-sense mutation in the mouse Amelx gene resulting in a Y --> H substitution in the tri-tyrosyl domain of the enamel extracellular matrix protein amelogenin. The enamel in affected animals phenocopies human X-linked AI where similar mutations have been reported. Animals affected by the mutation have severe defects of enamel bio-mineralization associated with absence of full-length amelogenin protein in the developing enamel matrix, loss of ameloblast phenotype, increased ameloblast apoptosis and formation of multi-cellular masses. We present evidence to demonstrate that affected ameloblasts express but fail to secrete full-length amelogenin leading to engorgement of the endoplasmic reticulum/Golgi apparatus. Immunohistochemical analysis revealed accumulations of both amelogenin and ameloblastin in affected cells. Co-transfection of Ambn and mutant Amelx in a eukaryotic cell line also revealed intracellular abnormalities and increased cytotoxicity compared with cells singly transfected with wild-type Amelx, mutant Amelx or Ambn or co-transfected with both wild-type Amelx and Ambn. We hypothesize that intracellular protein-protein interactions mediated via the amelogenin tri-tyrosyl motif are a key mechanistic factor underpinning the molecular pathogenesis in this example of AI. This study therefore successfully links phenotype with underlying genetic lesion in a relevant murine model for human AI.
Collapse
Affiliation(s)
- Martin J Barron
- Faculty of Life Sciences and School of Dentistry, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Roboti P, Swanton E, High S. Differences in endoplasmic-reticulum quality control determine the cellular response to disease-associated mutants of proteolipid protein. J Cell Sci 2009; 122:3942-53. [PMID: 19825935 DOI: 10.1242/jcs.055160] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Missense mutations in human PLP1, the gene encoding myelin proteolipid protein (PLP), cause dysmyelinating Pelizaeus-Merzbacher disease of varying severity. Although disease pathology has been linked to retention of misfolded PLP in the endoplasmic reticulum (ER) and induction of the unfolded protein response (UPR), the molecular mechanisms that govern phenotypic heterogeneity remain poorly understood. To address this issue, we examined the cellular response to missense mutants of PLP that are associated with distinct disease phenotypes. We found that the mild-disease-associated mutants, W162L and G245A, were cleared from the ER comparatively quickly via proteasomal degradation and/or ER exit. By contrast, the more ;aggressive' A242V mutant, which causes severe disease, was significantly more stable, accumulated at the ER and resulted in a specific activation of the UPR. On the basis of these findings, we propose that the rate at which mutant PLP proteins are cleared from the ER modulates disease severity by determining the extent to which the UPR is activated.
Collapse
Affiliation(s)
- Peristera Roboti
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
26
|
Ma L, Rychkov GY, Bretag AH. Functional study of cytoplasmic loops of human skeletal muscle chloride channel, hClC-1. Int J Biochem Cell Biol 2009; 41:1402-9. [DOI: 10.1016/j.biocel.2008.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 12/10/2008] [Accepted: 12/10/2008] [Indexed: 11/24/2022]
|
27
|
Abstract
Myelinating cells, oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system produce an enormous amount of plasma membrane during the myelination process, making them particularly susceptible to disruptions of the secretory pathway. Endoplasmic reticulum stress, initiated by the accumulation of unfolded or misfolded proteins, activates the unfolded protein response, which adapts cells to the stress. If this adaptive response is insufficient, the unfolded protein response activates an apoptotic program to eliminate the affected cells. Recent observations suggest that endoplasmic reticulum stress in myelinating cells is important in the pathogenesis of various disorders of myelin, including Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher disease and Vanishing White Matter Disease, as well as in the most common myelin disorder, multiple sclerosis. A better understanding of endoplasmic reticulum stress in myelinating cells has laid the groundwork for the design of new therapeutic strategies for promoting myelinating cell survival in these disorders.
