1
|
Schreurs BG, O'Dell DE, Wang D. The Role of Cerebellar Intrinsic Neuronal Excitability, Synaptic Plasticity, and Perineuronal Nets in Eyeblink Conditioning. BIOLOGY 2024; 13:200. [PMID: 38534469 DOI: 10.3390/biology13030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Evidence is strong that, in addition to fine motor control, there is an important role for the cerebellum in cognition and emotion. The deep nuclei of the mammalian cerebellum also contain the highest density of perineural nets-mesh-like structures that surround neurons-in the brain, and it appears there may be a connection between these nets and cognitive processes, particularly learning and memory. Here, we review how the cerebellum is involved in eyeblink conditioning-a particularly well-understood form of learning and memory-and focus on the role of perineuronal nets in intrinsic membrane excitability and synaptic plasticity that underlie eyeblink conditioning. We explore the development and role of perineuronal nets and the in vivo and in vitro evidence that manipulations of the perineuronal net in the deep cerebellar nuclei affect eyeblink conditioning. Together, these findings provide evidence of an important role for perineuronal net in learning and memory.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Deidre E O'Dell
- Department of Biology, Earth and Environmental Sciences, Pennsylvania Western (PennWest) University, California, PA 15419, USA
| | - Desheng Wang
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
2
|
Dijkhuizen S, Van Ginneken LMC, IJpelaar AHC, Koekkoek SKE, De Zeeuw CI, Boele HJ. Impact of enriched environment on motor performance and learning in mice. Sci Rep 2024; 14:5962. [PMID: 38472324 PMCID: PMC10933351 DOI: 10.1038/s41598-024-56568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
Neuroscience heavily relies on animal welfare in laboratory rodents as it can significantly affect brain development, cognitive function and memory formation. Unfortunately, laboratory animals are often raised in artificial environments devoid of physical and social stimuli, potentially leading to biased outcomes in behavioural assays. To assess this effect, we examined the impact of social and physical cage enrichment on various forms of motor coordination. Our findings indicate that while enriched-housed animals did not exhibit faster learning in eyeblink conditioning, the peak timing of their conditioned responses was slightly, but significantly, improved. Additionally, enriched-housed animals outperformed animals that were housed in standard conditions in the accelerating rotarod and ErasmusLadder test. In contrast, we found no significant effect of enrichment on the balance beam and grip strength test. Overall, our data suggest that an enriched environment can improve motor performance and motor learning under challenging and/or novel circumstances, possibly reflecting an altered state of anxiety.
Collapse
Affiliation(s)
- S Dijkhuizen
- Department of Neuroscience, Erasmus MC, 3015 GD, Rotterdam, The Netherlands
| | - L M C Van Ginneken
- Department of Neuroscience, Erasmus MC, 3015 GD, Rotterdam, The Netherlands
| | - A H C IJpelaar
- Department of Neuroscience, Erasmus MC, 3015 GD, Rotterdam, The Netherlands
| | - S K E Koekkoek
- Department of Neuroscience, Erasmus MC, 3015 GD, Rotterdam, The Netherlands
| | - C I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 GD, Rotterdam, The Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), 1105 BA, Amsterdam, The Netherlands.
| | - H J Boele
- Department of Neuroscience, Erasmus MC, 3015 GD, Rotterdam, The Netherlands.
- Princeton Neuroscience Institute, Princeton, NJ, 08540, USA.
| |
Collapse
|
3
|
Keifer J. Synaptic Mechanisms of Delay Eyeblink Classical Conditioning: AMPAR Trafficking and Gene Regulation in an In Vitro Model. Mol Neurobiol 2023; 60:7088-7103. [PMID: 37531025 DOI: 10.1007/s12035-023-03528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
An in vitro model of delay eyeblink classical conditioning was developed to investigate synaptic plasticity mechanisms underlying acquisition of associative learning. This was achieved by replacing real stimuli, such as an airpuff and tone, with patterned stimulation of the cranial nerves using an isolated brainstem preparation from turtle. Here, our primary findings regarding cellular and molecular mechanisms for learning acquisition using this unique approach are reviewed. The neural correlate of the in vitro eyeblink response is a replica of the actual behavior, and features of conditioned responses (CRs) resemble those observed in behavioral studies. Importantly, it was shown that acquisition of CRs did not require the intact cerebellum, but the appropriate timing did. Studies of synaptic mechanisms indicate that conditioning involves two stages of AMPA receptor (AMPAR) trafficking. Initially, GluA1-containing AMPARs are targeted to synapses followed later by replacement by GluA4 subunits that support CR expression. This two-stage process is regulated by specific signal transduction cascades involving PKA and PKC and is guided by distinct protein chaperones. The expression of the brain-derived neurotrophic factor (BDNF) protein is central to AMPAR trafficking and conditioning. BDNF gene expression is regulated by coordinated epigenetic mechanisms involving DNA methylation/demethylation and chromatin modifications that control access of promoters to transcription factors. Finally, a hypothesis is proposed that learning genes like BDNF are poised by dual chromatin features that allow rapid activation or repression in response to environmental stimuli. These in vitro studies have advanced our understanding of the cellular and molecular mechanisms that underlie associative learning.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
4
|
Xiao N, Wu G, Zhou Z, Yao J, Wu B, Sui J, Tin C. Positive feedback of efferent copy via pontine nucleus facilitates cerebellum-mediated associative learning. Cell Rep 2023; 42:112072. [PMID: 36735531 DOI: 10.1016/j.celrep.2023.112072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/07/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
The cerebellum is critical for motor coordination and learning. However, the role of feedback circuitry in this brain region has not been fully explored. Here, we characterize a nucleo-ponto-cortical feedback pathway in classical delayed eyeblink conditioning (dEBC) of rats. We find that the efference copy is conveyed from the interposed cerebellar nucleus (Int) to cerebellar cortex through pontine nucleus (PN). Inhibiting or exciting the projection from the Int to the PN can decelerate or speed up acquisition of dEBC, respectively. Importantly, we identify two subpopulations of PN neurons (PN1 and PN2) that convey and integrate the feedback signals with feedforward sensory signals. We also show that the feedforward and feedback pathways via different types of PN neurons contribute to the plastic changes and cooperate synergistically to the learning of dEBC. Our results suggest that this excitatory nucleo-ponto-cortical feedback plays a significant role in modulating associative motor learning in cerebellum.
Collapse
Affiliation(s)
- Na Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Advanced Biomedical Instrumentation Centre, Shatin, N.T., Hong Kong; Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Guangyan Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhanhong Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Bing Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jianfeng Sui
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| | - Chung Tin
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
5
|
The molecular memory code and synaptic plasticity: A synthesis. Biosystems 2023; 224:104825. [PMID: 36610586 DOI: 10.1016/j.biosystems.2022.104825] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
The most widely accepted view of memory in the brain holds that synapses are the storage sites of memory, and that memories are formed through associative modification of synapses. This view has been challenged on conceptual and empirical grounds. As an alternative, it has been proposed that molecules within the cell body are the storage sites of memory, and that memories are formed through biochemical operations on these molecules. This paper proposes a synthesis of these two views, grounded in a computational model of memory. Synapses are conceived as storage sites for the parameters of an approximate posterior probability distribution over latent causes. Intracellular molecules are conceived as storage sites for the parameters of a generative model. The model stipulates how these two components work together as part of an integrated algorithm for learning and inference.
Collapse
|
6
|
Gilbert M. The Shape of Data: a Theory of the Representation of Information in the Cerebellar Cortex. THE CEREBELLUM 2021; 21:976-986. [PMID: 34902112 PMCID: PMC9596575 DOI: 10.1007/s12311-021-01352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 11/30/2022]
Abstract
This paper presents a model of rate coding in the cerebellar cortex. The pathway of input to output of the cerebellum forms an anatomically repeating, functionally modular network, whose basic wiring is preserved across vertebrate taxa. Each network is bisected centrally by a functionally defined cell group, a microzone, which forms part of the cerebellar circuit. Input to a network may be from tens of thousands of concurrently active mossy fibres. The model claims to quantify the conversion of input rates into the code received by a microzone. Recoding on entry converts input rates into an internal code which is homogenised in the functional equivalent of an imaginary plane, occupied by the centrally positioned microzone. Homogenised means the code exists in any random sample of parallel fibre signals over a minimum number. The nature of the code and the regimented architecture of the cerebellar cortex mean that the threshold can be represented by space so that the threshold can be met by the physical dimensions of the Purkinje cell dendritic arbour and planar interneuron networks. As a result, the whole population of a microzone receives the same code. This is part of a mechanism which orchestrates functionally indivisible behaviour of the cerebellar circuit and is necessary for coordinated control of the output cells of the circuit. In this model, fine control of Purkinje cells is by input rates to the system and not by learning so that it is in conflict with the for-years-dominant supervised learning model.
Collapse
Affiliation(s)
- Mike Gilbert
- School of Psychology, University of Birmingham, Birmingham, UK.
| |
Collapse
|
7
|
Lautz JD, Tsegay KB, Zhu Z, Gniffke EP, Welsh JP, Smith SEP. Synaptic protein interaction networks encode experience by assuming stimulus-specific and brain-region-specific states. Cell Rep 2021; 37:110076. [PMID: 34852231 PMCID: PMC8722361 DOI: 10.1016/j.celrep.2021.110076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 11/02/2022] Open
Abstract
A core network of widely expressed proteins within the glutamatergic post-synapse mediates activity-dependent synaptic plasticity throughout the brain, but the specific proteomic composition of synapses differs between brain regions. Here, we address the question, how does proteomic composition affect activity-dependent protein-protein interaction networks (PINs) downstream of synaptic activity? Using quantitative multiplex co-immunoprecipitation, we compare the PIN response of in vivo or ex vivo neurons derived from different brain regions to activation by different agonists or different forms of eyeblink conditioning. We report that PINs discriminate between incoming stimuli using differential kinetics of overlapping and non-overlapping PIN parameters. Further, these "molecular logic rules" differ by brain region. We conclude that although the PIN of the glutamatergic post-synapse is expressed widely throughout the brain, its activity-dependent dynamics show remarkable stimulus-specific and brain-region-specific diversity. This diversity may help explain the challenges in developing molecule-specific drug therapies for neurological disorders.
