1
|
Rabesahala de Meritens C, Carreras-Sureda A, Rosa N, Pick R, Scheiermann C, Demaurex N. STIM1/2 maintain signaling competence at ER-PM contact sites during neutrophil spreading. J Cell Biol 2025; 224:e202406053. [PMID: 40116769 PMCID: PMC11927589 DOI: 10.1083/jcb.202406053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/26/2024] [Accepted: 02/11/2025] [Indexed: 03/23/2025] Open
Abstract
Neutrophils are highly motile leukocytes that migrate inside tissues to destroy invading pathogens. Ca2+ signals coordinate leukocytes migration, but whether Ca2+ fluxes mediated by Stim proteins at ER-PM contact sites regulate neutrophil actin-based motility is unclear. Here, we show that myeloid-specific Stim1/2 ablation decreases basal cytosolic Ca2+ levels and prevents adhesion-induced Ca2+ elevations in mouse neutrophils, reducing actin fiber formation and impairing spreading. Unexpectedly, more ER-PM contact sites were detected on the actin-poor adhesive membranes of Stim1/2-deficient neutrophils, which had reduced inositol-1,4,5-trisphosphate receptor (IP3R) immunoreactivity on confocal and immunogold micrographs despite preserved IP3R levels on western blots. Remarkably, Stim1/2-deficient neutrophils regained signaling and spreading competence in Ca2+-rich solutions and were recruited more effectively in mouse inflamed cremaster muscles in vivo. Our findings indicate that Stim1/2 preserve IP3R functionality in neutrophils, generating adhesion-dependent Ca2+ signals that control actin dynamics during neutrophil spreading. Stim proteins thus maintain IP3R signaling competence at adhesive membranes, enabling Ca2+-dependent actin remodeling during spreading in mouse neutrophils.
Collapse
Affiliation(s)
| | - Amado Carreras-Sureda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Rosa
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Robert Pick
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Niu C, Hu Y, Xu K, Pan X, Wang L, Yu G. The role of the cytoskeleton in fibrotic diseases. Front Cell Dev Biol 2024; 12:1490315. [PMID: 39512901 PMCID: PMC11540670 DOI: 10.3389/fcell.2024.1490315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Fibrosis is the process whereby cells at a damaged site are transformed into fibrotic tissue, comprising fibroblasts and an extracellular matrix rich in collagen and fibronectin, following damage to organs or tissues that exceeds their repair capacity. Depending on the affected organs or tissues, fibrosis can be classified into types such as pulmonary fibrosis, hepatic fibrosis, renal fibrosis, and cardiac fibrosis. The primary pathological features of fibrotic diseases include recurrent damage to normal cells and the abnormal activation of fibroblasts, leading to excessive deposition of extracellular matrix and collagen in the intercellular spaces. However, the etiology of certain specific fibrotic diseases remains unclear. Recent research increasingly suggests that the cytoskeleton plays a significant role in fibrotic diseases, with structural changes in the cytoskeleton potentially influencing the progression of organ fibrosis. This review examines cytoskeletal remodeling and its impact on the transformation or activation of normal tissue cells during fibrosis, potentially offering important insights into the etiology and therapeutic strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Caoyuan Niu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yanan Hu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Kai Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoyue Pan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
3
|
Iyer M, Kantarci H, Cooper MH, Ambiel N, Novak SW, Andrade LR, Lam M, Jones G, Münch AE, Yu X, Khakh BS, Manor U, Zuchero JB. Oligodendrocyte calcium signaling promotes actin-dependent myelin sheath extension. Nat Commun 2024; 15:265. [PMID: 38177161 PMCID: PMC10767123 DOI: 10.1038/s41467-023-44238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length are thought to precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation remains incompletely understood. Here, we use genetic tools to attenuate oligodendrocyte calcium signaling during myelination in the developing mouse CNS. Surprisingly, genetic calcium attenuation does not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation causes myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduces actin filaments in oligodendrocytes, and an intact actin cytoskeleton is necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a cellular mechanism required for accurate CNS myelin formation and may provide mechanistic insight into how oligodendrocytes respond to neuronal activity to sculpt and refine myelin sheaths.
