1
|
Helmann JD. Metals in Motion: Understanding Labile Metal Pools in Bacteria. Biochemistry 2025; 64:329-345. [PMID: 39755956 PMCID: PMC11755726 DOI: 10.1021/acs.biochem.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Abstract
Metal ions are essential for all life. In microbial cells, potassium (K+) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg2+) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor. Microbes typically require the transition metals manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn), although the precise set of metal ions needed to sustain life is variable. Intracellular metal pools can be conceptualized as a chemically complex mixture of rapidly exchanging (labile) ions, complemented by those reservoirs that exchange slowly relative to cell metabolism (sequestered). Labile metal pools are buffered by transient interactions with anionic metabolites and macromolecules, with the ribosome playing a major role. Sequestered metal pools include many metalloproteins, cofactors, and storage depots, with some pools redeployed upon metal depletion. Here, I review the size, composition, and dynamics of intracellular metal pools and highlight the major gaps in understanding.
Collapse
Affiliation(s)
- John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States
| |
Collapse
|
2
|
Bains W, Petkowski JJ, Seager S. Alternative Solvents for Life: Framework for Evaluation, Current Status, and Future Research. ASTROBIOLOGY 2024; 24:1231-1256. [PMID: 39623882 DOI: 10.1089/ast.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Life is a complex, dynamic chemical system that requires a dense fluid solvent in which to take place. A common assumption is that the most likely solvent for life is liquid water, and some researchers argue that water is the only plausible solvent. However, a persistent theme in astrobiological research postulates that other liquids might be cosmically common and could be solvents for the chemistry of life. In this article, we present a new framework for the analysis of candidate solvents for life, and we deploy this framework to review substances that have been suggested as solvent candidates. We categorize each solvent candidate through the following four criteria: occurrence, solvation, solute stability, and solvent chemical functionality. Our semiquantitative approach addresses all the requirements for a solvent not only from the point of view of its chemical properties but also from the standpoint of its biochemical function. Only the protonating solvents fulfill all the chemical requirements to be a solvent for life, and of those only water and concentrated sulfuric acid are also likely to be abundant in a rocky planetary context. Among the nonprotonating solvents, liquid CO2 stands out as a planetary solvent, and its potential as a solvent for life should be explored. We conclude with a discussion of whether it is possible for a biochemistry to change solvents as an adaptation to radical changes in a planet's environment. Our analysis provides the basis for prioritizing future experimental work to explore potential complex chemistry on other planets. Key Words: Habitability-Alternative solvents for life-Alternative biochemistry. Astrobiology 24, 1231-1256.
Collapse
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- School of Physics & Astronomy, Cardiff University, Cardiff, UK
| | - Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
- JJ Scientific, Warsaw, Poland
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Norris V. Hypothesis: bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock. Theory Biosci 2024; 143:253-277. [PMID: 39505803 DOI: 10.1007/s12064-024-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
A fundamental problem in biology is how cells obtain the reproducible, coherent phenotypes needed for natural selection to act or, put differently, how cells manage to limit their exploration of the vastness of phenotype space. A subset of this problem is how they regulate their cell cycle. Bacteria, like eukaryotic cells, are highly structured and contain scores of hyperstructures or assemblies of molecules and macromolecules. The existence and functioning of certain of these hyperstructures depend on phase transitions. Here, I propose a conceptual framework to facilitate the development of water-clock hypotheses in which cells use water to generate phenotypes by living 'on the edge of phase transitions'. I give an example of such a hypothesis in the case of the bacterial cell cycle and show how it offers a relatively novel 'view from here' that brings together a range of different findings about hyperstructures, phase transitions and water and that can be integrated with other hypotheses about differentiation, metabolism and the origins of life.
Collapse
Affiliation(s)
- Vic Norris
- CBSA UR 4312, University of Rouen Normandy, 76821, Rouen, Mont Saint Aignan, France.
| |
Collapse
|
4
|
Norris V. Hunting the Cell Cycle Snark. Life (Basel) 2024; 14:1213. [PMID: 39459514 PMCID: PMC11509034 DOI: 10.3390/life14101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
In this very personal hunt for the meaning of the bacterial cell cycle, the snark, I briefly revisit and update some of the mechanisms we and many others have proposed to regulate the bacterial cell cycle. These mechanisms, which include the dynamics of calcium, membranes, hyperstructures, and networks, are based on physical and physico-chemical concepts such as ion condensation, phase transition, crowding, liquid crystal immiscibility, collective vibrational modes, reptation, and water availability. I draw on ideas from subjects such as the 'prebiotic ecology' and phenotypic diversity to help with the hunt. Given the fundamental nature of the snark, I would expect that its capture would make sense of other parts of biology. The route, therefore, followed by the hunt has involved trying to answer questions like "why do cells replicate their DNA?", "why is DNA replication semi-conservative?", "why is DNA a double helix?", "why do cells divide?", "is cell division a spandrel?", and "how are catabolism and anabolism balanced?". Here, I propose some relatively unexplored, experimental approaches to testing snark-related hypotheses and, finally, I propose some possibly original ideas about DNA packing, about phase separations, and about computing with populations of virtual bacteria.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76000 Rouen, France
| |
Collapse
|
5
|
Maloney AE, Kopf SH, Zhang Z, McFarlin J, Nelson DB, Masterson AL, Zhang X. Large enrichments in fatty acid 2H/ 1H ratios distinguish respiration from aerobic fermentation in yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2024; 121:e2310771121. [PMID: 38709917 PMCID: PMC11098093 DOI: 10.1073/pnas.2310771121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/21/2024] [Indexed: 05/08/2024] Open
Abstract
Shifts in the hydrogen stable isotopic composition (2H/1H ratio) of lipids relative to water (lipid/water 2H-fractionation) at natural abundances reflect different sources of the central cellular reductant, NADPH, in bacteria. Here, we demonstrate that lipid/water 2H-fractionation (2εfattyacid/water) can also constrain the relative importance of key NADPH pathways in eukaryotes. We used the metabolically flexible yeast Saccharomyces cerevisiae, a microbial model for respiratory and fermentative metabolism in industry and medicine, to investigate 2εfattyacid/water. In chemostats, fatty acids from glycerol-respiring cells were >550‰ 2H-enriched compared to those from cells aerobically fermenting sugars via overflow metabolism, a hallmark feature in cancer. Faster growth decreased 2H/1H ratios, particularly in glycerol-respiring cells by 200‰. Variations in the activities and kinetic isotope effects among NADP+-reducing enzymes indicate cytosolic NADPH supply as the primary control on 2εfattyacid/water. Contributions of cytosolic isocitrate dehydrogenase (cIDH) to NAPDH production drive large 2H-enrichments with substrate metabolism (cIDH is absent during fermentation but contributes up to 20 percent NAPDH during respiration) and slower growth on glycerol (11 percent more NADPH from cIDH). Shifts in NADPH demand associated with cellular lipid abundance explain smaller 2εfattyacid/water variations (<30‰) with growth rate during fermentation. Consistent with these results, tests of murine liver cells had 2H-enriched lipids from slower-growing, healthy respiring cells relative to fast-growing, fermenting hepatocellular carcinoma. Our findings point to the broad potential of lipid 2H/1H ratios as a passive natural tracker of eukaryotic metabolism with applications to distinguish health and disease, complementing studies that rely on complex isotope-tracer addition methods.
Collapse
Affiliation(s)
| | - Sebastian H. Kopf
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Zhaoyue Zhang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Department of Chemistry, Princeton University, Princeton, NJ08544
| | - Jamie McFarlin
- Department of Geology and Geophysics, University of Wyoming, LaramieWY82071
| | - Daniel B. Nelson
- Department of Environmental Science— Botany, University of Basel, Basel4056, Switzerland
| | - Andrew L. Masterson
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL60208
| | - Xinning Zhang
- Department of Geosciences, Princeton University, Princeton, NJ08544
- High Meadow Environmental Institute, Princeton University, Princeton, NJ08544
| |
Collapse
|
6
|
Weiner T, Tamburini F, Keren N, Keinan J, Angert A. Does metabolic water control the phosphate oxygen isotopes of microbial cells? Front Microbiol 2023; 14:1277349. [PMID: 38053558 PMCID: PMC10694195 DOI: 10.3389/fmicb.2023.1277349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
The oxygen isotopes ratio (δ18O) of microbial cell water strongly controls the δ18O of cell phosphate and of other oxygen-carrying moieties. Recently it was suggested that the isotopic ratio in cell water is controlled by metabolic water, which is the water produced by cellular respiration. This potentially has important implications for paleoclimate reconstruction, and for measuring microbial carbon use efficiency with the 18O-water method. Carbon use efficiency strongly controls soil organic matter preservation. Here, we directly tested the effect of metabolic water on microbial cells, by conducting experiments with varying the δ18O of headspace O2 and the medium water, and by measuring the δ18O of cell phosphate. The latter is usually assumed to be in isotopic equilibrium with the cell's water. Our results showed no correlation between the δ18O of O2 and that of the cell phosphate, contradicting the hypothesis that metabolic water is an important driver of δ18O of microbial cell water. However, our labeled 18O water experiments indicated that only 43% of the oxygen in the cell's phosphate is derived from equilibration with the medium water, during late-log to early-stationary growing phase. This could be explained by the isotopic effects of intra-and extra-cellular hydrolysis of organic compounds containing phosphate.
