1
|
Przanowska RK, Chen Y, Uchida TO, Shibata E, Hao X, Rueda IS, Jensen K, Przanowski P, Trimboli A, Shibata Y, Leone G, Dutta A. DNA replication in primary hepatocytes without the six-subunit ORC. eLife 2025; 13:RP102915. [PMID: 40304571 PMCID: PMC12043314 DOI: 10.7554/elife.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
The six-subunit ORC is essential for the initiation of DNA replication in eukaryotes. Cancer cell lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2, or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.
Collapse
Affiliation(s)
- Róża K Przanowska
- Dept. of Biochemistry and Molecular Genetics, University of VirginiaCharlottesvilleUnited States
| | - Yuechuan Chen
- Dept. of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | | | - Etsuko Shibata
- Dept. of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Xiaoxiao Hao
- Dept. of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Isaac Segura Rueda
- Dept. of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Kate Jensen
- Dept. of Biochemistry and Molecular Genetics, University of VirginiaCharlottesvilleUnited States
| | - Piotr Przanowski
- Dept. of Biochemistry and Molecular Genetics, University of VirginiaCharlottesvilleUnited States
| | - Anthony Trimboli
- Cancer Center, University of Wisconsin in MilwaukeeMilwaukeeUnited States
| | - Yoshiyuki Shibata
- Dept. of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Gustavo Leone
- Cancer Center, University of Wisconsin in MilwaukeeMilwaukeeUnited States
| | - Anindya Dutta
- Dept. of Biochemistry and Molecular Genetics, University of VirginiaCharlottesvilleUnited States
- Dept. of Genetics, University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
2
|
Przanowska RK, Chen Y, Uchida TO, Shibata E, Hao X, Rueda IS, Jensen K, Przanowski P, Trimboli A, Shibata Y, Leone G, Dutta A. DNA replication in primary hepatocytes without the six-subunit ORC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.04.588006. [PMID: 38617300 PMCID: PMC11014565 DOI: 10.1101/2024.04.04.588006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The six subunit ORC is essential for initiation of DNA replication in eukaryotes. Cancer cell-lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2 or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.
Collapse
|
3
|
Tao Y, Aparicio T, Li M, Leong KW, Zha S, Gautier J. Inhibition of DNA replication initiation by silver nanoclusters. Nucleic Acids Res 2021; 49:5074-5083. [PMID: 33905520 PMCID: PMC8136792 DOI: 10.1093/nar/gkab271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 01/19/2023] Open
Abstract
Silver nanoclusters (AgNCs) have outstanding physicochemical characteristics, including the ability to interact with proteins and DNA. Given the growing number of diagnostic and therapeutic applications of AgNCs, we evaluated the impact of AgNCs on DNA replication and DNA damage response in cell-free extracts prepared from unfertilized Xenopus laevis eggs. We find that, among a number of silver nanomaterials, AgNCs uniquely inhibited genomic DNA replication and abrogated the DNA replication checkpoint in cell-free extracts. AgNCs did not affect nuclear membrane or nucleosome assembly. AgNCs-supplemented extracts showed a strong defect in the loading of the mini chromosome maintenance (MCM) protein complex, the helicase that unwinds DNA ahead of replication forks. FLAG-AgNCs immunoprecipitation and mass spectrometry analysis of AgNCs associated proteins demonstrated direct interaction between MCM and AgNCs. Our studies indicate that AgNCs directly prevent the loading of MCM, blocking pre-replication complex (pre-RC) assembly and subsequent DNA replication initiation. Collectively, our findings broaden the scope of silver nanomaterials experimental applications, establishing AgNCs as a novel tool to study chromosomal DNA replication.
Collapse
Affiliation(s)
- Yu Tao
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Tomas Aparicio
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Departments of Pediatrics, Pathology and Cell Biology, Immunology and Microbiology, Columbia University, New York, NY 10032, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Replication initiation: Implications in genome integrity. DNA Repair (Amst) 2021; 103:103131. [PMID: 33992866 DOI: 10.1016/j.dnarep.2021.103131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/01/2023]
Abstract
In every cell cycle, billions of nucleotides need to be duplicated within hours, with extraordinary precision and accuracy. The molecular mechanism by which cells regulate the replication event is very complicated, and the entire process begins way before the onset of S phase. During the G1 phase of the cell cycle, cells prepare by assembling essential replication factors to establish the pre-replicative complex at origins, sites that dictate where replication would initiate during S phase. During S phase, the replication process is tightly coupled with the DNA repair system to ensure the fidelity of replication. Defects in replication and any error must be recognized by DNA damage response and checkpoint signaling pathways in order to halt the cell cycle before cells are allowed to divide. The coordination of these processes throughout the cell cycle is therefore critical to achieve genomic integrity and prevent diseases. In this review, we focus on the current understanding of how the replication initiation events are regulated to achieve genome stability.
Collapse
|
5
|
Shibata E, Dutta A. A human cancer cell line initiates DNA replication normally in the absence of ORC5 and ORC2 proteins. J Biol Chem 2020; 295:16949-16959. [PMID: 32989049 PMCID: PMC7863895 DOI: 10.1074/jbc.ra120.015450] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/23/2020] [Indexed: 01/03/2023] Open
Abstract
The origin recognition complex (ORC), composed of six subunits, ORC1-6, binds to origins of replication as a ring-shaped heterohexameric ATPase that is believed to be essential to recruit and load MCM2-7, the minichromosome maintenance protein complex, around DNA and initiate DNA replication. We previously reported the creation of viable cancer cell lines that lacked detectable ORC1 or ORC2 protein without a reduction in the number of origins firing. Here, using CRISPR-Cas9-mediated mutations, we report that human HCT116 colon cancer cells also survive when ORC5 protein expression is abolished via a mutation in the initiator ATG of the ORC5 gene. Even if an internal methionine is used to produce an undetectable, N terminally deleted ORC5, the protein would lack 80% of the AAA+ ATPase domain, including the Walker A motif. The ORC5-depleted cells show normal chromatin binding of MCM2-7 and initiate replication from a similar number of origins as WT cells. In addition, we introduced a second mutation in ORC2 in the ORC5 mutant cells, rendering both ORC5 and ORC2 proteins undetectable in the same cells and destabilizing the ORC1, ORC3, and ORC4 proteins. Yet the double mutant cells grow, recruit MCM2-7 normally to chromatin, and initiate DNA replication with normal number of origins. Thus, in these selected cancer cells, either a crippled ORC lacking ORC2 and ORC5 and present at minimal levels on the chromatin can recruit and load enough MCM2-7 to initiate DNA replication, or human cell lines can sometimes recruit MCM2-7 to origins independent of ORC.
