1
|
Basu M, Mainan A, Roy S, Mishra PP. Emergence of a dynamic G-tetraplex scaffold: uncovering low salt-induced conformational heterogeneity and the folding mechanism of telomeric DNA. Phys Chem Chem Phys 2025; 27:7104-7119. [PMID: 40109194 DOI: 10.1039/d4cp04362f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The topological diversity of human telomeric G-quadruplex structures is intrinsically related to their folding mechanisms, and is significantly modulated by ion-atmospheric conditions. Unlike previous studies that focused on higher Na+ or K+ concentrations, this study explores G-quadruplex folding and dynamics under low NaCl conditions (≤100 mM) using single-molecule FRET microscopy and advanced structure-based DNA simulation techniques. The smFRET data reveal three distinct populations: unfolded, intermediate dynamic triplex, and dynamic tetraplex structural ensemble. The broad distribution of the folded population highlights the dynamic nature of the quadruplex structure under low salt conditions. In agreement with smFRET results, free energy simulations show that with the increase of NaCl concentration, the population shifts towards the folded state, and differentiates all intermediate structural ensembles. The dynamic equilibrium between the triplex and tetraplex scaffolds explains the microscopic basis of conformational heterogeneity within the folded basin. Simulations also reveal that the flexibility of dynamic tetraplex bases depends on the equilibrium distribution of ions underpinning a few ion-mediated dynamic non-native interactions in the G-quadruplex structure. Contrary to the previously held belief that Na+ induces minimal structural heterogeneity, our combined experimental and simulation approaches demonstrate and rationalize the structural variability in G-quadruplexes under low NaCl concentrations.
Collapse
Affiliation(s)
- Manali Basu
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
- Homi Bhabha National Institute, Mumbai, India
| | - Avijit Mainan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia, West Bengal 741246, India.
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia, West Bengal 741246, India.
| | - Padmaja Prasad Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Cao C, Gong W, Shuai Y, Rasouli S, Ge Q, Khan A, Dakic A, Putluri N, Shvets G, Zheng YL, Daneshdoust D, Mahyoob R, Li J, Liu X. Canonical and non-canonical functions of the non-coding RNA component (TERC) of telomerase complex. Cell Biosci 2025; 15:30. [PMID: 40025596 PMCID: PMC11871756 DOI: 10.1186/s13578-025-01367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 03/04/2025] Open
Abstract
The telomerase complex consists of a protein component (TERT), which has reverse transcriptase activity, and an RNA component (TERC), which serves as a template for telomere synthesis. Evidence is rapidly accumulating regarding the non-canonical functions of these components in both normal or diseased cells. An oligonucleotide-based drug, the first telomerase inhibitor, secured FDA approval in June 2024. We recently summarized the non-canonical functions of TERT in viral infections and cancer. In this review, we expand on these non-canonical functions of TERC beyond telomere maintenance. Specifically, we explore TERC's roles in cellular aging and senescence, immune regulation, genetic diseases, human cancer, as well as involvement in viral infections and host interactions. Finally, we discuss a transcription product of telomere repeats, TERRA, and explore strategies for targeting TERC as a therapeutic approach.
Collapse
Affiliation(s)
- Chongwen Cao
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Weiyi Gong
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Biomedical Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Yuanlong Shuai
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Biomedical Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Sara Rasouli
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Biomedical Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Qianyun Ge
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Anam Khan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aleksandra Dakic
- Division of Neuroscience, National Institute of Aging, Bethesda, MD, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Yun-Ling Zheng
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Danyal Daneshdoust
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rani Mahyoob
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jenny Li
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Departments of Pathology, Urology and Radiation Oncology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Janeček M, Kührová P, Mlýnský V, Stadlbauer P, Otyepka M, Bussi G, Šponer J, Banáš P. Computer Folding of Parallel DNA G-Quadruplex: Hitchhiker's Guide to the Conformational Space. J Comput Chem 2025; 46:e27535. [PMID: 39653644 PMCID: PMC11628365 DOI: 10.1002/jcc.27535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 12/12/2024]
Abstract
Guanine quadruplexes (GQs) play crucial roles in various biological processes, and understanding their folding pathways provides insight into their stability, dynamics, and functions. This knowledge aids in designing therapeutic strategies, as GQs are potential targets for anticancer drugs and other therapeutics. Although experimental and theoretical techniques have provided valuable insights into different stages of the GQ folding, the structural complexity of GQs poses significant challenges, and our understanding remains incomplete. This study introduces a novel computational protocol for folding an entire GQ from single-strand conformation to its native state. By combining two complementary enhanced sampling techniques, we were able to model folding pathways, encompassing a diverse range of intermediates. Although our investigation of the GQ free energy surface (FES) is focused solely on the folding of the all-anti parallel GQ topology, this protocol has the potential to be adapted for the folding of systems with more complex folding landscapes.
Collapse
Affiliation(s)
- Michal Janeček
- Department of Physical Chemistry, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Vojtěch Mlýnský
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
- IT4InnovationsVŠB—Technical University of OstravaOstravaCzech Republic
| | - Petr Stadlbauer
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- IT4InnovationsVŠB—Technical University of OstravaOstravaCzech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSATriesteItaly
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
- IT4InnovationsVŠB—Technical University of OstravaOstravaCzech Republic
| |
Collapse
|
4
|
Joo SY, Sung K, Lee H. Balancing act: BRCA2's elaborate management of telomere replication through control of G-quadruplex dynamicity. Bioessays 2024; 46:e2300229. [PMID: 38922965 DOI: 10.1002/bies.202300229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
In billion years of evolution, eukaryotes preserved the chromosome ends with arrays of guanine repeats surrounded by thymines and adenines, which can form stacks of four-stranded planar structure known as G-quadruplex (G4). The rationale behind the evolutionary conservation of the G4 structure at the telomere remained elusive. Our recent study has shed light on this matter by revealing that telomere G4 undergoes oscillation between at least two distinct folded conformations. Additionally, tumor suppressor BRCA2 exhibits a unique mode of interaction with telomere G4. To elaborate, BRCA2 directly interacts with G-triplex (G3)-derived intermediates that form during the interconversion of the two different G4 states. In doing so, BRCA2 remodels the G4, facilitating the restart of stalled replication forks. In this review, we succinctly summarize the findings regarding the dynamicity of telomeric G4, emphasize its importance in maintaining telomere replication homeostasis, and the physiological consequences of losing G4 dynamicity at the telomere.
Collapse
Affiliation(s)
- So Young Joo
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, Seoul, South Korea
| | - Keewon Sung
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, South Korea
| | - Hyunsook Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, Seoul, South Korea
| |
Collapse
|
5
|
Lacen A, Symasek A, Gunter A, Lee HT. Slow G-Quadruplex Conformation Rearrangement and Accessibility Change Induced by Potassium in Human Telomeric Single-Stranded DNA. J Phys Chem B 2024; 128:5950-5965. [PMID: 38875355 PMCID: PMC11216195 DOI: 10.1021/acs.jpcb.4c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
The guanine-rich telomeric repeats can form G-quadruplexes (G4s) that alter the accessibility of the single-stranded telomeric overhang. In this study, we investigated the effects of Na+ and K+ on G4 folding and accessibility through cation introduction and exchange. We combined differential scanning calorimetry (DSC), circular dichroism (CD), and single molecule Förster resonance energy transfer (smFRET) to monitor the stability, conformational dynamics, and complementary strand binding accessibility of G4 formed by single-stranded telomeric DNA. Our data showed that G4 formed through heating and slow cooling in K+ solution exhibited fewer conformational dynamics than G4 formed in Na+ solution, which is consistent with the higher thermal stability of G4 in K+. Monitoring cation exchange with real time smFRET at room temperature shows that Na+ and K+ can replace each other in G4. When encountering high K+ at room or body temperature, G4 undergoes a slow conformational rearrangement process which is mostly complete by 2 h. The slow conformational rearrangement ends with a stable G4 that is unable to be unfolded by a complementary strand. This study provides new insights into the accessibility of G4 forming sequences at different time points after introduction to a high K+ environment in cells, which may affect how the nascent telomeric overhang interacts with proteins and telomerase.
Collapse
Affiliation(s)
- Arianna
N. Lacen
- Department of Chemistry, University
of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United
States
| | - Andrew Symasek
- Department of Chemistry, University
of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United
States
| | - Alan Gunter
- Department of Chemistry, University
of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United
States
| | - Hui-Ting Lee
- Department of Chemistry, University
of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United
States
| |
Collapse
|
6
|
Cui Y, Liu H, Ming Y, Zhang Z, Liu L, Liu R. Prediction of strand-specific and cell-type-specific G-quadruplexes based on high-resolution CUT&Tag data. Brief Funct Genomics 2024; 23:265-275. [PMID: 37357985 DOI: 10.1093/bfgp/elad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023] Open
Abstract
G-quadruplex (G4), a non-classical deoxyribonucleic acid structure, is widely distributed in the genome and involved in various biological processes. In vivo, high-throughput sequencing has indicated that G4s are significantly enriched at functional regions in a cell-type-specific manner. Therefore, the prediction of G4s based on computational methods is necessary instead of the time-consuming and laborious experimental methods. Recently, G4 CUT&Tag has been developed to generate higher-resolution sequencing data than ChIP-seq, which provides more accurate training samples for model construction. In this paper, we present a new dataset construction method based on G4 CUT&Tag sequencing data and an XGBoost prediction model based on the machine learning boost method. The results show that our model performs well within and across cell types. Furthermore, sequence analysis indicates that the formation of G4 structure is greatly affected by the flanking sequences, and the GC content of the G4 flanking sequences is higher than non-G4. Moreover, we also identified G4 motifs in the high-resolution dataset, among which we found several motifs for known transcription factors (TFs), such as SP2 and BPC. These TFs may directly or indirectly affect the formation of the G4 structure.