Collapse
Affiliation(s)
- Tal Weiner
- The Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Nir Keren
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan Keinan
- The Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alon Angert
- The Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Cowan DA, Cary SC, DiRuggiero J, Eckardt F, Ferrari B, Hopkins DW, Lebre PH, Maggs-Kölling G, Pointing SB, Ramond JB, Tribbia D, Warren-Rhodes K. 'Follow the Water': Microbial Water Acquisition in Desert Soils. Microorganisms 2023; 11:1670. [PMID: 37512843 PMCID: PMC10386458 DOI: 10.3390/microorganisms11071670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Water availability is the dominant driver of microbial community structure and function in desert soils. However, these habitats typically only receive very infrequent large-scale water inputs (e.g., from precipitation and/or run-off). In light of recent studies, the paradigm that desert soil microorganisms are largely dormant under xeric conditions is questionable. Gene expression profiling of microbial communities in desert soils suggests that many microbial taxa retain some metabolic functionality, even under severely xeric conditions. It, therefore, follows that other, less obvious sources of water may sustain the microbial cellular and community functionality in desert soil niches. Such sources include a range of precipitation and condensation processes, including rainfall, snow, dew, fog, and nocturnal distillation, all of which may vary quantitatively depending on the location and geomorphological characteristics of the desert ecosystem. Other more obscure sources of bioavailable water may include groundwater-derived water vapour, hydrated minerals, and metabolic hydro-genesis. Here, we explore the possible sources of bioavailable water in the context of microbial survival and function in xeric desert soils. With global climate change projected to have profound effects on both hot and cold deserts, we also explore the potential impacts of climate-induced changes in water availability on soil microbiomes in these extreme environments.
Collapse
Affiliation(s)
- Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - S Craig Cary
- School of Biological Sciences, University of Waikato, Hamilton 3216, New Zealand
| | - Jocelyne DiRuggiero
- Departments of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Departments of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Frank Eckardt
- Department of Environmental and Geographical Science, University of Cape Town, Cape Town 7701, South Africa
| | - Belinda Ferrari
- School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - David W Hopkins
- Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, UK
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | | | - Stephen B Pointing
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- Departamento Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Dana Tribbia
- School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
8
|
Koch GW, Schwartz E. Isotopic labeling of metabolic water with 18 O 2. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9447. [PMID: 36464810 DOI: 10.1002/rcm.9447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
RATIONALE Water is the medium of life, is involved in biochemical reactions, and is exchanged among internal pools and with the water in the external environment of organisms. Understanding these processes can be improved by isotopically labeling the metabolic water that is produced inside the cells of organisms during aerobic respiration. METHODS Here we describe a new method for isotopically labeling cellular water by incubating microbes and plant tissues in air enriched in 18 O2 . As oxygen gas is reduced during respiration, H2 18 O is produced. The rate of H2 18 O production and the synthesis of biomolecules that incorporate 18 O from H2 18 O can be quantified using cavity ringdown spectrometry and isotope ratio mass spectrometry. RESULTS For Escherichia coli in solution culture, soil microbial communities, and respiring tissues of plants, the amount of H2 18 O produced was strongly correlated with that of 18 O2 consumed during incubations. Measurements of 18 O in DNA, microbial biomass, and CO2 showed that metabolic water was an important substrate in biosynthesis reactions. CONCLUSIONS Any organism with aerobic respiration is amenable to labeling with 18 O2 , and the method described here enables a new approach to investigate questions regarding plant and microbial physiology. In plants, 18 O introduced as metabolic water could be tracked as it moves between living cells and exchanges with external water. For probing soil microbial physiology, the method described here has the advantage over the application of exogenous H2 18 O of not increasing the soil moisture, a disturbance that can affect microbial metabolism.
Collapse
Affiliation(s)
- George W Koch
- Department of Biological Sciences and Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Egbert Schwartz
- Department of Biological Sciences and Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
9
|
Vera-Gargallo B, Hernández M, Dumont MG, Ventosa A. Thrive or survive: prokaryotic life in hypersaline soils. ENVIRONMENTAL MICROBIOME 2023; 18:17. [PMID: 36915176 PMCID: PMC10012753 DOI: 10.1186/s40793-023-00475-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Soil services are central to life on the planet, with microorganisms as their main drivers. Thus, the evaluation of soil quality requires an understanding of the principles and factors governing microbial dynamics within it. High salt content is a constraint for life affecting more than 900 million hectares of land, a number predicted to rise at an alarming rate due to changing climate. Nevertheless, little is known about how microbial life unfolds in these habitats. In this study, DNA stable-isotope probing (DNA-SIP) with 18O-water was used to determine for the first time the taxa able to grow in hypersaline soil samples (ECe = 97.02 dS/m). We further evaluated the role of light on prokaryotes growth in this habitat. RESULTS We detected growth of both archaea and bacteria, with taxon-specific growth patterns providing insights into the drivers of success in saline soils. Phylotypes related to extreme halophiles, including haloarchaea and Salinibacter, which share an energetically efficient mechanism for salt adaptation (salt-in strategy), dominated the active community. Bacteria related to moderately halophilic and halotolerant taxa, such as Staphylococcus, Aliifodinibius, Bradymonadales or Chitinophagales also grew during the incubations, but they incorporated less heavy isotope. Light did not stimulate prokaryotic photosynthesis but instead restricted the growth of most bacteria and reduced the diversity of archaea that grew. CONCLUSIONS The results of this study suggest that life in saline soils is energetically expensive and that soil heterogeneity and traits such as exopolysaccharide production or predation may support growth in hypersaline soils. The contribution of phototrophy to supporting the heterotrophic community in saline soils remains unclear. This study paves the way toward a more comprehensive understanding of the functioning of these environments, which is fundamental to their management. Furthermore, it illustrates the potential of further research in saline soils to deepen our understanding of the effect of salinity on microbial communities.
Collapse
Affiliation(s)
- Blanca Vera-Gargallo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Marcela Hernández
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Marc G Dumont
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain.
| |
Collapse
|
10
|
Sambuichi T, Tsunogai U, Ito M, Nakagawa F. First Measurements on Triple Oxygen Isotopes of Dissolved Inorganic Phosphate in the Hydrosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3415-3424. [PMID: 36786031 DOI: 10.1021/acs.est.2c08520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although dissolved inorganic phosphate (DIP) is an important nutrient in the hydrosphere, it is difficult to quantitatively clarify the dynamics of DIP in the hydrosphere using the δ18O value of DIP as a tracer. In this study, we quantified the triple oxygen isotopic compositions (Δ'17O) of DIP relative to VSMOW with the reference line with a slope of 0.528 as an additional tracer to clarify the sources and dynamics of DIP in the hydrosphere. We found significant variation in the Δ'17O values of riverine DIP in urban areas, ranging from -107 × 10-6 to +3 × 10-6, while those of DIP in the effluents from wastewater treatment plants (WWTP) and DIP extracted from the chemical fertilizers showed -56 ± 5 × 10-6 (1SD) and -98 ± 5 × 10-6, respectively. We conclude that both the DIP supplied directly from the artificial loads (the WWTP effluent and chemical fertilizers) showing 17O-depleted Δ'17O values and the DIP turned over via the aquatic biosphere showing 17O-enriched Δ'17O values similar to ambient H2O were the major sources of riverine DIP. High-precision determination of the Δ'17O value of DIP can contribute to quantitative clarification of the dynamics of DIP in the hydrosphere.