Collapse
Affiliation(s)
- Etsuko Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
6
|
Parker MW, Bell M, Mir M, Kao JA, Darzacq X, Botchan MR, Berger JM. A new class of disordered elements controls DNA replication through initiator self-assembly. eLife 2019; 8:e48562. [PMID: 31560342 PMCID: PMC6764820 DOI: 10.7554/elife.48562] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
The initiation of DNA replication in metazoans occurs at thousands of chromosomal sites known as origins. At each origin, the Origin Recognition Complex (ORC), Cdc6, and Cdt1 co-assemble to load the Mcm2-7 replicative helicase onto chromatin. Current replication models envisage a linear arrangement of isolated origins functioning autonomously; the extent of inter-origin organization and communication is unknown. Here, we report that the replication initiation machinery of D. melanogaster unexpectedly undergoes liquid-liquid phase separation (LLPS) upon binding DNA in vitro. We find that ORC, Cdc6, and Cdt1 contain intrinsically disordered regions (IDRs) that drive LLPS and constitute a new class of phase separating elements. Initiator IDRs are shown to regulate multiple functions, including chromosome recruitment, initiator-specific co-assembly, and Mcm2-7 loading. These data help explain how CDK activity controls replication initiation and suggest that replication programs are subject to higher-order levels of inter-origin organization.
Collapse
Affiliation(s)
- Matthew W Parker
- Department of Biophysics and Biophysical ChemistryJohns Hopkins School of MedicineBaltimoreUnited States
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Maren Bell
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Mustafa Mir
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Jonchee A Kao
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Xavier Darzacq
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Michael R Botchan
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - James M Berger
- Department of Biophysics and Biophysical ChemistryJohns Hopkins School of MedicineBaltimoreUnited States
| |
Collapse
|
7
|
Moiseeva TN, Bakkenist CJ. Regulation of the initiation of DNA replication in human cells. DNA Repair (Amst) 2018; 72:99-106. [PMID: 30266203 DOI: 10.1016/j.dnarep.2018.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022]
Abstract
The origin of species would not have been possible without high fidelity DNA replication and complex genomes evolved with mechanisms that control the initiation of DNA replication at multiple origins on multiple chromosomes such that the genome is duplicated once and only once. The mechanisms that control the assembly and activation of the replicative helicase and the initiation of DNA replication in yeast and Xenopus egg extract systems have been identified and reviewed [1,2]. The goal of this review is to organize currently available data on the mechanisms that control the initiation of DNA replication in human cells.
Collapse
Affiliation(s)
- Tatiana N Moiseeva
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Christopher J Bakkenist
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Conformational control and DNA-binding mechanism of the metazoan origin recognition complex. Proc Natl Acad Sci U S A 2018; 115:E5906-E5915. [PMID: 29899147 DOI: 10.1073/pnas.1806315115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, the heterohexameric origin recognition complex (ORC) coordinates replication onset by facilitating the recruitment and loading of the minichromosome maintenance 2-7 (Mcm2-7) replicative helicase onto DNA to license origins. Drosophila ORC can adopt an autoinhibited configuration that is predicted to prevent Mcm2-7 loading; how the complex is activated and whether other ORC homologs can assume this state are not known. Using chemical cross-linking and mass spectrometry, biochemical assays, and electron microscopy (EM), we show that the autoinhibited state of Drosophila ORC is populated in solution, and that human ORC can also adopt this form. ATP binding to ORC supports a transition from the autoinhibited state to an active configuration, enabling the nucleotide-dependent association of ORC with both DNA and Cdc6. An unstructured N-terminal region adjacent to the conserved ATPase domain of Orc1 is shown to be required for high-affinity ORC-DNA interactions, but not for activation. ORC optimally binds DNA duplexes longer than the predicted footprint of the ORC ATPases associated with a variety of cellular activities (AAA+) and winged-helix (WH) folds; cryo-EM analysis of Drosophila ORC bound to DNA and Cdc6 indicates that ORC contacts DNA outside of its central core region, bending the DNA away from its central DNA-binding channel. Our findings indicate that ORC autoinhibition may be common to metazoans and that ORC-Cdc6 remodels origin DNA before Mcm2-7 recruitment and loading.
Collapse
|
9
|
Abstract
Cellular DNA replication factories depend on ring-shaped hexameric helicases to aid DNA synthesis by processively unzipping the parental DNA helix. Replicative helicases are loaded onto DNA by dedicated initiator, loader, and accessory proteins during the initiation of DNA replication in a tightly regulated, multistep process. We discuss here the molecular choreography of DNA replication initiation across the three domains of life, highlighting similarities and differences in the strategies used to deposit replicative helicases onto DNA and to melt the DNA helix in preparation for replisome assembly. Although initiators and loaders are phylogenetically related, the mechanisms they use for accomplishing similar tasks have diverged considerably and in an unpredictable manner.
Collapse
Affiliation(s)
- Franziska Bleichert
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
11
|
Shibata E, Kiran M, Shibata Y, Singh S, Kiran S, Dutta A. Two subunits of human ORC are dispensable for DNA replication and proliferation. eLife 2016; 5. [PMID: 27906128 PMCID: PMC5245961 DOI: 10.7554/elife.19084] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022] Open
Abstract
The six-subunit Origin Recognition Complex (ORC) is believed to be an essential eukaryotic ATPase that binds to origins of replication as a ring-shaped heterohexamer to load MCM2-7 and initiate DNA replication. We have discovered that human cell lines in culture proliferate with intact chromosomal origins of replication after disruption of both alleles of ORC2 or of the ATPase subunit, ORC1. The ORC1 or ORC2-depleted cells replicate with decreased chromatin loading of MCM2-7 and become critically dependent on another ATPase, CDC6, for survival and DNA replication. Thus, either the ORC ring lacking a subunit, even its ATPase subunit, can load enough MCM2-7 in partnership with CDC6 to initiate DNA replication, or cells have an ORC-independent, CDC6-dependent mechanism to load MCM2-7 on origins of replication DOI:http://dx.doi.org/10.7554/eLife.19084.001 Most of the DNA in human cells is packaged into structures called chromosomes. Before a cell divides, the DNA in each chromosome is carefully copied. This process begins at multiple sites (known as origins) on each chromosome. A group of six proteins collectively known as the Origin Recognition Complex (or ORC for short) binds to an origin and then recruits several additional proteins. When the cell is ready, the assembled proteins are activated and DNA copying begins. It is thought that all of the ORC proteins are essential for cells to survive and copy their DNA. Here, Shibata et al. reveal that human cells can survive without ORC1 or ORC2, two of the six proteins in the ORC complex. Disrupting the genes that encode the ORC1 and ORC2 proteins in human cancer cell lines had little effect on the ability of the cells to copy their DNA and survive. Furthermore, these cells spend the same amount of time copying their DNA and use a similar set of origins as normal cells. However, the experiments also reveal that cells without ORC1 or ORC2 are more dependent on the presence of one particular protein recruited to the origin after the ORC assembles. Reducing the availability of this protein, CDC6, decreased the ability of these cells to survive and divide. Future efforts will aim to identify the mechanism by which cells bring together the proteins required to copy DNA in the absence of a complete ORC. DOI:http://dx.doi.org/10.7554/eLife.19084.002
Collapse
Affiliation(s)
- Etsuko Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
| | - Manjari Kiran
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
| | - Yoshiyuki Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
| | - Samarendra Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
| | - Shashi Kiran
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
| |
Collapse
|
12
|
Kara N, Hossain M, Prasanth SG, Stillman B. Orc1 Binding to Mitotic Chromosomes Precedes Spatial Patterning during G1 Phase and Assembly of the Origin Recognition Complex in Human Cells. J Biol Chem 2015; 290:12355-69. [PMID: 25784553 DOI: 10.1074/jbc.m114.625012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Indexed: 12/21/2022] Open
Abstract
Replication of eukaryotic chromosomes occurs once every cell division cycle in normal cells and is a tightly controlled process that ensures complete genome duplication. The origin recognition complex (ORC) plays a key role during the initiation of DNA replication. In human cells, the level of Orc1, the largest subunit of ORC, is regulated during the cell division cycle, and thus ORC is a dynamic complex. Upon S phase entry, Orc1 is ubiquitinated and targeted for destruction, with subsequent dissociation of ORC from chromosomes. Time lapse and live cell images of human cells expressing fluorescently tagged Orc1 show that Orc1 re-localizes to condensing chromatin during early mitosis and then displays different nuclear localization patterns at different times during G1 phase, remaining associated with late replicating regions of the genome in late G1 phase. The initial binding of Orc1 to mitotic chromosomes requires C-terminal amino acid sequences that are similar to mitotic chromosome-binding sequences in the transcriptional pioneer protein FOXA1. Depletion of Orc1 causes concomitant loss of the mini-chromosome maintenance (Mcm2-7) helicase proteins on chromatin. The data suggest that Orc1 acts as a nucleating center for ORC assembly and then pre-replication complex assembly by binding to mitotic chromosomes, followed by gradual removal from chromatin during the G1 phase.