Collapse
Affiliation(s)
- Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kaleb B Tsegay
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Zhiyi Zhu
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Edward P Gniffke
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - John P Welsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Gilbert M. Gating by Memory: a Theory of Learning in the Cerebellum. THE CEREBELLUM 2021; 21:926-943. [PMID: 34757585 DOI: 10.1007/s12311-021-01325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
This paper presents a model of learning by the cerebellar circuit. In the traditional and dominant learning model, training teaches finely graded parallel fibre synaptic weights which modify transmission to Purkinje cells and to interneurons that inhibit Purkinje cells. Following training, input in a learned pattern drives a training-modified response. The function is that the naive response to input rates is displaced by a learned one, trained under external supervision. In the proposed model, there is no weight-controlled graduated balance of excitation and inhibition of Purkinje cells. Instead, the balance has two functional states-a switch-at synaptic, whole cell and microzone level. The paper is in two parts. The first is a detailed physiological argument for the synaptic learning function. The second uses the function in a computational simulation of pattern memory. Against expectation, this generates a predictable outcome from input chaos (real-world variables). Training always forces synaptic weights away from the middle and towards the limits of the range, causing them to polarise, so that transmission is either robust or blocked. All conditions teach the same outcome, such that all learned patterns receive the same, rather than a bespoke, effect on transmission. In this model, the function of learning is gating-that is, to select patterns that trigger output merely, and not to modify output. The outcome is memory-operated gate activation which operates a two-state balance of weight-controlled transmission. Group activity of parallel fibres also simultaneously contains a second code contained in collective rates, which varies independently of the pattern code. A two-state response to the pattern code allows faithful, and graduated, control of Purkinje cell firing by the rate code, at gated times.
Collapse
Affiliation(s)
- Mike Gilbert
- School of Psychology, University of Birmingham, Birmingham, UK.
| |
Collapse
|
9
|
Nagaraja RY, Sherry DM, Fessler JL, Stiles MA, Li F, Multani K, Orock A, Ahmad M, Brush RS, Anderson RE, Agbaga MP, Deák F. W246G Mutant ELOVL4 Impairs Synaptic Plasticity in Parallel and Climbing Fibers and Causes Motor Defects in a Rat Model of SCA34. Mol Neurobiol 2021; 58:4921-4943. [PMID: 34227061 PMCID: PMC8497303 DOI: 10.1007/s12035-021-02439-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Spinocerebellar ataxia (SCA) is a neurodegenerative disorder characterized by ataxia and cerebellar atrophy. A number of different mutations gives rise to different types of SCA with characteristic ages of onset, symptomatology, and rates of progression. SCA type 34 (SCA34) is caused by mutations in ELOVL4 (ELOngation of Very Long-chain fatty acids 4), a fatty acid elongase essential for biosynthesis of Very Long Chain Saturated and Polyunsaturated Fatty Acids (VLC-SFA and VLC-PUFA, resp., ≥28 carbons), which have important functions in the brain, skin, retina, Meibomian glands, testes, and sperm. We generated a rat model of SCA34 by knock-in of the SCA34-causing 736T>G (p.W246G) ELOVL4 mutation. Rats carrying the mutation developed impaired motor deficits by 2 months of age. To understand the mechanism of these motor deficits, we performed electrophysiological studies using cerebellar slices from rats homozygous for W246G mutant ELOVL4 and found marked reduction of long-term potentiation at parallel fiber synapses and long-term depression at climbing fiber synapses onto Purkinje cells. Neuroanatomical analysis of the cerebellum showed normal cytoarchitectural organization with no evidence of degeneration out to 6 months of age. These results point to ELOVL4 as essential for motor function and cerebellar synaptic plasticity. The results further suggest that ataxia in SCA34 patients may arise from a primary impairment of synaptic plasticity and cerebellar network desynchronization before onset of neurodegeneration and progression of the disease at a later age.
Collapse
Affiliation(s)
- Raghavendra Y Nagaraja
- Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - David M Sherry
- Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Jennifer L Fessler
- Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Megan A Stiles
- Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Feng Li
- Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Karanpreet Multani
- Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Albert Orock
- Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Reynolds Center on Aging, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Mohiuddin Ahmad
- Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Richard S Brush
- Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Robert E Anderson
- Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA
| | - Martin-Paul Agbaga
- Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA.
| | - Ferenc Deák
- Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Neuroscience Program, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Reynolds Center on Aging, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI 428PP, Oklahoma City, OK, 73104, USA. .,Dept. of Neuroscience & Regenerative Medicine, Medical College of Georgia, 1120 15th Str, CA4010, Augusta, GA, 30912, USA.
| |
Collapse
|
10
|
Simmons DH, Titley HK, Hansel C, Mason P. Behavioral Tests for Mouse Models of Autism: An Argument for the Inclusion of Cerebellum-Controlled Motor Behaviors. Neuroscience 2021; 462:303-319. [PMID: 32417339 DOI: 10.1016/j.neuroscience.2020.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022]
Abstract
Mouse models of Autism Spectrum Disorder (ASD) have been interrogated using a variety of behavioral tests in order to understand the symptoms of ASD. However, the hallmark behaviors that are classically affected in ASD - deficits in social interaction and communication as well as the occurrence of repetitive behaviors - do not have direct murine equivalents. Thus, it is critical to identify the caveats that come with modeling a human disorder in mice. The most commonly used behavioral tests represent complex cognitive processes based on largely unknown brain circuitry. Motor impairments provide an alternative, scientifically rigorous approach to understanding ASD symptoms. Difficulties with motor coordination and learning - seen in both patients and mice - point to an involvement of the cerebellum in ASD pathology. This brain area supports types of motor learning that are conserved throughout vertebrate evolution, allowing for direct comparisons of functional abnormalities between humans with autism and ASD mouse models. Studying simple motor behaviors provides researchers with clearly interpretable results. We describe and evaluate methods used on mouse behavioral assays designed to test for social, communicative, perseverative, anxious, nociceptive, and motor learning abnormalities. We comment on the effectiveness and validity of each test based on how much information its results give, as well as its relevance to ASD, and will argue for an inclusion of cerebellum-supported motor behaviors in the phenotypic description of ASD mouse models. LAY SUMMARY: Mouse models of Autism Spectrum Disorder help us gain insight about ASD symptoms in human patients. However, there are many differences between mice and humans, which makes interpreting behaviors challenging. Here, we discuss a battery of behavioral tests for specific mouse behaviors to explore whether each test does indeed evaluate the intended measure, and whether these tests are useful in learning about ASD.
Collapse
Affiliation(s)
- Dana H Simmons
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Heather K Titley
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Christian Hansel
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| | - Peggy Mason
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Nagao S. Ocular Reflex Adaptation as an Experimental Model of Cerebellar Learning -- In Memory of Masao Ito -. Neuroscience 2020; 462:191-204. [PMID: 32710914 DOI: 10.1016/j.neuroscience.2020.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 01/26/2023]
Abstract
Masao Ito proposed a cerebellar learning hypothesis with Marr and Albus in the early 1970s. He suggested that cerebellar flocculus (FL) Purkinje cells (PCs), which directly inhibit the vestibular nuclear neurons driving extraocular muscle motor neurons, adaptively control the horizontal vestibulo-ocular reflex (HVOR) through the modification of mossy and parallel fiber-mediated vestibular responsiveness by visual climbing fiber (CF) inputs. Later, it was suggested that the same FL PCs adaptively control the horizontal optokinetic response (HOKR) in the same manner through the modification of optokinetic responsiveness in rodents and rabbits. In 1982, Ito and his colleagues discovered the plasticity of long-term depression (LTD) at parallel fiber (PF)-PC synapses after conjunctive stimulation of mossy or parallel fibers with CFs. Long-term potentiation (LTP) at PF-PC synapses by weak PF stimulation alone was found later. Many lines of experimental evidence have supported their hypothesis using various experimental methods and materials for the past 50 years by many research groups. Although several controversial findings were presented regarding their hypothesis, the reasons underlying many of them were clarified. Today, their hypothesis is considered as a fundamental mechanism of cerebellar learning. Furthermore, it was found that the memory of adaptation is transferred from the FL to vestibular nuclei for consolidation by repetition of adaptation through the plasticity of vestibular nuclear neurons. In this article, after overviewing their cerebellar learning hypothesis, I discuss possible roles of LTD and LTP in gain-up and gain-down HVOR/HOKR adaptations and refer to the expansion of their hypothesis to cognitive functions.