Collapse
Affiliation(s)
- Takashi Sambuichi
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Urumu Tsunogai
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masanori Ito
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Fumiko Nakagawa
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
11
|
Li J, Liu H, Liu Z, Zhang X, Blake RE, Huang Z, Cai M, Wang F, Yu C. Transformation mechanism of methylphosphonate to methane by Burkholderia sp: Insight from multi-labeled water isotope probing and transcriptomic. ENVIRONMENTAL RESEARCH 2023; 218:114970. [PMID: 36470350 DOI: 10.1016/j.envres.2022.114970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Methylphosphonate (MPn), has been identified as a likely source of methane in aerobic ocean and may be responsible for the "ocean methane paradox", that is oversaturation of dissolved methane in oxic sea waters. However, the mechanism underlying the cleavage of C-P bonds during microbial degradation is not well understood. Using multi-labeled water isotope probing (MLWIP) and transcriptome analysis, we investigated the phosphate oxygen isotope systematics and mechanisms of microbial-mediated degradation of MPn in this study. In the aerobic culture containing MPn as the only phosphorus source, there was a significant release of inorganic phosphate (149.4 μmol/L) and free methane (268.3 mg/L). The oxygen isotopic composition of inorganic phosphorus (δ18OP) of accumulated released phosphate was 4.50‰, 23.96‰, and 40.88‰, respectively, in the corresponding 18O-labeled waters of -10.3‰, 9.9‰, and 30.6‰, and the slope obtained in plots of δ18OP versus the oxygen isotopic composition of water (δ18OW) was 0.89. Consequently, 89% of the oxygen atoms (Os) in phosphate (PO4) were exchanged with 18O-labeled waters in the medium, while the rest were exchanged with intracellular metabolic water. It has been confirmed that the C-P bond cleavage of MPn occurs in the cell with both ambient and metabolic water participation. Moreover, phn gene clusters play significant roles to cleave the C-P bond of MPn for Burkholderia sp. HQL1813, in which phnJ, phnM and phnI genes are significantly up-regulated during MPn decomposition to methane. In conclusion, the aerobic biotransformation of MPn to free methane by Burkholderia sp. HQL1813 has been elucidated, providing new insights into the mechanism that bio-cleaves C-P bonds to produce methane aerobically in aqueous environments for representative phosphonates.
Collapse
Affiliation(s)
- Junhong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Houquan Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Zeqin Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Xianhua Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Ruth Elaine Blake
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, 06520-8109, USA
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, 300308, Tianjin, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Centre of Microbial Pesticides, Huazhong Agricultural University, 430070, Wuhan, China
| | - Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai, Haidian District, 100875, Beijing, China.
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China.
| |
Collapse
|
12
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
13
|
Saragovi A, Zilberman T, Yasur G, Turjeman K, Abramovich I, Kuchersky M, Gottlieb E, Barenholz Y, Berger M. Analysis of cellular water content in T cells reveals a switch from slow metabolic water gain to rapid water influx prior to cell division. J Biol Chem 2022; 298:101795. [PMID: 35248530 PMCID: PMC9034303 DOI: 10.1016/j.jbc.2022.101795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/05/2022] Open
Abstract
Cell growth is driven by the acquisition and synthesis of both dry biomass and water mass. In this study, we examine the increase of water mass in T cell during cell growth. We found that T-cell growth is characterized by an initial phase of slow increase in cellular water, followed by a second phase of rapid increase in water content. To study the origin of the water gain, we developed a novel methodology we call cold aqua trap-isotope ratio mass spectrometry, which allows analysis of the isotope composition of intracellular water. Applying cold aqua trap-isotope ratio mass spectrometry, we discovered that glycolysis-coupled metabolism of water accounts on average for 11 fl out of the 20 fl of water gained per cell during the initial slow phase. In addition, we show that at the end of the rapid phase before initiation of cell division, a water influx occurs, increasing the cellular water mass by threefold. Thus, we conclude that activated T cells switch from metabolizing water to rapidly taking up water from the extracellular medium prior to cell division. Our work provides a method to analyze cell water content as well as insights into the ways cells regulate their water mass.
Collapse
Affiliation(s)
- A Saragovi
- The Lautenberg center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Medical School, Jerusalem, Israel.
| | - T Zilberman
- Department of Geochemistry, Geological Survey of Israel, Jerusalem, Israel
| | - G Yasur
- Department of Geochemistry, Geological Survey of Israel, Jerusalem, Israel
| | - K Turjeman
- Laboratory of Membrane and Liposome Research, Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - I Abramovich
- The Ruth and Bruce Rappaport, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - M Kuchersky
- The Lautenberg center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Medical School, Jerusalem, Israel
| | - E Gottlieb
- The Ruth and Bruce Rappaport, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Y Barenholz
- Laboratory of Membrane and Liposome Research, Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - M Berger
- The Lautenberg center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Medical School, Jerusalem, Israel.
| |
Collapse
|
14
|
Abstract
Water is the cellular milieu, drives all biochemistry within Earth's biosphere and facilitates microbe-mediated decay processes. Instead of reviewing these topics, the current article focuses on the activities of water as a preservative-its capacity to maintain the long-term integrity and viability of microbial cells-and identifies the mechanisms by which this occurs. Water provides for, and maintains, cellular structures; buffers against thermodynamic extremes, at various scales; can mitigate events that are traumatic to the cell membrane, such as desiccation-rehydration, freeze-thawing and thermal shock; prevents microbial dehydration that can otherwise exacerbate oxidative damage; mitigates against biocidal factors (in some circumstances reducing ultraviolet radiation and diluting solute stressors or toxic substances); and is effective at electrostatic screening so prevents damage to the cell by the intense electrostatic fields of some ions. In addition, the water retained in desiccated cells (historically referred to as 'bound' water) plays key roles in biomacromolecular structures and their interactions even for fully hydrated cells. Assuming that the components of the cell membrane are chemically stable or at least repairable, and the environment is fairly constant, water molecules can apparently maintain membrane geometries over very long periods provided these configurations represent thermodynamically stable states. The spores and vegetative cells of many microbes survive longer in the presence of vapour-phase water (at moderate-to-high relative humidities) than under more-arid conditions. There are several mechanisms by which large bodies of water, when cooled during subzero weather conditions remain in a liquid state thus preventing potentially dangerous (freeze-thaw) transitions for their microbiome. Microbial life can be preserved in pure water, freshwater systems, seawater, brines, ice/permafrost, sugar-rich aqueous milieux and vapour-phase water according to laboratory-based studies carried out over periods of years to decades and some natural environments that have yielded cells that are apparently thousands, or even (for hypersaline fluid inclusions of mineralized NaCl) hundreds of millions, of years old. The term preservative has often been restricted to those substances used to extend the shelf life of foods (e.g. sodium benzoate, nitrites and sulphites) or those used to conserve dead organisms, such as ethanol or formaldehyde. For living microorganisms however, the ultimate preservative may actually be water. Implications of this role are discussed with reference to the ecology of halophiles, human pathogens and other microbes; food science; biotechnology; biosignatures for life and other aspects of astrobiology; and the large-scale release/reactivation of preserved microbes caused by global climate change.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesQueen’s University Belfast19 Chlorine GardensBelfastBT9 5DLUK
| |
Collapse
|
15
|
Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies. Proc Natl Acad Sci U S A 2021; 118:2110889118. [PMID: 34930842 PMCID: PMC8719887 DOI: 10.1073/pnas.2110889118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 11/18/2022] Open
Abstract
This research provides a transformative hypothesis for the chemistry of the atmospheric cloud layers of Venus while reconciling decades-long atmosphere anomalies. Our model predicts that the clouds are not entirely made of sulfuric acid, but are partially composed of ammonium salt slurries, which may be the result of biological production of ammonia in cloud droplets. As a result, the clouds are no more acidic than some extreme terrestrial environments that harbor life. Life could be making its own environment on Venus. The model’s predictions for the abundance of gases in Venus’ atmosphere match observation better than any previous model, and are readily testable. The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O2 in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO2 and H2O. We propose a hypothesis for the chemistry in the clouds that largely addresses all of the above anomalies. We include ammonia (NH3), a key component that has been tentatively detected both by the Venera 8 and Pioneer Venus probes. NH3 dissolves in some of the sulfuric acid cloud droplets, effectively neutralizing the acid and trapping dissolved SO2 as ammonium sulfite salts. This trapping of SO2 in the clouds, together with the release of SO2 below the clouds as the droplets settle out to higher temperatures, explains the vertical SO2 abundance anomaly. A consequence of the presence of NH3 is that some Venus cloud droplets must be semisolid ammonium salt slurries, with a pH of ∼1, which matches Earth acidophile environments, rather than concentrated sulfuric acid. The source of NH3 is unknown but could involve biological production; if so, then the most energy-efficient NH3-producing reaction also creates O2, explaining the detection of O2 in the cloud layers. Our model therefore predicts that the clouds are more habitable than previously thought, and may be inhabited. Unlike prior atmospheric models, ours does not require forced chemical constraints to match the data. Our hypothesis, guided by existing observations, can be tested by new Venus in situ measurements.