Collapse
Affiliation(s)
- Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Madeline H Cooper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Leonardo R Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mable Lam
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Graham Jones
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xinzhu Yu
- Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois at Urbana-, Champaign, IL, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Iyer M, Kantarci H, Ambiel N, Novak SW, Andrade LR, Lam M, Münch AE, Yu X, Khakh BS, Manor U, Zuchero JB. Oligodendrocyte calcium signaling sculpts myelin sheath morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536299. [PMID: 37090556 PMCID: PMC10120717 DOI: 10.1101/2023.04.11.536299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length and thickness are regulated by neuronal activity and can precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation and remodeling is unknown. Here, we used genetic tools to attenuate oligodendrocyte calcium signaling during active myelination in the developing mouse CNS. Surprisingly, we found that genetic calcium attenuation did not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation caused striking myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduced actin filaments in oligodendrocytes, and an intact actin cytoskeleton was necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a novel cellular mechanism required for accurate CNS myelin formation and provides mechanistic insight into how oligodendrocytes may respond to neuronal activity to sculpt myelin sheaths throughout the nervous system.
Collapse
|
5
|
Yang L, Qiu LM, Fang Q, Stanley DW, Ye GY. Cellular and humoral immune interactions between Drosophila and its parasitoids. INSECT SCIENCE 2021; 28:1208-1227. [PMID: 32776656 DOI: 10.1111/1744-7917.12863] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 05/26/2023]
Abstract
The immune interactions occurring between parasitoids and their host insects, especially in Drosophila-wasp models, have long been the research focus of insect immunology and parasitology. Parasitoid infestation in Drosophila is counteracted by its multiple natural immune defense systems, which include cellular and humoral immunity. Occurring in the hemocoel, cellular immune responses involve the proliferation, differentiation, migration and spreading of host hemocytes and parasitoid encapsulation by them. Contrastingly, humoral immune responses rely more heavily on melanization and on the Toll, Imd and Jak/Stat immune pathways associated with antimicrobial peptides along with stress factors. On the wasps' side, successful development is achieved by introducing various virulence factors to counteract immune responses of Drosophila. Some or all of these factors manipulate the host's immunity for successful parasitism. Here we review current knowledge of the cellular and humoral immune interactions between Drosophila and its parasitoids, focusing on the defense mechanisms used by Drosophila and the strategies evolved by parasitic wasps to outwit it.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Ming Qiu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - David W Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Yadav K, Ali SA, Mohanty AK, Muthusamy E, Subaharan K, Kaul G. MSN, MWCNT and ZnO nanoparticle-induced CHO-K1 cell polarisation is linked to cytoskeleton ablation. J Nanobiotechnology 2021; 19:45. [PMID: 33579304 PMCID: PMC7881565 DOI: 10.1186/s12951-021-00779-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The cellular response to nanoparticles (NPs) for the mechanical clue and biochemical changes are unexplored. Here, we provide the comprehensive analysis of the Chinese Hamster Ovary (CHO-K1) cell line to study cell behaviour following the exposure of mesoporous silica nanoparticle (MSN), multiwall carbon nanotubes (MWCNTs), and zinc oxide (ZnO) NPs. RESULTS Through the high-throughput proteomic study, we observed that the effect of NPs is alone not restricted to cell viability but also on cell polarisation. In the case of MSN, no drastic changes were observed in cellular morphology, but it upregulated chaperons that might prevent protein aggregation. However, MWCNT showed elongated cell appearance with numerous cytoplasmic vacuoles, and induce lamellipodia formation through actin polymerisation. The cytoskeleton remodelling was accompanied by the increased expression of Dlc-1, cofilin and Rac1 proteins. While ZnO NPs resulted in the rounded cell morphology along with nuclear abnormalities. The proteome analysis revealed that UBXN11 control cell roundness and DOCK3 leads to actin stress fibre formation and finally, loss of cell adhesion. It enhances the expression of catastrophic DNA damage and apoptotic proteins, which was unrecoverable even after 72 h, as confirmed by the colony formation assay. All three NPs trigger over-expression of the endocytic pathway, ubiquitination, and proteasomal complex proteins. The data indicate that ZnO and MSN entered into the cells through clathrin-mediated pathways; whereas, MWCNT invades through ER-mediated phagocytosis. CONCLUSIONS Based on the incubation and concentration of NPs, our work provides evidence for the activation of Rac-Rho signalling pathway to alter cytoskeleton dynamics. Our results assist as a sensitive early molecular readout for nanosafety assessment.
