1
|
Administering an Appeasing Substance to Improve Performance, Neuroendocrine Stress Response, and Health of Ruminants. Animals (Basel) 2022; 12:ani12182432. [PMID: 36139292 PMCID: PMC9495110 DOI: 10.3390/ani12182432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/02/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Stress is present in several management activities of beef and dairy cattle, leading to health and productive losses to the herd. Therefore, strategies are warranted to reduce any losses related to these stressful situations, and bovine appeasing substance (BAS) is arising as a potential technology in livestock production settings. Several peer-reviewed publications have evaluated BAS in different production settings, such as weaning, feedlot entry, castration, transport to the slaughterhouse, and pre-weaning dairy cattle. Altogether, performance, health, and carcass traits have been positively impacted by BAS administration, demonstrating the efficacy of this technology for ruminants. Abstract The present review demonstrates the main attributes of stress-related responses in ruminants, and the potential interaction with the immune system of the host is also presented, demonstrating that alternatives that reduce the response to stressful situations are warranted to maintain adequate health and performance of the herd. In this scenario, pheromones and their modes of action are presented, opening space to a recent technology being used for ruminants: bovine appeasing substance (BAS). This substance has been used in different species, such as swine, with positive behavioral, health, and performance results. So, its utilization in ruminants has been reported to improve performance and inflammatory-mediated responses, promoting the productivity and welfare of the livestock industry.
Collapse
|
2
|
Nikaido M. Evolution of V1R pheromone receptor genes in vertebrates: diversity and commonality. Genes Genet Syst 2019; 94:141-149. [PMID: 31474650 DOI: 10.1266/ggs.19-00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The vomeronasal organ (VNO) plays a key role in sensing pheromonal cues, which elicit innate responses and induce social and sexual behaviors. The vomeronasal receptor 1 genes, V1Rs, encode members of a pheromone receptor family that are mainly expressed in the VNO. Previous studies have revealed that the V1R family shows extraordinary variety among mammalian species owing to successive gene gains and losses. Because species-specific pheromonal interaction may facilitate species-specific reproductive behaviors, understanding the evolution of V1Rs in terms of their origin, repertoire and phylogeny should provide insight into the mechanisms of animal diversification. Here I summarize recent studies about the V1R family from its initial discovery in the rat genome to extensive comparative analyses among vertebrates. I further introduce our recent findings for V1Rs in a broad range of vertebrates, which reveal unexpected diversity as well as shared features common among lineages.
Collapse
Affiliation(s)
- Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
3
|
Moriya-Ito K, Hayakawa T, Suzuki H, Hagino-Yamagishi K, Nikaido M. Evolution of vomeronasal receptor 1 (V1R) genes in the common marmoset (Callithrix jacchus). Gene 2017; 642:343-353. [PMID: 29155331 DOI: 10.1016/j.gene.2017.11.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/23/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
Pheromones are crucial for eliciting innate responses and inducing social and sexual behaviors in mammals. The vomeronasal receptor 1 genes, V1Rs, encode members of a pheromone receptor family that are mainly expressed in the vomeronasal organ (VNO). The V1R family shows extraordinary variety in gene number among vertebrates owing to successive gene gains and losses during evolution. Such diversity is believed to reflect a degree of dependence on the VNO. We investigated V1R evolution in primate lineages closely related to humans because these VNOs show a trend toward degeneration. We performed extensive phylogenetic analyses for V1Rs from a broad range of primate species. Although the decline of intact genes was evident in anthropoids (hominoids, Old World monkeys and New World monkeys), we found that a certain number of intact genes persist in New World monkeys. In one New World monkey species, the common marmoset (Callithrix jacchus), we examined seven putatively functional V1Rs using in situ hybridization and reverse transcription-PCR. Based on their mRNA expression patterns in the VNO and other organs, two types of V1Rs emerged: the canonical class with VNO-specific expression, and a second group having more ubiquitous expression in various organs as well as VNO. Furthermore, phylogenetic analysis revealed that the class with the more widespread expression had been retained longer in evolution than the VNO-specific type. We propose that the acquisition of a novel non-VNO-related function(s) may have led to the survival of a small but persistent number of V1Rs in anthropoid primates.