Collapse
Affiliation(s)
- Nihan Kara
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, the Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11779, and
| | - Manzar Hossain
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Supriya G Prasanth
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, the Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801
| | - Bruce Stillman
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724,
| |
Collapse
|
13
|
Bleichert F, Botchan MR, Berger JM. Crystal structure of the eukaryotic origin recognition complex. Nature 2015; 519:321-6. [PMID: 25762138 PMCID: PMC4368505 DOI: 10.1038/nature14239] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 01/16/2015] [Indexed: 12/18/2022]
Abstract
Initiation of cellular DNA replication is tightly controlled to sustain genomic integrity. In eukaryotes, the heterohexameric origin recognition complex (ORC) is essential for coordinating replication onset. The 3.5 Å resolution crystal structure of Drosophila ORC reveals that the 270 kDa initiator core complex comprises a two-layered notched ring in which a collar of winged-helix domains from the Orc1-5 subunits sits atop a layer of AAA+ ATPase folds. Although canonical inter-AAA+ domain interactions exist between four of the six ORC subunits, unanticipated features are also evident, including highly interdigitated domain-swapping interactions between the winged-helix folds and AAA+ modules of neighboring protomers, and a quasi-spiral arrangement of DNA binding elements that circumnavigate a ~20 Å wide channel in the center of the complex. Comparative analyses indicate that ORC encircles DNA, using its winged-helix domain face to engage the MCM2-7 complex during replicative helicase loading; however, an observed >90° out-of-plane rotation for the Orc1 AAA+ domain disrupts interactions with catalytic amino acids in Orc4, narrowing and sealing off entry into the central channel. Prima facie, our data indicate that Drosophila ORC can switch between active and autoinhibited conformations, suggesting a novel means for cell cycle and/or developmental control of ORC functions.
Collapse
Affiliation(s)
- Franziska Bleichert
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
14
|
Dellino GI, Pelicci PG. Next-generation sequencing and DNA replication in human cells: the future has arrived. Future Oncol 2015; 10:683-93. [PMID: 24754597 DOI: 10.2217/fon.13.182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accurate regulation of DNA replication ensures faithful transmission of eukaryotic genomes and maintenance of genomic stability and chromatin organization. However, by itself the replication process is a threat for both DNA and chromatin integrity. This becomes particularly relevant in cancer cells, where activated oncogenes induce replication-stress, including unscheduled initiation, fork stalling and collapse and, ultimately, genomic instability. Studies addressing the relationship between (epi)genome integrity and disease have been hampered by our poor knowledge of the mechanisms regulating where and when eukaryotic replication initiates. Recently developed genome-scale methods for the analysis of DNA replication in mammals will contribute to the identification of missing links between replication, chromatin regulation and genome stability in normal and cancer cells.
Collapse
Affiliation(s)
- Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| | | |
Collapse
|
15
|
Coster G, Frigola J, Beuron F, Morris EP, Diffley JFX. Origin licensing requires ATP binding and hydrolysis by the MCM replicative helicase. Mol Cell 2014; 55:666-77. [PMID: 25087873 PMCID: PMC4157578 DOI: 10.1016/j.molcel.2014.06.034] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/11/2014] [Accepted: 06/26/2014] [Indexed: 01/24/2023]
Abstract
Loading of the six related Minichromosome Maintenance (MCM) proteins as head-to-head double hexamers during DNA replication origin licensing is crucial for ensuring once-per-cell-cycle DNA replication in eukaryotic cells. Assembly of these prereplicative complexes (pre-RCs) requires the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ORC, Cdc6, and MCM are members of the AAA+ family of ATPases, and pre-RC assembly requires ATP hydrolysis. Here we show that ORC and Cdc6 mutants defective in ATP hydrolysis are competent for origin licensing. However, ATP hydrolysis by Cdc6 is required to release nonproductive licensing intermediates. We show that ATP binding stabilizes the wild-type MCM hexamer. Moreover, by analyzing MCM containing mutant subunits, we show that ATP binding and hydrolysis by MCM are required for Cdt1 release and double hexamer formation. This work alters our view of how ATP is used by licensing factors to assemble pre-RCs.
Collapse
Affiliation(s)
- Gideon Coster
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts. EN6 3LD, UK
| | - Jordi Frigola
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts. EN6 3LD, UK
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Edward P Morris
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - John F X Diffley
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts. EN6 3LD, UK.
| |
Collapse
|
16
|
Protein phosphatase 1 dephosphorylates Orc2. Biochem Biophys Res Commun 2014; 447:437-40. [DOI: 10.1016/j.bbrc.2014.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/04/2014] [Indexed: 11/23/2022]
|
17
|
Bleichert F, Balasov M, Chesnokov I, Nogales E, Botchan MR, Berger JM. A Meier-Gorlin syndrome mutation in a conserved C-terminal helix of Orc6 impedes origin recognition complex formation. eLife 2013; 2:e00882. [PMID: 24137536 PMCID: PMC3791464 DOI: 10.7554/elife.00882] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023] Open
Abstract
In eukaryotes, DNA replication requires the origin recognition complex (ORC), a six-subunit assembly that promotes replisome formation on chromosomal origins. Despite extant homology between certain subunits, the degree of structural and organizational overlap between budding yeast and metazoan ORC has been unclear. Using 3D electron microscopy, we determined the subunit organization of metazoan ORC, revealing that it adopts a global architecture very similar to the budding yeast complex. Bioinformatic analysis extends this conservation to Orc6, a subunit of somewhat enigmatic function. Unexpectedly, a mutation in the Orc6 C-terminus linked to Meier-Gorlin syndrome, a dwarfism disorder, impedes proper recruitment of Orc6 into ORC; biochemical studies reveal that this region of Orc6 associates with a previously uncharacterized domain of Orc3 and is required for ORC function and MCM2-7 loading in vivo. Together, our results suggest that Meier-Gorlin syndrome mutations in Orc6 impair the formation of ORC hexamers, interfering with appropriate ORC functions. DOI:http://dx.doi.org/10.7554/eLife.00882.001.