Collapse
Affiliation(s)
- Yizhi Cui
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, Zhejiang, China
| | - Hongzhi Liu
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Yutong Ming
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Zheng Zhang
- Department of Computer Science and Software Engineering, Auburn University, Auburn, 36830, Alabama, USA
| | - Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, Zhejiang, China
| | - Ruijun Liu
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
7
|
Pokorná P, Mlýnský V, Bussi G, Šponer J, Stadlbauer P. Molecular dynamics simulations reveal the parallel stranded d(GGGA) 3GGG DNA quadruplex folds via multiple paths from a coil-like ensemble. Int J Biol Macromol 2024; 261:129712. [PMID: 38286387 DOI: 10.1016/j.ijbiomac.2024.129712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid structures that fold through complex processes. Characterization of the G4 folding landscape may help to elucidate biological roles of G4s but is challenging both experimentally and computationally. Here, we achieved complete folding of a three-quartet parallel DNA G4 with (GGGA)3GGG sequence using all-atom explicit-solvent enhanced-sampling molecular dynamics (MD) simulations. The simulations suggested early formation of guanine stacks in the G-tracts, which behave as semi-rigid blocks in the folding process. The folding continues via the formation of a collapsed compact coil-like ensemble. Structuring of the G4 from the coil then proceeds via various cross-like, hairpin, slip-stranded and two-quartet ensembles and can bypass the G-triplex structure. Folding of the parallel G4 does not appear to involve any salient intermediates and is a multi-pathway process. We also carried out an extended set of simulations of parallel G-hairpins. While parallel G-hairpins are extremely unstable when isolated, they are more stable inside the coil structure. On the methodology side, we show that the AMBER DNA force field predicts the folded G4 to be less stable than the unfolded ensemble, uncovering substantial force-field issues. Overall, we provide unique atomistic insights into the folding landscape of parallel-stranded G4 but also reveal limitations of current state-of-the-art MD techniques.
Collapse
Affiliation(s)
- Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, Trieste 34136, Italy
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic.
| |
Collapse
|
8
|
Wang C, Xu G, Liu X, Jiang L, Zhou X, Liu M, Li C. 19F Nuclear Magnetic Resonance Fingerprinting Technique for Identifying and Quantifying G-Quadruplex Topology in Human Telomeric Overhangs. J Am Chem Soc 2024; 146:4741-4751. [PMID: 38346932 DOI: 10.1021/jacs.3c12247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid secondary structures with diverse topological features and biological roles. Human telomeric (Htelo) overhangs consisting of TTAGGG repeats can fold into G4s that adopt different topologies under physiological conditions. These G4s are potential targets for anticancer drugs. Despite intensive research, the existence and topology of G4s at Htelo overhangs in vivo are still unclear because there is no method to distinguish and quantify the topology of Htelo overhangs with native lengths that can form more than three tandem G4s in living cells. Herein, we present a novel 19F chemical shift fingerprinting technique to identify and quantify the topology of the Htelo overhangs up to five G-quadruplexes (G4s) and 120 nucleotides long both in vitro and in living cells. Our results show that longer overhang sequences tend to form stable G4s at the 5'- and 3'-ends, while the interior G4s are dynamic and "sliding" along the sequence, with TTA or 1-3 TTAGGG repeats as a linker. Each G4 in the longer overhang is conformationally heterogeneous, but the predominant ones are hybrid-2, two- or three-tetrad antiparallel, and hybrid-1 at the 5'-terminal, interior, and 3'-terminal, respectively. Additionally, we observed a distinct behavior of different lengths of telomeric sequences in living cells, suggesting that the overhang length and protein accessibility are related to its function. This technique provides a powerful tool for quickly identifying the folding topology and relative population of long Htelo overhangs, which may provide valuable insights into telomere functionality and be beneficial for structure-based anticancer drug development targeting G4s.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
9
|
Kim S, Kim Y, Lee JY. Real-time single-molecule visualization using DNA curtains reveals the molecular mechanisms underlying DNA repair pathways. DNA Repair (Amst) 2024; 133:103612. [PMID: 38128155 DOI: 10.1016/j.dnarep.2023.103612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The demand for direct observation of biomolecular interactions provides new insights into the molecular mechanisms underlying many biological processes. Single-molecule imaging techniques enable real-time visualization of individual biomolecules, providing direct observations of protein machines. Various single-molecule imaging techniques have been developed and have contributed to breakthroughs in biological research. One such technique is the DNA curtain, a novel, high-throughput, single-molecule platform that integrates lipid fluidity, nano-fabrication, microfluidics, and fluorescence imaging. Many DNA metabolic reactions, such as replication, transcription, and chromatin dynamics, have been studied using DNA curtains. In particular, the DNA curtain platform has been intensively applied in investigating the molecular details of DNA repair processes. This article reviews DNA curtain techniques and their applications for imaging DNA repair proteins.
Collapse
Affiliation(s)
- Subin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Youngseo Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
10
|
Aznauryan M, Birkedal V. Dynamics of G-Quadruplex Formation under Molecular Crowding. J Phys Chem Lett 2023; 14:10354-10360. [PMID: 37948600 DOI: 10.1021/acs.jpclett.3c02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
G-quadruplex (G4) structures assemble from guanine-rich DNA sequences and are believed to regulate several key cellular processes. G4 formation and conformational interconversions are well-established to occur dynamically in vitro. However, a clear understanding of G4 formation dynamics in cells as well as under conditions mimicking the cellular environment is missing. To fill this gap, we have investigated the G4 dynamics in molecularly crowded solutions, thus replicating the effect of the excluded volume present in cells. The results show that the volume exclusion exerted by large crowding agents accelerates the rate of G4 formation by at least an order of magnitude, leading to significant G4 stabilization. Extrapolation from our experimental data predicts crowding-induced G4 stabilization by more than 3 kcal/mol, under crowding levels found in the cellular environment. Such effects are likely to be important for G4-driven regulatory functions.
Collapse
Affiliation(s)
- Mikayel Aznauryan
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
- Univ. Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, Institut Européen de Chimie et Biologie, 33607 Pessac, France
| | - Victoria Birkedal
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Stadlbauer P, Mlýnský V, Krepl M, Šponer J. Complexity of Guanine Quadruplex Unfolding Pathways Revealed by Atomistic Pulling Simulations. J Chem Inf Model 2023; 63:4716-4731. [PMID: 37458574 PMCID: PMC10428220 DOI: 10.1021/acs.jcim.3c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 08/15/2023]
Abstract
Guanine quadruplexes (GQs) are non-canonical nucleic acid structures involved in many biological processes. GQs formed in single-stranded regions often need to be unwound by cellular machinery, so their mechanochemical properties are important. Here, we performed steered molecular dynamics simulations of human telomeric GQs to study their unfolding. We examined four pulling regimes, including a very slow setup with pulling velocity and force load accessible to high-speed atomic force microscopy. We identified multiple factors affecting the unfolding mechanism, i.e.,: (i) the more the direction of force was perpendicular to the GQ channel axis (determined by GQ topology), the more the base unzipping mechanism happened, (ii) the more parallel the direction of force was, GQ opening and cross-like GQs were more likely to occur, (iii) strand slippage mechanism was possible for GQs with an all-anti pattern in a strand, and (iv) slower pulling velocity led to richer structural dynamics with sampling of more intermediates and partial refolding events. We also identified that a GQ may eventually unfold after a force drop under forces smaller than those that the GQ withstood before the drop. Finally, we found out that different unfolding intermediates could have very similar chain end-to-end distances, which reveals some limitations of structural interpretations of single-molecule spectroscopic data.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| |
Collapse
|
12
|
Elimelech-Zohar K, Orenstein Y. An overview on nucleic-acid G-quadruplex prediction: from rule-based methods to deep neural networks. Brief Bioinform 2023:bbad252. [PMID: 37438149 DOI: 10.1093/bib/bbad252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/11/2023] [Accepted: 06/18/2023] [Indexed: 07/14/2023] Open
Abstract
Nucleic-acid G-quadruplexes (G4s) play vital roles in many cellular processes. Due to their importance, researchers have developed experimental assays to measure nucleic-acid G4s in high throughput. The generated high-throughput datasets gave rise to unique opportunities to develop machine-learning-based methods, and in particular deep neural networks, to predict G4s in any given nucleic-acid sequence and any species. In this paper, we review the success stories of deep-neural-network applications for G4 prediction. We first cover the experimental technologies that generated the most comprehensive nucleic-acid G4 high-throughput datasets in recent years. We then review classic rule-based methods for G4 prediction. We proceed by reviewing the major machine-learning and deep-neural-network applications to nucleic-acid G4 datasets and report a novel comparison between them. Next, we present the interpretability techniques used on the trained neural networks to learn key molecular principles underlying nucleic-acid G4 folding. As a new result, we calculate the overlap between measured DNA and RNA G4s and compare the performance of DNA- and RNA-G4 predictors on RNA- and DNA-G4 datasets, respectively, to demonstrate the potential of transfer learning from DNA G4s to RNA G4s. Last, we conclude with open questions in the field of nucleic-acid G4 prediction and computational modeling.