Collapse
Affiliation(s)
- Keiko Moriya-Ito
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | - Takashi Hayakawa
- Department of Wildlife Science (Nagoya Railroad Co., Ltd.), Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Hikoyu Suzuki
- Nihon BioData Corporation, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.; School of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Kimiko Hagino-Yamagishi
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| |
Collapse
|
4
|
Genetics of canine olfaction and receptor diversity. Mamm Genome 2011; 23:132-43. [PMID: 22080304 DOI: 10.1007/s00335-011-9371-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/23/2011] [Indexed: 01/06/2023]
Abstract
Olfaction is a particularly important sense in the dog. Humans selected for this capacity during the domestication process, and selection has continued to be employed to enhance this ability. In this review we first describe the different olfactory systems that exist and the different odorant receptors that are expressed in those systems. We then focus on the dog olfactory receptors by describing the olfactory receptor gene repertoire and its polymorphisms. Finally, we discuss the different uses of dog olfaction and the questions that still need to be studied.
Collapse
|
5
|
Salazar I, Sánchez-Quinteiro P. A detailed morphological study of the vomeronasal organ and the accessory olfactory bulb of cats. Microsc Res Tech 2011; 74:1109-20. [DOI: 10.1002/jemt.21002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/31/2011] [Indexed: 11/07/2022]
|
6
|
Salazar I, Quinteiro PS. The risk of extrapolation in neuroanatomy: the case of the Mammalian vomeronasal system. Front Neuroanat 2009; 3:22. [PMID: 19949452 PMCID: PMC2782799 DOI: 10.3389/neuro.05.022.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/05/2009] [Indexed: 12/13/2022] Open
Abstract
The sense of smell plays a crucial role in mammalian social and sexual behaviour, identification of food, and detection of predators. Nevertheless, mammals vary in their olfactory ability. One reason for this concerns the degree of development of their pars basalis rhinencephali, an anatomical feature that has been considered in classifying this group of animals as macrosmatic, microsmatic or anosmatic. In mammals, different structures are involved in detecting odours: the main olfactory system, the vomeronasal system (VNS), and two subsystems, namely the ganglion of Grüneberg and the septal organ. Here, we review and summarise some aspects of the comparative anatomy of the VNS and its putative relationship to other olfactory structures. Even in the macrosmatic group, morphological diversity is an important characteristic of the VNS, specifically of the vomeronasal organ and the accessory olfactory bulb. We conclude that it is a big mistake to extrapolate anatomical data of the VNS from species to species, even in the case of relatively close evolutionary proximity between them. We propose to study other mammalian VNS than those of rodents in depth as a way to clarify its exact role in olfaction. Our experience in this field leads us to hypothesise that the VNS, considered for all mammalian species, could be a system undergoing involution or regression, and could serve as one more integrated olfactory subsystem.
Collapse
Affiliation(s)
- Ignacio Salazar
- Unit of Anatomy and Embryology, Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de CompostelaLugo, Spain
| | - Pablo Sánchez Quinteiro
- Unit of Anatomy and Embryology, Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de CompostelaLugo, Spain
| |
Collapse
|
7
|
Taha M, McMillon R, Napier A, Wekesa KS. Extracts from salivary glands stimulate aggression and inositol-1, 4, 5-triphosphate (IP3) production in the vomeronasal organ of mice. Physiol Behav 2009; 98:147-55. [PMID: 19460393 PMCID: PMC4286211 DOI: 10.1016/j.physbeh.2009.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 05/06/2009] [Accepted: 05/11/2009] [Indexed: 11/25/2022]
Abstract
Mammals use chemical cues to coordinate social and reproductive behaviors. Chemical cues are detected by the VNO organ (VNO), which is a cartilage-encased elongated organ associated with the vomer bone in the rostral nasal cavity. The resident intruder paradigm was utilized to examine the ability of saliva and its feeder exocrine glands, the submaxillary, parotid, and sublingual glands to mediate aggression in mice. Saliva and extracts from submaxillary and parotid glands, but not extracts from sublingual glands of male CD-1 mice, induced a greater number of attacks and lower latencies to sniff and attack (p<0.05) and significantly increased IP(3) production (p<0.05) versus vehicle (PBS) in CD-1 male mice VNO. We further show that CD-1 male mouse saliva and submaxillary gland extract induced significantly more attacks and a lower latency to attack in lactating female CD-1 mice and produced significantly more inositol triphosphate (IP(3)), indicative of phospholipase C(beta) signaling which mediates pheromonal activity, in CD-1 female VNO compared to PBS. Castrated CD-1 male mouse saliva, and exocrine gland extracts induced significantly less IP(3) production in male VNO and less aggression by CD-1 males and lactating females compared to responses to normal CD-1 male mouse saliva and gland extracts. Thus, chemical cues present in saliva, submaxillary and parotid glands of CD-1 male mice are capable of stimulating aggression in male and female congenic mice which are correlated with significant production of IP(3) in the VNO. Additionally, these stimulations of aggression and IP(3) production are shown to be androgen-dependent.
