1
|
Song JHT, Carter AC, Bushinsky EM, Beck SG, Petrocelli JE, Koreman GT, Babu J, Kingsley DM, Greenberg ME, Walsh CA. Human-chimpanzee tetraploid system defines mechanisms of species-specific neural gene regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646367. [PMID: 40236112 PMCID: PMC11996389 DOI: 10.1101/2025.03.31.646367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A major challenge in human evolutionary biology is to pinpoint genetic differences that underlie human-specific traits, such as increased neuron number and differences in cognitive behaviors. We used human-chimpanzee tetraploid cells to distinguish gene expression changes due to cis -acting sequence variants that change local gene regulation, from trans expression changes due to species differences in the cellular environment. In neural progenitor cells, examination of both cis and trans changes - combined with CRISPR inhibition and transcription factor motif analyses - identified cis -acting, species-specific gene regulatory changes, including to TNIK, FOSL2 , and MAZ , with widespread trans effects on neurogenesis-related gene programs. In excitatory neurons, we identified POU3F2 as a key cis -regulated gene with trans effects on synaptic gene expression and neuronal firing. This study identifies cis -acting genomic changes that cause cascading trans gene regulatory effects to contribute to human neural specializations, and provides a general framework for discovering genetic differences underlying human traits.
Collapse
|
2
|
Barde W, Renner J, Emery B, Khanzada S, Hu X, Garthe A, Rünker AE, Amin H, Kempermann G. Beyond nature, nurture, and chance: Individual agency shapes divergent learning biographies and brain connectome. SCIENCE ADVANCES 2025; 11:eads7297. [PMID: 39792659 PMCID: PMC11721517 DOI: 10.1126/sciadv.ads7297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Individual choices shape life course trajectories of brain structure and function beyond genes and environment. We hypothesized that individual task engagement in response to a learning program results in individualized learning biographies and connectomics. Genetically identical female mice living in one large shared enclosure freely engaged in self-paced, automatically administered and monitored learning tasks. We discovered growing and increasingly stable interindividual differences in learning trajectories. Adult hippocampal neurogenesis and connectivity as assessed by a high-density multielectrode array positively correlated with the variation in exploration and learning efficiency. During some tasks, divergence transiently collapsed, highlighting the sustained significance of context for individualization. Thus, equal environments and equal genes do not result in equal learning biographies because life confronts individuals with choices that lead to divergent paths.
Collapse
Affiliation(s)
- Warsha Barde
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- CRTD–Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Jonas Renner
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- CRTD–Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Brett Emery
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Shahrukh Khanzada
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Xin Hu
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Alexander Garthe
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- CRTD–Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Annette E. Rünker
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- CRTD–Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Hayder Amin
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- CRTD–Center for Regenerative Therapies TU Dresden, Dresden, Germany
| |
Collapse
|
3
|
Martín-Suárez S. Isolation of Adult Hippocampal Neural Stem Cells. Methods Mol Biol 2025; 2899:21-34. [PMID: 40067614 DOI: 10.1007/978-1-0716-4386-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Neural stem cells (NSCs) are essential for the generation of new neurons and also exert regulatory functions within their niche. NSCs are altered in many pathological conditions, and their role as a therapeutic target is being increasingly studied. Isolating a pure population of NSCs from the brain is challenging due to the lack of unique biomarkers. The development of transgenic mouse lines in which NSCs express fluorescent proteins has been greatly helpful, but these resources are sometimes unavailable to many research groups worldwide. Herein, we detail protocols for isolating NSCs from the adult brain using fluorescence-activated cell sorting (FACS) from both transgenic and non-transgenic mice. By utilizing fluorescence-conjugated antibodies targeting unique cell surface markers, a flow cytometer can distinguish different cell types based on their characteristic fluorescence profiles. This method enables precise sorting of cells according to their phenotype, facilitating in-depth exploration of cellular diversity and functionality.
Collapse
|
4
|
Wright GA, Rodriguez-Martinez AC, Conn H, Matarin M, Thompson P, Moore AT, Ba-Abbad R, Webster AR, Moosajee M. Enhanced Learning and Memory in Patients with CRB1 Retinopathy. Genes (Basel) 2024; 15:660. [PMID: 38927596 PMCID: PMC11203261 DOI: 10.3390/genes15060660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Mutations in the CRB1 gene are associated with a diverse spectrum of retinopathies with phenotypic variability causing severe visual impairment. The CRB1 gene has a role in retinal development and is expressed in the cerebral cortex and hippocampus, but its role in cognition has not been described before. This study compares cognitive function in CRB1 retinopathy individuals with subjects with other retinopathies and the normal population. METHODS Neuropsychological tests of cognitive function were used to test individuals with CRB1 and non-CRB1 retinopathies and compare results with a standardised normative dataset. RESULTS CRB1 retinopathy subjects significantly outperformed those with non-CRB1 retinopathy in list learning tasks of immediate (p = 0.001) and delayed memory (p = 0.007), tests of semantic verbal fluency (p = 0.017), verbal IQ digit span subtest (p = 0.037), and estimation test of higher execution function (p = 0.020) but not in the remaining tests of cognitive function (p > 0.05). CRB1 retinopathy subjects scored significantly higher than the normal population in all areas of memory testing (p < 0.05) and overall verbal IQ tests (p = 0.0012). Non-CRB1 retinopathy subjects scored significantly higher than the normal population in story recall, verbal fluency, and overall verbal IQ tests (p = 0.0016). CONCLUSIONS Subjects with CRB1 retinopathy may have enhanced cognitive function in areas of memory and learning. Further work is required to understand the role of CRB1 in cognition.
Collapse
Affiliation(s)
- Genevieve A. Wright
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (G.A.W.); (A.C.R.-M.); (A.T.M.); (R.B.-A.); (A.R.W.)
- Institute of Ophthalmology, University College London (UCL), London EC1V 9EL, UK
| | - Ana Catalina Rodriguez-Martinez
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (G.A.W.); (A.C.R.-M.); (A.T.M.); (R.B.-A.); (A.R.W.)