Collapse
Affiliation(s)
- Karmveer Yadav
- N.T. Lab-1, Division of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashok Kumar Mohanty
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Eshwarmoorthy Muthusamy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Kesavan Subaharan
- Division of Germplasm, Conservation and Utilisation, National Bureau of Agricultural Insect Resources, Bangalore, 560024, India
| | - Gautam Kaul
- N.T. Lab-1, Division of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|
7
|
Abstract
Neutrophils are critical to innate immunity, including host defense against bacterial and fungal infections. They achieve their host defense role by phagocytosing pathogens, secreting their granules full of cytotoxic enzymes, or expelling neutrophil extracellular traps (NETs) during the process of NETosis. NETs are weblike DNA structures decorated with histones and antimicrobial proteins released by activated neutrophils. Initially described as a means for neutrophils to neutralize pathogens, NET release also occurs in sterile inflammation, promotes thrombosis, and can mediate tissue damage. To effectively manipulate this double-edged sword to fight a particular disease, researchers must work toward understanding the mechanisms driving NETosis. Such understanding would allow the generation of new drugs to promote or prevent NETosis as needed. While knowledge regarding the (patho)physiological roles of NETosis is accumulating, little is known about the cellular and biophysical bases of this process. In this review, we describe and discuss our current knowledge of the molecular, cellular, and biophysical mechanisms mediating NET release as well as open questions in the field.
Collapse
Affiliation(s)
- Hawa Racine Thiam
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Siu Ling Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
8
|
Plasma gelsolin levels in patients with psoriatic arthritis: a possible novel marker. Clin Rheumatol 2020; 39:1881-1888. [PMID: 32002760 DOI: 10.1007/s10067-020-04959-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Psoriatic arthritis (PsA) is an inflammatory disorder affecting the joints of psoriatic patients. Gelsolin regulated the actin assembly and disassembly. Reduction in plasma gelsolin levels was detected in tissue damages, including trauma, sepsis, and chronic inflammatory disorders. OBJECTIVES The study aims to investigate the potential role of gelsolin in PsA and to determine the association between gelsolin and the disease activity. METHODS Plasma gelsolin levels were measured in 76 PsA patients in comparison with 40 patients having psoriasis only and 40 age- and sex -matched healthy controls. RESULTS Plasma gelsolin levels were decreased in PsA patients compared to controls and psoriasis-only patients (p ˂ 0.0001). The optimal cutoff point of gelsolin was 172.5 mg/L. Gelsolin showed 92.1% sensitivity and 95% specificity in detecting PsA. But, it had 92.1% sensitivity and 80% specificity in differentiating between psoriasis and PsA. Plasma gelsolin showed a significant negative correlation with inflammatory markers as C-reactive protein and erythrocyte sedimentation rate (p < 0.0001 and p = 0.039; respectively). A significant negative correlation between plasma gelsolin and PsA activity was detected (p < 0.0001). The PsA activity was defined by the Disease Activity for Psoriatic Arthritis Score and the Composite Psoriatic Disease Activity Index. CONCLUSIONS The plasma gelsolin levels were decreased in PsA patients, suggesting that gelsolin may be implicated in the chronic joint inflammation process. Plasma gelsolin seems to be a useful predictive biomarker for diagnosing PsA and monitoring the disease activity.Key Points• This study introduces an unprecedented focus within which the relationship between the levels of plasma gelsolin and PsA is investigated• The study examines the potential role of gelsolin in PsA, and detects the association between gelsolin and the arthritis activity.• There were decreased plasma gelsolin levels in PsA patients. So, gelsolin can constitute a role in the chronic joint inflammation process.• Gelsolin may be a useful biomarker for diagnosing of PsA and monitoring the disease activity.