Collapse
Affiliation(s)
- Soichi Nagao
- Laboratory for Integrative Brain Function, Nozomi Hospital, Komuro 3170, Ina, Kitaadachi-gun, Saitama 362-0806, Japan; Laboratory for Memory Neuroscience, Tokyo Metropolotan Institute for Gerontology, Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
12
|
Canepari M. Is Purkinje Neuron Hyperpolarisation Important for Cerebellar Synaptic Plasticity? A Retrospective and Prospective Analysis. THE CEREBELLUM 2020; 19:869-878. [PMID: 32654026 DOI: 10.1007/s12311-020-01164-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two recent studies have demonstrated that the dendritic Ca2+ signal associated with a climbing fibre (CF) input to the cerebellar Purkinje neuron (PN) depends on the membrane potential (Vm). Specifically, when the cell is hyperpolarised, this signal is mediated by T-type voltage-gated Ca2+ channels; in contrast, when the cell is firing, the CF-PN signal is mediated by P/Q-type voltage-gated Ca2+ channels. When the CF input is paired with parallel fibre (PF) activity, the signal is locally amplified at the sites of PF-activated synapses according to the Vm at the time of the CF input, suggesting that the standing Vm is a critical parameter for the induction of PF synaptic plasticity. In this review, I analyse how the Vm can potentially play a role in cerebellar learning focussing, in particular, on the hyperpolarised state that appears to occur episodically, since PNs are mostly firing under physiological conditions. By revisiting the recent literature reporting in vivo recordings and synaptic plasticity studies, I speculate on how a putative role of the PN Vm can provide an interpretation for the results of these studies.
Collapse
Affiliation(s)
- Marco Canepari
- University of Grenoble Alpes, CNRS, LIPhy, F-38000, Grenoble, France. .,Laboratories of Excellence, Ion Channel Science and Therapeutics, Valbonne, France. .,Institut National de la Santé et Recherche Médicale, Paris, France.
| |
Collapse
|
13
|
Kawato M, Ohmae S, Hoang H, Sanger T. 50 Years Since the Marr, Ito, and Albus Models of the Cerebellum. Neuroscience 2020; 462:151-174. [PMID: 32599123 DOI: 10.1016/j.neuroscience.2020.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Fifty years have passed since David Marr, Masao Ito, and James Albus proposed seminal models of cerebellar functions. These models share the essential concept that parallel-fiber-Purkinje-cell synapses undergo plastic changes, guided by climbing-fiber activities during sensorimotor learning. However, they differ in several important respects, including holistic versus complementary roles of the cerebellum, pattern recognition versus control as computational objectives, potentiation versus depression of synaptic plasticity, teaching signals versus error signals transmitted by climbing-fibers, sparse expansion coding by granule cells, and cerebellar internal models. In this review, we evaluate different features of the three models based on recent computational and experimental studies. While acknowledging that the three models have greatly advanced our understanding of cerebellar control mechanisms in eye movements and classical conditioning, we propose a new direction for computational frameworks of the cerebellum, that is, hierarchical reinforcement learning with multiple internal models.
Collapse
Affiliation(s)
- Mitsuo Kawato
- Brain Information Communication Research Group, Advanced Telecommunications Research Institutes International (ATR), Hikaridai 2-2-2, "Keihanna Science City", Kyoto 619-0288, Japan; Center for Advanced Intelligence Project (AIP), RIKEN, Nihonbashi Mitsui Building, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| | - Shogo Ohmae
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Huu Hoang
- Brain Information Communication Research Group, Advanced Telecommunications Research Institutes International (ATR), Hikaridai 2-2-2, "Keihanna Science City", Kyoto 619-0288, Japan
| | - Terry Sanger
- Department of Electrical Engineering, University of California, Irvine, 4207 Engineering Hall, Irvine CA 92697-2625, USA; Children's Hospital of Orange County, 1201 W La Veta Ave, Orange, CA 92868, USA.
| |
Collapse
|
14
|
Inoshita T, Hirano T. Norepinephrine Facilitates Induction of Long-term Depression through β-Adrenergic Receptor at Parallel Fiber-to-Purkinje Cell Synapses in the Flocculus. Neuroscience 2020; 462:141-150. [PMID: 32502572 DOI: 10.1016/j.neuroscience.2020.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
The cerebellum is involved in motor learning, and long-term depression (LTD) at parallel fiber-to-Purkinje cell (PF-PC) synapses has been considered to be a primary cellular mechanism for motor learning. In addition, the contribution of norepinephrine (NE) to cerebellum-dependent learning paradigms has been reported. Thus, the roles of LTD and of NE in motor learning have been studied separately, and the relationship between the effects of NE and LTD remains unclear. Here, we examined effects of β-adrenergic receptor (β-AR) activity on the synaptic transmission and LTD at PF-PC synapses in the cerebellar flocculus. The flocculus regulates adaptation of oculomotor reflexes, and we previously reported the involvement of both LTD and β-AR in adaptation of an oculomotor reflex. Here we found that specific agonists for β-AR or NE did not directly change synaptic transmission, but lowered the threshold for LTD induction at PF-PC synapses in the flocculus. In addition, protein kinase A (PKA), which is activated downstream of β-AR, facilitated the LTD induction. Altogether, these results suggest that NE facilitates LTD induction at PF-PC synapses in the flocculus by activating PKA through β-AR.
Collapse
Affiliation(s)
- Takuma Inoshita
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoo Hirano
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
15
|
Bao J, Graupner M, Astorga G, Collin T, Jalil A, Indriati DW, Bradley J, Shigemoto R, Llano I. Synergism of type 1 metabotropic and ionotropic glutamate receptors in cerebellar molecular layer interneurons in vivo. eLife 2020; 9:56839. [PMID: 32401196 PMCID: PMC7220378 DOI: 10.7554/elife.56839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022] Open
Abstract
Type 1 metabotropic glutamate receptors (mGluR1s) are key elements in neuronal signaling. While their function is well documented in slices, requirements for their activation in vivo are poorly understood. We examine this question in adult mice in vivo using 2-photon imaging of cerebellar molecular layer interneurons (MLIs) expressing GCaMP. In anesthetized mice, parallel fiber activation evokes beam-like Cai rises in postsynaptic MLIs which depend on co-activation of mGluR1s and ionotropic glutamate receptors (iGluRs). In awake mice, blocking mGluR1 decreases Cai rises associated with locomotion. In vitro studies and freeze-fracture electron microscopy show that the iGluR-mGluR1 interaction is synergistic and favored by close association of the two classes of receptors. Altogether our results suggest that mGluR1s, acting in synergy with iGluRs, potently contribute to processing cerebellar neuronal signaling under physiological conditions.
Collapse
Affiliation(s)
- Jin Bao
- Université de Paris, CNRS, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Paris, France.,The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Michael Graupner
- Université de Paris, CNRS, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Guadalupe Astorga
- Université de Paris, CNRS, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Thibault Collin
- Université de Paris, CNRS, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Abdelali Jalil
- Université de Paris, CNRS, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Dwi Wahyu Indriati
- Division of Cerebral Structure, National Institute for Physiological Sciences, The Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
| | - Jonathan Bradley
- Université de Paris, CNRS, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Paris, France.,Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Superieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Ryuichi Shigemoto
- Division of Cerebral Structure, National Institute for Physiological Sciences, The Graduate University for Advanced Studies (Sokendai), Okazaki, Japan.,IST Austria, Klosterneuburg, Austria
| | - Isabel Llano
- Université de Paris, CNRS, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Paris, France
| |
Collapse
|
16
|
The Optogenetic Revolution in Cerebellar Investigations. Int J Mol Sci 2020; 21:ijms21072494. [PMID: 32260234 PMCID: PMC7212757 DOI: 10.3390/ijms21072494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
The cerebellum is most renowned for its role in sensorimotor control and coordination, but a growing number of anatomical and physiological studies are demonstrating its deep involvement in cognitive and emotional functions. Recently, the development and refinement of optogenetic techniques boosted research in the cerebellar field and, impressively, revolutionized the methodological approach and endowed the investigations with entirely new capabilities. This translated into a significant improvement in the data acquired for sensorimotor tests, allowing one to correlate single-cell activity with motor behavior to the extent of determining the role of single neuronal types and single connection pathways in controlling precise aspects of movement kinematics. These levels of specificity in correlating neuronal activity to behavior could not be achieved in the past, when electrical and pharmacological stimulations were the only available experimental tools. The application of optogenetics to the investigation of the cerebellar role in higher-order and cognitive functions, which involves a high degree of connectivity with multiple brain areas, has been even more significant. It is possible that, in this field, optogenetics has changed the game, and the number of investigations using optogenetics to study the cerebellar role in non-sensorimotor functions in awake animals is growing. The main issues addressed by these studies are the cerebellar role in epilepsy (through connections to the hippocampus and the temporal lobe), schizophrenia and cognition, working memory for decision making, and social behavior. It is also worth noting that optogenetics opened a new perspective for cerebellar neurostimulation in patients (e.g., for epilepsy treatment and stroke rehabilitation), promising unprecedented specificity in the targeted pathways that could be either activated or inhibited.
Collapse
|
17
|
Grasselli G, Boele HJ, Titley HK, Bradford N, van Beers L, Jay L, Beekhof GC, Busch SE, De Zeeuw CI, Schonewille M, Hansel C. SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning-specific memory traces. PLoS Biol 2020; 18:e3000596. [PMID: 31905212 PMCID: PMC6964916 DOI: 10.1371/journal.pbio.3000596] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/16/2020] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Neurons store information by changing synaptic input weights. In addition, they can adjust their membrane excitability to alter spike output. Here, we demonstrate a role of such "intrinsic plasticity" in behavioral learning in a mouse model that allows us to detect specific consequences of absent excitability modulation. Mice with a Purkinje-cell-specific knockout (KO) of the calcium-activated K+ channel SK2 (L7-SK2) show intact vestibulo-ocular reflex (VOR) gain adaptation but impaired eyeblink conditioning (EBC), which relies on the ability to establish associations between stimuli, with the eyelid closure itself depending on a transient suppression of spike firing. In these mice, the intrinsic plasticity of Purkinje cells is prevented without affecting long-term depression or potentiation at their parallel fiber (PF) input. In contrast to the typical spike pattern of EBC-supporting zebrin-negative Purkinje cells, L7-SK2 neurons show reduced background spiking but enhanced excitability. Thus, SK2 plasticity and excitability modulation are essential for specific forms of motor learning.