- Institute of Ophthalmology, University College London (UCL), London EC1V 9EL, UK
| | - Hanne Conn
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London Hospitals (UCLH), National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK; (H.C.); (M.M.); (P.T.)
| | - Mar Matarin
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London Hospitals (UCLH), National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK; (H.C.); (M.M.); (P.T.)
| | - Pamela Thompson
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London Hospitals (UCLH), National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK; (H.C.); (M.M.); (P.T.)
| | - Anthony T. Moore
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (G.A.W.); (A.C.R.-M.); (A.T.M.); (R.B.-A.); (A.R.W.)
- Institute of Ophthalmology, University College London (UCL), London EC1V 9EL, UK
| | - Rola Ba-Abbad
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (G.A.W.); (A.C.R.-M.); (A.T.M.); (R.B.-A.); (A.R.W.)
- Institute of Ophthalmology, University College London (UCL), London EC1V 9EL, UK
| | - Andrew R. Webster
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (G.A.W.); (A.C.R.-M.); (A.T.M.); (R.B.-A.); (A.R.W.)
- Institute of Ophthalmology, University College London (UCL), London EC1V 9EL, UK
| | - Mariya Moosajee
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (G.A.W.); (A.C.R.-M.); (A.T.M.); (R.B.-A.); (A.R.W.)
- Institute of Ophthalmology, University College London (UCL), London EC1V 9EL, UK
| |
Collapse
|
5
|
Barón-Mendoza I, Mejía-Hernández M, Hernández-Mercado K, Guzmán-Condado J, Zepeda A, González-Arenas A. Altered hippocampal neurogenesis in a mouse model of autism revealed by genetic polymorphisms and by atypical development of newborn neurons. Sci Rep 2024; 14:4608. [PMID: 38409172 PMCID: PMC10897317 DOI: 10.1038/s41598-024-53614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
Individuals with autism spectrum disorder (ASD) often exhibit atypical hippocampal anatomy and connectivity throughout their lifespan, potentially linked to alterations in the neurogenic process within the hippocampus. In this study, we performed an in-silico analysis to identify single-nucleotide polymorphisms (SNPs) in genes relevant to adult neurogenesis in the C58/J model of idiopathic autism. We found coding non-synonymous (Cn) SNPs in 33 genes involved in the adult neurogenic process, as well as in 142 genes associated with the signature genetic profile of neural stem cells (NSC) and neural progenitors. Based on the potential alterations in adult neurogenesis predicted by the in-silico analysis, we evaluated the number and distribution of newborn neurons in the dentate gyrus (DG) of young adult C58/J mice. We found a reduced number of newborn cells in the whole DG, a higher proportion of early neuroblasts in the subgranular layer (SGZ), and a lower proportion of neuroblasts with morphological maturation signs in the granule cell layer (GCL) of the DG compared to C57BL/6J mice. The observed changes may be associated with a delay in the maturation trajectory of newborn neurons in the C58/J strain, linked to the Cn SNPs in genes involved in adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Isabel Barón-Mendoza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, México
| | - Montserrat Mejía-Hernández
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, México
| | - Karina Hernández-Mercado
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, México
| | - Jessica Guzmán-Condado
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, México
| | - Angélica Zepeda
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, México.
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, México.
| |
Collapse
|
6
|
Tang T, Li X, Yu E, Li M, Pan X. Identification of common core ion channel genes in epilepsy and Alzheimer's disease. Ir J Med Sci 2024; 193:417-424. [PMID: 37477849 DOI: 10.1007/s11845-023-03447-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Although available literature indicates that the incidence of dementia in the epilepsy population and the risk of seizures in the Alzheimer's disease (AD) population are high, the specific genetic risk factors and the interaction mechanism are unclear, rendering rational genetic interpretation rather challenging. AIMS Our work aims to identify the common core ion channel genes in epilepsy and AD. METHODS In this study, we first integrated gene expression omnibus datasets (GSE48350 and GSE6834) on AD and epilepsy to identify differentially expressed genes (DEGs), performing Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs. The related protein-protein interaction (PPI) network was constructed for DEGs, and the hub gene was evaluated. RESULTS A total of 2800 and 35 genes were identified in GSE48350 and GSE6834, and 12 DEGs were significantly differentially expressed between the datasets. KEGG pathway analysis showed that DEGs were primarily enriched in glutamatergic synapse and dopaminergic synapse pathways. SCN2A, GRIA1, and KCNJ9 were the hub genes with high connectivity. CONCLUSIONS The findings suggest that the three genes, SCN2A, GRIA1, and KCNJ9, may serve as potential targets for treating AD comorbid with epilepsy.
Collapse
Affiliation(s)
- Ting Tang
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou, Fujian, 362000, People's Republic of China
| | - Xiang Li
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Erhan Yu
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Man Li
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.
| |
Collapse
|
7
|
Gabarró‐Solanas R, Davaatseren A, Kleifeld J, Kepčija T, Köcher T, Giralt A, Crespo‐Enríquez I, Urbán N. Adult neural stem cells and neurogenesis are resilient to intermittent fasting. EMBO Rep 2023; 24:e57268. [PMID: 37987220 PMCID: PMC10702802 DOI: 10.15252/embr.202357268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/13/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Intermittent fasting (IF) is a promising strategy to counteract ageing shown to increase the number of adult-born neurons in the dentate gyrus of mice. However, it is unclear which steps of the adult neurogenesis process are regulated by IF. The number of adult neural stem cells (NSCs) decreases with age in an activation-dependent manner and, to counteract this loss, adult NSCs are found in a quiescent state which ensures their long-term maintenance. We aimed to determine if and how IF affects adult NSCs in the hippocampus. To identify the effects of every-other-day IF on NSCs and all following steps in the neurogenic lineage, we combined fasting with lineage tracing and label retention assays. We show here that IF does not affect NSC activation or maintenance and, that contrary to previous reports, IF does not increase neurogenesis. The same results are obtained regardless of strain, sex, diet length, tamoxifen administration or new-born neuron identification method. Our data suggest that NSCs maintain homeostasis upon IF and that this intervention is not a reliable strategy to increase adult neurogenesis.