Collapse
Affiliation(s)
- Franziska Bleichert
- Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Maxim Balasov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, United States
| | - Igor Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, United States
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - James M Berger
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
18
|
Hoshina S, Yura K, Teranishi H, Kiyasu N, Tominaga A, Kadoma H, Nakatsuka A, Kunichika T, Obuse C, Waga S. Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J Biol Chem 2013; 288:30161-30171. [PMID: 24003239 DOI: 10.1074/jbc.m113.492504] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Origin recognition complex (ORC), consisting of six subunits ORC1-6, is known to bind to replication origins and function in the initiation of DNA replication in eukaryotic cells. In contrast to the fact that Saccharomyces cerevisiae ORC recognizes the replication origin in a sequence-specific manner, metazoan ORC has not exhibited strict sequence-specificity for DNA binding. Here we report that human ORC binds preferentially to G-quadruplex (G4)-preferable G-rich RNA or single-stranded DNA (ssDNA). We mapped the G-rich RNA-binding domain in the ORC1 subunit, in a region adjacent to its ATPase domain. This domain itself has an ability to preferentially recognize G4-preferable sequences of ssDNA. Furthermore, we found, by structure modeling, that the G-rich RNA-binding domain is similar to the N-terminal portion of AdoMet_MTase domain of mammalian DNA methyltransferase 1. Therefore, in contrast with the binding to double-stranded DNA, human ORC has an apparent sequence preference with respect to its RNA/ssDNA binding. Interestingly, this specificity coincides with the common signature present in most of the human replication origins. We expect that our findings provide new insights into the regulations of function and chromatin binding of metazoan ORCs.
Collapse
Affiliation(s)
- Shoko Hoshina
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Kei Yura
- the Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Honami Teranishi
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Noriko Kiyasu
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Ayumi Tominaga
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Haruka Kadoma
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Ayaka Nakatsuka
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Tomoko Kunichika
- the Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan, and
| | - Chikashi Obuse
- the Division of Molecular Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Shou Waga
- From the Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan,.
| |
Collapse
|
19
|
Moriyama K, Yoshizawa-Sugata N, Obuse C, Tsurimoto T, Masai H. Epstein-Barr nuclear antigen 1 (EBNA1)-dependent recruitment of origin recognition complex (Orc) on oriP of Epstein-Barr virus with purified proteins: stimulation by Cdc6 through its direct interaction with EBNA1. J Biol Chem 2012; 287:23977-94. [PMID: 22589552 DOI: 10.1074/jbc.m112.368456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Origin recognition complex (Orc) plays an essential role in directing assembly of prereplicative complex at selective sites on chromosomes. However, Orc from vertebrates is reported to bind to DNA in a sequence-nonspecific manner, and it is still unclear how it selects specific genomic loci and how Cdc6, another conserved AAA(+) factor known to interact with Orc, participates in this process. Replication from oriP, the latent origin of Epstein-Barr virus, provides an excellent model system for the study of initiation on the host chromosomes because it is known to depend on prereplicative complex factors, including Orc and Mcm. Here, we show that Orc is recruited selectively at the essential dyad symmetry element in nuclear extracts in a manner dependent on EBNA1, which specifically binds to dyad symmetry. With purified proteins, EBNA1 can recruit both Cdc6 and Orc independently on a DNA containing EBNA1 binding sites, and Cdc6 facilitates the Orc recruitment by EBNA1. Purified Cdc6 directly binds to EBNA1, whereas association of Orc with EBNA1 requires the presence of the oriP DNA. Nuclease protection assays suggest that Orc associates with DNA segments on both sides adjacent to the EBNA1 binding sites and that this process is stimulated by the presence of Cdc6. Thus, EBNA1 can direct localized assembly of Orc in a process that is facilitated by Cdc6. The possibility of similar modes of recruitment of Orc/Cdc6 at the human chromosomal origins will be discussed.
Collapse
Affiliation(s)
- Kenji Moriyama
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | |
Collapse
|
20
|
Luo J, Liu X. Polo-like kinase 1, on the rise from cell cycle regulation to prostate cancer development. Protein Cell 2012; 3:182-97. [PMID: 22447658 PMCID: PMC4875424 DOI: 10.1007/s13238-012-2020-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 02/04/2012] [Indexed: 01/19/2023] Open
Abstract
Polo-like kinase 1 (Plk1), a well-characterized member of serine/threonine kinases Plk family, has been shown to play pivotal roles in mitosis and cytokinesis in eukaryotic cells. Recent studies suggest that Plk1 not only controls the process of mitosis and cytokinesis, but also, going beyond those previously described functions, plays critical roles in DNA replication and Pten null prostate cancer initiation. In this review, we briefly summarize the functions of Plk1 in mitosis and cytokinesis, and then mainly focus on newly discovered functions of Plk1 in DNA replication and in Pten-null prostate cancer initiation. Furthermore, we briefly introduce the architectures of human and mouse prostate glands and the possible roles of Plk1 in human prostate cancer development. And finally, the newly chemotherapeutic development of small-molecule Plk1 inhibitors to target Plk1 in cancer treatment and their translational studies are also briefly reviewed.
Collapse
Affiliation(s)
- Jijing Luo
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
21
|
Lee KY, Bang SW, Yoon SW, Lee SH, Yoon JB, Hwang DS. Phosphorylation of ORC2 protein dissociates origin recognition complex from chromatin and replication origins. J Biol Chem 2012; 287:11891-8. [PMID: 22334659 DOI: 10.1074/jbc.m111.338467] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the late M to the G(1) phase of the cell cycle, the origin recognition complex (ORC) binds to the replication origin, leading to the assembly of the prereplicative complex for subsequent initiation of eukaryotic chromosome replication. We found that the cell cycle-dependent phosphorylation of human ORC2, one of the six subunits of ORC, dissociates ORC2, -3, -4, and -5 (ORC2-5) subunits from chromatin and replication origins. Phosphorylation at Thr-116 and Thr-226 of ORC2 occurs by cyclin-dependent kinase during the S phase and is maintained until the M phase. Phosphorylation of ORC2 at Thr-116 and Thr-226 dissociated the ORC2-5 from chromatin. Consistent with this, the phosphomimetic ORC2 protein exhibited defective binding to replication origins as well as to chromatin, whereas the phosphodefective protein persisted in binding throughout the cell cycle. These results suggest that the phosphorylation of ORC2 dissociates ORC from chromatin and replication origins and inhibits binding of ORC to newly replicated DNA.