Collapse
Affiliation(s)
- Wensheng Lin
- Department of Cell Biology & Neuroscience, University of South Alabama, 307 University Blvd, MSB1201, Mobile, AL 36688. ()
| | - Brian Popko
- The Jack Miller Center for Peripheral Neuropathy, Department of Neurology, The University of Chicago, 5841 South Maryland Avenue MC2030, Chicago, IL 60637. ()
| |
Collapse
|
28
|
Alcock F, Swanton E. Mammalian OS-9 is upregulated in response to endoplasmic reticulum stress and facilitates ubiquitination of misfolded glycoproteins. J Mol Biol 2009; 385:1032-42. [PMID: 19084021 DOI: 10.1016/j.jmb.2008.11.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/11/2008] [Accepted: 11/18/2008] [Indexed: 11/25/2022]
Abstract
Proteins that fail to fold or assemble with partner subunits are selectively removed from the endoplasmic reticulum (ER) via the ER-associated degradation (ERAD) pathway. Proteins selected for ERAD are polyubiquitinated and retrotranslocated into the cytosol for degradation by the proteasome. Although it is unclear how proteins are initially identified by the ERAD system in mammalian cells, OS-9 was recently proposed to play a key role in this process. Here we show that OS-9 is upregulated in response to ER stress and is associated both with components of the ERAD machinery and with ERAD substrates. Using RNA interference, we show that OS-9 is required for efficient ubquitination of glycosylated ERAD substrates, suggesting that it helps transfer misfolded proteins to the ubiquitination machinery. We also find that OS-9 binds to a misfolded nonglycosylated protein destined for ERAD, but not to the properly folded wild-type protein. Surprisingly, however, OS-9 is not required for ubiquitination or degradation of this nonglycosylated ERAD substrate. We propose a model in which OS-9 recognises terminally misfolded proteins via polypeptide-based rather than glycan-based signals, but is only required for transferring those bearing N-glycans to the ubiquitination machinery.
Collapse
Affiliation(s)
- Felicity Alcock
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
29
|
Bonnet-Dupeyron MN, Combes P, Santander P, Cailloux F, Boespflug-Tanguy O, Vaurs-Barrière C. PLP1 splicing abnormalities identified in Pelizaeus-Merzbacher disease and SPG2 fibroblasts are associated with different types of mutations. Hum Mutat 2008; 29:1028-36. [PMID: 18470932 DOI: 10.1002/humu.20758] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The proteolipid protein 1 (PLP1) gene encodes the two major proteins of the central nervous system (CNS) myelin: PLP and DM20. PLP1 gene mutations are associated with a large spectrum of X-linked dysmyelinating disorders ranging from hypomyelinating leukodystrophy, Pelizaeus-Merzbacher disease (PMD), to spastic paraplegia (SPG2) according to the nature of the mutation. Genetic heterogeneity exists and mutations in the gap-junction alpha 12 (GJA12) gene have been related to PMD. About 20% of patients with the PMD phenotype remain without mutation in these two genes and are classified as affected by Pelizaeus-Merzbacher-like disease (PMLD). To study PLP1 splicing abnormalities, we analyzed PLP/DM20 transcripts from nerves and/or skin cultured fibroblasts of 14 PMD/SPG2 patients carrying different PLP1 mutations and 20 PMLD patients. We found that various types of PLP1 mutations result in missplicing, including one considered as a missense in exon 2 and a nucleotide substitution in intron 3 outside the classical donor and acceptor splicing sites. Moreover, we demonstrated for two patients that the fibroblast transcript pattern was in accordance with the one observed in the corresponding CNS/peripheral nervous system (PNS) tissues. Finally, we observed no abnormal splicing in fibroblasts of 20 PMLD patients tested; suggesting that PLP1 gene splicing abnormalities, potentially caused by undetected intronic mutations, are either not involved or are very rarely implicated in the PMLD phenotype. These results confirm that fibroblasts are reliable, accessible cells useful in detecting PLP1 transcript abnormalities, better characterizing the functional consequences of PLP1 mutations for genotype-phenotype correlation, characterizing new PLP1 splicing regulatory elements, and identifying PLP1 mutations undetected by conventional PLP1 screening.