Collapse
Affiliation(s)
- Rut Gabarró‐Solanas
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Amarbayasgalan Davaatseren
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Justus Kleifeld
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Tatjana Kepčija
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | | | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de NeurociènciesUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health ScienceUniversity of BarcelonaBarcelonaSpain
| | - Iván Crespo‐Enríquez
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Noelia Urbán
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
8
|
Wunram HL, Kasparbauer AM, Oberste M, Bender S. [Movement as a Neuromodulator: How Physical Activity Influences the Physiology of Adolescent Depression]. ZEITSCHRIFT FUR KINDER- UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2023; 52:77-93. [PMID: 37851436 DOI: 10.1024/1422-4917/a000954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Movement as a Neuromodulator: How Physical Activity Influences the Physiology of Adolescent Depression Abstract: In the context of adolescent depression, physical activity is becoming increasingly recognized for its positive effects on neuropathology. Current scientific findings indicate that physical training affects the biological effects of depression during adolescence. Yet the pathophysiology of adolescent depression is not yet fully understood. Besides psychosocial and genetic influences, various neurobiological factors are being discussed. One explanation model describes a dysfunction of the hypothalamus-pituitary-adrenal axis (HPA axis) with a sustained elevation in cortisol concentration. Recent studies highlight neuroimmunological processes and a reduced concentration of growth factors as causative factors. These changes appear to lead to a dysregulation of the excitation and inhibition balance of the cerebral cortex as well as to cerebral morphological alterations. Regular physical training can potentially counteract the dysregulation of the HPA axis and normalize cortisol levels. The release of proinflammatory cytokines is inhibited, and the expression of growth factors involved in adult neurogenesis is stimulated. One should ensure the synergistic interaction of biological and psychosocial factors when designing the exercise schedule (endurance or strength training, group or individual sports, frequency, duration, and intensity). Addressing these open questions is essential when integrating physical activity into the guidelines for treating depressive disorders in children and adolescents.
Collapse
Affiliation(s)
- Heidrun Lioba Wunram
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Uniklinik Köln, Medizinische Fakultät der Universität zu Köln, Deutschland
- Kinderklinik Uniklinik Köln, Medizinische Fakultät der Universität zu Köln, Deutschland
- Geteilte Erstautorenschaft
| | - Anna-Maria Kasparbauer
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Uniklinik Köln, Medizinische Fakultät der Universität zu Köln, Deutschland
- Geteilte Erstautorenschaft
| | - Max Oberste
- Institut für Medizinische Statistik und Bioinformatik, Universität zu Köln, Deutschland
| | - Stephan Bender
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Uniklinik Köln, Medizinische Fakultät der Universität zu Köln, Deutschland
| |
Collapse
|
9
|
McEwen SC, Jarrahi B, Ventura J, Subotnik KL, Nguyen J, Woo SM, Nuechterlein KH. A combined exercise and cognitive training intervention induces fronto-cingulate cortical plasticity in first-episode psychosis patients. Schizophr Res 2023; 251:12-21. [PMID: 36527955 PMCID: PMC11245316 DOI: 10.1016/j.schres.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Schizophrenia (SZ) is characterized by neurobiological and associated cognitive and functional deficits, including pronounced cortical thinning, that lead to acute and long-term functional impairment. Research with older adults supports the role of non-pharmacological interventions, such as exercise (E) and cognitive training (CT), for cognitive impairments. This literature influenced the development of combined CT&E treatments for individuals with SZ. However, the impact of longer combined treatment duration (6 months) on neuroanatomy has yet to be explored in patients in the early course of the illness. The impact of adding exercise to cognitive training for key brain regions associated with higher-order cognition was examined here using magnetic resonance imaging (MRI) in first-episode psychosis (FEP) patients. METHODS UCLA Aftercare Research Program patients with a recent first episode of schizophrenia were randomly assigned to either combined cognitive and exercise training (CT&E) (N = 20) or cognitive training alone (CT) (N = 17) intervention. Cortical thickness was measured longitudinally and analyzed for two regions of interest using FreeSurfer. RESULTS Compared to patients in the CT group, those in the CT&E group demonstrated an increase in cortical thickness within the left anterior cingulate cortex over the six-month treatment period (ACC: F(1, 35) = 4.666, P < .04). Directional tendencies were similar in the left dorsolateral prefrontal cortex (DLPFC: F(1,35) = 4.132, P < .05). CONCLUSIONS These findings suggest that exercise and cognitive training may synergistically increase fronto-cingulate cortical thickness to mitigate progressive neural atrophy in the early course of SZ. This combined intervention appears to be a valuable adjunct to standard pharmacologic treatment in FEP patients.
Collapse
Affiliation(s)
- S C McEwen
- Pacific Brain Health Center, Pacific Neuroscience Institute, Santa Monica, CA, 90404, United States of America; atai Life Sciences, San Diego, CA, 92130, United States of America; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - B Jarrahi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, United States of America; Department of Anesthesia, Stanford University School of Medicine, Palo Alto, CA 94304, United States of America
| | - J Ventura
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - K L Subotnik
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - J Nguyen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - S M Woo
- Graduate School of Education & Psychology, Pepperdine University, Los Angeles, CA 90045, United States of America
| | - K H Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, United States of America; Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| |
Collapse
|
10
|
Huang L, Zhang Z. CSPα in neurodegenerative diseases. Front Aging Neurosci 2022; 14:1043384. [DOI: 10.3389/fnagi.2022.1043384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
Adult-onset neuronal ceroid lipofuscinosis (ANCL) is a rare neurodegenerative disease characterized by epilepsy, cognitive degeneration, and motor disorders caused by mutations in the DNAJC5 gene. In addition to being associated with ANCL disease, the cysteine string proteins α (CSPα) encoded by the DNAJC5 gene have been implicated in several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease. However, the pathogenic mechanism responsible for these neurodegenerative diseases has not yet been elucidated. Therefore, this study examines the functional properties of the CSPα protein and the related mechanisms of neurodegenerative diseases.