Collapse
Affiliation(s)
- Murtada Taha
- Department of Biological Sciences, Alabama State University, Montgomery, Alabama 36101-0271, USA
| | | | | | | |
Collapse
|
8
|
Semyonov J, Park JI, Chang CL, Hsu SYT. GPCR genes are preferentially retained after whole genome duplication. PLoS One 2008; 3:e1903. [PMID: 18382678 PMCID: PMC2270905 DOI: 10.1371/journal.pone.0001903] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 01/27/2008] [Indexed: 11/19/2022] Open
Abstract
One of the most interesting questions in biology is whether certain pathways have been favored during evolution, and if so, what properties could cause such a preference. Due to the lack of experimental evidence, whether select gene families have been preferentially retained over time after duplication in metazoan organisms remains unclear. Here, by syntenic mapping of nonchemosensory G protein-coupled receptor genes (nGPCRs which represent half the receptome for transmembrane signaling) in the vertebrate genomes, we found that, as opposed to the 8–15% retention rate for whole genome duplication (WGD)-derived gene duplicates in the entire genome of pufferfish, greater than 27.8% of WGD-derived nGPCRs which interact with a nonpeptide ligand were retained after WGD in pufferfish Tetraodon nigroviridis. In addition, we show that concurrent duplication of cognate ligand genes by WGD could impose selection of nGPCRs that interact with a polypeptide ligand. Against less than 2.25% probability for parallel retention of a pair of WGD-derived ligands and a pair of cognate receptor duplicates, we found a more than 8.9% retention of WGD-derived ligand-nGPCR pairs–threefold greater than one would surmise. These results demonstrate that gene retention is not uniform after WGD in vertebrates, and suggest a Darwinian selection of GPCR-mediated intercellular communication in metazoan organisms.
Collapse
Affiliation(s)
- Jenia Semyonov
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jae-Il Park
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chia Lin Chang
- Chang Gung University School of Medicine, and Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Sheau Yu Teddy Hsu
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Spitz F, Duboule D. Global control regions and regulatory landscapes in vertebrate development and evolution. ADVANCES IN GENETICS 2008; 61:175-205. [PMID: 18282506 DOI: 10.1016/s0065-2660(07)00006-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the course of evolution, many genes that control the development of metazoan body plans were co-opted to exert novel functions, along with the emergence or modification of structures. Gene amplification and/or changes in the cis-regulatory modules responsible for the transcriptional activity of these genes have certainly contributed in a major way to evolution of gene functions. In some cases, these processes led to the formation of groups of adjacent genes that appear to be controlled by both global and shared mechanisms.
Collapse
Affiliation(s)
- Francois Spitz
- Developmental Biology Unit, EMBL, 69117 Heidelberg, Germany
| | | |
Collapse
|
10
|
Abstract
In mammals, olfaction is mediated by two distinct organs that are located in the nasal cavity: the main olfactory epithelium (MOE) that binds volatile odorants is responsible for the conscious perception of odors, and the vomeronasal organ (VNO) that binds pheromones is responsible for various behavioral and neuroendocrine responses between individuals of a same species. Odorants and pheromones bind to seven transmembrane domain G-protein-coupled receptors that permit signal transduction. These receptors are encoded by large multigene families that evolved in mammal species in function of specific olfactory needs.
Collapse
Affiliation(s)
- Sylvie Rouquier
- Institut de Genetique Humaine, CNRS UPR 1142, rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | |
Collapse
|