Collapse
Affiliation(s)
- Kyung Yong Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Sacco E, Hasan MM, Alberghina L, Vanoni M. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol Adv 2012; 30:73-98. [DOI: 10.1016/j.biotechadv.2011.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
|
23
|
Abstract
The origin recognition complex (ORC) was first discovered in the baker's yeast in 1992. Identification of ORC opened up a path for subsequent molecular level investigations on how eukaryotic cells initiate and control genome duplication each cell cycle. Twenty years after the first biochemical isolation, ORC is now taking on a three-dimensional shape, although a very blurry shape at the moment, thanks to the recent electron microscopy and image reconstruction efforts. In this chapter, we outline the current biochemical knowledge about ORC from several eukaryotic systems, with emphasis on the most recent structural and biochemical studies. Despite many species-specific properties, an emerging consensus is that ORC is an ATP-dependent machine that recruits other key proteins to form pre-replicative complexes (pre-RCs) at many origins of DNA replication, enabling the subsequent initiation of DNA replication in S phase.
Collapse
Affiliation(s)
- Huilin Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA, And, Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA, , Tel: 631-344-2931, Fax: 631-344-3407
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, , Tel: 516-367-8383
| |
Collapse
|
24
|
Ghosh S, Vassilev AP, Zhang J, Zhao Y, DePamphilis ML. Assembly of the human origin recognition complex occurs through independent nuclear localization of its components. J Biol Chem 2011; 286:23831-41. [PMID: 21555516 DOI: 10.1074/jbc.m110.215988] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Initiation of eukaryotic genome duplication begins when a six-subunit origin recognition complex (ORC) binds to DNA. However, the mechanism by which this occurs in vivo and the roles played by individual subunits appear to differ significantly among organisms. Previous studies identified a soluble human ORC(2-5) complex in the nucleus, an ORC(1-5) complex bound to chromatin, and an Orc6 protein that binds weakly, if at all, to other ORC subunits. Here we show that stable ORC(1-6) complexes also can be purified from human cell extracts and that Orc6 and Orc1 each contain a single nuclear localization signal that is essential for nuclear localization but not for ORC assembly. The Orc6 nuclear localization signal, which is essential for Orc6 function, is facilitated by phosphorylation at its cyclin-dependent kinase consensus site and by association with Kpna6/1, nuclear transport proteins that did not co-purify with other ORC subunits. These and other results support a model in which Orc6, Orc1, and ORC(2-5) are transported independently to the nucleus where they can either assemble into ORC(1-6) or function individually.
Collapse
Affiliation(s)
- Soma Ghosh
- NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | | | |
Collapse
|
25
|
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 2010; 79:89-130. [PMID: 20373915 DOI: 10.1146/annurev.biochem.052308.103205] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA replication is central to cell proliferation. Studies in the past six decades since the proposal of a semiconservative mode of DNA replication have confirmed the high degree of conservation of the basic machinery of DNA replication from prokaryotes to eukaryotes. However, the need for replication of a substantially longer segment of DNA in coordination with various internal and external signals in eukaryotic cells has led to more complex and versatile regulatory strategies. The replication program in higher eukaryotes is under a dynamic and plastic regulation within a single cell, or within the cell population, or during development. We review here various regulatory mechanisms that control the replication program in eukaryotes and discuss future directions in this dynamic field.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
26
|
The role of ATP in the function of human ORC4 protein. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2010. [DOI: 10.2298/jsc090724019d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human ORC4 protein, a subunit of the origin recognition complex, belongs to the AAA+ superfamily of ATPases. Proteins belonging to this family require ATP for their function and interactions with ATP lead to conformational changes in them or in their partners. Human ORC4 protein induces structural changes in DNA substrates, promoting renaturation and formation of non-canonical structures, as well as conversion of single-stranded into multi-stranded oligonucleotide structures. The aim of this study was to further investigate the role of ATP in the function of human ORC4 protein. For this purpose, a mutant in the conserved Walker B motif of ORC4, which is able to bind but not to hydrolyze ATP, was constructed and its activity in DNA restructuring reactions was investigated. The obtained results showed that ATP hydrolysis is not necessary for the function of human ORC4. It is proposed that ATP has a structural role as a cofactor in the function of human ORC4 as a DNA restructuring agent.
Collapse
|
27
|
Functional dissection of the catalytic carboxyl-terminal domain of origin recognition complex subunit 1 (PfORC1) of the human malaria parasite Plasmodium falciparum. EUKARYOTIC CELL 2009; 8:1341-51. [PMID: 19633266 DOI: 10.1128/ec.00170-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Origin recognition complex subunit 1 (ORC1) is essential for DNA replication in eukaryotes. The deadly human malaria parasite Plasmodium falciparum contains an ORC1/CDC6 homolog with several interesting domains at the catalytic carboxyl-terminal region that include a putative nucleoside triphosphate-binding and hydrolysis domain, a putative PCNA-interacting-protein (PIP) motif, and an extreme C-terminal region that shows poor homology with other ORC1 homologs. Due to the unavailability of a dependable inducible gene expression system, it is difficult to study the structure and function of essential genes in Plasmodium. Using a genetic yeast complementation system and biochemical experiments, here we show that the putative PIP domain in ORC1 that facilitates in vitro physical interaction with PCNA is functional in both yeast (Saccharomyces cerevisiae) and Plasmodium in vivo, confirming its essential biological role in eukaryotes. Furthermore, despite having less sequence homology, the extreme C-terminal region can be swapped between S. cerevisiae and P. falciparum and it binds to DNA directly, suggesting a conserved role of this region in DNA replication. These results not only provide us a useful system to study the function of the essential genes in Plasmodium, they help us to identify the previously undiscovered unique features of replication proteins in general.
Collapse
|
28
|
Expression and subcellular localization of ORC1 in Leishmania major. Biochem Biophys Res Commun 2008; 375:74-9. [PMID: 18680728 DOI: 10.1016/j.bbrc.2008.07.125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 07/23/2008] [Indexed: 01/23/2023]
Abstract
The mechanism of DNA replication is highly conserved in eukaryotes, with the process being preceded by the ordered assembly of pre-replication complexes (pre-RCs). Pre-RC formation is triggered by the association of the origin replication complex (ORC) with chromatin. Leishmania major appears to have only one ORC ortholog, ORC1. ORC1 in other eukaryotes is the largest of the ORC subunits and is believed to play a significant role in modulating replication initiation. Here we report for the first time, the cloning of ORC1 from L. major, and the analysis of its expression in L. major promastigotes. In human cells ORC1 levels have been found to be upregulated in G1 and subsequently degraded, thus playing a role in controlling replication initiation. We examine the subcellular localization of L. major ORC1 in relation to the different stages of the cell cycle. Our results show that, unlike what is widely believed to be the case with ORC1 in human cells, ORC1 in L. major is nuclear at all stages of the cell cycle.