Collapse
Affiliation(s)
| | - Yaron Orenstein
- Department of Computer Science, Bar-Ilan University, Ramat Gan, 5290002, Israel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
13
|
Gaur P, Bain FE, Honda M, Granger SL, Spies M. Single-Molecule Analysis of the Improved Variants of the G-Quadruplex Recognition Protein G4P. Int J Mol Sci 2023; 24:10274. [PMID: 37373425 PMCID: PMC10299155 DOI: 10.3390/ijms241210274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
As many as 700,000 unique sequences in the human genome are predicted to fold into G-quadruplexes (G4s), non-canonical structures formed by Hoogsteen guanine-guanine pairing within G-rich nucleic acids. G4s play both physiological and pathological roles in many vital cellular processes including DNA replication, DNA repair and RNA transcription. Several reagents have been developed to visualize G4s in vitro and in cells. Recently, Zhen et al. synthesized a small protein G4P based on the G4 recognition motif from RHAU (DHX36) helicase (RHAU specific motif, RSM). G4P was reported to bind the G4 structures in cells and in vitro, and to display better selectivity toward G4s than the previously published BG4 antibody. To get insight into G4P- G4 interaction kinetics and selectivity, we purified G4P and its expanded variants, and analyzed their G4 binding using single-molecule total internal reflection fluorescence microscopy and mass photometry. We found that G4P binds to various G4s with affinities defined mostly by the association rate. Doubling the number of the RSM units in the G4P increases the protein's affinity for telomeric G4s and its ability to interact with sequences folding into multiple G4s.
Collapse
Affiliation(s)
| | | | | | | | - Maria Spies
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (M.H.)
| |
Collapse
|
14
|
Gaur P, Bain FE, Honda M, Granger SL, Spies M. Single-molecule analysis of the improved variants of the G-quadruplex recognition protein G4P. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539902. [PMID: 37214990 PMCID: PMC10197523 DOI: 10.1101/2023.05.08.539902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As many as 700,000 unique sequences in the human genome are predicted to fold into G-quadruplexes (G4s), non-canonical structures formed by Hoogsteen guanine-guanine pairing within G-rich nucleic acids. G4s play both physiological and pathological roles in many vital cellular processes including DNA replication, DNA repair and RNA transcription. Several reagents have been developed to visualize G4s in vitro and in cells. Recently, Zhen et al . synthesized a small protein G4P based on the G4 recognition motif from RHAU (DHX36) helicase (RHAU specific motif, RSM). G4P was reported to bind the G4 structures in cells and in vitro , and to display better selectivity towards G4s than the previously published BG4 antibody. To get insight into the G4P-G4 interaction kinetics and selectivity, we purified G4P and its expanded variants, and analyzed their G4 binding using single-molecule total internal reflection fluorescence microscopy and mass photometry. We found that G4P binds to various G4s with affinities defined mostly by the association rate. Doubling the number of the RSM units in the G4P increases the protein's affinity for telomeric G4s and its ability to interact with sequences folding into multiple G4s.
Collapse
|
15
|
Trizna L, Osif B, Víglaský V. G-QINDER Tool: Bioinformatically Predicted Formation of Different Four-Stranded DNA Motifs from (GT) n and (GA) n Repeats. Int J Mol Sci 2023; 24:ijms24087565. [PMID: 37108727 DOI: 10.3390/ijms24087565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The recently introduced semi-orthogonal system of nucleic acid imaging offers a greatly improved method of identifying DNA sequences that are capable of adopting noncanonical structures. This paper uses our newly developed G-QINDER tool to identify specific repeat sequences that adopt unique structural motifs in DNA: TG and AG repeats. The structures were found to adopt a left-handed G-quadruplex form under extreme crowding conditions and a unique tetrahelical motif under certain other conditions. The tetrahelical structure likely consists of stacked AGAG-tetrads but, unlike G-quadruplexes, their stability does not appear to be dependent on the type of monovalent cation present. The occurrence of TG and AG repeats in genomes is not rare, and they are also found frequently in the regulatory regions of nucleic acids, so it is reasonable to assume that putative structural motifs, like other noncanonical forms, could play an important regulatory role in cells. This hypothesis is supported by the structural stability of the AGAG motif; its unfolding can occur even at physiological temperatures since the melting temperature is primarily dependent on the number of AG repeats in the sequence.
Collapse
Affiliation(s)
- Lukáš Trizna
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University, 04001 Košice, Slovakia
| | - Branislav Osif
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University, 04001 Košice, Slovakia
| | - Viktor Víglaský
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University, 04001 Košice, Slovakia
| |
Collapse
|
16
|
Fang J, Xie C, Tao Y, Wei D. An overview of single-molecule techniques and applications in the study of nucleic acid structure and function. Biochimie 2023; 206:1-11. [PMID: 36179939 DOI: 10.1016/j.biochi.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Nucleic acids are an indispensable component in all known life forms. The biological processes are regulated by Nucleic acids, which associate to form special high-order structures. since the high-level structures of nucleic acids are related to gene expression in cancer cells or viruses, it is very likely to become a potential drug target. Traditional biochemical methods are limited to distinguish the conformational distribution and dynamic transition process of single nucleic acid structure. The ligands based on the intermediate and transition states between different conformations are not designed by traditional biochemical methods. The single-molecule techniques enable real-time observation of the individual nucleic acid behavior due to its high resolution. Here, we introduce the application of single-molecule techniques in the study of small molecules to recognize nucleic acid structures, such as single-molecule FRET, magnetic tweezers, optical tweezers and atomic force microscopy. At the same time, we also introduce the specific advantages of single-molecule technology compared with traditional biochemical methods and some problems arisen in current research.
Collapse
Affiliation(s)
- Junkang Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Congbao Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yanfei Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
17
|
Mechanistic insights into poly(C)-binding protein hnRNP K resolving i-motif DNA secondary structures. J Biol Chem 2022; 298:102670. [PMID: 36334628 PMCID: PMC9709238 DOI: 10.1016/j.jbc.2022.102670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/27/2022] Open
Abstract
I-motifs are four-strand noncanonical secondary structures formed by cytosine (C)-rich sequences in living cells. The structural dynamics of i-motifs play essential roles in many cellular processes, such as telomerase inhibition, DNA replication, and transcriptional regulation. In cells, the structural dynamics of the i-motif can be modulated by the interaction of poly(C)-binding proteins (PCBPs), and the interaction is closely related to human health, through modulating the transcription of oncogenes and telomere stability. Therefore, the mechanisms of how PCBPs interact with i-motif structures are fundamentally important. However, the underlying mechanisms remain elusive. I-motif structures in the promoter of the c-MYC oncogene can be unfolded by heterogeneous nuclear ribonucleoprotein K (hnRNP K), a PCBP, to activate its transcription. Here, we selected this system as an example to comprehensively study the unfolding mechanisms. We found that the promoter sequence containing 5 C-runs preferred folding into type-1245 to type-1234 i-motif structures based on their folding stability, which was further confirmed by single-molecule FRET. In addition, we first revealed that the c-MYC i-motif structure was discretely resolved by hnRNP K through two intermediate states, which were assigned to the opposite hairpin and neighboring hairpin, as further confirmed by site mutations. Furthermore, we found all three KH (hnRNP K homology) domains of hnRNP K could unfold the c-MYC i-motif structure, and KH2 and KH3 were more active than KH1. In conclusion, this study may deepen our understanding of the interactions between i-motifs and PCBPs and may be helpful for drug development.
Collapse
|
18
|
Olejko L, Dutta A, Shahsavar K, Bald I. Influence of Different Salts on the G-Quadruplex Structure Formed from the Reversed Human Telomeric DNA Sequence. Int J Mol Sci 2022; 23:ijms232012206. [PMID: 36293060 PMCID: PMC9602856 DOI: 10.3390/ijms232012206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
G-rich telomeric DNA plays a major role in the stabilization of chromosomes and can fold into a plethora of different G-quadruplex structures in the presence of mono- and divalent cations. The reversed human telomeric DNA sequence (5′-(GGG ATT)4; RevHumTel) was previously shown to have interesting properties that can be exploited for chemical sensing and as a chemical switch in DNA nanotechnology. Here, we analyze the specific G-quadruplex structures formed by RevHumTel in the presence of K+, Na+, Mg2+ and Ca2+ cations using circular dichroism spectroscopy (CDS) and Förster resonance energy transfer (FRET) based on fluorescence lifetimes. CDS is able to reveal strand and loop orientations, whereas FRET gives information about the distances between the 5′-end and the 3′-end, and also, the number of G-quadruplex species formed. Based on this combined information we derived specific G-quadruplex structures formed from RevHumTel, i.e., a chair-type and a hybrid-type G-quadruplex structure formed in presence of K+, whereas Na+ induces the formation of up to three different G-quadruplexes (a basket-type, a propeller-type and a hybrid-type structure). In the presence of Mg2+ and Ca2+ two different parallel G-quadruplexes are formed (one of which is a propeller-type structure). This study will support the fundamental understanding of the G-quadruplex formation in different environments and a rational design of G-quadruplex-based applications in sensing and nanotechnology.
Collapse
|
19
|
Kang Y, An S, Min D, Lee JY. Single-molecule fluorescence imaging techniques reveal molecular mechanisms underlying deoxyribonucleic acid damage repair. Front Bioeng Biotechnol 2022; 10:973314. [PMID: 36185427 PMCID: PMC9520083 DOI: 10.3389/fbioe.2022.973314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in single-molecule techniques have uncovered numerous biological secrets that cannot be disclosed by traditional methods. Among a variety of single-molecule methods, single-molecule fluorescence imaging techniques enable real-time visualization of biomolecular interactions and have allowed the accumulation of convincing evidence. These techniques have been broadly utilized for studying DNA metabolic events such as replication, transcription, and DNA repair, which are fundamental biological reactions. In particular, DNA repair has received much attention because it maintains genomic integrity and is associated with diverse human diseases. In this review, we introduce representative single-molecule fluorescence imaging techniques and survey how each technique has been employed for investigating the detailed mechanisms underlying DNA repair pathways. In addition, we briefly show how live-cell imaging at the single-molecule level contributes to understanding DNA repair processes inside cells.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Soyeong An
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
- Center for Genomic Integrity, Institute of Basic Sciences, Ulsan, South Korea
- *Correspondence: Ja Yil Lee,
| |
Collapse
|
20
|
Chang TR, Long X, Shastry S, Parks JW, Stone MD. Single-Molecule Mechanical Analysis of Strand Invasion in Human Telomere DNA. Biochemistry 2022; 61:1554-1560. [PMID: 35852986 PMCID: PMC9352315 DOI: 10.1021/acs.biochem.1c00448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Telomeres are essential
chromosome end capping structures that
safeguard the genome from dangerous DNA processing events. DNA strand
invasion occurs during vital transactions at telomeres, including
telomere length maintenance by the alternative lengthening of telomeres
(ALT) pathway. During telomeric strand invasion, a single-stranded
guanine-rich (G-rich) DNA invades at a complementary duplex telomere
repeat sequence, forming a displacement loop (D-loop) in which the
displaced DNA consists of the same G-rich sequence as the invading
single-stranded DNA. Single-stranded G-rich telomeric DNA readily
folds into stable, compact, structures called G-quadruplexes (GQs)
in vitro and is anticipated to form within the context of a D-loop;
however, evidence supporting this hypothesis is lacking. Here, we
report a magnetic tweezers assay that permits the controlled formation
of telomeric D-loops (TDLs) within uninterrupted duplex human telomere
DNA molecules of physiologically relevant lengths. Our results are
consistent with a model wherein the displaced single-stranded DNA
of a TDL fold into a GQ. This study provides new insight into telomere
structure and establishes a framework for the development of novel
therapeutics designed to target GQs at telomeres in cancer cells.