Collapse
Affiliation(s)
- Giorgio Grasselli
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Heather K. Titley
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Nora Bradford
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Lisa van Beers
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Lindsey Jay
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Gerco C. Beekhof
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Silas E. Busch
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Sciences, Amsterdam, The Netherlands
| | | | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
18
|
Johansson F. Intrinsic memory of temporal intervals in cerebellar Purkinje cells. Neurobiol Learn Mem 2019; 166:107103. [PMID: 31648018 DOI: 10.1016/j.nlm.2019.107103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/15/2019] [Accepted: 10/20/2019] [Indexed: 11/30/2022]
Abstract
The general consensus for learning and memory, including in the cerebellum, is that modification of synaptic strength via long-term potentiation (LTP) or long-term depression (LTD) are the primary mechanisms for the formation of memories. Recent findings suggest additional cellular mechanisms - referred to as 'intrinsic plasticity' - where a neuron's membrane excitability intrinsically changes. These mechanisms act like a dimmer and alter neuronal responsiveness by adjusting response amplitudes and spike thresholds. Here, I argue that classical conditioning of cerebellar Purkinje cell responses reveals yet another cell-intrinsic learning mechanism which significantly differs from both changes in synaptic strength and changes in membrane excitability. When the conditional (CS) and unconditional stimuli (US) are delivered directly to the Purkinje cell's immediate pre-synaptic afferents, the parallel fibres and the climbing fibre, the cell learns to respond to the CS with a pause in its spontaneous firing that reflects the interval between the two stimuli. The pause response has a delayed onset and adaptively timed maximum, offset and duration, determined by the previously experienced CS-US interval. The timing is not dependent on any network-generated time-varying input. This implies the existence of a timing mechanism and a memory substrate that encodes the duration of the CS-US interval inside the Purkinje cell. Such temporal interval learning is not simply a change that causes more or less firing in response to an input. Here, I review these findings in relation to the standard theory of synaptic strength changes and the network interactions believed to be necessary for generating time codes.
Collapse
Affiliation(s)
- Fredrik Johansson
- Associative Learning Group, Department of Experimental Medical Science, Lund University, Sweden; Department of Neuroscience, Physiology and Pharmacology, University College London, UK.
| |
Collapse
|
19
|
Solouki S, Bahrami F, Janahmadi M. The Concept of Transmission Coefficient Among Different Cerebellar Layers: A Computational Tool for Analyzing Motor Learning. Front Neural Circuits 2019; 13:54. [PMID: 31507382 PMCID: PMC6718712 DOI: 10.3389/fncir.2019.00054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
High-fidelity regulation of information transmission among cerebellar layers is mainly provided by synaptic plasticity. Therefore, determining the regulatory foundations of synaptic plasticity in the cerebellum and translating them to behavioral output are of great importance. To date, many experimental studies have been carried out in order to clarify the effect of synaptic defects, while targeting a specific signaling pathway in the cerebellar function. However, the contradictory results of these studies at the behavioral level further add to the ambiguity of the problem. Information transmission through firing rate changes in populations of interconnected neurons is one of the most widely accepted principles of neural coding. In this study, while considering the efficacy of synaptic interactions among the cerebellar layers, we propose a firing rate model to realize the concept of transmission coefficient. Thereafter, using a computational approach, we test the effect of different values of transmission coefficient on the gain adaptation of a cerebellar-dependent motor learning task. In conformity with the behavioral data, the proposed model can accurately predict that disruption in different forms of synaptic plasticity does not have the same effect on motor learning. Specifically, impairment in training mechanisms, like in the train-induced LTD in parallel fiber-Purkinje cell synapses, has a significant negative impact on all aspects of learning, including memory formation, transfer, and consolidation, although it does not disrupt basic motor performance. In this regard, the overinduction of parallel fiber-molecular layer interneuron LTP could not prevent motor learning impairment, despite its vital role in preserving the robustness of basic motor performance. In contrast, impairment in plasticity induced by interneurons and background activity of climbing fibers is partly compensable through overinduction of train-induced parallel fiber-Purkinje cell LTD. Additionally, blockade of climbing fiber signaling to the cerebellar cortex, referred to as olivary system lesion, shows the most destructive effect on both motor learning and basic motor performance. Overall, the obtained results from the proposed computational framework are used to provide a map from procedural motor memory formation in the cerebellum. Certainly, the generalization of this concept to other multi-layered networks of the brain requires more physiological and computational researches.
Collapse
Affiliation(s)
- Saeed Solouki
- Control and Intelligent Processing Center of Excellence, Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fariba Bahrami
- Control and Intelligent Processing Center of Excellence, Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Titley HK, Kislin M, Simmons DH, Wang SSH, Hansel C. Complex spike clusters and false-positive rejection in a cerebellar supervised learning rule. J Physiol 2019; 597:4387-4406. [PMID: 31297821 PMCID: PMC6697200 DOI: 10.1113/jp278502] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/11/2019] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS Spike doublets comprise ∼10% of in vivo complex spike events under spontaneous conditions and ∼20% (up to 50%) under evoked conditions. Under near-physiological slice conditions, single complex spikes do not induce parallel fibre long-term depression. Doublet stimulation is required to induce long-term depression with an optimal parallel-fibre to first-complex-spike timing interval of 150 ms. ABSTRACT The classic example of biological supervised learning occurs at cerebellar parallel fibre (PF) to Purkinje cell synapses, comprising the most abundant synapse in the mammalian brain. Long-term depression (LTD) at these synapses is driven by climbing fibres (CFs), which fire continuously about once per second and therefore generate potential false-positive events. We show that pairs of complex spikes are required to induce LTD. In vivo, sensory stimuli evoked complex-spike doublets with intervals ≤150 ms in up to 50% of events. Using realistic [Ca2+ ]o and [Mg2+ ]o concentrations in slices, we determined that complex-spike doublets delivered 100-150 ms after PF stimulus onset were required to trigger PF-LTD, which is consistent with the requirements for eyeblink conditioning. Inter-complex spike intervals of 50-150 ms provided optimal decoding. This stimulus pattern prolonged evoked spine calcium signals and promoted CaMKII activation. Doublet activity may provide a means for CF instructive signals to stand out from background firing.
Collapse
Affiliation(s)
- Heather K Titley
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Mikhail Kislin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Dana H Simmons
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Samuel S-H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Burhans LB, Schreurs BG. Inactivation of the interpositus nucleus during unpaired extinction does not prevent extinction of conditioned eyeblink responses or conditioning-specific reflex modification. Behav Neurosci 2019; 133:398-413. [PMID: 30869952 PMCID: PMC6625864 DOI: 10.1037/bne0000309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For almost 75 years, classical eyeblink conditioning has been an invaluable tool for assessing associative learning processes across many species, thanks to its high translatability and well-defined neural circuitry. Our laboratory has adapted the paradigm to extensively detail associative changes in the rabbit reflexive eyeblink response (unconditioned response, UR), characterized by postconditioning increases in the frequency, size, and latency of the UR when the periorbital shock unconditioned stimulus (US) is presented alone, termed conditioning-specific reflex modification (CRM). Because the shape and timing of CRM closely resembles the conditioned eyeblink response (CR) to the tone conditioned stimulus (CS), we previously tested whether CRs and CRM share a common neural substrate, the interpositus nucleus of the cerebellum (IP), and found that IP inactivation during conditioning blocked the development of both CRs and the timing aspect of CRM. The goal of the current study was to examine whether extinction of CRs and CRM timing, accomplished simultaneously with unpaired CS/US extinction, also involves the IP. Results showed that muscimol inactivation of the IP during extinction blocked CR expression but not extinction of CRs or CRM timing, contrasting with the literature showing IP inactivation prevents CR extinction during CS-alone presentations. The continued presence of the US throughout the unpaired extinction procedure may have been sufficient to overcome IP blockade, promoting plasticity in the cerebellar cortex and/or extracerebellar components of the eyeblink conditioning pathway that can modulate extinction of CRs and CRM timing. Results therefore add support to the distributed plasticity view of cerebellar learning. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Lauren B. Burhans
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Bernard G. Schreurs
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
22
|
Kuo MTH, Beckman JS, Shaw CA. Neuroprotective effect of CuATSM on neurotoxin-induced motor neuron loss in an ALS mouse model. Neurobiol Dis 2019; 130:104495. [PMID: 31181282 DOI: 10.1016/j.nbd.2019.104495] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 02/02/2023] Open
Abstract
CuATSM is a PET-imaging agent that has recently received attention for its success in extending the lifespan in animals in several neurodegenerative disease models. In the SOD1G93A model of ALS, CuATSM prolonged mouse longevity far longer than any previously tested therapeutic agents. The mechanism underlying this outcome has not been fully understood, but studies suggest that this copper complex contributes to maintaining copper homeostasis in mitochondria. More specifically for the SOD1 model, the molecule supplies copper back to the SOD1 protein. Additionally, CuATSM demonstrated similar protective effects in various in vivo Parkinson's disease mouse models. In the current pilot study, we utilized a neurodegenerative mouse model of motor neuron degeneration induced by the neurotoxin β-sitosterol β-D-glucoside. In this model, slow but distinct and progressive features of sporadic ALS occur. Treatment with CuATSM kept animal behavioural performance on par with the controls and prevented the extensive motor neuron degeneration and microglia activation seen in the untreated animals. These outcomes support a broader neuroprotective role for CuATSM beyond mutant SOD models of ALS.