Collapse
|
30
|
Abstract
Pelizaeus-Merzbacher disease (PMD) is a recessive X-linked dysmyelinating disorder of the central nervous system (CNS). The most frequent cause of PMD is a genomic duplication of chromosome Xq22 including the region encoding the dosage-sensitive proteolipid protein 1 (PLP1) gene. The PLP1 duplications are heterogeneous in size, unlike duplications causing many other genomic disorders, and arise by a distinct molecular mechanism. Other causes of PMD include PLP1 deletions, triplications and point mutations. Mutations in the PLP1 gene can also give rise to spastic paraplegia type 2 (SPG2), an allelic form of the disease. Thus, there is a spectrum of CNS disorder from mild SPG2 to severe connatal PMD. PLP1 encodes a major protein in CNS myelin and is abundantly expressed in oligodendrocytes, the myelinating cells of the CNS. Significant advances in our understanding of PMD have been achieved by investigating mutant PLP1 in PMD patients, animal models and in vitro studies. How the different PLP1 mutations and dosage effects give rise to PMD is being revealed. Interestingly, the underlying causes of pathogenesis are distinct for each of the different genetic abnormalities. This article reviews the genetics of PMD and summarises the current knowledge of causative molecular and cellular mechanisms.
Collapse
|
31
|
A common mechanism of PLP/DM20 misfolding causes cysteine-mediated endoplasmic reticulum retention in oligodendrocytes and Pelizaeus-Merzbacher disease. Proc Natl Acad Sci U S A 2007; 104:17813-8. [PMID: 17962415 DOI: 10.1073/pnas.0704975104] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A large number of mutations in the human PLP1 gene lead to abnormal myelination and oligodendrocyte death in Pelizaeus-Merzbacher disease (PMD). Here we show that a major subgroup of PMD mutations that map into the extracellular loop region of PLP/DM20 leads to the failure of oligodendrocytes to form the correct intramolecular disulfide bridges. This leads to abnormal protein cross-links and endoplasmic reticulum retention and activates the unfolded protein response. Importantly, surface expression of mutant PLP/DM20 can be restored and the unfolded protein response can be reverted by the removal of two cysteines. Thus, covalent protein cross-links emerge as a cause, rather than as a consequence, of endoplasmic reticulum retention.
Collapse
|
32
|
Tashiro J, Kikuchi S, Shinpo K, Kishimoto R, Tsuji S, Sasaki H. Role of p53 in neurotoxicity induced by the endoplasmic reticulum stress agent tunicamycin in organotypic slice cultures of rat spinal cord. J Neurosci Res 2007; 85:395-401. [PMID: 17131418 DOI: 10.1002/jnr.21120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endoplasmic reticulum (ER) is important for maintaining the quality of cellular proteins. Various stimuli can disrupt ER homeostasis and cause the accumulation of unfolded or misfolded proteins, i.e., a state of ER stress. Recently, ER stress has been reported to play an important role in the pathogenesis of neurological disorders such as cerebral ischemia and neurodegenerative diseases, but its involvement in the spinal cord diseases has not been fully discussed. We conducted this study using tunicamycin (Tm) as an ER stress inducer for rat spinal cord in organotypic slice culture, a system that we have recently established. Tm was shown to induce ER stress by increased expression of GRP78. The viability rate of spinal cord neurons decreased in a dose-dependent manner with Tm treatment, and dorsal horn interneurons were more vulnerable to Tm-induced neurotoxicity. A p53 inhibitor significantly increased the viability of dorsal horn interneurons, and immunofluorescence studies showed nuclear accumulation of p53 in the dorsal horns of Tm-treated spinal cord slices. These findings suggest that p53 plays an important role in the killing of dorsal horn interneurons by Tm. In contrast, motor neurons were not protected by the p53 inhibitor, suggesting that the role of p53 may vary between different cell types. This difference might be a clue to the mechanism of the stress-response pathway and might also contribute to the potential application of p53 inhibitors for the treatment of spinal cord diseases, including amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Jun Tashiro