Collapse
Affiliation(s)
- Terren R. Chang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
| | - Xi Long
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
| | - Shankar Shastry
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
- 10X Genomics, 6230 Stoneridge Mall Rd, Pleasanton, California 94588, United States
| | - Joseph W. Parks
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
- Invitae, 1400 16th St, San Francisco, California 94103, United States
| | - Michael D. Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
| |
Collapse
|
21
|
Lee J, Sung K, Joo SY, Jeong JH, Kim SK, Lee H. Dynamic interaction of BRCA2 with telomeric G-quadruplexes underlies telomere replication homeostasis. Nat Commun 2022; 13:3396. [PMID: 35697743 PMCID: PMC9192595 DOI: 10.1038/s41467-022-31156-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
BRCA2-deficient cells precipitate telomere shortening upon collapse of stalled replication forks. Here, we report that the dynamic interaction between BRCA2 and telomeric G-quadruplex (G4), the non-canonical four-stranded secondary structure, underlies telomere replication homeostasis. We find that the OB-folds of BRCA2 binds to telomeric G4, which can be an obstacle during replication. We further demonstrate that BRCA2 associates with G-triplex (G3)-derived intermediates, which are likely to form during direct interconversion between parallel and non-parallel G4. Intriguingly, BRCA2 binding to G3 intermediates promoted RAD51 recruitment to the telomere G4. Furthermore, MRE11 resected G4-telomere, which was inhibited by BRCA2. Pathogenic mutations at the OB-folds abrogated the binding with telomere G4, indicating that the way BRCA2 associates with telomere is innate to its tumor suppressor activity. Collectively, we propose that BRCA2 binding to telomeric G4 remodels it and allows RAD51-mediated restart of the G4-driven replication fork stalling, simultaneously preventing MRE11-mediated breakdown of telomere. G-quadruplex (G4) can be formed in telomeric DNA. Here the authors show that BRCA2 interacts with telomere G4 structure generated during telomere replication, protecting telomere from nuclease attack.
Collapse
Affiliation(s)
- Junyeop Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Keewon Sung
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - So Young Joo
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Hyeon Jeong
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea.
| | - Hyunsook Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
22
|
Paul T, Opresko PL, Ha T, Myong S. Vectorial folding of telomere overhang promotes higher accessibility. Nucleic Acids Res 2022; 50:6271-6283. [PMID: 35687089 PMCID: PMC9226509 DOI: 10.1093/nar/gkac401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Human telomere overhang composed of tandem repeats of TTAGGG folds into G-quadruplex (G4). Unlike in an experimental setting in the test tube in which the entire length is allowed to fold at once, inside the cell, the overhang is expected to fold as it is synthesized directionally (5' to 3') and released segmentally by a specialized enzyme, the telomerase. To mimic such vectorial G4 folding process, we employed a superhelicase, Rep-X which can unwind DNA to release the TTAGGG repeats in 5' to 3' direction. We demonstrate that the folded conformation achieved by the refolding of full sequence is significantly different from that of the vectorial folding for two to eight TTAGGG repeats. Strikingly, the vectorially folded state leads to a remarkably higher accessibility to complementary C-rich strand and the telomere binding protein POT1, reflecting a less stably folded state resulting from the vectorial folding. Importantly, our study points to an inherent difference between the co-polymerizing and post-polymerized folding of telomere overhang that can impact telomere architecture and downstream processes.
Collapse
Affiliation(s)
- Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer Center, Pittsburgh, PA15213, USA
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA.,Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
23
|
Jiang J, Teunens T, Tisaun J, Denuit L, Moucheron C. Ruthenium(II) Polypyridyl Complexes and Their Use as Probes and Photoreactive Agents for G-quadruplexes Labelling. Molecules 2022; 27:1541. [PMID: 35268640 PMCID: PMC8912042 DOI: 10.3390/molecules27051541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their optical and electrochemical properties, ruthenium(II) polypyridyl complexes have been used in a wide array of applications. Since the discovery of the light-switch ON effect of [Ru(bpy)2dppz]2+ when interacting with DNA, the design of new Ru(II) complexes as light-up probes for specific regions of DNA has been intensively explored. Amongst them, G-quadruplexes (G4s) are of particular interest. These structures formed by guanine-rich parts of DNA and RNA may be associated with a wide range of biological events. However, locating them and understanding their implications in biological pathways has proven challenging. Elegant approaches to tackle this challenge relies on the use of photoprobes capable of marking, reversibly or irreversibly, these G4s. Indeed, Ru(II) complexes containing ancillary π-deficient TAP ligands can create a covalently linked adduct with G4s after a photoinduced electron transfer from a guanine residue to the excited complex. Through careful design of the ligands, high selectivity of interaction with G4 structures can be achieved. This allows the creation of specific Ru(II) light-up probes and photoreactive agents for G4 labelling, which is at the core of this review composed of an introduction dedicated to a brief description of G-quadruplex structures and two main sections. The first one will provide a general picture of ligands and metal complexes interacting with G4s. The second one will focus on an exhaustive and comprehensive overview of the interactions and (photo)reactions of Ru(II) complexes with G4s.
Collapse
Affiliation(s)
- Julie Jiang
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
- Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Tisaun
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Laura Denuit
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| |
Collapse
|
24
|
De Rosa M, Johnson SA, Opresko PL. Roles for the 8-Oxoguanine DNA Repair System in Protecting Telomeres From Oxidative Stress. Front Cell Dev Biol 2021; 9:758402. [PMID: 34869348 PMCID: PMC8640134 DOI: 10.3389/fcell.2021.758402] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
Telomeres are protective nucleoprotein structures that cap linear chromosome ends and safeguard genome stability. Progressive telomere shortening at each somatic cell division eventually leads to critically short and dysfunctional telomeres, which can contribute to either cellular senescence and aging, or tumorigenesis. Human reproductive cells, some stem cells, and most cancer cells, express the enzyme telomerase to restore telomeric DNA. Numerous studies have shown that oxidative stress caused by excess reactive oxygen species is associated with accelerated telomere shortening and dysfunction. Telomeric repeat sequences are remarkably susceptible to oxidative damage and are preferred sites for the production of the mutagenic base lesion 8-oxoguanine, which can alter telomere length homeostasis and integrity. Therefore, knowledge of the repair pathways involved in the processing of 8-oxoguanine at telomeres is important for advancing understanding of the pathogenesis of degenerative diseases and cancer associated with telomere instability. The highly conserved guanine oxidation (GO) system involves three specialized enzymes that initiate distinct pathways to specifically mitigate the adverse effects of 8-oxoguanine. Here we introduce the GO system and review the studies focused on investigating how telomeric 8-oxoguanine processing affects telomere integrity and overall genome stability. We also discuss newly developed technologies that target oxidative damage selectively to telomeres to investigate roles for the GO system in telomere stability.
Collapse
Affiliation(s)
- Mariarosaria De Rosa
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Samuel A Johnson
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
25
|
Liu YC, Yang DY, Sheu SY. Insights into the free energy landscape and salt-controlled mechanism of the conformational conversions between human telomeric G-quadruplex structures. Int J Biol Macromol 2021; 191:230-242. [PMID: 34536474 DOI: 10.1016/j.ijbiomac.2021.09.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022]
Abstract
G-quadruplexes have become attractive drug targets in cancer therapy. However, due to the polymorphism of G-quadruplex structures, it is difficult to experimentally verify the relevant structures of multiple intermediates and transition states in dynamic equilibrium. Hence, understanding the mechanism by which structural conversions of G-quadruplexes occur is still challenging. We conducted targeted molecular dynamics simulation with umbrella sampling to investigate how salt affects the conformational conversion of human telomeric G-quadruplex. Our results explore a unique view into the structures and energy barrier of the intermediates and transition states in the interconversion process. The pathway of G-quadruplex conformational interconversion was mapped out by a free energy landscape, consisting of branched parallel pathways with multiple energy basins. We propose a salt-controlled mechanism that as the salt concentration increases, the conformational conversion mechanism switches from multi-pathway folding to sequential folding pathways. The hybrid-I and hybrid-II structures are intermediates in the basket-propeller transformation. In high-salt solutions, the conformational conversion upon K+ binding is more feasible than upon Na+ binding. The free energy barrier for conformational conversions ranges from 1.6 to 4.6 kcal/mol. Our work will be beneficial in developing anticancer agents.