Collapse
|
9
|
Molecular Mechanisms of Calcium Signaling During Phagocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:103-128. [PMID: 32399828 DOI: 10.1007/978-3-030-40406-2_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger involved in the regulation of numerous cellular functions including vesicular trafficking, cytoskeletal rearrangements and gene transcription. Both global as well as localized Ca2+ signals occur during phagocytosis, although their functional impact on the phagocytic process has been debated. After nearly 40 years of research, a consensus may now be reached that although not strictly required, Ca2+ signals render phagocytic ingestion and phagosome maturation more efficient, and their manipulation make an attractive avenue for therapeutic interventions. In the last decade many efforts have been made to identify the channels and regulators involved in generating and shaping phagocytic Ca2+ signals. While molecules involved in store-operated calcium entry (SOCE) of the STIM and ORAI family have taken center stage, members of the canonical, melastatin, mucolipin and vanilloid transient receptor potential (TRP), as well as purinergic P2X receptor families are now recognized to play significant roles. In this chapter, we review the recent literature on research that has linked specific Ca2+-permeable channels and regulators to phagocytic function. We highlight the fact that lipid mediators are emerging as important regulators of channel gating and that phagosomal ionic homeostasis and Ca2+ release also play essential parts. We predict that improved methodologies for measuring these factors will be critical for future advances in dissecting the intricate biology of this fascinating immune process.
Collapse
|
10
|
Ca2+ signals triggered by bacterial pathogens and microdomains. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1838-1845. [DOI: 10.1016/j.bbamcr.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022]
|
11
|
Nunes-Hasler P, Demaurex N. The ER phagosome connection in the era of membrane contact sites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1513-1524. [PMID: 28432021 DOI: 10.1016/j.bbamcr.2017.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022]
Abstract
Phagocytosis is an essential mechanism through which innate immune cells ingest foreign material that is either destroyed or used to generate and present antigens and initiate adaptive immune responses. While a role for the ER during phagosome biogenesis has been recognized, whether fusion with ER cisternae or vesicular derivatives occurs has been the source of much contention. Membrane contact sites (MCS) are tight appositions between ER membranes and various organelles that coordinate multiple functions including localized signalling, lipid transfer and trafficking. The discovery that MCS form between the ER and phagosomes now begs the question of whether MCS play a role in connecting the ER to phagosomes under different contexts. In this review, we consider the implications of MCS between the ER and phagosomes during cross-presentation and infection with intracellular pathogens. We also discuss the similarities between these contacts and those between the ER and plasma membrane and acidic organelles such as endosomes and lysosomes. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
Affiliation(s)
- Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland.
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| |
Collapse
|
12
|
Zheng K, Kitazato K, Wang Y, He Z. Pathogenic microbes manipulate cofilin activity to subvert actin cytoskeleton. Crit Rev Microbiol 2015; 42:677-95. [PMID: 25853495 DOI: 10.3109/1040841x.2015.1010139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Actin-depolymerizing factor (ADF)/cofilin proteins are key players in controlling the temporal and spatial extent of actin dynamics, which is crucial for mediating host-pathogen interactions. Pathogenic microbes have evolved molecular mechanisms to manipulate cofilin activity to subvert the actin cytoskeletal system in host cells, promoting their internalization into the target cells, modifying the replication niche and facilitating their intracellular and intercellular dissemination. The study of how these pathogens exploit cofilin pathways is crucial for understanding infectious disease and providing potential targets for drug therapies.
Collapse
Affiliation(s)
- Kai Zheng
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China .,c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Kaio Kitazato
- b Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology , Nagasaki University , Nagasaki , Japan , and
| | - Yifei Wang
- c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Zhendan He
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China
| |
Collapse
|
13
|
Gyger M, Stange R, Kießling TR, Fritsch A, Kostelnik KB, Beck-Sickinger AG, Zink M, Käs JA. Active contractions in single suspended epithelial cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 43:11-23. [PMID: 24196420 DOI: 10.1007/s00249-013-0935-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/08/2013] [Accepted: 10/15/2013] [Indexed: 12/12/2022]
Abstract
Investigations of active contractions in tissue cells to date have been focused on cells that exert forces via adhesion sites to substrates or to other cells. In this study we show that also suspended epithelial cells exhibit contractility, revealing that contractions can occur independently of focal adhesions. We employ the Optical Stretcher to measure adhesion-independent mechanical properties of an epithelial cell line transfected with a heat-sensitive cation channel. During stretching the heat transferred to the ion channel causes a pronounced Ca(2+) influx through the plasma membrane that can be blocked by adequate drugs. This way the contractile forces in suspended cells are shown to be partially triggered by Ca(2+) signaling. A phenomenological mathematical model is presented, incorporating a term accounting for the active stress exerted by the cell, which is both necessary and sufficient to describe the observed increase in strain when the Ca(2+) influx is blocked. The median and the shape of the strain distributions depend on the activity of the cells. Hence, it is unlikely that they can be described by a simple Gaussian or log normal distribution, but depend on specific cellular properties such as active contractions. Our results underline the importance of considering activity when measuring cellular mechanical properties even in the absence of measurable contractions. Thus, the presented method to quantify active contractions of suspended cells offers new perspectives for a better understanding of cellular force generation with possible implications for medical diagnosis and therapy.