- Department of Neurology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Hokkaido, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Laumonnier F, Cuthbert PC, Grant SGN. The role of neuronal complexes in human X-linked brain diseases. Am J Hum Genet 2007; 80:205-20. [PMID: 17236127 PMCID: PMC1785339 DOI: 10.1086/511441] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 11/28/2006] [Indexed: 01/28/2023] Open
Abstract
Beyond finding individual genes that are involved in medical disorders, an important challenge is the integration of sets of disease genes with the complexities of basic biological processes. We examine this issue by focusing on neuronal multiprotein complexes and their components encoded on the human X chromosome. Multiprotein signaling complexes in the postsynaptic terminal of central nervous system synapses are essential for the induction of neuronal plasticity and cognitive processes in animals. The prototype complex is the N-methyl-D-aspartate receptor complex/membrane-associated guanylate kinase-associated signaling complex (NRC/MASC) comprising 185 proteins and embedded within the postsynaptic density (PSD), which is a set of complexes totaling approximately 1,100 proteins. It is striking that 86% (6 of 7) of X-linked NRC/MASC genes and 49% (19 of 39) of X-chromosomal PSD genes are already known to be involved in human psychiatric disorders. Moreover, of the 69 known proteins mutated in X-linked mental retardation, 19 (28%) encode postsynaptic proteins. The high incidence of involvement in cognitive disorders is also found in mouse mutants and indicates that the complexes are functioning as integrated entities or molecular machines and that disruption of different components impairs their overall role in cognitive processes. We also noticed that NRC/MASC genes appear to be more strongly associated with mental retardation and autism spectrum disorders. We propose that systematic studies of PSD and NRC/MASC genes in mice and humans will give a high yield of novel genes important for human disease and new mechanistic insights into higher cognitive functions.
Collapse
Affiliation(s)
- Frédéric Laumonnier
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | | | | |
Collapse
|
34
|
Krämer-Albers EM, Gehrig-Burger K, Thiele C, Trotter J, Nave KA. Perturbed interactions of mutant proteolipid protein/DM20 with cholesterol and lipid rafts in oligodendroglia: implications for dysmyelination in spastic paraplegia. J Neurosci 2006; 26:11743-52. [PMID: 17093095 PMCID: PMC6674790 DOI: 10.1523/jneurosci.3581-06.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Missense mutations in the human PLP1 gene lead to dysmyelinating diseases with a broad range of clinical severity, ranging from severe Pelizaeus-Merzbacher disease (PMD) to milder spastic paraplegia type 2 (SPG-2). The molecular pathology has been generally attributed to endoplasmic reticulum (ER) retention of misfolded proteolipid protein (PLP) (and its splice isoform DM20) and induction of the unfolded protein response. As opposed to previous studies of heterologous expression systems, we have analyzed PLP/DM20 trafficking in oligodendroglial cells, thereby revealing differences between PMD and SPG-2-associated PLP/DM20 isoforms. PLP(A242V) and DM20(A242V) (jimpy-msd in mice), associated with severe PMD-like phenotype in vivo, were not only retained in the ER but also interfered with oligodendroglial process formation. In contrast, glial cells expressing SPG-2-associated PLP(I186T) or DM20(I186T) (rumpshaker in mice) developed processes, and mutant PLP/DM20 reached a late endosomal/lysosomal compartment. Unexpectedly, PLP/DM20 with either substitution exhibited impaired cholesterol binding, and the association with lipid raft microdomains was strongly reduced. Turnover analysis demonstrated that mutant PLP was rapidly degraded in oligodendroglial cells, with half-lives for PLP > PLP(I186T) > PLP(A242V). Protein degradation was specifically sensitive to proteasome inhibition, although PLP/DM20(I186T) degradation was also affected by inhibition of lysosomal enzymes. We conclude that, in addition to ER retention and unfolded protein response (UPR) induction, impaired cholesterol binding and lipid raft association are characteristic cellular defects of PLP1-missense mutations. Mutant protein is rapidly cleared and does not accumulate in oligodendroglial cells. Whereas UPR-induced cell death governs the PMD phenotype of the msd mutation, we propose that impaired cholesterol and lipid raft interaction of the rsh protein may contribute to the dysmyelination observed in SPG-2.