Collapse
Affiliation(s)
- Yu-Cheng Liu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Dah-Yen Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.
| | - Sheh-Yi Sheu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
26
|
Sarkar S, Singh PC. The combined action of cations and anions of ionic liquids modulates the formation and stability of G-quadruplex DNA. Phys Chem Chem Phys 2021; 23:24497-24504. [PMID: 34700329 DOI: 10.1039/d1cp03730g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
G-Quadruplex (Gq) formation and stabilization by any molecule is an essential requirement for its application in therapy, especially in oncology. Metal cations have shown higher propensity of the formation of the Gq structure and its stabilization. In this study, the role of both cations and anions of ionic liquids (ILs) on the Gq formation of human telomere (hTeloG) and its stability was investigated using spectroscopic and molecular dynamics simulation techniques. Irrespective of the nature of anions of ILs, tetramethylguanidinium (TMG) cations associated with different anions can form an antiparallel Gq structure in hTeloG. However, the propensity of the formation of an antiparallel Gq structure and its stability depend on the chain length of anions of ILs. Gq is significantly less stable in ILs having longer hydrocarbon chain anions compared to the short chain anions suggesting that the hydrophobicity of the anion plays a critical role in the stability and formation of the Gq structure by ILs. The data indicate that longer hydrocarbon chain anions of ILs preferably interact in the loop region of Gq through hydrophobic interaction which enhances the overall binding of the cation of ILs with Gq causing a decrease in the stacking energy between the G-quartets as well as Hoogsteen hydrogen bonds between the guanine bases leading to the destabilization of the antiparallel Gq structure.
Collapse
Affiliation(s)
- Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India, 700032.
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India, 700032.
| |
Collapse
|
27
|
Cheng Y, Zhang Y, You H. Characterization of G-Quadruplexes Folding/Unfolding Dynamics and Interactions with Proteins from Single-Molecule Force Spectroscopy. Biomolecules 2021; 11:1579. [PMID: 34827577 PMCID: PMC8615981 DOI: 10.3390/biom11111579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
G-quadruplexes (G4s) are stable secondary nucleic acid structures that play crucial roles in many fundamental biological processes. The folding/unfolding dynamics of G4 structures are associated with the replication and transcription regulation functions of G4s. However, many DNA G4 sequences can adopt a variety of topologies and have complex folding/unfolding dynamics. Determining the dynamics of G4s and their regulation by proteins remains challenging due to the coexistence of multiple structures in a heterogeneous sample. Here, in this mini-review, we introduce the application of single-molecule force-spectroscopy methods, such as magnetic tweezers, optical tweezers, and atomic force microscopy, to characterize the polymorphism and folding/unfolding dynamics of G4s. We also briefly introduce recent studies using single-molecule force spectroscopy to study the molecular mechanisms of G4-interacting proteins.
Collapse
Affiliation(s)
| | | | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.Z.)
| |
Collapse
|
28
|
Bandyopadhyay D, Mishra PP. Decoding the Structural Dynamics and Conformational Alternations of DNA Secondary Structures by Single-Molecule FRET Microspectroscopy. Front Mol Biosci 2021; 8:725541. [PMID: 34540899 PMCID: PMC8446445 DOI: 10.3389/fmolb.2021.725541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
In addition to the canonical double helix form, DNA is known to be extrapolated into several other secondary structural patterns involving themselves in inter- and intramolecular type hydrogen bonding. The secondary structures of nucleic acids go through several stages of multiple, complex, and interconvertible heterogeneous conformations. The journey of DNA through these conformers has significant importance and has been monitored thoroughly to establish qualitative and quantitative information about the transition between the unfolded, folded, misfolded, and partially folded states. During this structural interconversion, there always exist specific populations of intermediates, which are short-lived or sometimes even do not accumulate within a heterogeneous population and are challenging to characterize using conventional ensemble techniques. The single-molecule FRET(sm-FRET) microspectroscopic method has the advantages to overcome these limitations and monitors biological phenomena transpiring at a measurable high rate and balanced stochastically over time. Thus, tracing the time trajectory of a particular molecule enables direct measurement of the rate constant of each transition step, including the intermediates that are hidden in the ensemble level due to their low concentrations. This review is focused on the advantages of the employment of single-molecule Forster's resonance energy transfer (sm-FRET), which is worthwhile to access the dynamic architecture and structural transition of various secondary structures that DNA adopts, without letting the donor of one molecule to cross-talk with the acceptor of any other. We have emphasized the studies performed to explore the states of folding and unfolding of several nucleic acid secondary structures, for example, the DNA hairpin, Holliday junction, G-quadruplex, and i-motif.
Collapse
Affiliation(s)
- Debolina Bandyopadhyay
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
- HBNI, Mumbai, India
| | - Padmaja P. Mishra
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
- HBNI, Mumbai, India
| |
Collapse
|
29
|
FRET theoretical predictions concerning freely diffusive dyes inside spherical container: how to choose the best pair? Photochem Photobiol Sci 2021; 20:275-283. [PMID: 33721256 DOI: 10.1007/s43630-021-00016-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
FRET has been massively used to see if biomolecules were bounded or not by labelling both biomolecules by one dye of a FRET pair. This should give a digital answer to the question (fluorescence of the acceptor: high FRET efficency: molecules associated, fluorescence of the donor: low FRET efficency: molecules dissociated). This has been used, inter alia, at the single-molecule scale in containers, such as liposomes. One perspective of the field is to reduce the container's size to study the effect of confinement on binding. The problem is that if the two dyes are encapsulated inside a small liposome, they could have a significant probability to be close one from the other one (and thus to undergo a high FRET efficiency event without binding). This is why we suggest here a theoretical model which gives mean FRET efficiency as a function of liposome radius (the model applies to any spherical container) and Förster radius to help the experimentalist to choose their experimental set-up. Besides, the influence of side effect on mean FRET efficiency has been studied as well. We show here that if this "background FRET" is most of the time non-quantitative, it can remain significant and which makes data analysis trickier. We could show as well that if this background FRET obviously increases when liposome radius decreases, this variation was lower than the one which could be expected because of side effect. We show as well the FRET efficiency function distribution which let the experimentalist know the probability to get one FRET efficiency value.
Collapse
|
30
|
Aznauryan M, Noer SL, Pedersen CW, Mergny JL, Teulade-Fichou MP, Birkedal V. Ligand Binding to Dynamically Populated G-Quadruplex DNA. Chembiochem 2021; 22:1811-1817. [PMID: 33450114 DOI: 10.1002/cbic.202000792] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Indexed: 12/14/2022]
Abstract
Several small-molecule ligands specifically bind and stabilize G-quadruplex (G4) nucleic acid structures, which are considered to be promising therapeutic targets. G4s are polymorphic structures of varying stability, and their formation is dynamic. Here, we investigate the mechanisms of ligand binding to dynamically populated human telomere G4 DNA by using the bisquinolinium based ligand Phen-DC3 and a combination of single-molecule FRET microscopy, ensemble FRET and CD spectroscopies. Different cations are used to tune G4 polymorphism and folding dynamics. We find that ligand binding occurs to pre-folded G4 structures and that Phen-DC3 also induces G4 formation in unfolded single strands. Following ligand binding to dynamically populated G4s, the DNA undergoes pronounced conformational redistributions that do not involve direct ligand-induced G4 conformational interconversion. On the contrary, the redistribution is driven by ligand-induced G4 folding and trapping of dynamically populated short-lived conformation states. Thus, ligand-induced stabilization does not necessarily require the initial presence of stably folded G4s.
Collapse
Affiliation(s)
- Mikayel Aznauryan
- Department of Chemistry and iNANO center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark.,Present address: Univ. Bordeaux, INSERM, CNRS ARNA, U1212, UMR 5320, IECB, 33600, Pessac, France
| | - Sofie Louise Noer
- Department of Chemistry and iNANO center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Camilla W Pedersen
- Department of Chemistry and iNANO center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences (LOB), CNRS UMR7645, INSERM U1182, Ecole Polytechnique, 91128, Palaiseau Cedex, France.,Institute of Biophysics of the CAS, 61265, Brno, Czech Republic
| | - Marie-Paule Teulade-Fichou
- CMBC Laboratory (Chemistry and Modelling for the Biology of Cancer), Institut Curie, Research Center Orsay, CNRS UMR9187, INSERM U1196, Paris-Saclay University, Bât. 110, 91405, Orsay, France
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
31
|
Sasaki S, Ma Y, Ishizuka T, Bao HL, Hirokawa T, Xu Y, Tera M, Nagasawa K. Linear consecutive hexaoxazoles as G4 ligands inducing chair-type anti-parallel topology of a telomeric G-quadruplex. RSC Adv 2020; 10:43319-43323. [PMID: 35519695 PMCID: PMC9058415 DOI: 10.1039/d0ra09413g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
G-quadruplex structures (G4s) in guanine-rich regions of DNA play critical roles in various biological phenomena, including replication, translation, and gene expression. There are three types of G4 topology, i.e., parallel, anti-parallel, and hybrid, and ligands that selectively interact with or stabilize a specific topology have been extensively explored to enable studies of topology-related functions. Here, we describe the synthesis of a new series of G4 ligands based on 6LCOs (6-linear consecutive oxazoles), i.e., L2H2-2M2EA-6LCO (2), L2A2-2M2EAc-6LCO (3), and L2G2-2M2EG-6LCO (4), which bear four aminoalkyl, acetamidealkyl, and guanidinylalkyl side chains, respectively. Among them, ligand 2 stabilized telomeric G4 and induced anti-parallel topology independently of the presence of cations. The anti-parallel topology induced by 2 was identified as chair-type by means of 19F NMR spectroscopy and fluorescence experiments with 2-aminopurine-labeled DNA.