Collapse
|
11
|
Senko AN, Overall RW, Silhavy J, Mlejnek P, Malínská H, Hüttl M, Marková I, Fabel KS, Lu L, Stuchlik A, Williams RW, Pravenec M, Kempermann G. Systems genetics in the rat HXB/BXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose. PLoS Genet 2022; 18:e1009638. [PMID: 35377872 PMCID: PMC9060359 DOI: 10.1371/journal.pgen.1009638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 05/02/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Neurogenesis in the adult hippocampus contributes to learning and memory in the healthy brain but is dysregulated in metabolic and neurodegenerative diseases. The molecular relationships between neural stem cell activity, adult neurogenesis, and global metabolism are largely unknown. Here we applied unbiased systems genetics methods to quantify genetic covariation among adult neurogenesis and metabolic phenotypes in peripheral tissues of a genetically diverse family of rat strains, derived from a cross between the spontaneously hypertensive (SHR/OlaIpcv) strain and Brown Norway (BN-Lx/Cub). The HXB/BXH family is a very well established model to dissect genetic variants that modulate metabolic and cardiovascular diseases and we have accumulated deep phenome and transcriptome data in a FAIR-compliant resource for systematic and integrative analyses. Here we measured rates of precursor cell proliferation, survival of new neurons, and gene expression in the hippocampus of the entire HXB/BXH family, including both parents. These data were combined with published metabolic phenotypes to detect a neurometabolic quantitative trait locus (QTL) for serum glucose and neuronal survival on Chromosome 16: 62.1-66.3 Mb. We subsequently fine-mapped the key phenotype to a locus that includes the Telo2-interacting protein 2 gene (Tti2)-a chaperone that modulates the activity and stability of PIKK kinases. To verify the hypothesis that differences in neurogenesis and glucose levels are caused by a polymorphism in Tti2, we generated a targeted frameshift mutation on the SHR/OlaIpcv background. Heterozygous SHR-Tti2+/- mutants had lower rates of hippocampal neurogenesis and hallmarks of dysglycemia compared to wild-type littermates. Our findings highlight Tti2 as a causal genetic link between glucose metabolism and structural brain plasticity. In humans, more than 800 genomic variants are linked to TTI2 expression, seven of which have associations to protein and blood stem cell factor concentrations, blood pressure and frontotemporal dementia.
Collapse
Affiliation(s)
- Anna N. Senko
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Rupert W. Overall
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Jan Silhavy
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Mlejnek
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Klaus S. Fabel
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ales Stuchlik
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| |
Collapse
|
12
|
Gunturkun MH, Wang T, Chitre AS, Garcia Martinez A, Holl K, St. Pierre C, Bimschleger H, Gao J, Cheng R, Polesskaya O, Solberg Woods LC, Palmer AA, Chen H. Genome-Wide Association Study on Three Behaviors Tested in an Open Field in Heterogeneous Stock Rats Identifies Multiple Loci Implicated in Psychiatric Disorders. Front Psychiatry 2022; 13:790566. [PMID: 35237186 PMCID: PMC8882588 DOI: 10.3389/fpsyt.2022.790566] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/18/2022] [Indexed: 12/05/2022] Open
Abstract
Many personality traits are influenced by genetic factors. Rodents models provide an efficient system for analyzing genetic contribution to these traits. Using 1,246 adolescent heterogeneous stock (HS) male and female rats, we conducted a genome-wide association study (GWAS) of behaviors measured in an open field, including locomotion, novel object interaction, and social interaction. We identified 30 genome-wide significant quantitative trait loci (QTL). Using multiple criteria, including the presence of high impact genomic variants and co-localization of cis-eQTL, we identified 17 candidate genes (Adarb2, Ankrd26, Cacna1c, Cacng4, Clock, Ctu2, Cyp26b1, Dnah9, Gda, Grxcr1, Eva1a, Fam114a1, Kcnj9, Mlf2, Rab27b, Sec11a, and Ube2h) for these traits. Many of these genes have been implicated by human GWAS of various psychiatric or drug abuse related traits. In addition, there are other candidate genes that likely represent novel findings that can be the catalyst for future molecular and genetic insights into human psychiatric diseases. Together, these findings provide strong support for the use of the HS population to study psychiatric disorders.
Collapse
Affiliation(s)
- Mustafa Hakan Gunturkun
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Apurva S. Chitre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Katie Holl
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Celine St. Pierre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Hannah Bimschleger
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Jianjun Gao
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Riyan Cheng
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Oksana Polesskaya
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Abraham A. Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
13
|
De Stefano I, Leonardi S, Casciati A, Pasquali E, Giardullo P, Antonelli F, Novelli F, Babini G, Tanori M, Tanno B, Saran A, Mancusoa M, Pazzaglia S. Contribution of Genetic Background to the Radiation Risk for Cancer and Non-Cancer Diseases in Ptch1+/- Mice. Radiat Res 2022; 197:43-56. [PMID: 33857285 DOI: 10.1667/rade-20-00247.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/19/2021] [Indexed: 11/03/2022]
Abstract
Experimental mouse studies are important to gain a comprehensive, quantitative and mechanistic understanding of the biological factors that modify individual risk of radiation-induced health effects, including age at exposure, dose, dose rate, organ/tissue specificity and genetic factors. In this study, neonatal Ptch1+/- mice bred on CD1 and C57Bl/6 background received whole-body irradiation at postnatal day 2. This time point represents a critical phase in the development of the eye lens, cerebellum and dentate gyrus (DG), when they are also particularly susceptible to radiation effects. Irradiation was performed with γ rays (60Co) at doses of 0.5, 1 and 2 Gy, delivered at 0.3 Gy/min or 0.063 Gy/min. Wild-type and mutant mice were monitored for survival, lens opacity, medulloblastoma (MB) and neurogenesis defects. We identified an inverse genetic background-driven relationship between the radiosensitivity to induction of lens opacity and MB and that to neurogenesis deficit in Ptch1+/- mutants. In fact, high incidence of radiation-induced cataract and MB were observed in Ptch1+/-/CD1 mutants that instead showed no consequence of radiation exposure on neurogenesis. On the contrary, no induction of radiogenic cataract and MB was reported in Ptch1+/-/C57Bl/6 mice that were instead susceptible to induction of neurogenesis defects. Compared to Ptch1+/-/CD1, the cerebellum of Ptch1+/-/C57Bl/6 mice showed increased radiosensitivity to apoptosis, suggesting that differences in processing radiation-induced DNA damage may underlie the opposite strain-related radiosensitivity to cancer and non-cancer pathologies. Altogether, our results showed lack of dose-rate-related effects and marked influence of genetic background on the radiosensitivity of Ptch1+/-mice, supporting a major contribution of individual sensitivity to radiation risk in the population.