Collapse
|
16
|
Bunin VD, Angersbach AK, Mehta SK, Guliy OI. Use of an optical sensor to directly monitor the metabolic activity of growing bacteria. Talanta 2021; 234:122590. [PMID: 34364416 DOI: 10.1016/j.talanta.2021.122590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
The metabolic activity of growing bacteria was directly monitored by using an electro-optical (EO) sensor. The sensor enables examination of bacteria in batch and continuous cultures. As examples, we report studies with Еscherichia coli, a bacterium with an aerobic type of metabolism, and Lactobacillus plantarum, a bacterium with an anaerobic type of metabolism. Bacterial growth was accompanied by a simultaneous change in both the hydrodynamic mean size (HMS) of the bacteria and the concentration of ions in the cytoplasm (CIC). Both variables were associated with the regulation of cellular metabolic activity, which can be cyclic during intense bacterial growth. A simultaneous change in metabolic activity and osmotic regulation was also found. For СIC and HMS measurements, we used online results of the EO analysis of cells suspended in water. The measured results for the CIC and HMS can be used to directly monitor bacterial metabolism. The results of this study are of practical importance for the real-time EO monitoring of the metabolic activity of growing bacteria without preliminary sample preparation.
Collapse
Affiliation(s)
| | | | | | - Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, 410049, Russia.
| |
Collapse
|
17
|
Luxem KE, Leavitt WD, Zhang X. Large Hydrogen Isotope Fractionation Distinguishes Nitrogenase-Derived Methane from Other Methane Sources. Appl Environ Microbiol 2020; 86:e00849-20. [PMID: 32709722 PMCID: PMC7499036 DOI: 10.1128/aem.00849-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/16/2020] [Indexed: 02/01/2023] Open
Abstract
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase. Two forms of this metalloenzyme, the vanadium (V)- and iron (Fe)-only nitrogenases, were recently found to reduce small amounts of carbon dioxide (CO2) into the potent greenhouse gas methane (CH4). Here, we report carbon (13C/12C) and hydrogen (2H/1H) stable isotopic compositions and fractionations of methane generated by V- and Fe-only nitrogenases in the metabolically versatile nitrogen fixer Rhodopseudomonas palustris The stable carbon isotope fractionation imparted by both forms of alternative nitrogenase are within the range observed for hydrogenotrophic methanogenesis (13αCO2/CH4 = 1.051 ± 0.002 for V-nitrogenase and 1.055 ± 0.001 for Fe-only nitrogenase; values are means ± standard errors). In contrast, the hydrogen isotope fractionations (2αH2O/CH4 = 2.071 ± 0.014 for V-nitrogenase and 2.078 ± 0.018 for Fe-only nitrogenase) are the largest of any known biogenic or geogenic pathway. The large 2αH2O/CH4 shows that the reaction pathway nitrogenases use to form methane strongly discriminates against 2H, and that 2αH2O/CH4 distinguishes nitrogenase-derived methane from all other known biotic and abiotic sources. These findings on nitrogenase-derived methane will help constrain carbon and nitrogen flows in microbial communities and the role of the alternative nitrogenases in global biogeochemical cycles.IMPORTANCE All forms of life require nitrogen for growth. Many different kinds of microbes living in diverse environments make inert nitrogen gas from the atmosphere bioavailable using a special enzyme, nitrogenase. Nitrogenase has a wide substrate range, and, in addition to producing bioavailable nitrogen, some forms of nitrogenase also produce small amounts of the greenhouse gas methane. This is different from other microbes that produce methane to generate energy. Until now, there was no good way to determine when microbes with nitrogenases are making methane in nature. Here, we present an isotopic fingerprint that allows scientists to distinguish methane from microbes making it for energy versus those making it as a by-product of nitrogen acquisition. With this new fingerprint, it will be possible to improve our understanding of the relationship between methane production and nitrogen acquisition in nature.
Collapse
Affiliation(s)
- Katja E Luxem
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Xinning Zhang
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
18
|
Lin YH, Wang YC, Wu MS, Lu KC, Lin HY, Kuo HS, Chang GD, Lin CM, Hsiao C. The study of isotopic enrichment of water in human plasma and erythrocyte. FASEB J 2020; 34:13049-13062. [PMID: 32779304 DOI: 10.1096/fj.202000388rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/11/2022]
Abstract
Life does not sustain without water. For water, there is a natural abundance of stable isotope hydrogen and oxygen. Water molecules get across cell membranes through a plasma membrane protein, named aquaporin. Moreover, the kidney is the main organ to maintain water homeostasis. Here, we study the stable isotopic ratios of hydrogen and oxygen in human blood plasma and erythrocyte corresponding to kidney functions. We extract waters from human plasma and erythrocyte, collected from 110 participants, including 51 clinically stable outpatients with end-stage renal disease (ESRD) and 59 subjects with normal renal function (NRF). We observed that (i) both extracellular (blood plasma) and intracellular (erythrocyte) biology waters are isotopic differences between the ESRD and NRF participants, (ii) the natural abundance of isotopic waters of ESRD is hypo-isotopic, and (iii) the isotopic enrichment of water between erythrocyte and blood plasma are distinct. In addition, we introduce an empirical formula using entropy transformation to describe isotopic water enrichment for biology. Accordingly, the natural abundance of stable isotope water of blood plasma and erythrocyte may be possibly put in practice a new sign for assessments of kidney dysfunctions.
Collapse
Affiliation(s)
- Yuan-Hau Lin
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chi Wang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Mai-Szu Wu
- College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Kuo-Cheng Lu
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Hsin-Yi Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsien-Shou Kuo
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Geen-Dong Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chun-Mao Lin
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiaolong Hsiao
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Xu J, Martien J, Gilbertson C, Ma J, Amador-Noguez D, Park JO. Metabolic flux analysis and fluxomics-driven determination of reaction free energy using multiple isotopes. Curr Opin Biotechnol 2020; 64:151-160. [PMID: 32304936 DOI: 10.1016/j.copbio.2020.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/08/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
Metabolite concentrations, fluxes, and free energies constitute the basis for understanding and controlling metabolism. Mass spectrometry and stable isotopes are integral tools in quantifying these metabolic features. For absolute metabolite concentration and flux measurement, 13C internal standards and tracers have been the gold standard. In contrast, no established methods exist for comprehensive thermodynamic quantitation under physiological environments. Recently, using high-resolution mass spectrometry and multi-isotope tracing, flux quantitation has been increasingly adopted in broader metabolism. The improved flux quantitation led to determination of Gibbs free energy of reaction (ΔG) in central carbon metabolism using a relationship between reaction reversibility and thermodynamic driving force. Here we highlight recent advances in multi-isotope tracing for metabolic flux and free energy analysis.