Collapse
Affiliation(s)
- Shogo Sasaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Yue Ma
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazak 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazak 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center, University of Tsukuba 1-1-1 Tennodai Tsukuba, 305-8575 Japan
- Division of Biomedical Science, University of Tsukuba 1-1-1 Tennodai Tsukuba, 305-8575 Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ward Tokyo 135-0064 Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazak 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Masayuki Tera
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| |
Collapse
|
32
|
Lim G, Hohng S. Single-molecule fluorescence studies on cotranscriptional G-quadruplex formation coupled with R-loop formation. Nucleic Acids Res 2020; 48:9195-9203. [PMID: 32810236 PMCID: PMC7498336 DOI: 10.1093/nar/gkaa695] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 01/13/2023] Open
Abstract
G-quadruplex (GQ) is formed at various regions of DNA, including telomeres of chromosomes and regulatory regions of oncogenes. Since GQ is important in both gene regulation and genome instability, the biological and medical implications of this abnormal DNA structure have been intensively studied. Its formation mechanisms, however, are not clearly understood yet. We report single-molecule fluorescence experiments to monitor the cotranscriptional GQ formation coupled with R-loop formation using T7 RNA polymerase. The GQ is formed very rarely per single-round transcription. R-loop formation precedes and facilitates GQ formation. Once formed, some GQs are extremely stable, resistant even to RNase H treatment, and accumulate in multiple-round transcription conditions. On the other hand, GQ existing in the non-template strand promotes the R-loop formation in the next rounds of transcription. Our study clearly shows the existence of a positive feedback mechanism of GQ and R-loop formations, which may possibly contribute to gene regulation and genome instability.
Collapse
Affiliation(s)
- Gunhyoung Lim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
33
|
Bryan TM. G-Quadruplexes at Telomeres: Friend or Foe? Molecules 2020; 25:molecules25163686. [PMID: 32823549 PMCID: PMC7464828 DOI: 10.3390/molecules25163686] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Telomeres are DNA-protein complexes that cap and protect the ends of linear chromosomes. In almost all species, telomeric DNA has a G/C strand bias, and the short tandem repeats of the G-rich strand have the capacity to form into secondary structures in vitro, such as four-stranded G-quadruplexes. This has long prompted speculation that G-quadruplexes play a positive role in telomere biology, resulting in selection for G-rich tandem telomere repeats during evolution. There is some evidence that G-quadruplexes at telomeres may play a protective capping role, at least in yeast, and that they may positively affect telomere maintenance by either the enzyme telomerase or by recombination-based mechanisms. On the other hand, G-quadruplex formation in telomeric DNA, as elsewhere in the genome, can form an impediment to DNA replication and a source of genome instability. This review summarizes recent evidence for the in vivo existence of G-quadruplexes at telomeres, with a focus on human telomeres, and highlights some of the many unanswered questions regarding the location, form, and functions of these structures.
Collapse
Affiliation(s)
- Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
34
|
Lee HT, Sanford S, Paul T, Choe J, Bose A, Opresko PL, Myong S. Position-Dependent Effect of Guanine Base Damage and Mutations on Telomeric G-Quadruplex and Telomerase Extension. Biochemistry 2020; 59:2627-2639. [PMID: 32578995 DOI: 10.1021/acs.biochem.0c00434] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Telomeres are hot spots for mutagenic oxidative and methylation base damage due to their high guanine content. We used single-molecule fluorescence resonance energy transfer detection and biochemical assays to determine how different positions and types of guanine damage and mutations alter telomeric G-quadruplex structure and telomerase activity. We compared 15 modifications, including 8-oxoguanine (8oxoG), O-6-methylguanine (O6mG), and all three possible point mutations (G to A, T, and C) at the 3' three terminal guanine positions of a telomeric G-quadruplex, which is the critical access point for telomerase. We found that G-quadruplex structural instability was induced in the order C < T < A ≤ 8oxoG < O6mG, with the perturbation caused by O6mG far exceeding the perturbation caused by other base alterations. For all base modifications, the central G position was the most destabilizing among the three terminal guanines. While the structural disruption by 8oxoG and O6mG led to concomitant increases in telomerase binding and extension activity, the structural perturbation by point mutations (A, T, and C) did not, due to disrupted annealing between the telomeric overhang and the telomerase RNA template. Repositioning the same mutations away from the terminal guanines caused both G-quadruplex structural instability and elevated telomerase activity. Our findings demonstrate how a single-base modification drives structural alterations and telomere lengthening in a position-dependent manner. Furthermore, our results suggest a long-term and inheritable effect of telomeric DNA damage that can lead to telomere lengthening, which potentially contributes to oncogenesis.
Collapse
Affiliation(s)
- Hui-Ting Lee
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Samantha Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania 15261, United States
| | - Tapas Paul
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joshua Choe
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Arindam Bose
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania 15261, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania 15261, United States
| | - Sua Myong
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
35
|
Mir SM, Samavarchi Tehrani S, Goodarzi G, Jamalpoor Z, Asadi J, Khelghati N, Qujeq D, Maniati M. Shelterin Complex at Telomeres: Implications in Ageing. Clin Interv Aging 2020; 15:827-839. [PMID: 32581523 PMCID: PMC7276337 DOI: 10.2147/cia.s256425] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Different factors influence the development and control of ageing. It is well known that progressive telomere shorting is one of the molecular mechanisms underlying ageing. The shelterin complex consists of six telomere-specific proteins which are involved in the protection of chromosome ends. More particularly, this vital complex protects the telomeres from degradation, prevents from activation of unwanted repair systems, regulates the activity of telomerase, and has a crucial role in cellular senescent and ageing-related pathologies. This review explores the organization and function of telomeric DNA along with the mechanism of telomeres during ageing, followed by a discussion of the critical role of shelterin components and their changes during ageing.
Collapse
Affiliation(s)
- Seyed Mostafa Mir
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nafiseh Khelghati
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Durdi Qujeq
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Maniati
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
36
|
Freeland J, Zhang L, Wang ST, Ruiz M, Wang Y. Bent DNA Bows as Sensing Amplifiers for Detecting DNA-Interacting Salts and Molecules. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3112. [PMID: 32486417 PMCID: PMC7309149 DOI: 10.3390/s20113112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 01/20/2023]
Abstract
Due to the central role of DNA, its interactions with inorganic salts and small organic molecules are important. For example, such interactions play important roles in various fundamental cellular processes in living systems and are involved in many DNA-damage related diseases. Strategies to improve the sensitivity of existing techniques for studying DNA interactions with other molecules would be appreciated in situations where the interactions are too weak. Here we report our development and demonstration of bent DNA bows for amplifying, sensing, and detecting the interactions of 14 inorganic salts and small organic molecules with DNA. With the bent DNA bows, these interactions were easily visualized and quantified in gel electrophoresis, which were difficult to measure without bending. In addition, the strength of the interactions of DNA with the various salts/molecules were quantified using the modified Hill equation. This work highlights the amplification effects of the bending elastic energy stored in the DNA bows and the potential use of the DNA bows for quantitatively measuring DNA interactions with small molecules as simple economic methods; it may also pave the way for exploiting the bent DNA bows for other applications such as screening DNA-interacting molecules and drugs.
Collapse
Affiliation(s)
- Jack Freeland
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA; (J.F.); (M.R.)
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (L.Z.); (S.-T.W.)
| | - Shih-Ting Wang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (L.Z.); (S.-T.W.)
| | - Mason Ruiz
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA; (J.F.); (M.R.)
- Department of Biology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yong Wang
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA; (J.F.); (M.R.)
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
- Microelectronics-Photonics Program, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
37
|
Mitra J, Ha T. Streamlining effects of extra telomeric repeat on telomeric DNA folding revealed by fluorescence-force spectroscopy. Nucleic Acids Res 2020; 47:11044-11056. [PMID: 31617570 PMCID: PMC6868435 DOI: 10.1093/nar/gkz906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 01/26/2023] Open
Abstract
A human telomere ends in a single-stranded 3′ tail, composed of repeats of T2AG3. G-quadruplexes (GQs) formed from four consecutive repeats have been shown to possess high-structural and mechanical diversity. In principle, a GQ can form from any four repeats that are not necessarily consecutive. To understand the dynamics of GQs with positional multiplicity, we studied five and six repeats human telomeric sequence using a combination of single molecule FRET and optical tweezers. Our results suggest preferential formation of GQs at the 3′ end both in K+ and Na+ solutions, with minor populations of 5′-GQ or long-loop GQs. A vectorial folding assay which mimics the directional nature of telomere extension showed that the 3′ preference holds even when folding is allowed to begin from the 5′ side. In 100 mM K+, the unassociated T2AG3 segment has a streamlining effect in that one or two mechanically distinct species was observed at a single position instead of six or more observed without an unassociated repeat. We did not observe such streamlining effect in 100 mM Na+. Location of GQ and reduction in conformational diversity in the presence of extra repeats have implications in telomerase inhibition, T-loop formation and telomere end protection.
Collapse
Affiliation(s)
- Jaba Mitra
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana IL 61801, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
38
|
Liu KC, Röder K, Mayer C, Adhikari S, Wales DJ, Balasubramanian S. Affinity-Selected Bicyclic Peptide G-Quadruplex Ligands Mimic a Protein-like Binding Mechanism. J Am Chem Soc 2020; 142:8367-8373. [PMID: 32267689 PMCID: PMC7212521 DOI: 10.1021/jacs.0c01879] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Indexed: 12/14/2022]
Abstract
The study of G-quadruplexes (G4s) in a cellular context has demonstrated links between these nucleic acid secondary structures, gene expression, and DNA replication. Ligands that bind to the G4 structure therefore present an excellent opportunity for influencing gene expression through the targeting of a nucleic acid structure rather than sequence. Here, we explore cyclic peptides as an alternative class of G4 ligands. Specifically, we describe the development of de novo G4-binding bicyclic peptides selected by phage display. Selected bicyclic peptides display submicromolar affinity to G4 structures and high selectivity over double helix DNA. Molecular simulations of the bicyclic peptide-G4 complexes corroborate the experimental binding strengths and reveal molecular insights into G4 recognition by bicyclic peptides via the precise positioning of amino acid side chains, a binding mechanism reminiscent of endogenous G4-binding proteins. Overall, our results demonstrate that selection of (bi)cyclic peptides unlocks a valuable chemical space for targeting nucleic acid structures.