Collapse
Affiliation(s)
- I De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - E Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - P Giardullo
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Novelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - G Babini
- Department of Physics, University of Pavia, Pavia, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - M Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - B Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Mancusoa
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
14
|
Noorjahan N, Cattini PA. Neurogenesis in the Maternal Rodent Brain: Impacts of Gestation-Related Hormonal Regulation, Stress, and Obesity. Neuroendocrinology 2022; 112:702-722. [PMID: 34510034 DOI: 10.1159/000519415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
In order to maintain maternal behavior, it is important that the maternal rodent brain promotes neurogenesis. Maternal neurogenesis is altered by the dynamic shifts in reproductive hormone levels during pregnancy. Thus, lifestyle events such as gestational stress and obesity that can affect hormone production will affect neuroendocrine control of maternal neurogenesis. However, there is a lack of information about the regulation of maternal neurogenesis by placental hormones, which are key components of the reproductive hormonal profile during pregnancy. There is also little known about how maternal neurogenesis can be affected by health concerns such as gestational stress and obesity, and its relationship to peripartum mental health disorders. This review summarizes the changing levels of neurogenesis in mice and rats during gestation and postpartum as well as regulation of neurogenesis by pregnancy-related hormones. The influence of neurogenesis on maternal behavior is also discussed while bringing attention to the effect of health-related concerns during gestation, such as stress and obesity on neuroendocrine control of maternal neurogenesis. In doing so, this review identifies the gaps in the literature and specifically emphasizes the importance of further research on maternal brain physiology to address them.
Collapse
Affiliation(s)
- Noshin Noorjahan
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
15
|
Gault N, Szele FG. Immunohistochemical evidence for adult human neurogenesis in health and disease. WIREs Mech Dis 2021; 13:e1526. [PMID: 34730290 DOI: 10.1002/wsbm.1526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/19/2023]
Abstract
Postnatal and adult neurogenesis in the subventricular zone and subgranular zone of animals such as rodents and non-human primates has been observed with many different technical approaches. Since most techniques used in animals cannot be used in humans, the majority of human neurogenesis studies rely on postmortem immunohistochemistry. This technique is difficult in human tissue, due to poor and variable preservation of antigens and samples. Nevertheless, a survey of the literature reveals that most published studies provide evidence for childhood and adult neurogenesis in the human brain stem cell niches. There are some conflicting results even when assessing the same markers and when using the same antibodies. Focusing on immunohistochemical studies on post-mortem human sections, we discuss the relative robustness of the literature on adult neurogenesis. We also discuss the response of the subventricular and subgranular zones to human disease, showing that the two niches can respond differently and that the stage of disease impacts neurogenesis levels. Thus, we highlight strong evidence for adult human neurogenesis, discuss other work that did not find it, describe obstacles in analysis, and offer other approaches to evaluate the neurogenic potential of the subventricular and subgranular zones of Homo sapiens. This article is categorized under: Neurological Diseases > Stem Cells and Development Reproductive System Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
| | - Francis G Szele
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Lithium treatment and human hippocampal neurogenesis. Transl Psychiatry 2021; 11:555. [PMID: 34718328 PMCID: PMC8557207 DOI: 10.1038/s41398-021-01695-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Lithium is a first-line treatment for bipolar disorder, where it acts as a mood-stabilizing agent. Although its precise mechanism remains unclear, neuroimaging studies have shown that lithium accumulates in the hippocampus and that chronic use amongst bipolar disorder patients is associated with larger hippocampal volumes. Here, we tested the chronic effects of low (0.75 mM) and high (2.25 mM) doses of lithium on human hippocampal progenitor cells and used immunocytochemistry to investigate the effects of lithium on cell parameters implicated in neurogenesis. Corresponding RNA-sequencing and gene-set enrichment analyses were used to evaluate whether genes affected by lithium in our model overlap with those regulating the volume of specific layers of the dentate gyrus. We observed that high-dose lithium treatment in human hippocampal progenitors increased the generation of neuroblasts (P ≤ 0.01), neurons (P ≤ 0.01), and glia (P ≤ 0.001), alongside the expression of genes, which regulate the volume of the molecular layer of the dentate gyrus. This study provides empirical support that adult hippocampal neurogenesis and gliogenesis are mechanisms that could contribute to the effects of lithium on human hippocampal volume.