Collapse
Affiliation(s)
- Jimmy Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Julia Martien
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cole Gilbertson
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Junyu Ma
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Fleming AM, Burrows CJ. Interplay of Guanine Oxidation and G-Quadruplex Folding in Gene Promoters. J Am Chem Soc 2020; 142:1115-1136. [PMID: 31880930 PMCID: PMC6988379 DOI: 10.1021/jacs.9b11050] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Living in an oxygen atmosphere demands an ability to thrive in the presence of reactive oxygen species (ROS). Aerobic organisms have successfully found solutions to the oxidative threats imposed by ROS by evolving an elaborate detoxification system, upregulating ROS during inflammation, and utilizing ROS as messenger molecules. In this Perspective, recent studies are discussed that demonstrate ROS as signaling molecules for gene regulation by combining two emergent properties of the guanine (G) heterocycle in DNA, namely, oxidation sensitivity and a propensity for G-quadruplex (G4) folding, both of which depend upon sequence context. In human gene promoters, this results from an elevated 5'-GG-3' dinucleotide frequency and GC enrichment near transcription start sites. Oxidation of DNA by ROS drives conversion of G to 8-oxo-7,8-dihydroguanine (OG) to mark target promoters for base excision repair initiated by OG-glycosylase I (OGG1). Sequence-dependent mechanisms for gene activation are available to OGG1 to induce transcription. Either OGG1 releases OG to yield an abasic site driving formation of a non-canonical fold, such as a G4, to be displayed to apurinic/apyrimidinic 1 (APE1) and stalling on the fold to recruit activating factors, or OGG1 binds OG and facilitates activator protein recruitment. The mechanisms described drive induction of stress response, DNA repair, or estrogen-induced genes, and these pathways are novel potential anticancer targets for therapeutic intervention. Chemical concepts provide a framework to discuss the regulatory or possible epigenetic potential of the OG modification in DNA, in which DNA "damage" and non-canonical folds collaborate to turn on or off gene expression. The next steps for scientific discovery in this growing field are discussed.
Collapse
Affiliation(s)
- Aaron M. Fleming
- 315 South 1400 East, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| | - Cynthia J. Burrows
- 315 South 1400 East, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
21
|
Basov A, Fedulova L, Baryshev M, Dzhimak S. Deuterium-Depleted Water Influence on the Isotope 2H/ 1H Regulation in Body and Individual Adaptation. Nutrients 2019; 11:E1903. [PMID: 31443167 PMCID: PMC6723318 DOI: 10.3390/nu11081903] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/28/2022] Open
Abstract
This review article presents data about the influence of deuterium-depleted water (DDW) on biological systems. It is known that the isotope abundances of natural and bottled waters are variable worldwide. That is why different drinking rations lead to changes of stable isotopes content in body water fluxes in human and animal organisms. Also, intracellular water isotope ratios in living systems depends on metabolic activity and food consumption. We found the 2H/1H gradient in human fluids (δ2H saliva >> δ2H blood plasma > δ2Hbreast milk), which decreases significantly during DDW intake. Moreover, DDW induces several important biological effects in organism (antioxidant, metabolic detoxification, anticancer, rejuvenation, behavior, etc.). Changing the isotope 2H/1H gradient from "2H blood plasma > δ2H visceral organs" to "δ2H blood plasma << δ2H visceral organs" via DDW drinking increases individual adaptation by isotopic shock. The other possible mechanisms of long-term adaptation is DDW influence on the growth rate of cells, enzyme activity and cellular energetics (e.g., stimulation of the mitochondrion activity). In addition, DDW reduces the number of single-stranded DNA breaks and modifies the miRNA profile.
Collapse
Affiliation(s)
- Alexander Basov
- Kuban State Medical University, 350063 Krasnodar, Russia
- Kuban State University, 350040 Krasnodar, Russia
| | - Liliia Fedulova
- The V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia
| | | | - Stepan Dzhimak
- Kuban State University, 350040 Krasnodar, Russia.
- The V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia.
- Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia.
| |
Collapse
|
22
|
Alexandrovich Basov A, Anatolyevna Elkina А, Alexandrovich Samkov A, Nikolaevich Volchenko N, Victorovich Moiseev A, Viacheslavovna Fedulova L, Gennadievich Baryshev M, Sergeevich Dzhimak S. Influence of Deuterium-Depleted Water on the Isotope D/H Composition of Liver Tissue and Morphological Development of Rats at Different Periods of Ontogenesis. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 30220191 PMCID: PMC6707107 DOI: 10.29252/.23.2.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background This study aimed to evaluate the reaction of organism of laboratory animals on deuterium-depleted drinking diet. To assess the cell energy metabolism, the effect of a liquid medium with different deuterium contents on isolated liver mitochondria of random bred rats and Wistar rats was studied. Methods This experimental study on the effect of deuterium-depleted drinking water (DDW) on 16-week-old male Wistar rats lasted for four weeks. Energy metabolism of mitochondria was examined through the production of hydrogen peroxide using an Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit. Results Modification of isotope (deuterium-protium [D/H]) composition of rats’ blood and organ tissues with DDW (-705‰), introduced into rats’ diet within four weeks, led to the formation of isotope D/H gradient between blood plasma and organ tissues and affected isotope D/H exchange reactions on the adaptive processes. The isolated liver mitochondria from the random bred rats consumed DDW presented a maximum increase in H2O2 production during the incubation in DDW medium. This increased level of H2O2 production was higher in the isolated liver mitochondria of the rats consuming natural deuterium content drinking water (-24‰). Conclusion The obtained results indicate the possibility of nutritional correction of isotope D/H metabolism in blood by means of products with modified isotope composition, as well as the prospects of using isotope exchange reactions in case of imbalance in function of the body's defense systems in different generations of animals.
Collapse
Affiliation(s)
- Alexandr Alexandrovich Basov
- Kuban State Medical University, Krasnodar, Russian Federation, Russia;,Kuban State University, Krasnodar, Russian Federation, Russia
| | - Аnna Anatolyevna Elkina
- Kuban State University, Krasnodar, Russian Federation, Russia; ,Corresponding Author: Аnna Anatolyevna Elkina, Kuban State University, Krasnodar, Russian Federation, Russia; Tel.: (+7-91) 80688381; Fax: (+8-861) 2199519; E-mail:
| | | | | | | | - Liliya Viacheslavovna Fedulova
- The V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation, Russia
| | | | - Stepan Sergeevich Dzhimak
- Kuban State University, Krasnodar, Russian Federation, Russia; ,The V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation, Russia
| |
Collapse
|
23
|
Applying the principles of isotope analysis in plant and animal ecology to forensic science in the Americas. Oecologia 2018; 187:1077-1094. [PMID: 29955984 DOI: 10.1007/s00442-018-4188-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
Abstract
The heart of forensic science is application of the scientific method and analytical approaches to answer questions central to solving a crime: Who, What, When, Where, and How. Forensic practitioners use fundamentals of chemistry and physics to examine evidence and infer its origin. In this regard, ecological researchers have had a significant impact on forensic science through the development and application of a specialized measurement technique-isotope analysis-for examining evidence. Here, we review the utility of isotope analysis in forensic settings from an ecological perspective, concentrating on work from the Americas completed within the last three decades. Our primary focus is on combining plant and animal physiological models with isotope analyses for source inference. Examples of the forensic application of isotopes-including stable isotopes, radiogenic isotopes, and radioisotopes-span from cotton used in counterfeit bills to anthrax shipped through the U.S. Postal Service and from beer adulterated with cheap adjuncts to human remains discovered in shallow graves. Recent methodological developments and the generation of isotope landscapes, or isoscapes, for data interpretation promise that isotope analysis will be a useful tool in ecological and forensic studies for decades to come.
Collapse
|
24
|
Osburn MR, Dawson KS, Fogel ML, Sessions AL. Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria. Front Microbiol 2016; 7:1166. [PMID: 27531993 PMCID: PMC4969296 DOI: 10.3389/fmicb.2016.01166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/13/2016] [Indexed: 11/30/2022] Open
Abstract
Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen—protium and deuterium—that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ2H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ2H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ2H suggest much potential as an environmental recorder of metabolism.
Collapse
Affiliation(s)
- Magdalena R Osburn
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Katherine S Dawson
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Marilyn L Fogel
- Life and Environmental Sciences, School of Natural Science, University of California at Merced Merced, CA, USA
| | - Alex L Sessions
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|
25
|
Zhao L, Wang L, Cernusak LA, Liu X, Xiao H, Zhou M, Zhang S. Significant Difference in Hydrogen Isotope Composition Between Xylem and Tissue Water in Populus Euphratica. PLANT, CELL & ENVIRONMENT 2016; 39:1848-1857. [PMID: 27061571 DOI: 10.1111/pce.12753] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
Deuterium depletions between stem water and source water have been observed in coastal halophyte plants and in multiple species under greenhouse conditions. However, the location(s) of the isotope fractionation is not clear yet and it is uncertain whether deuterium fractionation appears in other natural environments. In this study, through two extensive field campaigns utilizing a common dryland riparian tree species Populus euphratica Oliv., we showed that no significant δ(18) O differences were found between water source and various plant components, in accord with previous studies. We also found that no deuterium fractionation occurred during P. euphratica water uptake by comparing the deuterium composition (δD) of groundwater and xylem sap. However, remarkable δD differences (up to 26.4‰) between xylem sap and twig water, root water and core water provided direct evidence that deuterium fractionation occurred between xylem sap and root or stem tissue water. This study indicates that deuterium fractionation could be a common phenomenon in drylands, which has important implications in plant water source identification, palaeoclimate reconstruction based on wood cellulose and evapotranspiration partitioning using δD of stem water.