Collapse
Affiliation(s)
- Michael T H Kuo
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joseph S Beckman
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
| | - Christopher A Shaw
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada; Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada; Program in Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Suvrathan A, Raymond JL. Depressed by Learning-Heterogeneity of the Plasticity Rules at Parallel Fiber Synapses onto Purkinje Cells. CEREBELLUM (LONDON, ENGLAND) 2018; 17:747-755. [PMID: 30069835 PMCID: PMC6550343 DOI: 10.1007/s12311-018-0968-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Climbing fiber-driven long-term depression (LTD) of parallel fiber synapses onto cerebellar Purkinje cells has long been investigated as a putative mechanism of motor learning. We recently discovered that the rules governing the induction of LTD at these synapses vary across different regions of the cerebellum. Here, we discuss the design of LTD induction protocols in light of this heterogeneity in plasticity rules. The analytical advantages of the cerebellum provide an opportunity to develop a deeper understanding of how the specific plasticity rules at synapses support the implementation of learning.
Collapse
Affiliation(s)
- Aparna Suvrathan
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Department of Pediatrics, Brain Repair and Integrative Neuroscience Program, the Research Institute of the McGill University Health Centre, McGill University, Montréal General Hospital, Montréal, Quebec, H3G 1A4, Canada
| | - Jennifer L Raymond
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
24
|
Johansson F, Jirenhed DA, Rasmussen A, Zucca R, Hesslow G. Absence of Parallel Fibre to Purkinje Cell LTD During Eyeblink Conditioning. Sci Rep 2018; 8:14777. [PMID: 30283004 PMCID: PMC6170427 DOI: 10.1038/s41598-018-32791-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 09/04/2018] [Indexed: 12/02/2022] Open
Abstract
Long-term depression (LTD) of parallel fibre/Purkinje cell synapses has been the favoured explanation for cerebellar motor learning such as classical eyeblink conditioning. Previous evidence against this interpretation has been contested. Here we wanted to test whether a classical conditioning protocol causes LTD. We applied a conditioning protocol, using a train of electrical pulses to the parallel fibres as the conditional stimulus. In order to rule out indirect effects caused by antidromic granule cell activation or output from Purkinje cells that might produce changes in Purkinje cell responsiveness, we focused the analysis on the first pulse in the conditional stimulus, that is, before any indirect effects would have time to occur. Purkinje cells learned to respond with a firing pause to the conditional stimulus. Yet, there was no depression of parallel fibre excitation after training.
Collapse
Affiliation(s)
- Fredrik Johansson
- Associative learning group, Department of Experimental Medical Science, Lund University, Lund, Sweden.,The Linnaeus Center Thinking in Time: Cognition, Communication & Learning, Lund University, Lund, Sweden
| | - Dan-Anders Jirenhed
- Associative learning group, Department of Experimental Medical Science, Lund University, Lund, Sweden.,The Linnaeus Center Thinking in Time: Cognition, Communication & Learning, Lund University, Lund, Sweden
| | - Anders Rasmussen
- Associative learning group, Department of Experimental Medical Science, Lund University, Lund, Sweden.,The Linnaeus Center Thinking in Time: Cognition, Communication & Learning, Lund University, Lund, Sweden
| | - Riccardo Zucca
- Laboratory for Synthetic Perceptive, Emotive, and Cognitive Systems, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Germund Hesslow
- Associative learning group, Department of Experimental Medical Science, Lund University, Lund, Sweden. .,The Linnaeus Center Thinking in Time: Cognition, Communication & Learning, Lund University, Lund, Sweden.
| |
Collapse
|
25
|
Boele HJ, Peter S, Ten Brinke MM, Verdonschot L, IJpelaar ACH, Rizopoulos D, Gao Z, Koekkoek SKE, De Zeeuw CI. Impact of parallel fiber to Purkinje cell long-term depression is unmasked in absence of inhibitory input. SCIENCE ADVANCES 2018; 4:eaas9426. [PMID: 30306129 PMCID: PMC6170036 DOI: 10.1126/sciadv.aas9426] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/23/2018] [Indexed: 05/03/2023]
Abstract
Pavlovian eyeblink conditioning has been used extensively to study the neural mechanisms underlying associative and motor learning. During this simple learning task, memory formation takes place at Purkinje cells in defined areas of the cerebellar cortex, which acquire a strong temporary suppression of their activity during conditioning. Yet, it is unknown which neuronal plasticity mechanisms mediate this suppression. Two potential mechanisms include long-term depression of parallel fiber to Purkinje cell synapses and feed-forward inhibition by molecular layer interneurons. We show, using a triple transgenic approach, that only concurrent disruption of both these suppression mechanisms can severely impair conditioning, highlighting that both processes can compensate for each other's deficits.
Collapse
Affiliation(s)
- Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Saša Peter
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | | | | | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
- Corresponding author.
| |
Collapse
|
26
|
Wolpaw JR. The negotiated equilibrium model of spinal cord function. J Physiol 2018; 596:3469-3491. [PMID: 29663410 PMCID: PMC6092289 DOI: 10.1113/jp275532] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/05/2018] [Indexed: 12/25/2022] Open
Abstract
The belief that the spinal cord is hardwired is no longer tenable. Like the rest of the CNS, the spinal cord changes during growth and ageing, when new motor behaviours are acquired, and in response to trauma and disease. This paper describes a new model of spinal cord function that reconciles its recently appreciated plasticity with its long-recognized reliability as the final common pathway for behaviour. According to this model, the substrate of each motor behaviour comprises brain and spinal plasticity: the plasticity in the brain induces and maintains the plasticity in the spinal cord. Each time a behaviour occurs, the spinal cord provides the brain with performance information that guides changes in the substrate of the behaviour. All the behaviours in the repertoire undergo this process concurrently; each repeatedly induces plasticity to preserve its key features despite the plasticity induced by other behaviours. The aggregate process is a negotiation among the behaviours: they negotiate the properties of the spinal neurons and synapses that they all use. The ongoing negotiation maintains the spinal cord in an equilibrium - a negotiated equilibrium - that serves all the behaviours. This new model of spinal cord function is supported by laboratory and clinical data, makes predictions borne out by experiment, and underlies a new approach to restoring function to people with neuromuscular disorders. Further studies are needed to test its generality, to determine whether it may apply to other CNS areas such as the cerebral cortex, and to develop its therapeutic implications.
Collapse
Affiliation(s)
- Jonathan R. Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth CenterNYS Department of HealthAlbanyNYUSA
- Department of NeurologyStratton VA Medical CenterAlbanyNYUSA
- Department of Biomedical SciencesSchool of Public HealthSUNY AlbanyNYUSA
- Department of Neurology, Neurological InstituteColumbia UniversityNew YorkNYUSA
| |
Collapse
|
27
|
Inoshita T, Hirano T. Occurrence of long-term depression in the cerebellar flocculus during adaptation of optokinetic response. eLife 2018; 7:36209. [PMID: 29582755 PMCID: PMC5871328 DOI: 10.7554/elife.36209] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Long-term depression (LTD) at parallel fiber (PF) to Purkinje cell (PC) synapses has been considered as a main cellular mechanism for motor learning. However, the necessity of LTD for motor learning was challenged by demonstration of normal motor learning in the LTD-defective animals. Here, we addressed possible involvement of LTD in motor learning by examining whether LTD occurs during motor learning in the wild-type mice. As a model of motor learning, adaptation of optokinetic response (OKR) was used. OKR is a type of reflex eye movement to suppress blur of visual image during animal motion. OKR shows adaptive change during continuous optokinetic stimulation, which is regulated by the cerebellar flocculus. After OKR adaptation, amplitudes of quantal excitatory postsynaptic currents at PF-PC synapses were decreased, and induction of LTD was suppressed in the flocculus. These results suggest that LTD occurs at PF-PC synapses during OKR adaptation.
Collapse
Affiliation(s)
- Takuma Inoshita
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Japan
| | - Tomoo Hirano
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Japan
| |
Collapse
|
28
|
The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A Consensus Paper. THE CEREBELLUM 2017; 16:230-252. [PMID: 27193702 DOI: 10.1007/s12311-016-0787-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For many decades, the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here, we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum and might also play a role in development. We then consider the potential problems and benefits of it having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, and variable complex spike waveforms) make it more or less suitable for one or the other of these functions, and why having multiple functions makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest that it has the potential to act in both the motor learning and motor control functions of the cerebellum.
Collapse
|
29
|
Valbuena S, Lerma J. Non-canonical Signaling, the Hidden Life of Ligand-Gated Ion Channels. Neuron 2017; 92:316-329. [PMID: 27764665 DOI: 10.1016/j.neuron.2016.10.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 12/25/2022]
Abstract
Neurotransmitter receptors are responsible for the transfer of information across the synapse. While ionotropic receptors form ion channels and mediate rapid membrane depolarization, so-called metabotropic receptors exert their action though slower, less direct intracellular signaling pathways. Glutamate, GABA, and acetylcholine can activate both ionotropic and metabotropic receptors, yet the distinction between these "canonical" signaling systems has become less clear since ionotropic receptors were proposed to also activate second messenger systems, defining a "non-canonical" signaling pathway. How these alternative pathways affect neuronal circuit activity is not well understood, and their influence could be more significant than previously anticipated. In this review, we examine the evidence available that supports the existence of parallel and unsuspected signaling pathways used by ionotropic neurotransmitter receptors.