Collapse
Affiliation(s)
- Markus Gyger
- Abteilung für Physik der weichen Materie, Institut für Experimentelle Physik I, Universität Leipzig, Linnéstr. 5, 04103, Leipzig, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Shen WW, Frieden M, Demaurex N. Local cytosolic Ca2+ elevations are required for stromal interaction molecule 1 (STIM1) de-oligomerization and termination of store-operated Ca2+ entry. J Biol Chem 2011; 286:36448-59. [PMID: 21880734 PMCID: PMC3196111 DOI: 10.1074/jbc.m111.269415] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Ca2+ depletion of the endoplasmic reticulum (ER) activates the ubiquitous store-operated Ca2+ entry (SOCE) pathway that sustains long-term Ca2+ signals critical for cellular functions. ER Ca2+ depletion initiates the oligomerization of stromal interaction molecules (STIM) that control SOCE activation, but whether ER Ca2+ refilling controls STIM de-oligomerization and SOCE termination is not known. Here, we correlate the changes in free luminal ER Ca2+ concentrations ([Ca2+]ER) and in STIM1 oligomerization, using fluorescence resonance energy transfer (FRET) between CFP-STIM1 and YFP-STIM1. We observed that STIM1 de-oligomerized at much lower [Ca2+]ER levels during store refilling than it oligomerized during store depletion. We then refilled ER stores without adding exogenous Ca2+ using a membrane-permeable Ca2+ chelator to provide a large reservoir of buffered Ca2+. This procedure rapidly restored pre-stimulatory [Ca2+]ER levels but did not trigger STIM1 de-oligomerization, the FRET signals remaining elevated as long as the external [Ca2+] remained low. STIM1 dissociation evoked by Ca2+ readmission was prevented by SOC channel inhibition and was associated with cytosolic Ca2+ elevations restricted to STIM1 puncta, indicating that Ca2+ acts on a cytosolic target close to STIM1 clusters. These data indicate that the refilling of ER Ca2+ stores is not sufficient to induce STIM1 de-oligomerization and that localized Ca2+ elevations in the vicinity of assembled SOCE complexes are required for the termination of SOCE.
Collapse
Affiliation(s)
- Wei-Wei Shen
- Department of Cell Physiology and Metabolism, University of Geneva, rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
15
|
Ke H, Parron VI, Reece J, Zhang JY, Akiyama SK, French JE. BCL2 inhibits cell adhesion, spreading, and motility by enhancing actin polymerization. Cell Res 2010; 20:458-69. [PMID: 20142842 PMCID: PMC2848692 DOI: 10.1038/cr.2010.21] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BCL2 is best known as a multifunctional anti-apoptotic protein. However, little is known about its role in cell-adhesive and motility events. Here, we show that BCL2 may play a role in the regulation of cell adhesion, spreading, and motility. When BCL2 was overexpressed in cultured murine and human cell lines, cell spreading, adhesion, and motility were impaired. Consistent with these results, the loss of Bcl2 resulted in higher motility observed in Bcl2-null mouse embryonic fibroblast (MEF) cells compared to wild type. The mechanism of BCL2 regulation of cell adhesion and motility may involve formation of a complex containing BCL2, actin, and gelsolin, which appears to functionally decrease the severing activity of gelsolin. We have observed that the lysate from MCF-7 and NIH3T3 cells that overexpressed BCL2 enhanced actin polymerization in cell-free in vitro assays. Confocal immunofluorescent localization of BCL2 and F-actin during spreading consistently showed that increased expression of BCL2 resulted in increased F-actin polymerization. Thus, the formation of BCL2 and gelsolin complexes (which possibly contain other proteins) appears to play a critical role in the regulation of cell adhesion and migration. Given the established correlation of cell motility with cancer metastasis, this result may explain why the expression of BCL2 in some tumor cell types reduces the potential for metastasis and is associated with improved patient prognosis.