Collapse
Affiliation(s)
- Kim C. Liu
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2
1EW Cambridge, U.K.
| | - Konstantin Röder
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2
1EW Cambridge, U.K.
| | - Clemens Mayer
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2
1EW Cambridge, U.K.
- Stratingh Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
| | - Santosh Adhikari
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2
1EW Cambridge, U.K.
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2
1EW Cambridge, U.K.
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2
1EW Cambridge, U.K.
- Cancer
Research U.K., Cambridge Institute, Li Ka
Shing Centre, Robinson
Way, Cambridge CB2 0RE, U.K.
- School of Clinical Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0SP, U.K.
| |
Collapse
|
39
|
Salsbury AM, Dean TJ, Lemkul JA. Polarizable Molecular Dynamics Simulations of Two c-kit Oncogene Promoter G-Quadruplexes: Effect of Primary and Secondary Structure on Loop and Ion Sampling. J Chem Theory Comput 2020; 16:3430-3444. [PMID: 32307997 DOI: 10.1021/acs.jctc.0c00191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
G-quadruplexes (GQs) are highly ordered nucleic acid structures that play fundamental roles in regulating gene expression and maintaining genomic stability. GQs are topologically diverse and enriched in promoter sequences of growth regulatory genes and proto-oncogenes, suggesting that they may serve as attractive targets for drug design at the level of transcription rather than inhibiting the activity of the protein products of these genes. The c-kit promoter contains three adjacent GQ-forming sequences that have proposed antagonistic effects on gene expression and thus are promising drug targets for diseases such as gastrointestinal stromal tumors, mast cell disease, and leukemia. Because GQ stability is influenced by primary structure, secondary structure, and ion interactions, a greater understanding of GQ structure, dynamics, and ion binding properties is needed to develop novel, GQ-targeting therapeutics. Here, we performed molecular dynamics simulations to systematically study the c-kit2 and c-kit* GQs, evaluating nonpolarizable and polarizable force fields (FFs) and examining the effects of base substitutions and cation type (K+, Na+, and Li+) on the dynamics of their isolated and linked structures. We found that the Drude polarizable FF outperformed the additive CHARMM36 FF in two- and three-tetrad GQs and solutions of KCl, NaCl, and LiCl. Drude simulations with different cations agreed with the known GQ stabilization preference (K+ > Na+ > Li+) and illustrated that tetrad core-ion coordination differs as a function of cation type. Finally, we showed that differences in primary and secondary structure influence loop sampling, ion binding, and core-ion energetics of GQs.
Collapse
Affiliation(s)
- Alexa M Salsbury
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tanner J Dean
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Justin A Lemkul
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
40
|
Wu WQ, Zhang ML, Song CP. A comprehensive evaluation of a typical plant telomeric G-quadruplex (G4) DNA reveals the dynamics of G4 formation, rearrangement, and unfolding. J Biol Chem 2020; 295:5461-5469. [PMID: 32184352 PMCID: PMC7170514 DOI: 10.1074/jbc.ra119.012383] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/16/2020] [Indexed: 11/06/2022] Open
Abstract
Telomeres are specific nucleoprotein structures that are located at the ends of linear eukaryotic chromosomes and play crucial roles in genomic stability. Telomere DNA consists of simple repeats of a short G-rich sequence: TTAGGG in mammals and TTTAGGG in most plants. In recent years, the mammalian telomeric G-rich repeats have been shown to form G-quadruplex (G4) structures, which are crucial for modulating telomere functions. Surprisingly, even though plant telomeres are essential for plant growth, development, and environmental adaptions, only few reports exist on plant telomeric G4 DNA (pTG4). Here, using bulk and single-molecule assays, including CD spectroscopy, and single-molecule FRET approaches, we comprehensively characterized the structure and dynamics of a typical plant telomeric sequence, d[GGG(TTTAGGG)3]. We found that this sequence can fold into mixed G4s in potassium, including parallel and antiparallel structures. We also directly detected intermediate dynamic transitions, including G-hairpin, parallel G-triplex, and antiparallel G-triplex structures. Moreover, we observed that pTG4 is unfolded by the AtRecQ2 helicase but not by AtRecQ3. The results of our work shed light on our understanding about the existence, topological structures, stability, intermediates, unwinding, and functions of pTG4.
Collapse
Affiliation(s)
- Wen-Qiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Ming-Li Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475001, China.
| |
Collapse
|
41
|
Patrick EM, Slivka JD, Payne B, Comstock MJ, Schmidt JC. Observation of processive telomerase catalysis using high-resolution optical tweezers. Nat Chem Biol 2020; 16:801-809. [PMID: 32066968 PMCID: PMC7311264 DOI: 10.1038/s41589-020-0478-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Telomere maintenance by telomerase is essential for continuous proliferation of human cells and is vital for the survival of stem cells and 90% of cancer cells. To compensate for telomeric DNA lost during DNA replication, telomerase processively adds GGTTAG repeats to chromosome ends by copying the template region within its RNA subunit. Between repeat additions, the RNA template must be recycled. How telomerase remains associated with substrate DNA during this critical translocation step remains unknown. Using a newly developed single-molecule telomerase activity assay utilizing high-resolution optical tweezers, we demonstrate that stable substrate DNA binding at an anchor site within telomerase facilitates the processive synthesis of telomeric repeats. The product DNA synthesized by telomerase can be recaptured by the anchor site or fold into G-quadruplex structures. Our results provide detailed mechanistic insights into telomerase catalysis, a process of critical importance in aging and cancer.
Collapse
Affiliation(s)
- Eric M Patrick
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Joseph D Slivka
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Bramyn Payne
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Matthew J Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA. .,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
42
|
Puig Lombardi E, Londoño-Vallejo A. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res 2020; 48:1-15. [PMID: 31754698 PMCID: PMC6943126 DOI: 10.1093/nar/gkz1097] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
Guanine-rich nucleic acids can fold into the non-B DNA or RNA structures called G-quadruplexes (G4). Recent methodological developments have allowed the characterization of specific G-quadruplex structures in vitro as well as in vivo, and at a much higher throughput, in silico, which has greatly expanded our understanding of G4-associated functions. Typically, the consensus motif G3+N1-7G3+N1-7G3+N1-7G3+ has been used to identify potential G-quadruplexes from primary sequence. Since, various algorithms have been developed to predict the potential formation of quadruplexes directly from DNA or RNA sequences and the number of studies reporting genome-wide G4 exploration across species has rapidly increased. More recently, new methodologies have also appeared, proposing other estimates which consider non-canonical sequences and/or structure propensity and stability. The present review aims at providing an updated overview of the current open-source G-quadruplex prediction algorithms and straightforward examples of their implementation.
Collapse
Affiliation(s)
- Emilia Puig Lombardi
- Telomeres and Cancer Laboratory, Institut Curie, PSL Research University, Sorbonne Universités, CNRS UMR3244, 75005 Paris, France
| | - Arturo Londoño-Vallejo
- Telomeres and Cancer Laboratory, Institut Curie, PSL Research University, Sorbonne Universités, CNRS UMR3244, 75005 Paris, France
| |
Collapse
|
43
|
Kim SH, Lim SH, Lee AR, Kwon DH, Song HK, Lee JH, Cho M, Johner A, Lee NK, Hong SC. Unveiling the pathway to Z-DNA in the protein-induced B-Z transition. Nucleic Acids Res 2019; 46:4129-4137. [PMID: 29584891 PMCID: PMC5934635 DOI: 10.1093/nar/gky200] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Left-handed Z-DNA is an extraordinary conformation of DNA, which can form by special sequences under specific biological, chemical or physical conditions. Human ADAR1, prototypic Z-DNA binding protein (ZBP), binds to Z-DNA with high affinity. Utilizing single-molecule FRET assays for Z-DNA forming sequences embedded in a long inactive DNA, we measure thermodynamic populations of ADAR1-bound DNA conformations in both GC and TG repeat sequences. Based on a statistical physics model, we determined quantitatively the affinities of ADAR1 to both Z-form and B-form of these sequences. We also reported what pathways it takes to induce the B–Z transition in those sequences. Due to the high junction energy, an intermediate B* state has to accumulate prior to the B–Z transition. Our study showing the stable B* state supports the active picture for the protein-induced B–Z transition that occurs under a physiological setting.
Collapse
Affiliation(s)
- Sook Ho Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, South Korea.,Department of Physics, Korea University, Seoul 02841, South Korea
| | - So-Hee Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, South Korea.,Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Ae-Ree Lee
- Department of Chemistry and RINS, Gyeongsang National University, Jinju 52828, South Korea
| | - Do Hoon Kwon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, South Korea.,Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Hyun Kyu Song
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, South Korea.,Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Jinju 52828, South Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, South Korea.,Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Albert Johner
- Institute Charles Sadron, CNRS 23 rue du Loess 67034, Strasbourg cedex 2, France.,Department of Physics, Sejong University, Seoul 05006, South Korea
| | - Nam-Kyung Lee
- Institute Charles Sadron, CNRS 23 rue du Loess 67034, Strasbourg cedex 2, France.,Department of Physics, Sejong University, Seoul 05006, South Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, South Korea.,Department of Physics, Korea University, Seoul 02841, South Korea
| |
Collapse
|
44
|
Targeted and Persistent 8-Oxoguanine Base Damage at Telomeres Promotes Telomere Loss and Crisis. Mol Cell 2019; 75:117-130.e6. [PMID: 31101499 PMCID: PMC6625854 DOI: 10.1016/j.molcel.2019.04.024] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/04/2019] [Accepted: 04/15/2019] [Indexed: 01/23/2023]
Abstract
Telomeres are essential for genome stability. Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere shortening. Although telomeres are hypersensitive to ROS-mediated 8-oxoguanine (8-oxoG) formation, the biological effect of this common lesion at telomeres is poorly understood because ROS have pleiotropic effects. Here we developed a chemoptogenetic tool that selectively produces 8-oxoG only at telomeres. Acute telomeric 8-oxoG formation increased telomere fragility in cells lacking OGG1, the enzyme that removes 8-oxoG, but did not compromise cell survival. However, chronic telomeric 8-oxoG induction over time shortens telomeres and impairs cell growth. Accumulation of telomeric 8-oxoG in chronically exposed OGG1-deficient cells triggers replication stress, as evidenced by mitotic DNA synthesis at telomeres, and significantly increases telomere losses. These losses generate chromosome fusions, leading to chromatin bridges and micronucleus formation upon cell division. By confining base damage to the telomeres, we show that telomeric 8-oxoG accumulation directly drives telomere crisis.