Collapse
Affiliation(s)
- Sergio Valbuena
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Juan Lerma
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
30
|
Cheron G, Márquez-Ruiz J, Dan B. Oscillations, Timing, Plasticity, and Learning in the Cerebellum. THE CEREBELLUM 2016; 15:122-38. [PMID: 25808751 DOI: 10.1007/s12311-015-0665-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The highly stereotyped, crystal-like architecture of the cerebellum has long served as a basis for hypotheses with regard to the function(s) that it subserves. Historically, most clinical observations and experimental work have focused on the involvement of the cerebellum in motor control, with particular emphasis on coordination and learning. Two main models have been suggested to account for cerebellar functioning. According to Llinás's theory, the cerebellum acts as a control machine that uses the rhythmic activity of the inferior olive to synchronize Purkinje cell populations for fine-tuning of coordination. In contrast, the Ito-Marr-Albus theory views the cerebellum as a motor learning machine that heuristically refines synaptic weights of the Purkinje cell based on error signals coming from the inferior olive. Here, we review the role of timing of neuronal events, oscillatory behavior, and synaptic and non-synaptic influences in functional plasticity that can be recorded in awake animals in various physiological and pathological models in a perspective that also includes non-motor aspects of cerebellar function. We discuss organizational levels from genes through intracellular signaling, synaptic network to system and behavior, as well as processes from signal production and processing to memory, delegation, and actual learning. We suggest an integrative concept for control and learning based on articulated oscillation templates.
Collapse
Affiliation(s)
- G Cheron
- Laboratory of Electrophysiology, Université de Mons, 7000, Mons, Belgium. .,Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, CP640, 1070, Brussels, Belgium.
| | - J Márquez-Ruiz
- División de Neurociencias, Universidad Pablo de Olavide, 41013, Seville, Spain
| | - B Dan
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, CP640, 1070, Brussels, Belgium.,Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020, Brussels, Belgium
| |
Collapse
|
31
|
Chen XY, Wang Y, Chen Y, Chen L, Wolpaw JR. The inferior olive is essential for long-term maintenance of a simple motor skill. J Neurophysiol 2016; 116:1946-1955. [PMID: 27535367 PMCID: PMC5144694 DOI: 10.1152/jn.00085.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/29/2016] [Indexed: 11/22/2022] Open
Abstract
The inferior olive (IO) is essential for operant down-conditioning of the rat soleus H-reflex, a simple motor skill. To evaluate the role of the IO in long-term maintenance of this skill, the H-reflex was down-conditioned over 50 days, the IO was chemically ablated, and down-conditioning continued for up to 102 more days. H-reflex size just before IO ablation averaged 62(±2 SE)% of its initial value (P < 0.001 vs. initial). After IO ablation, H-reflex size rose to 75-80% over ∼10 days, remained there for ∼30 days, rose over 10 days to above its initial value, and averaged 140(±14)% for the final 10 days of study (P < 0.01 vs. initial). This two-stage loss of down-conditioning maintenance correlated with IO neuronal loss (r = 0.75, P < 0.01) and was similar to the loss of down-conditioning that follows ablation of the cerebellar output nuclei dentate and interpositus. In control (i.e., unconditioned) rats, IO ablation has no long-term effect on H-reflex size. These results indicate that the IO is essential for long-term maintenance of a down-conditioned H-reflex. With previous data, they support the hypothesis that IO and cortical inputs to cerebellum combine to produce cerebellar plasticity that produces sensorimotor cortex plasticity that produces spinal cord plasticity that produces the smaller H-reflex. H-reflex down-conditioning appears to depend on a hierarchy of plasticity that may be guided by the IO and begin in the cerebellum. Similar hierarchies may underlie other motor learning.
Collapse
Affiliation(s)
- Xiang Yang Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York; .,Department of Biomedical Sciences, State University of New York, Albany, New York.,Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and
| | - Yu Wang
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York.,Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and
| | - Yi Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York.,Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and
| | - Lu Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York.,Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York.,Department of Biomedical Sciences, State University of New York, Albany, New York.,Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and.,Department of Neurology, Columbia University, College of Physicians and Surgeons, New York, New York
| |
Collapse
|
32
|
Gao Z, Proietti-Onori M, Lin Z, Ten Brinke MM, Boele HJ, Potters JW, Ruigrok TJH, Hoebeek FE, De Zeeuw CI. Excitatory Cerebellar Nucleocortical Circuit Provides Internal Amplification during Associative Conditioning. Neuron 2016; 89:645-57. [PMID: 26844836 PMCID: PMC4742536 DOI: 10.1016/j.neuron.2016.01.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 11/11/2015] [Accepted: 12/20/2015] [Indexed: 11/21/2022]
Abstract
Closed-loop circuitries between cortical and subcortical regions can facilitate precision of output patterns, but the role of such networks in the cerebellum remains to be elucidated. Here, we characterize the role of internal feedback from the cerebellar nuclei to the cerebellar cortex in classical eyeblink conditioning. We find that excitatory output neurons in the interposed nucleus provide efference-copy signals via mossy fibers to the cerebellar cortical zones that belong to the same module, triggering monosynaptic responses in granule and Golgi cells and indirectly inhibiting Purkinje cells. Upon conditioning, the local density of nucleocortical mossy fiber terminals significantly increases. Optogenetic activation and inhibition of nucleocortical fibers in conditioned animals increases and decreases the amplitude of learned eyeblink responses, respectively. Our data show that the excitatory nucleocortical closed-loop circuitry of the cerebellum relays a corollary discharge of premotor signals and suggests an amplifying role of this circuitry in controlling associative motor learning. Cerebellar nuclei provide modular corollary discharge to the cerebellar cortex Nucleocortical afferents have unique molecular and ultrastructural features Eyeblink conditioning induces structural plasticity of nucleocortical mossy fibers Nucleocortical afferents amplify the amplitude of conditioned eyeblink responses
Collapse
Affiliation(s)
- Zhenyu Gao
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands.
| | | | - Zhanmin Lin
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | | | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Jan-Willem Potters
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Sciences (KNAW), 1105 BA Amsterdam, the Netherlands.
| |
Collapse
|
33
|
Mitchell DE, Della Santina CC, Cullen KE. Plasticity within non-cerebellar pathways rapidly shapes motor performance in vivo. Nat Commun 2016; 7:11238. [PMID: 27157829 PMCID: PMC4865756 DOI: 10.1038/ncomms11238] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/04/2016] [Indexed: 11/11/2022] Open
Abstract
Although cerebellar mechanisms are vital to maintain accuracy during complex movements and to calibrate simple reflexes, recent in vitro studies have called into question the widely held view that synaptic changes within cerebellar pathways exclusively guide alterations in motor performance. Here we investigate the vestibulo-ocular reflex (VOR) circuitry by applying temporally precise activation of vestibular afferents in awake-behaving monkeys to link plasticity at different neural sites with changes in motor performance. Behaviourally relevant activation patterns produce rapid attenuation of direct pathway VOR neurons, but not their nerve input. Changes in the strength of this pathway are sufficient to induce a lasting decrease in the evoked VOR. In addition, indirect brainstem pathways display complementary nearly instantaneous changes, contributing to compensating for the reduced sensitivity of primary VOR neurons. Taken together, our data provide evidence that multiple sites of plasticity within VOR pathways can rapidly shape motor performance in vivo. The extent to which non-cerebellar pathways can refine motor performance is debated. Here, the authors demonstrate behaviourally relevant patterns of activation evoke rapid plasticity within direct and indirect vestibulo-ocular reflex pathways in vivo, leading to changes in evoked eye movements.
Collapse
Affiliation(s)
- Diana E Mitchell
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Room 1219, Montreal, Quebec, Canada H3G 1Y6
| | - Charles C Della Santina
- Department of Otolaryngology-Head &Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Room 830, Baltimore, Maryland 21205, USA
| | - Kathleen E Cullen
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Room 1219, Montreal, Quebec, Canada H3G 1Y6
| |
Collapse
|
34
|
Chrobak AA, Soltys Z. Bergmann Glia, Long-Term Depression, and Autism Spectrum Disorder. Mol Neurobiol 2016; 54:1156-1166. [PMID: 26809583 PMCID: PMC5310553 DOI: 10.1007/s12035-016-9719-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/12/2016] [Indexed: 12/22/2022]
Abstract
Bergmann glia (BG), a specific type of radial astrocytes in the cerebellum, play a variety of vital functions in the development of this structure. However, the possible role of BG in the development of abnormalities observed in individuals with autism spectrum disorder (ASD) seems to be underestimated. One of the most consistent findings observed in ASD patients is loss of Purkinje cells (PCs). Such a defect may be caused by dysregulation of glutamate homeostasis, which is maintained mainly by BG. Moreover, these glial cells are involved in long-term depression (LTD), a form of plasticity which can additionally subserve neuroprotective functions. The aim of presented review is to summarize the current knowledge about interactions which occur between PC and BG, with special emphasis on those which are relevant to the survival and proper functioning of cerebellar neurons.