Collapse
Affiliation(s)
- Hengning Ke
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | |
Collapse
|
16
|
El Chemaly A, Okochi Y, Sasaki M, Arnaudeau S, Okamura Y, Demaurex N. VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification. ACTA ACUST UNITED AC 2009; 207:129-39. [PMID: 20026664 PMCID: PMC2812533 DOI: 10.1084/jem.20091837] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neutrophils kill microbes with reactive oxygen species generated by the NADPH oxidase, an enzyme which moves electrons across membranes. Voltage-gated proton channels (voltage-sensing domain only protein [VSOP]/Hv1) are required for high-level superoxide production by phagocytes, but the mechanism of this effect is not established. We show that neutrophils from VSOP/Hv1−/− mice lack proton currents but have normal electron currents, indicating that these cells have a fully functional oxidase that cannot conduct protons. VSOP/Hv1−/− neutrophils had a more acidic cytosol, were more depolarized, and produced less superoxide and hydrogen peroxide than neutrophils from wild-type mice. Hydrogen peroxide production was rescued by providing an artificial conductance with gramicidin. Loss of VSOP/Hv1 also aborted calcium responses to chemoattractants, increased neutrophil spreading, and decreased neutrophil migration. The migration defect was restored by the addition of a calcium ionophore. Our findings indicate that proton channels extrude the acid and compensate the charge generated by the oxidase, thereby sustaining calcium entry signals that control the adhesion and motility of neutrophils. Loss of proton channels thus aborts superoxide production and causes a severe signaling defect in neutrophils.
Collapse
Affiliation(s)
- Antoun El Chemaly
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Gatehouse HS, Poulton J, Markwick NP, Gatehouse LN, Ward VK, Young VL, Luo Z, Schaffer R, Christeller JT. Changes in gene expression in the permissive larval host lightbrown apple moth (Epiphyas postvittana, Tortricidae) in response to EppoNPV (Baculoviridae) infection. INSECT MOLECULAR BIOLOGY 2009; 18:635-648. [PMID: 19754741 DOI: 10.1111/j.1365-2583.2009.00904.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Host cell and virus gene expression were measured five days after per os inoculation of 3rd instar lightbrown apple moth (LBAM) larvae with the Epiphyas postvittana nucleopolyhedrovirus (EppoNPV). Microarray analysis identified 84 insect genes that were up-regulated and 18 genes that were down-regulated in virus-infected larvae compared with uninfected larvae. From the 134 viral open reading frames represented on the microarray, 81 genes showed strong expression. Of the 38 functionally identifiable regulated insect genes, 23 coded for proteins that have roles in one of five processes; regulation of transcription and translation, induction of apoptosis, and maintenance of both juvenility and actin cytoskeletal integrity. Of the 34 functionally identifiable viral genes that were most strongly expressed, 12 had functions associated with these five processes, as did a further seven viral genes which were expressed at slightly lower levels. A survey of the LBAM-expressed sequence tag library identified further genes involved in these processes. In total, 135 insect genes and 38 viral genes were analysed by quantitative polymerase chain reaction. Twenty-one insect genes were strongly up-regulated and 31 genes strongly down-regulated. All 38 viral genes examined were highly expressed. These data suggest that induction of apoptosis and regulation of juvenility are the major 'battlegrounds' between virus and insect, with the majority of changes observed representing viral control of insect gene expression. Transcription and translational effects seem to be exerted largely through modulation of mRNA and protein degradation. Examples of attempts by the insect to repel the infection via changes in gene expression within these same processes were, however, also noted. The data also showed the extent to which viral transcription dominated in the infected insects at five days post inoculation.