Collapse
|
45
|
Effects of Central Loop Length and Metal Ions on the Thermal Stability of G-Quadruplexes. Molecules 2019; 24:molecules24101863. [PMID: 31096553 PMCID: PMC6571788 DOI: 10.3390/molecules24101863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 01/03/2023] Open
Abstract
The central loop of G-quadruplex molecular beacons is a key element to sense target DNA or RNA sequences. In this study, circular dichroism spectroscopy (CD), thermal difference spectrum (TDS), non-denatured non-denaturing gel electrophoresis, and thermal stability analysis were used to investigate the effect of the central loop length on G-quadruplex features. Two series of G-quadruplexes, AG3TTAG3-(TTA)n-G3TTAG3T (n = 1–8) (named TTA series) and AG3TTTG3-(TTA)n-G3TTTG3T (n = 1–8) (named TTT series) were examined in K+ and Na+ solutions, respectively. CD and TDS spectral data indicated that TTA series adopted an antiparallel G-quadruplex structure in Na+ solution and a hybrid G-quadruplex structure in K+ solution respectively. TTT series exhibited a hybrid G-quadruplex structure in both Na+ and K+ solutions. UV melting curves indicated that the stability of G-quadruplex in both series was reduced by the elongation of central loop. Thermal stability analysis concluded that the G-quadruplex destabilization with long central loop is an entropy-driven process due to more flexible and longer central loops.
Collapse
|
46
|
Extreme mechanical diversity of human telomeric DNA revealed by fluorescence-force spectroscopy. Proc Natl Acad Sci U S A 2019; 116:8350-8359. [PMID: 30944218 DOI: 10.1073/pnas.1815162116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G-quadruplexes (GQs) can adopt diverse structures and are functionally implicated in transcription, replication, translation, and maintenance of telomere. Their conformational diversity under physiological levels of mechanical stress, however, is poorly understood. We used single-molecule fluorescence-force spectroscopy that combines fluorescence resonance energy transfer with optical tweezers to measure human telomeric sequences under tension. Abrupt GQ unfolding with K+ in solution occurred at as many as four discrete levels of force. Added to an ultrastable state and a gradually unfolding state, there were six mechanically distinct structures. Extreme mechanical diversity was also observed with Na+, although GQs were mechanically weaker. Our ability to detect small conformational changes at low forces enabled the determination of refolding forces of about 2 pN. Refolding was rapid and stochastically redistributed molecules to mechanically distinct states. A single guanine-to-thymine substitution mutant required much higher ion concentrations to display GQ-like unfolding and refolded via intermediates, contrary to the wild type. Contradicting an earlier proposal, truncation to three hexanucleotide repeats resulted in a single-stranded DNA-like mechanical behavior under all conditions, indicating that at least four repeats are required to form mechanically stable structures.
Collapse
|
47
|
Hon J, Gonzalez RL. Bayesian-Estimated Hierarchical HMMs Enable Robust Analysis of Single-Molecule Kinetic Heterogeneity. Biophys J 2019; 116:1790-1802. [PMID: 31010664 DOI: 10.1016/j.bpj.2019.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/27/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022] Open
Abstract
Single-molecule kinetic experiments allow the reaction trajectories of individual biomolecules to be directly observed, eliminating the effects of population averaging and providing a powerful approach for elucidating the kinetic mechanisms of biomolecular processes. A major challenge to the analysis and interpretation of these experiments, however, is the kinetic heterogeneity that almost universally complicates the recorded single-molecule signal versus time trajectories (i.e., signal trajectories). Such heterogeneity manifests as changes and/or differences in the transition rates that are observed within individual signal trajectories or across a population of signal trajectories. Because characterizing kinetic heterogeneity can provide critical mechanistic information, we have developed a computational method that effectively and comprehensively enables such analysis. To this end, we have developed a computational algorithm and software program, hFRET, that uses the variational approximation for Bayesian inference to estimate the parameters of a hierarchical hidden Markov model, thereby enabling robust identification and characterization of kinetic heterogeneity. Using simulated signal trajectories, we demonstrate the ability of hFRET to accurately and precisely characterize kinetic heterogeneity. In addition, we use hFRET to analyze experimentally recorded signal trajectories reporting on the conformational dynamics of ribosomal pre-translocation (PRE) complexes. The results of our analyses demonstrate that PRE complexes exhibit kinetic heterogeneity, reveal the physical origins of this heterogeneity, and allow us to expand the current model of PRE complex dynamics. The methods described here can be applied to signal trajectories generated using any type of signal and can be easily extended to the analysis of signal trajectories exhibiting more complex kinetic behaviors. Moreover, variations of our approach can be easily developed to integrate kinetic data obtained from different experimental constructs and/or from molecular dynamics simulations of a biomolecule of interest.
Collapse
Affiliation(s)
- Jason Hon
- Department of Chemistry, Columbia University, New York, New York
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, New York.
| |
Collapse
|
48
|
Binding of BRACO19 to a Telomeric G-Quadruplex DNA Probed by All-Atom Molecular Dynamics Simulations with Explicit Solvent. Molecules 2019; 24:molecules24061010. [PMID: 30871220 PMCID: PMC6471034 DOI: 10.3390/molecules24061010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 11/30/2022] Open
Abstract
Although BRACO19 is a potent G-quadruplex binder, its potential for clinical usage is hindered by its low selectivity towards DNA G-quadruplex over duplex. High-resolution structures of BRACO19 in complex with neither single-stranded telomeric DNA G-quadruplexes nor B-DNA duplex are available. In this study, the binding pathway of BRACO19 was probed by 27.5 µs molecular dynamics binding simulations with a free ligand (BRACO19) to a DNA duplex and three different topological folds of the human telomeric DNA G-quadruplex (parallel, anti-parallel and hybrid). The most stable binding modes were identified as end stacking and groove binding for the DNA G-quadruplexes and duplex, respectively. Among the three G-quadruplex topologies, the MM-GBSA binding energy analysis suggested that BRACO19′s binding to the parallel scaffold was most energetically favorable. The two lines of conflicting evidence plus our binding energy data suggest conformation-selection mechanism: the relative population shift of three scaffolds upon BRACO19 binding (i.e., an increase of population of parallel scaffold, a decrease of populations of antiparallel and/or hybrid scaffold). This hypothesis appears to be consistent with the fact that BRACO19 was specifically designed based on the structural requirements of the parallel scaffold and has since proven effective against a variety of cancer cell lines as well as toward a number of scaffolds. In addition, this binding mode is only slightly more favorable than BRACO19s binding to the duplex, explaining the low binding selectivity of BRACO19 to G-quadruplexes over duplex DNA. Our detailed analysis suggests that BRACO19′s groove binding mode may not be stable enough to maintain a prolonged binding event and that the groove binding mode may function as an intermediate state preceding a more energetically favorable end stacking pose; base flipping played an important role in enhancing binding interactions, an integral feature of an induced fit binding mechanism.
Collapse
|
49
|
Abstract
Circular dichroism and stopped-flow UV spectroscopies were used to investigate the thermodynamic stability and the folding pathway of d[TGAG3TG3TAG3TG3TA2] at 25 °C in solutions containing 25 mM KCl. Under these conditions the oligonucleotide adopts a thermally stable, all-parallel G-quadruplex topography containing three stacked quartets. K+-induced folding shows three resolved relaxation times, each with distinctive spectral changes. Folding is complete within 200 s. These data indicate a folding pathway that involves at least two populated intermediates, one of which seems to be an antiparallel structure that rearranges to the final all-parallel conformation. Molecular dynamics reveals a stereochemically plausible folding pathway that does not involve complete unfolding of the intermediate. The rate of unfolding was determined using complementary DNA to trap transiently unfolded states to form a stable duplex. As assessed by 1D-1H NMR and fluorescence spectroscopy, unfolding is extremely slow with only one observable rate-limiting relaxation time.
Collapse
|
50
|
Abstract
The genome-wide occurrence of G-quadruplexes and their demonstrated biological activities call for detailed understanding on the stability and transition kinetics of the structures. Although the core structural element in a G-quadruplex is simple and requires only four tandem repeats of Guanine rich sequences, there is rather rich conformational diversity in this structure. Corresponding to this structural diversity, it displays involved transition kinetics within individual G-quadruplexes and complicated interconversion among different G-quadruplex species. Due to the inherently high signal-to-noise ratio in the measurement, single-molecule tools offer a unique capability to investigate the thermodynamic, kinetic, and mechanical properties of G-quadruplexes with dynamic conformations. In this chapter, we describe different single molecule methods such as atomic-force microscopy (AFM), single-molecule fluorescence resonance energy transfer (smFRET), optical, magnetic, and magneto-optical tweezers to investigate G-quadruplex structures as well as their interactions with small-molecule ligands.
Collapse
Affiliation(s)
- Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA
| | | | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA.
| |
Collapse
|