Collapse
Affiliation(s)
- Adrian Andrzej Chrobak
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Gronostajowa St. 9, Cracow, 30-387, Poland. .,Faculty of Medicine, Jagiellonian University Medical College, Kopernika St. 21A, Cracow, 31-501, Poland.
| | - Zbigniew Soltys
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Gronostajowa St. 9, Cracow, 30-387, Poland
| |
Collapse
|
35
|
Chen XY, Wang Y, Chen Y, Chen L, Wolpaw JR. Ablation of the inferior olive prevents H-reflex down-conditioning in rats. J Neurophysiol 2016; 115:1630-6. [PMID: 26792888 DOI: 10.1152/jn.01069.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/16/2016] [Indexed: 01/01/2023] Open
Abstract
We evaluated the role of the inferior olive (IO) in acquisition of the spinal cord plasticity that underlies H-reflex down-conditioning, a simple motor skill. The IO was chemically ablated before a 50-day exposure to an operant conditioning protocol that rewarded a smaller soleus H-reflex. In normal rats, down-conditioning succeeds (i.e., H-reflex size decreases at least 20%) in 80% of animals. Down-conditioning failed in every IO-ablated rat (P< 0.001 vs. normal rats). IO ablation itself had no long-term effect on H-reflex size. These results indicate that the IO is essential for acquisition of a down-conditioned H-reflex. With previous data, they support the hypothesis that IO and cortical inputs to cerebellum enable the cerebellum to guide sensorimotor cortex plasticity that produces and maintains the spinal cord plasticity that underlies the down-conditioned H-reflex. They help to further define H-reflex conditioning as a model for understanding motor learning and as a new approach to enhancing functional recovery after trauma or disease.
Collapse
Affiliation(s)
- Xiang Yang Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York; Department of Biomedical Sciences, State University of New York, Albany, New York;
| | - Yu Wang
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Yi Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Lu Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York; Department of Biomedical Sciences, State University of New York, Albany, New York; Department of Neurology, Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
36
|
Abstract
This chapter reviews the past research toward identifying the brain circuit and its computation underlying the associative memory in eyeblink classical conditioning. In the standard delay eyeblink conditioning paradigm, the conditioned stimulus (CS) and eyeblink-eliciting unconditioned stimulus (US) converge in the cerebellar cortex and interpositus nucleus (IPN) through the pontine nuclei and inferior olivary nucleus. Repeated pairings of CS and US modify synaptic weights in the cerebellar cortex and IPN, enabling IPN neurons to activate the red nucleus and generate the conditioned response (CR). In a variant of the standard paradigm, trace eyeblink conditioning, the CS and US are separated by a brief stimulus-free trace interval. Acquisition in trace eyeblink conditioning depends on several forebrain regions, including the hippocampus and medial prefrontal cortex as well as the cerebellar-brainstem circuit. Details of computations taking place in these regions remain unclear; however, recent evidence supports a view that the forebrain encodes a temporal sequence of the CS, trace interval, and US in a specific environmental context and signals the cerebellar-brainstem circuit to execute the CR when the US is likely to occur. Together, delay eyeblink conditioning represents one of the most successful cases of understanding the neural substrates of long-term memory in mammals, while trace eyeblink conditioning demonstrates its utility for uncovering detailed computations in the whole brain network underlying long-term memory.
Collapse
Affiliation(s)
- Kaori Takehara-Nishiuchi
- Department of Psychology, Cell and Systems Biology, Neuroscience Program, University of Toronto, Toronto, M5S 3G3, Canada.
| |
Collapse
|
37
|
Nakamura Y, Hirano T. Intracellular Ca(2+) thresholds for induction of excitatory long-term depression and inhibitory long-term potentiation in a cerebellar Purkinje neuron. Biochem Biophys Res Commun 2015; 469:803-8. [PMID: 26707644 DOI: 10.1016/j.bbrc.2015.12.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/16/2015] [Indexed: 12/31/2022]
Abstract
Synaptic plasticity in the cerebellar cortex contributes to motor learning. In particular, long-term depression at excitatory parallel fiber - Purkinje neuron synapses has been intensively studied as a primary cellular mechanism for motor learning. Recent studies showed that synaptic plasticity other than long-term depression such as long-term potentiation at inhibitory interneuron - Purkinje neuron synapses called rebound potentiation is also involved in motor learning. It was suggested that long-term depression and rebound potentiation might synergistically support motor learning. Here, we have examined induction conditions of long-term depression and rebound potentiation in cultured rat Purkinje neurons, and found that both of them were induced simultaneously by certain patterns of depolarization of a Purkinje neuron. Further, we found that long-term depression was induced by shorter depolarizing pulses causing a smaller intracellular Ca(2+) increase than rebound potentiation. These results support an idea that long-term depression and rebound potentiation synergistically contribute to motor learning, and suggest that long-term depression may play a primary role in wider variety of motor learning paradigms than rebound potentiation.
Collapse
Affiliation(s)
- Yoji Nakamura
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoo Hirano
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
38
|
Verduzco-Flores S. Stochastic Synchronization in Purkinje Cells with Feedforward Inhibition Could Be Studied with Equivalent Phase-Response Curves. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2015; 5:25. [PMID: 26084702 PMCID: PMC4471077 DOI: 10.1186/s13408-015-0025-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Simple-spike synchrony between Purkinje cells projecting to a common neuron in the deep cerebellar nucleus is emerging as an important factor in the encoding of output information from cerebellar cortex. A phenomenon known as stochastic synchronization happens when uncoupled oscillators synchronize due to correlated inputs. Stochastic synchronization is a viable mechanism through which simple-spike synchrony could be generated, but it has received scarce attention, perhaps because the presence of feedforward inhibition in the input to Purkinje cells makes insights difficult. This paper presents a method to account for feedforward inhibition so the usual mathematical approaches to stochastic synchronization can be applied. The method consists in finding a single Phase Response Curve, called the equivalent PRC, that accounts for the effects of both excitatory inputs and delayed feedforward inhibition from molecular layer interneurons. The results suggest that a theory of stochastic synchronization for the case of feedforward inhibition may not be necessary, since this case can be approximately reduced to the case of inputs characterized by a single PRC. Moreover, feedforward inhibition could in many situations increase the level of synchrony experienced by Purkinje cells.
Collapse
Affiliation(s)
- Sergio Verduzco-Flores
- Computational Cognitive Neuroscience Laboratory, Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA,
| |
Collapse
|
39
|
Johansson F, Carlsson H, Rasmussen A, Yeo C, Hesslow G. Activation of a Temporal Memory in Purkinje Cells by the mGluR7 Receptor. Cell Rep 2015; 13:1741-6. [DOI: 10.1016/j.celrep.2015.10.047] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/24/2015] [Accepted: 10/14/2015] [Indexed: 01/04/2023] Open
|
40
|
Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice. Cell Rep 2015; 13:1977-88. [PMID: 26655909 PMCID: PMC4674627 DOI: 10.1016/j.celrep.2015.10.057] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/08/2015] [Accepted: 10/16/2015] [Indexed: 11/30/2022] Open
Abstract
Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs). However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS)-related complex spike responses, and molecular layer interneuron (MLI) activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval. Simple spike suppression correlates trial by trial to conditioned eyelid behavior Conditioned stimulus-related complex spikes relate to simple spikes and behavior Molecular layer interneuron (MLI) modulation correlates to behavior Transgenic deficits in MLI input result in partially impaired eyeblink conditioning
Collapse
|
41
|
Gaffield MA, Amat SB, Bito H, Christie JM. Chronic imaging of movement-related Purkinje cell calcium activity in awake behaving mice. J Neurophysiol 2015; 115:413-22. [PMID: 26561609 DOI: 10.1152/jn.00834.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/05/2015] [Indexed: 01/28/2023] Open
Abstract
Purkinje cells (PCs) are a major site of information integration and plasticity in the cerebellum, a brain region involved in motor task refinement. Thus PCs provide an ideal location for studying the mechanisms necessary for cerebellum-dependent motor learning. Increasingly, sophisticated behavior tasks, used in combination with genetic reporters and effectors of activity, have opened up the possibility of studying cerebellar circuits during voluntary movement at an unprecedented level of quantitation. However, current methods used to monitor PC activity do not take full advantage of these advances. For example, single-unit or multiunit electrode recordings, which provide excellent temporal information regarding electrical activity, only monitor a small population of cells and can be quite invasive. Bolus loading of cell-permeant calcium (Ca(2+)) indicators is short-lived, requiring same-day imaging immediately after surgery and/or indicator injection. Genetically encoded Ca(2+) indicators (GECIs) overcome many of these limits and have garnered considerable use in many neuron types but only limited use in PCs. Here we employed these indicators to monitor Ca(2+) activity in PCs over several weeks. We could repeatedly image from the same cerebellar regions across multiple days and observed stable activity. We used chronic imaging to monitor PC activity in crus II, an area previously linked to licking behavior, and identified a region of increased activity at the onset of licking. We then monitored this same region after training tasks to initiate voluntary licking behavior in response to different sensory stimuli. In all cases, PC Ca(2+) activity increased at the onset of rhythmic licking.
Collapse
Affiliation(s)
| | - Samantha B Amat
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida; and
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida; and
| |
Collapse
|
42
|
Abstract
Although our ability to store semantic declarative information can nowadays be readily surpassed by that of simple personal computers, our ability to learn and express procedural memories still outperforms that of supercomputers controlling the most advanced robots. To a large extent, our procedural memories are formed in the cerebellum, which embodies more than two-thirds of all neurons in our brain. In this review, we will focus on the emerging view that different modules of the cerebellum use different encoding schemes to form and express their respective memories. More specifically, zebrin-positive zones in the cerebellum, such as those controlling adaptation of the vestibulo-ocular reflex, appear to predominantly form their memories by potentiation mechanisms and express their memories via rate coding, whereas zebrin-negative zones, such as those controlling eyeblink conditioning, appear to predominantly form their memories by suppression mechanisms and express their memories in part by temporal coding using rebound bursting. Together, the different types of modules offer a rich repertoire to acquire and control sensorimotor processes with specific challenges in the spatiotemporal domain.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands
| | - Michiel M Ten Brinke
- Department of Neuroscience, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
43
|
|
44
|
Abstract
Starting with the work of Cajal more than 100 years ago, neuroscience has sought to understand how the cells of the brain give rise to cognitive functions. How far has neuroscience progressed in this endeavor? This Perspective assesses progress in elucidating five basic brain processes: visual recognition, long-term memory, short-term memory, action selection, and motor control. Each of these processes entails several levels of analysis: the behavioral properties, the underlying computational algorithm, and the cellular/network mechanisms that implement that algorithm. At this juncture, while many questions remain unanswered, achievements in several areas of research have made it possible to relate specific properties of brain networks to cognitive functions. What has been learned reveals, at least in rough outline, how cognitive processes can be an emergent property of neurons and their connections.