Collapse
Affiliation(s)
- H S Gatehouse
- Plant and Food Research Institute, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Protein–protein interactions involving voltage-gated sodium channels: Post-translational regulation, intracellular trafficking and functional expression. Int J Biochem Cell Biol 2009; 41:1471-81. [DOI: 10.1016/j.biocel.2009.01.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/23/2009] [Accepted: 01/26/2009] [Indexed: 01/06/2023]
|
19
|
Listeria comet tails: the actin-based motility machinery at work. Trends Cell Biol 2008; 18:220-7. [DOI: 10.1016/j.tcb.2008.03.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/01/2008] [Accepted: 03/03/2008] [Indexed: 11/21/2022]
|
20
|
Furuichi T, Tatsumi H, Sokabe M. Mechano-sensitive channels regulate the stomatal aperture in Vicia faba. Biochem Biophys Res Commun 2008; 366:758-62. [DOI: 10.1016/j.bbrc.2007.12.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 12/04/2007] [Indexed: 11/29/2022]
|
21
|
Tang Q, Jin MW, Xiang JZ, Dong MQ, Sun HY, Lau CP, Li GR. The membrane permeable calcium chelator BAPTA-AM directly blocks human ether a-go-go-related gene potassium channels stably expressed in HEK 293 cells. Biochem Pharmacol 2007; 74:1596-1607. [PMID: 17826747 DOI: 10.1016/j.bcp.2007.07.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 07/14/2007] [Accepted: 07/30/2007] [Indexed: 11/29/2022]
Abstract
BAPTA-AM is a well-known membrane permeable Ca(2+) chelator. The present study found that BAPTA-AM rapidly and reversibly suppressed human ether a-go-go-related gene (hERG or Kv11.1) K(+) current, human Kv1.3 and human Kv1.5 channel currents stably expressed in HEK 293 cells, and the effects were not related to Ca(2+) chelation. The externally applied BAPTA-AM inhibited hERG channels in a concentration-dependent manner (IC(50): 1.3 microM). Blockade of hERG channels was dependent on channel opening, and tonic block was minimal. Steady-state activation V(0.5) of hERG channels was negatively shifted by 8.5 mV (from -3.7+/-2.8 of control to -12.2+/-3.1 mV, P<0.01), while inactivation V(0.5) was negatively shifted by 6.1 mV (from -37.9+/-2.0 mV of control to -44.0+/-1.6 mV, P<0.05) with application of 3 microM BAPTA-AM. The S6 mutant Y652A and the pore helix mutant S631A significantly attenuated blockade by BAPTA-AM at 10 microM causing profound blockade of wild-type hERG channels. In addition, BAPTA-AM inhibited hKv1.3 and hKv1.5 channels in a concentration-dependent manner (IC(50): 1.45 and 1.23 microM, respectively), and the blockade of these two types of channels was also dependent on channel opening. Moreover, EGTA-AM was found to be an open channel blocker of hERG, hKv1.3, hKv1.5 channels, though its efficacy is weaker than that of BAPTA-AM. These results indicate that the membrane permeable Ca(2+) chelator BAPTA-AM (also EGTA-AM) exerts an open channel blocking effect on hERG, hKv1.3 and hKv1.5 channels.
Collapse
Affiliation(s)
- Qiang Tang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:1-82. [PMID: 17338919 DOI: 10.1016/s0074-7696(07)58001-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The actin cytoskeleton is one of the major structural components of the cell. It often undergoes rapid reorganization and plays crucial roles in a number of dynamic cellular processes, including cell migration, cytokinesis, membrane trafficking, and morphogenesis. Actin monomers are polymerized into filaments under physiological conditions, but spontaneous depolymerization is too slow to maintain the fast actin filament dynamics observed in vivo. Gelsolin, actin-depolymerizing factor (ADF)/cofilin, and several other actin-severing/depolymerizing proteins can enhance disassembly of actin filaments and promote reorganization of the actin cytoskeleton. This review presents advances as well as a historical overview of studies on the biochemical activities and cellular functions of actin-severing/depolymerizing proteins.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
Revenu C, Courtois M, Michelot A, Sykes C, Louvard D, Robine S. Villin severing activity enhances actin-based motility in vivo. Mol Biol Cell 2006; 18:827-38. [PMID: 17182858 PMCID: PMC1805090 DOI: 10.1091/mbc.e06-05-0423] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition.