Collapse
Affiliation(s)
- Liangju Zhao
- College of Urban and Environmental Sciences, Northwest University, Xi'an, 710069, China
- Key Laboratory of Ecohydrology and Integrated River Basin Science, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Lixin Wang
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202, USA
| | - Lucas A Cernusak
- College of Marine and Environmental Sciences, James Cook University, Cairns, Queensland, Australia
| | - Xiaohong Liu
- State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Honglang Xiao
- Key Laboratory of Ecohydrology and Integrated River Basin Science, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Maoxian Zhou
- School of Agriculture and Forestry Economics and Management, Lanzhou University of Finance and Economics, Lanzhou, 730101, China
| | - Shiqiang Zhang
- College of Urban and Environmental Sciences, Northwest University, Xi'an, 710069, China
| |
Collapse
|
26
|
Probing the metabolic water contribution to intracellular water using oxygen isotope ratios of PO4. Proc Natl Acad Sci U S A 2016; 113:5862-7. [PMID: 27170190 DOI: 10.1073/pnas.1521038113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the relative contributions of different water sources to intracellular fluids and body water is important for many fields of study, ranging from animal physiology to paleoclimate. The intracellular fluid environment of cells is challenging to study due to the difficulties of accessing and sampling the contents of intact cells. Previous studies of multicelled organisms, mostly mammals, have estimated body water composition-including metabolic water produced as a byproduct of metabolism-based on indirect measurements of fluids averaged over the whole organism (e.g., blood) combined with modeling calculations. In microbial cells and aquatic organisms, metabolic water is not generally considered to be a significant component of intracellular water, due to the assumed unimpeded diffusion of water across cell membranes. Here we show that the (18)O/(16)O ratio of PO4 in intracellular biomolecules (e.g., DNA) directly reflects the O isotopic composition of intracellular water and thus may serve as a probe allowing direct sampling of the intracellular environment. We present two independent lines of evidence showing a significant contribution of metabolic water to the intracellular water of three environmentally diverse strains of bacteria. Our results indicate that ∼30-40% of O in PO4 comprising DNA/biomass in early stationary phase cells is derived from metabolic water, which bolsters previous results and also further suggests a constant metabolic water value for cells grown under similar conditions. These results suggest that previous studies assuming identical isotopic compositions for intracellular/extracellular water may need to be reconsidered.
Collapse
|
27
|
Vander Zanden HB, Soto DX, Bowen GJ, Hobson KA. Expanding the Isotopic Toolbox: Applications of Hydrogen and Oxygen Stable Isotope Ratios to Food Web Studies. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00020] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Yang H, Gandhi H, Cornish AJ, Moran JJ, Kreuzer HW, Ostrom NE, Hegg EL. Isotopic fractionation associated with [NiFe]- and [FeFe]-hydrogenases. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:285-292. [PMID: 27071219 DOI: 10.1002/rcm.7432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
RATIONALE Hydrogenases catalyze the reversible formation of H2 from electrons and protons with high efficiency. Understanding the relationships between H2 production, H2 uptake, and H2-H2O exchange can provide insight into the metabolism of microbial communities in which H2 is an essential component in energy cycling. METHODS We used stable H isotopes (1H and 2H) to probe the isotope effects associated with three [FeFe]-hydrogenases and three [NiFe]-hydrogenases. RESULTS All six hydrogenases displayed fractionation factors for H2 formation that were significantly less than 1, producing H2 that was severely depleted in 2H relative to the substrate, water. Consistent with differences in their active site structure, the fractionation factors for each class appear to cluster, with the three [NiFe]-hydrogenases (α = 0.27–0.40) generally having smaller values than the three [FeFe]-hydrogenases (α = 0.41–0.55). We also obtained isotopic fractionation factors associated with H2 uptake and H2-H2O exchange under conditions similar to those utilized for H2 production, providing a more complete picture of the reactions catalyzed by hydrogenases. CONCLUSIONS The fractionation factors determined in our studies can be used as signatures for different hydrogenases to probe their activity under different growth conditions and to ascertain which hydrogenases are most responsible for H2 production and/or uptake in complex microbial communities.
Collapse
|
29
|
Dzhimak SS, Basov AA, Baryshev MG. Content of deuterium in biological fluids and organs: Influence of deuterium depleted water on D/H gradient and the process of adaptation. DOKL BIOCHEM BIOPHYS 2016; 465:370-3. [PMID: 26728727 DOI: 10.1134/s1607672915060071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 11/23/2022]
Abstract
It is found that consumption of deuterium depleted water reduces not only the content of deuterium in biological fluids but also more than 2 times reduces the D/H gradient value along the line: mixed saliva > blood plasma. The experimental data showed that a physiological solution prepared on deuterium depleted water during induced apoptosis activates the DNA repair system, significantly reducing the number of single-stranded DNA breaks, which, in general, indicates an increase in the efficiency of defensive systems of the cell.
Collapse
Affiliation(s)
- S S Dzhimak
- Kuban State University, ul. Stavropol'skaya 149, Krasnodar, 350040, Russia.
| | - A A Basov
- Kuban State Medical University, Ministry of Healthcare of the Russian Federation, ul. Sedina 4, Krasnodar, 350000, Russia
| | - M G Baryshev
- Kuban State University, ul. Stavropol'skaya 149, Krasnodar, 350040, Russia
| |
Collapse
|
30
|
Sousa FL, Hordijk W, Steel M, Martin WF. Autocatalytic sets in E. coli metabolism. ACTA ACUST UNITED AC 2015; 6:4. [PMID: 25995773 PMCID: PMC4429071 DOI: 10.1186/s13322-015-0009-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 11/27/2014] [Indexed: 02/01/2023]
Abstract
Background A central unsolved problem in early evolution concerns self-organization towards higher complexity in chemical reaction networks. In theory, autocatalytic sets have useful properties to help model such transitions. Autocatalytic sets are chemical reaction systems in which molecules belonging to the set catalyze the synthesis of other members of the set. Given an external supply of starting molecules – the food set – and the conditions that (i) all reactions are catalyzed by at least one molecule, and (ii) each molecule can be constructed from the food set by a sequence of reactions, the system becomes a reflexively autocatalytic food-generated network (RAF set). Autocatalytic networks and RAFs have been studied extensively as mathematical models for understanding the properties and parameters that influence self-organizational tendencies. However, despite their appeal, the relevance of RAFs for real biochemical networks that exist in nature has, so far, remained virtually unexplored. Results Here we investigate the best-studied metabolic network, that of Escherichia coli, for the existence of RAFs. We find that the largest RAF encompasses almost the entire E. coli cytosolic reaction network. We systematically study its structure by considering the impact of removing catalysts or reactions. We show that, without biological knowledge, finding the minimum food set that maintains a given RAF is NP-complete. We apply a randomized algorithm to find (approximately) smallest subsets of the food set that suffice to sustain the original RAF. Conclusions The existence of RAF sets within a microbial metabolic network indicates that RAFs capture properties germane to biological organization at the level of single cells. Moreover, the interdependency between the different metabolic modules, especially concerning cofactor biosynthesis, points to the important role of spontaneous (non-enzymatic) reactions in the context of early evolution. E. coli metabolic network in the context of autocatalytic sets. ![]()
Electronic supplementary material The online version of this article (doi:10.1186/s13322-015-0009-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute of Molecular Evolution, Heinrich Heine Universität, Düsseldorf, Germany
| | | | - Mike Steel
- Allan Wilson Centre Molecular Ecology and Evolution, University of Canterbury, Christchurch, New Zealand
| | - William F Martin
- Institute of Molecular Evolution, Heinrich Heine Universität, Düsseldorf, Germany
| |
Collapse
|
31
|
Schmidt HL, Robins RJ, Werner RA. Multi-factorial in vivo stable isotope fractionation: causes, correlations, consequences and applications. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2015; 51:155-199. [PMID: 25894429 DOI: 10.1080/10256016.2015.1014355] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many physical and chemical processes in living systems are accompanied by isotope fractionation on H, C, N, O and S. Although kinetic or thermodynamic isotope effects are always the basis, their in vivo manifestation is often modulated by secondary influences. These include metabolic branching events or metabolite channeling, metabolite pool sizes, reaction mechanisms, anatomical properties and compartmentation of plants and animals, and climatological or environmental conditions. In the present contribution, the fundamentals of isotope effects and their manifestation under in vivo conditions are outlined. The knowledge about and the understanding of these interferences provide a potent tool for the reconstruction of physiological events in plants and animals, their geographical origin, the history of bulk biomass and the biosynthesis of defined representatives. It allows the use of isotope characteristics of biomass for the elucidation of biochemical pathways and reaction mechanisms and for the reconstruction of climatic, physiological, ecological and environmental conditions during biosynthesis. Thus, it can be used for the origin and authenticity control of food, the study of ecosystems and animal physiology, the reconstruction of present and prehistoric nutrition chains and paleaoclimatological conditions. This is demonstrated by the outline of fundamental and application-orientated examples for all bio-elements. The aim of the review is to inform (advanced) students from various disciplines about the whole potential and the scope of stable isotope characteristics and fractionations and to provide them with a comprehensive introduction to the literature on fundamental aspects and applications.