Collapse
Affiliation(s)
- John Lisman
- Biology Department and Volen Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA.
| |
Collapse
|
45
|
Abstract
Long-term depression (LTD) at parallel fiber-Purkinje neuron synapses has been regarded as a primary cellular mechanism for motor learning. However, this hypothesis has been challenged. Demonstration of normal motor learning under LTD-suppressed conditions suggested that motor learning can occur without LTD. Synaptic plasticity mechanisms other than LTD have been found at various synapses in the cerebellum. Animals may achieve motor learning using several types of synaptic plasticity in the cerebellum including LTD.
Collapse
|
46
|
Yang Y, Lei C, Feng H, Sui JF. The neural circuitry and molecular mechanisms underlying delay and trace eyeblink conditioning in mice. Behav Brain Res 2014; 278:307-14. [PMID: 25448430 DOI: 10.1016/j.bbr.2014.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/28/2014] [Accepted: 10/02/2014] [Indexed: 11/30/2022]
Abstract
Classical eyeblink conditioning (EBC), a simple form of associative learning, has long been served as a model for motor learning and modulation. The neural circuitry of EBC has been studied in detail in rabbits. However, its underlying molecular mechanisms remain unclear. The advent of mouse transgenics has generated new perspectives on the studies of the neural substrates and molecular mechanisms essential for EBC. Results about EBC in mice differ in some aspects from those obtained in other mammals. Here, we review the current studies about the neural circuitry and molecular mechanisms underlying delay and trace EBC in mice. We conclude that brainstem-cerebellar circuit plays an essential role in DEC while the amygdala modulates this process, and that the medial prefrontal cortex (mPFC) as a candidate is involved in the extra-cerebellar mechanism underlying delay eyeblink conditioning (DEC) in mice. We propose the Amygdala-Cerebellum-Prefrontal Cortex-Dynamic-Conditioning Model (ACPDC model) for DEC in mice. As to trace eyeblink conditioning (TEC), the forebrain regions may play an essential role in it, whereas cerebellar cortex seems to be out of the neural circuitry in mice. Moreover, the molecular mechanisms underlying DEC and TEC in mice differ from each other. This review provides some new information and perspectives for further research on EBC.
Collapse
Affiliation(s)
- Yi Yang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China; Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Chen Lei
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Jian-feng Sui
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China; Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
47
|
Neutralization of Nogo-A enhances synaptic plasticity in the rodent motor cortex and improves motor learning in vivo. J Neurosci 2014; 34:8685-98. [PMID: 24966370 DOI: 10.1523/jneurosci.3817-13.2014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex. Nogo-A and its receptor NgR1 are present at cortical synapses. Acute treatment of slices with function-blocking antibodies (Abs) against Nogo-A or against NgR1 increased long-term potentiation (LTP) induced by stimulation of layer 2/3 horizontal fibers. Furthermore, anti-Nogo-A Ab treatment increased LTP saturation levels, whereas long-term depression remained unchanged, thus leading to an enlarged synaptic modification range. In vivo, intrathecal application of Nogo-A-blocking Abs resulted in a higher dendritic spine density at cortical pyramidal neurons due to an increase in spine formation as revealed by in vivo two-photon microscopy. To investigate whether these changes in synaptic plasticity correlate with motor learning, we trained rats to learn a skilled forelimb-reaching task while receiving anti-Nogo-A Abs. Learning of this cortically controlled precision movement was improved upon anti-Nogo-A Ab treatment. Our results identify Nogo-A as an influential molecular modulator of synaptic plasticity and as a regulator for learning of skilled movements in the motor cortex.
Collapse
|
48
|
Motor learning in common marmosets: Vestibulo-ocular reflex adaptation and its sensitivity to inhibitors of Purkinje cell long-term depression. Neurosci Res 2014; 83:33-42. [DOI: 10.1016/j.neures.2014.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
|
49
|
Abstract
Cerebellar climbing fiber activity encodes performance errors during many motor learning tasks, but the role of these error signals in learning has been controversial. We compared two motor learning paradigms that elicited equally robust putative error signals in the same climbing fibers: learned increases and decreases in the gain of the vestibulo-ocular reflex (VOR). During VOR-increase training, climbing fiber activity on one trial predicted changes in cerebellar output on the next trial, and optogenetic activation of climbing fibers to mimic their encoding of performance errors was sufficient to implant a motor memory. In contrast, during VOR-decrease training, there was no trial-by-trial correlation between climbing fiber activity and changes in cerebellar output, and climbing fiber activation did not induce VOR-decrease learning. Our data suggest that the ability of climbing fibers to induce plasticity can be dynamically gated in vivo, even under conditions where climbing fibers are robustly activated by performance errors. DOI:http://dx.doi.org/10.7554/eLife.02076.001 The cerebellum (or ‘little brain’) is located underneath the cerebral hemispheres. Despite comprising around 10% of the brain’s volume, the cerebellum contains roughly half of the brain’s neurons. Many of the functions of the cerebellum are related to the control and fine-tuning of movement, and people whose cerebellum has been damaged have problems with balance and coordination, and with learning new motor skills. One of the roles of the cerebellum is to control a reflex known as the vestibulo-ocular reflex, which enables us to keep our gaze fixed on an object as we turn our heads. The cerebellum relays information about head movements to the muscles that control the eyes, instructing the eyes to move in the opposite direction to the head. This keeps the image of the object we are looking at stable on the retina. The vestibulo-ocular reflex is controlled by a circuit that includes Purkinje cells (which are the main output cells of the cerebellum) and climbing fibres (which originate in the brainstem). Any failure of the vestibulo-ocular reflex to fully compensate for head movements generates an error signal that activates the climbing fibres. These in turn modify the output of Purkinje cells, leading ultimately to adjustments in eye movements. However, Kimpo et al. have now obtained evidence that Purkinje cells can modulate their response to the instructions they receive from climbing fibres. Monkeys sat in a rotating chair while a visual object they were trained to track with their eyes was moved to induce errors in the vestibulo-ocular reflex. When the object was moved so that a bigger reflexive eye movement was required to stabilize the image, the activation of the climbing fibres in response to the error led to a change in the response of the Purkinje cells, as expected. However, when a smaller reflexive eye movement was needed, the error-driven responses of the climbing fibres did not alter the responses of Purkinje cells. Similar results were obtained using pulses of light to artificially activate climbing fibres and thus simulate error signals. The work of Kimpo et al. indicates that the cerebellum does not blindly follow the instructions it receives from the brainstem, but can instead modulate its responses to incoming information about performance errors. Further work is now required to identify factors that influence the responsiveness of the cerebellum: such information could ultimately be used to improve learning of motor skills and recovery from injury. DOI:http://dx.doi.org/10.7554/eLife.02076.002
Collapse
Affiliation(s)
- Rhea R Kimpo
- Department of Neurobiology, Stanford University, Stanford, United States
| | | | | | | | | |
Collapse
|
50
|
Hirano T, Kawaguchi SY. Regulation and functional roles of rebound potentiation at cerebellar stellate cell-Purkinje cell synapses. Front Cell Neurosci 2014; 8:42. [PMID: 24600347 PMCID: PMC3927423 DOI: 10.3389/fncel.2014.00042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/29/2014] [Indexed: 11/13/2022] Open
Abstract
Purkinje cells receive both excitatory and inhibitory synaptic inputs and send sole output from the cerebellar cortex. Long-term depression (LTD), a type of synaptic plasticity, at excitatory parallel fiber-Purkinje cell synapses has been studied extensively as a primary cellular mechanism of motor learning. On the other hand, at inhibitory synapses on a Purkinje cell, postsynaptic depolarization induces long-lasting potentiation of GABAergic synaptic transmission. This synaptic plasticity is called rebound potentiation (RP), and its molecular regulatory mechanisms have been studied. The increase in intracellular Ca(2+) concentration caused by depolarization induces RP through enhancement of GABAA receptor (GABAAR) responsiveness. RP induction depends on binding of GABAAR with GABAAR associated protein (GABARAP) which is regulated by Ca(2+)/calmodulin-dependent kinase II (CaMKII). Whether RP is induced or not is determined by the balance between phosphorylation and de-phosphorylation activities regulated by intracellular Ca(2+) and by metabotropic GABA and glutamate receptors. Recent studies have revealed that the subunit composition of CaMKII has significant impact on RP induction. A Purkinje cell expresses both α- and β-CaMKII, and the latter has much higher affinity for Ca(2+)/calmodulin than the former. It was shown that when the relative amount of α- to β-CaMKII is large, RP induction is suppressed. The functional significance of RP has also been studied using transgenic mice in which a peptide inhibiting association of GABARAP and GABAAR is expressed selectively in Purkinje cells. The transgenic mice show abrogation of RP and subnormal adaptation of vestibulo-ocular reflex (VOR), a type of motor learning. Thus, RP is involved in a certain type of motor learning.
Collapse
Affiliation(s)
- Tomoo Hirano
- Department of Biophysics, Graduate School of Science, Kyoto University Kitashirakawa-Oiwake-cho Kyoto, Japan
| | | |
Collapse
|