Collapse
|
17
|
Follistatin mediates learning and synaptic plasticity via regulation of Asic4 expression in the hippocampus. Proc Natl Acad Sci U S A 2021; 118:2109040118. [PMID: 34544873 PMCID: PMC8488609 DOI: 10.1073/pnas.2109040118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
Adult neurogenesis, which is known to be a heritable trait, is thought to be involved in learning, stress-related anxiety, and antidepressant action. In this study, we map genes influencing adult neurogenesis and identify a candidate gene, follistatin (Fst) for further study. By utilizing a brain-specific knockout and viral vector-mediated gene transfer, we reveal the importance of hippocampal FST in neurogenesis, learning, and synaptic plasticity. From RNA sequencing and chromatin immunoprecipitation experiments, we identify Asic4 as a critical downstream target gene regulated by FST. Our work demonstrates that FST functions in the hippocampus at least in part through regulating Asic4 expression. Overall, we illustrate the role of hippocampal Fst in learning and synaptic plasticity. The biological mechanisms underpinning learning are unclear. Mounting evidence has suggested that adult hippocampal neurogenesis is involved although a causal relationship has not been well defined. Here, using high-resolution genetic mapping of adult neurogenesis, combined with sequencing information, we identify follistatin (Fst) and demonstrate its involvement in learning and adult neurogenesis. We confirmed that brain-specific Fst knockout (KO) mice exhibited decreased hippocampal neurogenesis and demonstrated that FST is critical for learning. Fst KO mice exhibit deficits in spatial learning, working memory, and long-term potentiation (LTP). In contrast, hippocampal overexpression of Fst in KO mice reversed these impairments. By utilizing RNA sequencing and chromatin immunoprecipitation, we identified Asic4 as a target gene regulated by FST and show that Asic4 plays a critical role in learning deficits caused by Fst deletion. Long-term overexpression of hippocampal Fst in C57BL/6 wild-type mice alleviates age-related decline in cognition, neurogenesis, and LTP. Collectively, our study reveals the functions for FST in adult neurogenesis and learning behaviors.
Collapse
|
18
|
Schaffenrath J, Huang SF, Wyss T, Delorenzi M, Keller A. Characterization of the blood-brain barrier in genetically diverse laboratory mouse strains. Fluids Barriers CNS 2021; 18:34. [PMID: 34321020 PMCID: PMC8317333 DOI: 10.1186/s12987-021-00269-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background Genetic variation in a population has an influence on the manifestation of monogenic as well as multifactorial disorders, with the underlying genetic contribution dependent on several interacting variants. Common laboratory mouse strains used for modelling human disease lack the genetic variability of the human population. Therefore, outcomes of rodent studies show limited relevance to human disease. The functionality of brain vasculature is an important modifier of brain diseases. Importantly, the restrictive interface between blood and brain—the blood–brain barrier (BBB) serves as a major obstacle for the drug delivery into the central nervous system (CNS). Using genetically diverse mouse strains, we aimed to investigate the phenotypic and transcriptomic variation of the healthy BBB in different inbred mouse strains. Methods We investigated the heterogeneity of brain vasculature in recently wild-derived mouse strains (CAST/EiJ, WSB/EiJ, PWK/PhJ) and long-inbred mouse strains (129S1/SvImJ, A/J, C57BL/6J, DBA/2J, NOD/ShiLtJ) using different phenotypic arms. We used immunohistochemistry and confocal laser microscopy followed by quantitative image analysis to determine vascular density and pericyte coverage in two brain regions—cortex and hippocampus. Using a low molecular weight fluorescence tracer, sodium fluorescein and spectrophotometry analysis, we assessed BBB permeability in young and aged mice of selected strains. For further phenotypic characterization of endothelial cells in inbred mouse strains, we performed bulk RNA sequencing of sorted endothelial cells isolated from cortex and hippocampus. Results Cortical vessel density and pericyte coverage did not differ among the investigated strains, except in the cortex, where PWK/PhJ showed lower vessel density compared to NOD/ShiLtJ, and a higher pericyte coverage than DBA/2J. The vascular density in the hippocampus differed among analyzed strains but not the pericyte coverage. The staining patterns of endothelial arteriovenous zonation markers were similar in different strains. BBB permeability to a small fluorescent tracer, sodium fluorescein, was also similar in different strains, except in the hippocampus where the CAST/EiJ showed higher permeability than NOD/ShiLtJ. Transcriptomic analysis of endothelial cells revealed that sex of the animal was a major determinant of gene expression differences. In addition, the expression level of several genes implicated in endothelial function and BBB biology differed between wild-derived and long-inbred mouse strains. In aged mice of three investigated strains (DBA/2J, A/J, C57BL/6J) vascular density and pericyte coverage did not change—expect for DBA/2J, whereas vascular permeability to sodium fluorescein increased in all three strains. Conclusions Our analysis shows that although there were no major differences in parenchymal vascular morphology and paracellular BBB permeability for small molecular weight tracer between investigated mouse strains or sexes, transcriptomic differences of brain endothelial cells point to variation in gene expression of the intact BBB. These baseline variances might be confounding factors in pathological conditions that may lead to a differential functional outcome dependent on the sex or genetic polymorphism. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00269-w.
Collapse
Affiliation(s)
- Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Tania Wyss
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Oncology, University Lausanne, Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Oncology, University Lausanne, Lausanne, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland. .,Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
19
|
Anderson KR, Harris JA, Ng L, Prins P, Memar S, Ljungquist B, Fürth D, Williams RW, Ascoli GA, Dumitriu D. Highlights from the Era of Open Source Web-Based Tools. J Neurosci 2021; 41:927-936. [PMID: 33472826 PMCID: PMC7880282 DOI: 10.1523/jneurosci.1657-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/20/2022] Open
Abstract
High digital connectivity and a focus on reproducibility are contributing to an open science revolution in neuroscience. Repositories and platforms have emerged across the whole spectrum of subdisciplines, paving the way for a paradigm shift in the way we share, analyze, and reuse vast amounts of data collected across many laboratories. Here, we describe how open access web-based tools are changing the landscape and culture of neuroscience, highlighting six free resources that span subdisciplines from behavior to whole-brain mapping, circuits, neurons, and gene variants.