Collapse
Affiliation(s)
- Eva-Maria Krämer-Albers
- Department of Biology, Unit of Molecular Cell Biology, University of Mainz, 55099 Mainz, Germany.
| | | | | | | | | |
Collapse
|
35
|
Reifschneider NH, Goto S, Nakamoto H, Takahashi R, Sugawa M, Dencher NA, Krause F. Defining the Mitochondrial Proteomes from Five Rat Organs in a Physiologically Significant Context Using 2D Blue-Native/SDS-PAGE. J Proteome Res 2006; 5:1117-32. [PMID: 16674101 DOI: 10.1021/pr0504440] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In accordance with their manifold tasks, various dysfunctions of mitochondria are critically involved in a large number of diseases and the aging process. This has inspired considerable efforts to identify all the mitochondrial proteins by denaturing approaches, notably, the standard gel-based method employing isoelectric focusing. Because a significant part of the mitochondrial proteome is membrane-associated and/or functions as homo- or heterooligomeric protein complexes, there is an urgent need to detect and identify mitochondrial proteins, both membranous and soluble ones, under conditions preserving protein-protein interactions. Here, we investigated mitochondria of five different rat organs (kidney, liver, heart, skeletal muscle, and brain) solubilized with digitonin, enabling the quantitative extraction of the five oxidative phosphorylation (OXPHOS) complexes. The analysis by blue-native (BN)-PAGE recovered the OXPHOS complexes to a large extent as supercomplexes and separated many other protein complexes and individual proteins which were resolved by subsequent 2D SDS-PAGE revealing the tissue-diverse mitochondrial proteomes. Using MS peptide mass fingerprinting, we identified in all five organs 92 nonredundant soluble and membrane-embedded non-OXPHOS proteins, among them, many as constituents of known mitochondrial protein complexes as well as novel ones such as the putative "stomatin-like protein 2 complex" with an apparent mass of ca. 1800 kDa. Interestingly, the identification list included 36 proteins known or presumed to be localized to nonmitochondrial compartments, for example, glycolytic enzymes, clathrin heavy chain, valosin-containing protein/p97, VoV1-ATPase, and Na,K-ATPase. We expect that more than 200 distinct non-OXPHOS proteins of digitonin-solubilized rat mitochondria separated by 2D BN/SDS-PAGE, representing a partial "protein interactome" map, can be identified.
Collapse
Affiliation(s)
- Nicole H Reifschneider
- Physical Biochemistry, Department of Chemistry, Darmstadt University of Technology, Petersenstrasse 22, D-64287 Darmstadt, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Warshawsky I, Rudick RA, Staugaitis SM, Natowicz MR. Primary progressive multiple sclerosis as a phenotype of a PLP1 gene mutation. Ann Neurol 2005; 58:470-3. [PMID: 16130097 DOI: 10.1002/ana.20601] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We report a 49-year-old woman with a history of progressive gait disturbance, white matter disease, and cerebrospinal fluid immunoglobulin abnormalities who met criteria for primary progressive multiple sclerosis and whose son died at age 10 years of an unknown congenital neurodevelopmental disorder. Sequencing of the proteolipid protein 1 gene showed a novel mutation, Leu30Arg (c.89TG), in the mother and son. Pelizaeus-Merzbacher disease is the cause of death in the son and explains the mother's adult-onset neurological disorder. This case goes against dogma that mothers of severely affected sons are asymptomatic as adults and expands the differential diagnosis of primary progressive multiple sclerosis to include proteolipid protein 1 gene mutations.
Collapse
Affiliation(s)
- Ilka Warshawsky
- Department of Clinical Pathology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|