Collapse
|
29
|
Gupta A, Mehra P, Dhar SK. Plasmodium falciparum origin recognition complex subunit 5: functional characterization and role in DNA replication foci formation. Mol Microbiol 2008; 69:646-65. [PMID: 18554328 PMCID: PMC2610387 DOI: 10.1111/j.1365-2958.2008.06316.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2008] [Indexed: 12/24/2022]
Abstract
The mechanism of DNA replication initiation and progression is poorly understood in the parasites, including human malaria parasite Plasmodium falciparum. Using bioinformatics tools and yeast complementation assay, we identified a putative homologue of Saccharomyces cerevisiaeorigin recognition complex subunit 5 in P. falciparum (PfORC5). PfORC5 forms distinct nuclear foci colocalized with the replication foci marker proliferating cell nuclear antigen (PfPCNA) and co-immunoprecipitates with PCNA during early-to-mid trophozoite stage replicating parasites. Interestingly, these proteins separate from each other at the non-replicating late schizont stage, citing the evidence of the presence of both PCNA and ORC components in replication foci during eukaryotic DNA replication. PfORC1, another ORC subunit, colocalizes with PfPCNA and PfORC5 at the beginning of DNA replication, but gets degraded at the late schizont stage, ensuring the regulation of DNA replication in the parasites. Further, we have identified putative PCNA-interacting protein box in PfORC1 that may explain in part the colocalization of PfORC and PfPCNA. Additionally, use of specific DNA replication inhibitor hydroxyurea affects ORC5/PCNA foci formation and parasitic growth. These results strongly favour replication factory model in the parasites and confer great potential to understand the co-ordination between ORC and PCNA during eukaryotic DNA replication in general.
Collapse
Affiliation(s)
| | | | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru UniversityNew Delhi 110067, India
| |
Collapse
|
30
|
Stefanovic D, Kusic J, Divac A, Tomic B. Formation of noncanonical DNA structures mediated by human ORC4, a protein component of the origin recognition complex. Biochemistry 2008; 47:8760-7. [PMID: 18652488 DOI: 10.1021/bi800684f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many genomic sequences, DNA replication origins included, contain specific structural motifs prone to alternative base pairing. Structural rearrangements of DNA require specific environmental conditions and could be favored by chemical agents or proteins. To improve our understanding of alternative conformations of origins and the manner in which they form, we have investigated the effect of DNA-binding, AAA+ protein human ORC4 on single-stranded origin DNA or various oligonucleotides. Here we demonstrate that human ORC4 stimulated formation of inter- and intramolecular T.A.T triplexes and created novel structures, such as homoadenine duplexes. Adenine-based structures were held together by Hoogsteen hydrogen bonds, as demonstrated on 7-deaza-dAMP- or dAMP-containing substrates, and characterized by increased thermal stability. Adenine pairing occurred only in the presence of human ORC4, in a neutral buffer supplemented with ATP and Mg (2+) ions. The protein mutant that could not bind ATP was inactive in this reaction. Since the action of human ORC4 could be biologically important, its potential impact on DNA replication is discussed.
Collapse
Affiliation(s)
- Dragana Stefanovic
- Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia.
| | | | | | | |
Collapse
|
31
|
Abstract
Eukaryotic DNA replication is regulated to ensure all chromosomes replicate once and only once per cell cycle. Replication begins at many origins scattered along each chromosome. Except for budding yeast, origins are not defined DNA sequences and probably are inherited by epigenetic mechanisms. Initiation at origins occurs throughout the S phase according to a temporal program that is important in regulating gene expression during development. Most replication proteins are conserved in evolution in eukaryotes and archaea, but not in bacteria. However, the mechanism of initiation is conserved and consists of origin recognition, assembly of prereplication (pre-RC) initiative complexes, helicase activation, and replisome loading. Cell cycle regulation by protein phosphorylation ensures that pre-RC assembly can only occur in G1 phase, whereas helicase activation and loading can only occur in S phase. Checkpoint regulation maintains high fidelity by stabilizing replication forks and preventing cell cycle progression during replication stress or damage.
Collapse
Affiliation(s)
- R A Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | |
Collapse
|
32
|
Abstract
The origin recognition complex (ORC) was initially discovered in budding yeast extracts as a protein complex that binds with high affinity to autonomously replicating sequences in an ATP-dependent manner. We have cloned and expressed the human homologs of the ORC subunits as recombinant proteins. In contrast to other eukaryotic initiators examined thus far, assembly of human ORC in vitro is dependent on ATP binding. Mutations in the ATP-binding sites of Orc4 or Orc5 impair complex assembly, whereas Orc1 ATP binding is not required. Immunofluorescence staining of human cells with anti-Orc3 antibodies demonstrate cell cycle-dependent association with a nuclear structure. Immunoprecipitation experiments show that ORC disassembles as cells progress through S phase. The Orc6 protein binds directly to the Orc3 subunit and interacts as part of ORC in vivo. These data suggest that the assembly and disassembly of ORC in human cells is uniquely regulated and may contribute to restricting DNA replication to once in every cell division cycle.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
33
|
Speck C, Stillman B. Cdc6 ATPase activity regulates ORC x Cdc6 stability and the selection of specific DNA sequences as origins of DNA replication. J Biol Chem 2007; 282:11705-14. [PMID: 17314092 PMCID: PMC3033201 DOI: 10.1074/jbc.m700399200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication, as with all macromolecular synthesis steps, is controlled in part at the level of initiation. Although the origin recognition complex (ORC) binds to origins of DNA replication, it does not solely determine their location. To initiate DNA replication ORC requires Cdc6 to target initiation to specific DNA sequences in chromosomes and with Cdt1 loads the ring-shaped mini-chromosome maintenance (MCM) 2-7 DNA helicase component onto DNA. ORC and Cdc6 combine to form a ring-shaped complex that contains six AAA+ subunits. ORC and Cdc6 ATPase mutants are defective in MCM loading, and ORC ATPase mutants have reduced activity in ORC x Cdc6 x DNA complex formation. Here we analyzed the role of the Cdc6 ATPase on ORC x Cdc6 complex stability in the presence or absence of specific DNA sequences. Cdc6 ATPase is activated by ORC, regulates ORC x Cdc6 complex stability, and is suppressed by origin DNA. Mutations in the conserved origin A element, and to a lesser extent mutations in the B1 and B2 elements, induce Cdc6 ATPase activity and prevent stable ORC x Cdc6 formation. By analyzing ORC x Cdc6 complex stability on various DNAs, we demonstrated that specific DNA sequences control the rate of Cdc6 ATPase, which in turn controls the rate of Cdc6 dissociation from the ORC x Cdc6 x DNA complex. We propose a mechanism explaining how Cdc6 ATPase activity promotes origin DNA sequence specificity; on DNA that lacks origin activity, Cdc6 ATPase promotes dissociation of Cdc6, whereas origin DNA down-regulates Cdc6 ATPase resulting in a stable ORC x Cdc6 x DNA complex, which can then promote MCM loading. This model has relevance for origin specificity in higher eukaryotes.