Collapse
Affiliation(s)
- Céline Revenu
- *Laboratoire de Morphogenèse et Signalisation Cellulaires, Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, 75248 Paris Cedex 05, France
| | - Matthieu Courtois
- Laboratoire Physico-Chimie Curie, Unité Mixte de Recherche 168, Institut Curie/Centre National de la Recherche Scientifique/Universités Paris 6 and 7, 75231 Paris Cedex 05, France; and
| | - Alphée Michelot
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5168, Commissariat à l'Energie Atomique/Centre National de la Recherche Scientifique/Université Joseph Fourier, 38054 Grenoble Cedex 9, France
| | - Cécile Sykes
- Laboratoire Physico-Chimie Curie, Unité Mixte de Recherche 168, Institut Curie/Centre National de la Recherche Scientifique/Universités Paris 6 and 7, 75231 Paris Cedex 05, France; and
| | - Daniel Louvard
- *Laboratoire de Morphogenèse et Signalisation Cellulaires, Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, 75248 Paris Cedex 05, France
| | - Sylvie Robine
- *Laboratoire de Morphogenèse et Signalisation Cellulaires, Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, 75248 Paris Cedex 05, France
| |
Collapse
|
24
|
Chumnarnsilpa S, Loonchanta A, Xue B, Choe H, Urosev D, Wang H, Lindberg U, Burtnick LD, Robinson RC. Calcium Ion Exchange in Crystalline Gelsolin. J Mol Biol 2006; 357:773-82. [PMID: 16466744 DOI: 10.1016/j.jmb.2006.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 12/29/2005] [Accepted: 01/04/2006] [Indexed: 11/30/2022]
Abstract
Gelsolin is a calcium and pH-sensitive modulator of actin filament length. Here, we use X-ray crystallography to examine the extraction and exchange of calcium ions from their binding sites in different crystalline forms of the activated N and C-terminal halves of gelsolin, G1-G3 and G4-G6, respectively. We demonstrate that the combination of calcium and low pH activating conditions do not induce conformational changes in G4-G6 beyond those elicited by calcium alone. EGTA is able to remove calcium ions bound to the type I and type II metal ion-binding sites in G4-G6. Constrained by crystal contacts and stabilized by interdomain interaction surfaces, the gross structure of calcium-depleted G4-G6 remains that of the activated form. However, high-resolution details of changes in the ion-binding sites may represent the initial steps toward restoration of the arrangement of domains found in the calcium-free inactive form of gelsolin in solution. Furthermore, bathing crystals with the trivalent calcium ion mimic, Tb3+, results in anomalous scattering data that permit unequivocal localization of terbium ions in each of the proposed type I and type II ion-binding sites of both halves of gelsolin. In contrast to predictions based on solution studies, we find that no calcium ion is immune to exchange.
Collapse
Affiliation(s)
- Sakesit Chumnarnsilpa
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala 751 23, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Intracellular signals arising from interactions of immature thymocytes with distinct populations of stromal cells in the thymus are central to T cell development. The characteristics of these signals and the mechanisms underlying thymocyte migration between stromal cell compartments have been difficult to identify from static measurements of fixed tissue. Recent advances in two-photon microscopy and the development of three-dimensional models for real-time studies of T cell development have shed light on how single cells navigate the thymus. These studies reveal crosstalk between thymocyte signaling and motility that may integrate the search for potentially rare self-antigens with the requirement for sustained signaling in T cell maturation.
Collapse
Affiliation(s)
- Nirav R Bhakta
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman Center Rm B-111A, Stanford CA 94305, USA
| | | |
Collapse
|
26
|
Abstract
The extent and dynamics of actin polymerization in solution are calculated as functions of the filament severing rate, using a simple model of in vitro polymerization. The model is solved by both analytic theory and stochastic-growth simulation. The results show that severing essentially always enhances actin polymerization by freeing up barbed ends, if barbed-end cappers are present. Severing has much weaker effects if only pointed-end cappers are present. In the early stages of polymerization, the polymerized-actin concentration grows exponentially as a function of time. The exponential growth rate is given in terms of the severing rate, and the latter is given in terms of the maximum slope in a polymerization time course. Severing and branching are found to act synergistically.
Collapse
Affiliation(s)
- A E Carlsson
- Department of Physics, Washington University, St. Louis, Missouri, USA
| |
Collapse
|