Collapse
Affiliation(s)
- Kristin R Anderson
- Departments of Pediatrics and Psychiatry, Columbia University, New York, New York 10032
- Division of Developmental Psychobiology, New York State Psychiatric Institute, New York, New York 10032
- The Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York 10032
- Columbia Population Research Center, Columbia University, New York, New York 10027
- Zuckerman Institute, Columbia University, New York, New York 10027
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, Washington 98109
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, Washington 98109
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Sara Memar
- Robarts Research Institute, BrainsCAN, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 3K7, Canada
| | - Bengt Ljungquist
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study; and Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, Virginia 22030
| | - Daniel Fürth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study; and Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, Virginia 22030
| | - Dani Dumitriu
- Departments of Pediatrics and Psychiatry, Columbia University, New York, New York 10032
- Division of Developmental Psychobiology, New York State Psychiatric Institute, New York, New York 10032
- The Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York 10032
- Columbia Population Research Center, Columbia University, New York, New York 10027
- Zuckerman Institute, Columbia University, New York, New York 10027
| |
Collapse
|
20
|
Life inter vivos: modeling regeneration in the relation between bodies and biomaterials. BIOSOCIETIES 2020. [DOI: 10.1057/s41292-020-00206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Dunlap KD, Corbo JH, Vergara MM, Beston SM, Walsh MR. Predation drives the evolution of brain cell proliferation and brain allometry in male Trinidadian killifish, Rivulus hartii. Proc Biol Sci 2019; 286:20191485. [PMID: 31822257 PMCID: PMC6939915 DOI: 10.1098/rspb.2019.1485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/14/2019] [Indexed: 02/03/2023] Open
Abstract
The external environment influences brain cell proliferation, and this might contribute to brain plasticity underlying adaptive behavioural changes. Additionally, internal genetic factors influence the brain cell proliferation rate. However, to date, researchers have not examined the importance of environmental versus genetic factors in causing natural variation in brain cell proliferation. Here, we examine brain cell proliferation and brain growth trajectories in free-living populations of Trinidadian killifish, Rivulus hartii, exposed to contrasting predation environments. Compared to populations without predators, populations in high predation (HP) environments exhibited higher rates of brain cell proliferation and a steeper brain growth trajectory (relative to body size). To test whether these differences in the wild persist in a common garden environment, we reared first-generation fish originating from both predation environments in uniform laboratory conditions. Just as in the wild, brain cell proliferation and brain growth in the common garden were greater in HP populations than in no predation populations. The differences in cell proliferation observed across the brain in both the field and common garden studies indicate that the differences are probably genetically based and are mediated by evolutionary shifts in overall brain growth and life-history traits.
Collapse
Affiliation(s)
- Kent D. Dunlap
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | - Joshua H. Corbo
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | | | - Shannon M. Beston
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Matthew R. Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
22
|
De Miguel Z, Haditsch U, Palmer TD, Azpiroz A, Sapolsky RM. Adult-generated neurons born during chronic social stress are uniquely adapted to respond to subsequent chronic social stress. Mol Psychiatry 2019; 24:1178-1188. [PMID: 29311652 DOI: 10.1038/s41380-017-0013-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/19/2017] [Accepted: 10/30/2017] [Indexed: 12/28/2022]
Abstract
Chronic stress is a recognized risk factor for psychiatric and psychological disorders and a potent modulator of adult neurogenesis. Numerous studies have shown that during stress, neurogenesis decreases; however, during the recovery from the stress, neurogenesis increases. Despite the increased number of neurons born after stress, it is unknown if the function and morphology of those neurons are altered. Here we asked whether neurons in adult mice, born during the final 5 days of chronic social stress and matured during recovery from chronic social stress, are similar to neurons born with no stress conditions from a quantitative, functional and morphological perspective, and whether those neurons are uniquely adapted to respond to a subsequent stressful challenge. We observed an increased number of newborn neurons incorporated in the dentate gyrus of the hippocampus during the 10-week post-stress recovery phase. Interestingly, those new neurons were more responsive to subsequent chronic stress, as they showed more of a stress-induced decrease in spine density and branching nodes than in neurons born during a non-stress period. Our results replicate findings that the neuronal survival and incorporation of neurons in the adult dentate gyrus increases after chronic stress and suggest that such neurons are uniquely adapted in the response to future social stressors. This finding provides a potential mechanism for some of the long-term hippocampal effects of stress.
Collapse
Affiliation(s)
- Zurine De Miguel
- Department of Biological Sciences, Stanford University, Stanford, CA, 94305, USA. .,Department of Basic Psychological Processes and their Development, Basque Country University, San Sebastián, 20018, Spain.
| | - Ursula Haditsch
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Theo D Palmer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arantza Azpiroz
- Department of Basic Psychological Processes and their Development, Basque Country University, San Sebastián, 20018, Spain
| | - Robert M Sapolsky
- Department of Biological Sciences, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
23
|
Gaitanou M, Segklia K, Matsas R. Cend1, a Story with Many Tales: From Regulation of Cell Cycle Progression/Exit of Neural Stem Cells to Brain Structure and Function. Stem Cells Int 2019; 2019:2054783. [PMID: 31191667 PMCID: PMC6525816 DOI: 10.1155/2019/2054783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
Neural stem/precursor cells (NPCs) generate the large variety of neuronal phenotypes comprising the adult brain. The high diversity and complexity of this organ have its origin in embryonic life, during which NPCs undergo symmetric and asymmetric divisions and then exit the cell cycle and differentiate to acquire neuronal identities. During these processes, coordinated regulation of cell cycle progression/exit and differentiation is essential for generation of the appropriate number of neurons and formation of the correct structural and functional neuronal circuits in the adult brain. Cend1 is a neuronal lineage-specific modulator involved in synchronization of cell cycle exit and differentiation of neuronal precursors. It is expressed all along the neuronal lineage, from neural stem/progenitor cells to mature neurons, and is associated with the dynamics of neuron-generating divisions. Functional studies showed that Cend1 has a critical role during neurogenesis in promoting cell cycle exit and neuronal differentiation. Mechanistically, Cend1 acts via the p53-dependent/Cyclin D1/pRb signaling pathway as well as via a p53-independent route involving a tripartite interaction with RanBPM and Dyrk1B. Upon Cend1 function, Notch1 signaling is suppressed and proneural genes such as Mash1 and Neurogenins 1/2 are induced. Due to its neurogenic activity, Cend1 is a promising candidate therapeutic gene for brain repair, while the Cend1 minimal promoter is a valuable tool for neuron-specific gene delivery in the CNS. Mice with Cend1 genetic ablation display increased NPC proliferation, decreased migration, and higher levels of apoptosis during development. As a result, they show in the adult brain deficits in a range of motor and nonmotor behaviors arising from irregularities in cerebellar cortex lamination and impaired Purkinje cell differentiation as well as a paucity in GABAergic interneurons of the cerebral cortex, hippocampus, and amygdala. Taken together, these studies highlight the necessity for Cend1 expression in the formation of a structurally and functionally normal brain.