Collapse
Affiliation(s)
- Christian Speck
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
34
|
Abstract
The origin recognition complex (ORC), a heteromeric six-subunit protein, is a central component for eukaryotic DNA replication. The ORC binds to DNA at replication origin sites in an ATP-dependent manner and serves as a scaffold for the assembly of other key initiation factors. Sequence rules for ORC-DNA binding appear to vary widely. In budding yeast the ORC recognizes specific ori elements, however, in higher eukaryotes origin site selection does not appear to depend on the specific DNA sequence. In metazoans, during cell cycle progression, one or more of the ORC subunits can be modified in such a way that ORC activity is inhibited until mitosis is complete and a nuclear membrane is assembled. In addition to its well-documented role in the initiation of DNA replication, the ORC is also involved in other cell functions. Some of these activities directly link cell cycle progression with DNA replication, while other functions seem distinct from replication. The function of ORCs in the establishment of transcriptionally repressed regions is described for many species and may be a conserved feature common for both unicellular eukaryotes and metazoans. ORC subunits were found at centrosomes, at the cell membranes, at the cytokinesis furrows of dividing cells, as well as at the kinetochore. The exact mechanism of these localizations remains to be determined, however, latest results support the idea that ORC proteins participate in multiple aspects of the chromosome inheritance cycle. In this review, we discuss the participation of ORC proteins in various cell functions, in addition to the canonical role of ORC in initiating DNA replication.
Collapse
Affiliation(s)
- Igor N Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
35
|
Noguchi K, Vassilev A, Ghosh S, Yates JL, DePamphilis ML. The BAH domain facilitates the ability of human Orc1 protein to activate replication origins in vivo. EMBO J 2006; 25:5372-82. [PMID: 17066079 PMCID: PMC1636626 DOI: 10.1038/sj.emboj.7601396] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 09/21/2006] [Indexed: 11/09/2022] Open
Abstract
Selection of initiation sites for DNA replication in eukaryotes is determined by the interaction between the origin recognition complex (ORC) and genomic DNA. In mammalian cells, this interaction appears to be regulated by Orc1, the only ORC subunit that contains a bromo-adjacent homology (BAH) domain. Since BAH domains mediate protein-protein interactions, the human Orc1 BAH domain was mutated, and the mutant proteins expressed in human cells to determine their affects on ORC function. The BAH domain was not required for nuclear localization of Orc1, association of Orc1 with other ORC subunits, or selective degradation of Orc1 during S-phase. It did, however, facilitate reassociation of Orc1 with chromosomes during the M to G1-phase transition, and it was required for binding Orc1 to the Epstein-Barr virus oriP and stimulating oriP-dependent plasmid DNA replication. Moreover, the BAH domain affected Orc1's ability to promote binding of Orc2 to chromatin as cells exit mitosis. Thus, the BAH domain in human Orc1 facilitates its ability to activate replication origins in vivo by promoting association of ORC with chromatin.
Collapse
Affiliation(s)
- Kohji Noguchi
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alex Vassilev
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Soma Ghosh
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - John L Yates
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- National Institute of Child Health and Human Development, National Institutes of Health, Building 6/3A15, 9000 Rockville Pike, Bethesda, MD 20892-2753, USA. Tel.: +1 301 402 8234; Fax: +1 301 480 9354; E-mail:
| |
Collapse
|
36
|
Radichev I, Kwon SW, Zhao Y, DePamphilis ML, Vassilev A. Genetic analysis of human Orc2 reveals specific domains that are required in vivo for assembly and nuclear localization of the origin recognition complex. J Biol Chem 2006; 281:23264-73. [PMID: 16762929 DOI: 10.1074/jbc.m603873200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA replication begins with the binding of a six subunit origin recognition complex (ORC) to DNA. To study the assembly and function of mammalian ORC proteins in their native environment, HeLa cells were constructed that constitutively expressed an epitope-tagged, recombinant human Orc2 subunit that had been genetically altered. Analysis of these cell lines revealed that Orc2 contains a single ORC assembly domain that is required in vivo for interaction with all other ORC subunits, as well as two nuclear localization signals (NLSs) that are required for ORC accumulation in the nucleus. The recombinant Orc2 existed in the nucleus either as an ORC-(2-5) or ORC-(1-5) complex; no other combinations of ORC subunits were detected. Moreover, only ORC-(1-5) was bound to the chromatin fraction, suggesting that Orc1 is required in vivo to load ORC-(2-5) onto chromatin. Surprisingly, recombinant Orc2 suppressed expression of endogenous Orc2, revealing that mammalian cells limit the intracellular level of Orc2, and thereby limit the amount of ORC-(2-5) in the nucleus. Because this suppression required only the ORC assembly and NLS domains, these domains appear to constitute the functional domain of Orc2.
Collapse
Affiliation(s)
- Ilian Radichev
- NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | | | |
Collapse
|
37
|
DePamphilis ML, Blow JJ, Ghosh S, Saha T, Noguchi K, Vassilev A. Regulating the licensing of DNA replication origins in metazoa. Curr Opin Cell Biol 2006; 18:231-9. [PMID: 16650748 DOI: 10.1016/j.ceb.2006.04.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 04/04/2006] [Indexed: 01/19/2023]
Abstract
Eukaryotic DNA replication is a highly conserved process; the proteins and sequence of events that replicate animal genomes are remarkably similar to those that replicate yeast genomes. Moreover, the assembly of prereplication complexes at DNA replication origins ('DNA licensing') is regulated in all eukaryotes so that no origin fires more than once in a single cell cycle. And yet there are significant differences between species both in the selection of replication origins and in the way in which these origins are licensed to operate. Moreover, these differences impart advantages to multicellular animals and plants that facilitate their development, such as better control over endoreduplication, flexibility in origin selection, and discrimination between quiescent and proliferative states.
Collapse
Affiliation(s)
- Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Building 6/3A-15, 9000 Rockville Pike, Bethesda, MD 20892-2753, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Ranjan A, Gossen M. A structural role for ATP in the formation and stability of the human origin recognition complex. Proc Natl Acad Sci U S A 2006; 103:4864-9. [PMID: 16549788 PMCID: PMC1458761 DOI: 10.1073/pnas.0510305103] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The locally restricted recruitment of the multisubunit origin recognition complex (ORC) to eukaryotic chromosomes defines the position of origins of DNA replication. In budding yeast and metazoans the DNA binding activity of ORC is stimulated by ATP and requires an AAA+-type nucleotide binding domain in the largest subunit. Little else is known about the mechanisms behind the ATP requirement for ORC in its initiator function and, specifically, the relevance of nucleotide binding domains present on other subunits. Here we show that ATP is required for specific subunit interactions in the human ORC, with the Orc4 subunit playing a critical role in this dynamic process. ATP is essential for the maintenance of ORC integrity and facilitates complex formation. Thus, besides its previously identified role in DNA binding, ATP serves also as a structural cofactor for human ORC.