Collapse
Affiliation(s)
- Hanns-Ludwig Schmidt
- a Lehrstuhl für Biologische Chemie , Technische Universität München , Freising-Weihenstephan, Germany
| | | | | |
Collapse
|
32
|
Stevenson A, Burkhardt J, Cockell CS, Cray JA, Dijksterhuis J, Fox-Powell M, Kee TP, Kminek G, McGenity TJ, Timmis KN, Timson DJ, Voytek MA, Westall F, Yakimov MM, Hallsworth JE. Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environ Microbiol 2014; 17:257-77. [DOI: 10.1111/1462-2920.12598] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Andrew Stevenson
- Institute for Global Food Security; School of Biological Sciences; MBC; Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| | - Jürgen Burkhardt
- Plant Nutrition Group; Institute of Crop Science and Resource Conservation; University of Bonn; Karlrobert-Kreiten-Str. 13 D-53115 Bonn Germany
| | - Charles S. Cockell
- UK Centre for Astrobiology; School of Physics and Astronomy; University of Edinburgh; Edinburgh EH9 3JZ UK
| | - Jonathan A. Cray
- Institute for Global Food Security; School of Biological Sciences; MBC; Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| | - Jan Dijksterhuis
- CBS Fungal Biodiversity Centre; Uppsalalaan 8 CT 3584 Utrecht The Netherlands
| | - Mark Fox-Powell
- UK Centre for Astrobiology; School of Physics and Astronomy; University of Edinburgh; Edinburgh EH9 3JZ UK
| | - Terence P. Kee
- School of Chemistry; University of Leeds; Leeds LS2 9JT West Yorkshire UK
| | | | - Terry J. McGenity
- School of Biological Sciences; University of Essex; Colchester CO4 3SQ Essex UK
| | - Kenneth N. Timmis
- Institute of Microbiology; Technical University Braunschweig; Spielmannstrasse 7 D-38106 Braunschweig Germany
| | - David J. Timson
- Institute for Global Food Security; School of Biological Sciences; MBC; Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| | | | - Frances Westall
- Centre de Biophysique Moléculaire; CNRS; Rue Charles Sadron; Centre de Recherches sur les Matériaux à Haute Température; 1D, avenue de la recherché scientifique 45071 Orléans Cedex 2 France
| | | | - John E. Hallsworth
- Institute for Global Food Security; School of Biological Sciences; MBC; Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| |
Collapse
|
33
|
Quaroni L, Zlateva T, Sarafimov B, Kreuzer HW, Wehbe K, Hegg EL, Cinque G. Synchrotron based infrared imaging and spectroscopy via focal plane array on live fibroblasts in D2O enriched medium. Biophys Chem 2014; 189:40-8. [PMID: 24747675 DOI: 10.1016/j.bpc.2014.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/15/2014] [Accepted: 03/16/2014] [Indexed: 12/29/2022]
Abstract
We successfully tested the viability of using synchrotron-based full-field infrared imaging to study biochemical processes inside living cells. As a model system, we studied fibroblast cells exposed to a medium highly enriched with D2O. We could show that the experimental technique allows us to reproduce at the cellular level measurements that are normally performed on purified biological molecules. We can obtain information about lipid conformation and distribution, kinetics of hydrogen/deuterium exchange, and the formation of concentration gradients of H and O isotopes in water that are associated with cell metabolism. The implementation of the full field technique in a sequential imaging format gives a description of cellular biochemistry and biophysics that contains both spatial and temporal information.
Collapse
Affiliation(s)
- Luca Quaroni
- Paul Scherrer Institut, Villigen-PSI, CH-5232, Switzerland.
| | | | | | - Helen W Kreuzer
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Katia Wehbe
- Diamond Light Source, Harwell Campus, Chilton-Didcot, Oxon OX11 0DE, UK
| | - Eric L Hegg
- Michigan State University, Department of Biochemistry & Molecular Biology, East Lansing, MI 48824, USA
| | - Gianfelice Cinque
- Diamond Light Source, Harwell Campus, Chilton-Didcot, Oxon OX11 0DE, UK
| |
Collapse
|
34
|
Guidotti S, Meijer HAJ, van Dijk G. Reply to Yamada et al.: Questions and answers to the validity of the doubly labeled water method in high-fat and sucrose-feeding mice irrespective of obesity proneness. Am J Physiol Endocrinol Metab 2013; 305:E1181-3. [PMID: 24185177 DOI: 10.1152/ajpendo.00504.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Stefano Guidotti
- Center for Isotope Research, Energy and Sustainability Research Institute Groningen, University of Groningen, Groningen, The Netherlands; and
| | | | | |
Collapse
|
35
|
Kreuzer HW, Quaroni L, Podlesak DW, Zlateva T, Bollinger N, McAllister A, Lott MJ, Hegg EL. Detection of metabolic fluxes of O and H atoms into intracellular water in mammalian cells. PLoS One 2012; 7:e39685. [PMID: 22848359 PMCID: PMC3405100 DOI: 10.1371/journal.pone.0039685] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/28/2012] [Indexed: 12/02/2022] Open
Abstract
Metabolic processes result in the release and exchange of H and O atoms from organic material as well as some inorganic salts and gases. These fluxes of H and O atoms into intracellular water result in an isotopic gradient that can be measured experimentally. Using isotope ratio mass spectroscopy, we revealed that slightly over 50% of the H and O atoms in the intracellular water of exponentially-growing cultured Rat-1 fibroblasts were isotopically distinct from growth medium water. We then employed infrared spectromicroscopy to detect in real time the flux of H atoms in these same cells. Importantly, both of these techniques indicate that the H and O fluxes are dependent on metabolic processes; cells that are in lag phase or are quiescent exhibit a much smaller flux. In addition, water extracted from the muscle tissue of rats contained a population of H and O atoms that were isotopically distinct from body water, consistent with the results obtained using the cultured Rat-1 fibroblasts. Together these data demonstrate that metabolic processes produce fluxes of H and O atoms into intracellular water, and that these fluxes can be detected and measured in both cultured mammalian cells and in mammalian tissue.
Collapse
Affiliation(s)
- Helen W. Kreuzer
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail: (ELH); (HK); (LQ)
| | - Luca Quaroni
- Paul Scherrer Institut, Villigen, Switzerland
- * E-mail: (ELH); (HK); (LQ)
| | - David W. Podlesak
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Theodora Zlateva
- Saskatchewan Cancer Research Unit and Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - Nikki Bollinger
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Aaron McAllister
- Department of Chemistry, University of Utah, Salt Lake City, Utah, United States of America,
| | - Michael J. Lott
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Eric L. Hegg
- Department of Chemistry, University of Utah, Salt Lake City, Utah, United States of America,
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail: (ELH); (HK); (LQ)
| |
Collapse
|
36
|
Pedersen MB, Gaudu P, Lechardeur D, Petit MA, Gruss A. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu Rev Food Sci Technol 2011; 3:37-58. [PMID: 22385163 DOI: 10.1146/annurev-food-022811-101255] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The lactic acid bacteria (LAB) are essential for food fermentations and their impact on gut physiology and health is under active exploration. In addition to their well-studied fermentation metabolism, many species belonging to this heterogeneous group are genetically equipped for respiration metabolism. In LAB, respiration is activated by exogenous heme, and for some species, heme and menaquinone. Respiration metabolism increases growth yield and improves fitness. In this review, we aim to present the basics of respiration metabolism in LAB, its genetic requirements, and the dramatic physiological changes it engenders. We address the question of how LAB acquired the genetic equipment for respiration. We present at length how respiration can be used advantageously in an industrial setting, both in the context of food-related technologies and in novel potential applications.