Collapse
Affiliation(s)
- Anand Ranjan
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | |
Collapse
|
39
|
Saha T, Ghosh S, Vassilev A, DePamphilis ML. Ubiquitylation, phosphorylation and Orc2 modulate the subcellular location of Orc1 and prevent it from inducing apoptosis. J Cell Sci 2006; 119:1371-82. [PMID: 16537645 PMCID: PMC2766536 DOI: 10.1242/jcs.02851] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous studies have suggested that the activity of the mammalian origin recognition complex (ORC) is regulated by cell-cycle-dependent changes in its Orc1 subunit. Here, we show that Orc1 modifications such as mono-ubiquitylation and hyperphosphorylation that occur normally during S and G2-M phases, respectively, can cause Orc1 to accumulate in the cytoplasm. This would suppress reassembly of pre-replication complexes until mitosis is complete. In the absence of these modifications, transient expression of Orc1 rapidly induced p53-independent apoptosis, and Orc1 accumulated perinuclearly rather than uniformly throughout the nucleus. This behavior mimicked the increased concentration and perinuclear accumulation of endogenous Orc1 in apoptotic cells that arise spontaneously in proliferating cell cultures. Remarkably, expression of Orc1 in the presence of an equivalent amount of Orc2, the only ORC subunit that did not induce apoptosis, prevented induction of apoptosis and restored uniform nuclear localization of Orc1. This would promote assembly of ORC-chromatin sites, such as occurs during the transition from M to G1 phase. These results provide direct evidence in support of the regulatory role proposed for Orc1, and suggest that aberrant DNA replication during mammalian development could result in apoptosis through the appearance of 'unmodified' Orc1.
Collapse
|
40
|
Baltin J, Leist S, Odronitz F, Wollscheid HP, Baack M, Kapitza T, Schaarschmidt D, Knippers R. DNA replication in protein extracts from human cells requires ORC and Mcm proteins. J Biol Chem 2006; 281:12428-35. [PMID: 16537544 DOI: 10.1074/jbc.m510758200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used protein extracts from proliferating human HeLa cells to support plasmid DNA replication in vitro. An extract with soluble nuclear proteins contains the major replicative chain elongation functions, whereas a high salt extract from isolated nuclei contains the proteins for initiation. Among the initiator proteins active in vitro are the origin recognition complex (ORC) and Mcm proteins. Recombinant Orc1 protein stimulates in vitro replication presumably in place of endogenous Orc1 that is known to be present in suboptimal amounts in HeLa cell nuclei. Partially purified endogenous ORC, but not recombinant ORC, is able to rescue immunodepleted nuclear extracts. Plasmid replication in the in vitro replication system is slow and of limited efficiency but robust enough to serve as a basis to investigate the formation of functional pre-replication complexes under biochemically defined conditions.
Collapse
Affiliation(s)
- Jens Baltin
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Waga S, Zembutsu A. Dynamics of DNA binding of replication initiation proteins during de novo formation of pre-replicative complexes in Xenopus egg extracts. J Biol Chem 2006; 281:10926-34. [PMID: 16497662 DOI: 10.1074/jbc.m600299200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the dynamics of DNA binding of replication initiation proteins during formation of the pre-replicative complex (pre-RC) on plasmids in Xenopus egg extracts. The pre-RC was efficiently formed on plasmids at 23 degrees C, with one or a few origin recognition complex (ORC) molecules and approximately 10-20 mini-chromosome maintenance 2 (MCM2) molecules loaded onto each plasmid. Although geminin inhibited MCM loading, MCM interacted weakly but stoichiometrically with the plasmid in an ORC-dependent manner, even in the presence of geminin (with approximately 10 MCM2 molecules per plasmid). Interestingly, DNA binding of ORC, CDC6, and CDT1 was significantly stabilized in the presence of geminin, under which conditions approximately 10-20 molecules each of ORC and CDC6 were bound. Moreover, a similarly stable ORC-CDC6-CDT1 complex rapidly formed on DNA at lower temperature (0 degrees C) without geminin, with approximately 10-20 molecules each of ORC and CDC6 bound to the plasmid, but almost no binding of MCM. However, upon shifting the temperature to 23 degrees C, most ORC, CDC6, and CDT1 molecules were displaced from the DNA, leaving about one ORC molecule on the plasmid, whereas approximately 10 MCM2 molecules were loaded onto each plasmid. Furthermore, it was possible to load MCM onto DNA when the isolated ORC-CDC6-CDT1-DNA complex was mixed with purified MCM proteins. These results suggest that an ORC-CDC6-CDT1 complex pre-formed on DNA is directly involved in MCM loading and imply that each DNA-bound ORC molecule loads only one or a few MCM2-7 complexes during metazoan pre-RC formation.
Collapse
Affiliation(s)
- Shou Waga
- Laboratories for Biomolecular Network, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
42
|
Abstract
DNA replication is tightly regulated at the initiation step by both the cell cycle machinery and checkpoint pathways. Here, we discuss recent advances in understanding how replication is initiated in metazoans at the correct chromosome positions, at the appropriate time, and only once per cell cycle.
Collapse
Affiliation(s)
- Yuichi J Machida
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
43
|
Mehra P, Biswas AK, Gupta A, Gourinath S, Chitnis CE, Dhar SK. Expression and characterization of human malaria parasite Plasmodium falciparum origin recognition complex subunit 1. Biochem Biophys Res Commun 2005; 337:955-66. [PMID: 16216221 DOI: 10.1016/j.bbrc.2005.09.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
In eukaryotes, the origin recognition complex (ORC) is essential for the initiation of DNA replication. The largest subunit of this complex (ORC1) has a regulatory role in origin activation. Here we report the cloning and functional characterization of Plasmodium falciparum ORC1 homolog. Using immunofluorescence and immunoelectron microscopy, we show here that PfORC1 is expressed in the nucleus during the late trophozoite and schizont stages where maximum amount of DNA replication takes place. Homology modelling of the carboxy terminal region of PfORC1 (781-1033) using Saccharomyces pombe Cdc6/Cdc18 homolog as a template reveals the presence of a similar AAA+ type nucleotide-binding fold. This region shows ATPase activity in vitro that is important for the origin activity. To our knowledge, this is the first evidence of an individual ORC subunit that shows ATPase activity. These observations strongly suggest that PfORC1 might be involved in DNA replication initiation during the blood stage of the parasitic life cycle.
Collapse
Affiliation(s)
- Parul Mehra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 67, India
| | | | | | | | | | | |
Collapse
|