Collapse
Affiliation(s)
- Martin B Pedersen
- Department of Physiology, Cultures & Enzymes Division, Chr. Hansen A/S, DK-2970 Hørsholm, Denmark
| | | | | | | | | |
Collapse
|
37
|
Schulze-Makuch D, Haque S, de Sousa Antonio MR, Ali D, Hosein R, Song YC, Yang J, Zaikova E, Beckles DM, Guinan E, Lehto HJ, Hallam SJ. Microbial life in a liquid asphalt desert. ASTROBIOLOGY 2011; 11:241-258. [PMID: 21480792 DOI: 10.1089/ast.2010.0488] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pitch Lake in Trinidad and Tobago is a natural asphalt reservoir nourished by pitch seepage, a form of petroleum that consists of mostly asphaltines, from the surrounding oil-rich region. During upward seepage, pitch mixes with mud and gases under high pressure, and the lighter portion evaporates or is volatilized, which produces a liquid asphalt residue characterized by low water activity, recalcitrant carbon substrates, and noxious chemical compounds. An active microbial community of archaea and bacteria, many of them novel strains (particularly from the new Tar ARC groups), totaling a biomass of up to 10(7) cells per gram, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical and molecular taxonomic approaches revealed diverse, novel, and deeply branching microbial lineages with the potential to mediate anaerobic hydrocarbon degradation processes in different parts of the asphalt column. In addition, we found markers for archaeal methane metabolism and specific gene sequences affiliated with facultative and obligate anaerobic sulfur- and nitrite-oxidizing bacteria. The microbial diversity at Pitch Lake was found to be unique when compared to microbial communities analyzed at other hydrocarbon-rich environments, which included Rancho Le Brea, a natural asphalt environment in California, USA, and an oil well and a mud volcano in Trinidad and Tobago, among other sites. These results open a window into the microbial ecology and biogeochemistry of recalcitrant hydrocarbon matrices and establish the site as a terrestrial analogue for modeling the biotic potential of hydrocarbon lakes such as those found on Saturn's largest moon Titan.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- School of Earth and Environmental Sciences, Washington State University, Pullman, 99164-6376, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wolf N, Bowen GJ, del Rio CM. The influence of drinking water on the δD and δ18O values of house sparrow plasma, blood and feathers. J Exp Biol 2011; 214:98-103. [DOI: 10.1242/jeb.050211] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
We investigated the relationships between the δdeuterium (δD) and the δ18oxygen (δ18O) of drinking water and the δD and δ18O of blood plasma, red blood cells and feathers in house sparrows (Passer domesticus) fed on diets with identical hydrogen and oxygen isotopic compositions and five isotopically distinct drinking water treatments. We expected and, with only one exception (18O in blood plasma), found linear relationships between the δD and δ18O values of drinking water and those of bird tissues. The slopes of these relationships, which estimate the percentage contributions of drinking water to the tissue isotopic signatures, were lower than those of previous studies. We found significant differences in the δD and δ18O values of feathers, red blood cells and plasma solids. In feathers and red blood cells, δD and δ18O values were linearly correlated. Our results have three implications for isotopic field studies: (1) if the isotopic composition of drinking water differs from that of food, its effect on tissue isotope values can confound the assignment of animals to a site of origin; (2) comparisons of the δD and δ18O values of different tissues must account for inter-tissue discrimination factors; and (3) δD/δ18O linear relationships are probably as prevalent in animal systems as they are in geohydrological systems. These relationships may prove to be useful tools in animal isotopic ecology.
Collapse
Affiliation(s)
- Nathan Wolf
- Department of Zoology and Physiology, University of Wyoming, 1000 University Ave, Laramie, WY 82071, USA
| | - Gabriel J. Bowen
- Department of Earth and Atmospheric Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Carlos Martinez del Rio
- Department of Zoology and Physiology, University of Wyoming, 1000 University Ave, Laramie, WY 82071, USA
| |
Collapse
|
39
|
Xu S, Zhou J, Qin Y, Liu L, Chen J. Water-forming NADH oxidase protects Torulopsis glabrata against hyperosmotic stress. Yeast 2010; 27:207-16. [PMID: 20037925 DOI: 10.1002/yea.1745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A heterologous water-forming NADH oxidase was introduced into Torulopsis glabrata and the effect on cell growth under hyperosmotic conditions was investigated. Expression of the noxE gene from Lactococcus lactis NZ9000 in T. glabrata resulted in a marked decrease in the NADH : NAD+ ratio and higher activities of key enzymes in water-regenerating pathways, leading to an increase in intracellular water content. NaCl-induced reactive oxygen species production was also decreased by the introduction of NADH oxidase, resulting in a significant increase in the growth of T. glabrata under hyperosmotic stress conditions (3824 mOsmol/kg). The results indicated that the osmotolerance of cells can be enhanced by manipulating water-production pathways.
Collapse
Affiliation(s)
- Sha Xu
- State Key Laboratory of Food Science and School of Biotechnology and Key Technology and Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
Goff KL, Quaroni L, Wilson KE. Measurement of metabolite formation in single living cells of Chlamydomonas reinhardtii using synchrotron Fourier-Transform Infrared spectromicroscopy. Analyst 2009; 134:2216-9. [DOI: 10.1039/b915810c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
del Rio CM, Wolf N, Carleton SA, Gannes LZ. Isotopic ecology ten years after a call for more laboratory experiments. Biol Rev Camb Philos Soc 2008; 84:91-111. [PMID: 19046398 DOI: 10.1111/j.1469-185x.2008.00064.x] [Citation(s) in RCA: 420] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
About 10 years ago, reviews of the use of stable isotopes in animal ecology predicted explosive growth in this field and called for laboratory experiments to provide a mechanistic foundation to this growth. They identified four major areas of inquiry: (1) the dynamics of isotopic incorporation, (2) mixing models, (3) the problem of routing, and (4) trophic discrimination factors. Because these areas remain central to isotopic ecology, we use them as organising foci to review the experimental results that isotopic ecologists have collected in the intervening 10 years since the call for laboratory experiments. We also review the models that have been built to explain and organise experimental results in these areas.
Collapse
|
42
|
Hu J, Dagle RA, Johnson BR, Kreuzer HW, Gaspar DJ, Roberts BQ, Alexander ML. Development of a Micropyrolyzer for Enhanced Isotope Ratio Measurement. Ind Eng Chem Res 2008. [DOI: 10.1021/ie8009236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianli Hu
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354
| | - Robert A. Dagle
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354
| | - Bradley R. Johnson
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354
| | - Helen W. Kreuzer
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354
| | - Daniel J. Gaspar
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354
| | - Benjamin Q. Roberts
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354
| | - M. Lizabeth Alexander
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354
| |
Collapse
|
43
|
Hydrogen and oxygen isotope ratios in human hair are related to geography. Proc Natl Acad Sci U S A 2008; 105:2788-93. [PMID: 18299562 DOI: 10.1073/pnas.0712228105] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We develop and test a model to predict the geographic region-of-origin of humans based on the stable isotope composition of their scalp hair. This model incorporates exchangeable and nonexchangeable hydrogen and oxygen atoms in amino acids to predict the delta(2)H and delta(18)O values of scalp hair (primarily keratin). We evaluated model predictions with stable isotope analyses of human hair from 65 cities across the United States. The model, which predicts hair isotopic composition as a function of drinking water, bulk diet, and dietary protein isotope ratios, explains >85% of the observed variation and reproduces the observed slopes relating the isotopic composition of hair samples to that of local drinking water. Based on the geographical distributions of the isotope ratios of tap waters and the assumption of a "continental supermarket" dietary input, we constructed maps of the expected average H and O isotope ratios in human hair across the contiguous 48 states. Applications of this model and these observations are extensive and include detection of dietary information, reconstruction of historic movements of individuals, and provision of region-of-origin information for unidentified human remains.
Collapse
|