Collapse
Affiliation(s)
- Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Katerina Segklia
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
24
|
Loss of postnatal quiescence of neural stem cells through mTOR activation upon genetic removal of cysteine string protein-α. Proc Natl Acad Sci U S A 2019; 116:8000-8009. [PMID: 30926666 DOI: 10.1073/pnas.1817183116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neural stem cells continuously generate newborn neurons that integrate into and modify neural circuitry in the adult hippocampus. The molecular mechanisms that regulate or perturb neural stem cell proliferation and differentiation, however, remain poorly understood. Here, we have found that mouse hippocampal radial glia-like (RGL) neural stem cells express the synaptic cochaperone cysteine string protein-α (CSP-α). Remarkably, in CSP-α knockout mice, RGL stem cells lose quiescence postnatally and enter into a high-proliferation regime that increases the production of neural intermediate progenitor cells, thereby exhausting the hippocampal neural stem cell pool. In cell culture, stem cells in hippocampal neurospheres display alterations in proliferation for which hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway is the primary cause of neurogenesis deregulation in the absence of CSP-α. In addition, RGL cells lose quiescence upon specific conditional targeting of CSP-α in adult neural stem cells. Our findings demonstrate an unanticipated cell-autonomic and circuit-independent disruption of postnatal neurogenesis in the absence of CSP-α and highlight a direct or indirect CSP-α/mTOR signaling interaction that may underlie molecular mechanisms of brain dysfunction and neurodegeneration.
Collapse
|
25
|
McKetney J, Runde R, Hebert AS, Salamat S, Roy S, Coon JJ. Proteomic Atlas of the Human Brain in Alzheimer's Disease. J Proteome Res 2019; 18:1380-1391. [PMID: 30735395 PMCID: PMC6480317 DOI: 10.1021/acs.jproteome.9b00004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The brain represents one of the most divergent and critical organs in the human body. Yet, it can be afflicted by a variety of neurodegenerative diseases specifically linked to aging, about which we lack a full biomolecular understanding of onset and progression, such as Alzheimer's disease (AD). Here we provide a proteomic resource comprising nine anatomically distinct sections from three aged individuals, across a spectrum of disease progression, categorized by quantity of neurofibrillary tangles. Using state-of-the-art mass spectrometry, we identify a core brain proteome that exhibits only small variance in expression, accompanied by a group of proteins that are highly differentially expressed in individual sections and broader regions. AD affected tissue exhibited slightly elevated levels of tau protein with similar relative expression to factors associated with the AD pathology. Substantial differences were identified between previous proteomic studies of mature adult brains and our aged cohort. Our findings suggest considerable value in examining specifically the brain proteome of aged human populations from a multiregional perspective. This resource can serve as a guide, as well as a point of reference for how specific regions of the brain are affected by aging and neurodegeneration.
Collapse
Affiliation(s)
- Justin McKetney
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Rosie Runde
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison
- Department of Neuroscience, University of Wisconsin–Madison, 1111 Highland Avenue, Madison, Wisconsin 53705
| | - Alexander S Hebert
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706
| | - Shahriar Salamat
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison
- Department of Neuroscience, University of Wisconsin–Madison, 1111 Highland Avenue, Madison, Wisconsin 53705
| | - Subhojit Roy
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison
- Department of Neuroscience, University of Wisconsin–Madison, 1111 Highland Avenue, Madison, Wisconsin 53705
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Morgridge Institute for Research, Madison, WI 53706
| |
Collapse
|
26
|
Llorens-Martín M. Exercising New Neurons to Vanquish Alzheimer Disease. Brain Plast 2018; 4:111-126. [PMID: 30564550 PMCID: PMC6296267 DOI: 10.3233/bpl-180065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer disease (AD) is the most common type of dementia in individuals over 65 years of age. The neuropathological hallmarks of the condition are Tau neurofibrillary tangles and Amyloid-β senile plaques. Moreover, certain susceptible regions of the brain experience a generalized lack of neural plasticity and marked synaptic alterations during the progression of this as yet incurable disease. One of these regions, the hippocampus, is characterized by the continuous addition of new neurons throughout life. This phenomenon, named adult hippocampal neurogenesis (AHN), provides a potentially endless source of new synaptic elements that increase the complexity and plasticity of the hippocampal circuitry. Numerous lines of evidence show that physical activity and environmental enrichment (EE) are among the most potent positive regulators of AHN. Given that neural plasticity is markedly decreased in many neurodegenerative diseases, the therapeutic potential of making certain lifestyle changes, such as increasing physical activity, is being recognised in several non-pharmacologic strategies seeking to slow down or prevent the progression of these diseases. This review article summarizes current evidence supporting the putative therapeutic potential of EE and physical exercise to increase AHN and hippocampal plasticity both under physiological and pathological circumstances, with a special emphasis on neurodegenerative diseases and AD.
Collapse
Affiliation(s)
- María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSIC-UAM, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases CIBERNED, Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
27
|
Overall RW, Kempermann G. The Small World of Adult Hippocampal Neurogenesis. Front Neurosci 2018; 12:641. [PMID: 30294252 PMCID: PMC6158315 DOI: 10.3389/fnins.2018.00641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/28/2018] [Indexed: 11/13/2022] Open
Abstract
Making mechanistic sense of genetically complex biological systems such as adult hippocampal neurogenesis poses conceptual and many practical challenges. Transcriptomics studies have helped to move beyond single-gene approaches and have greatly enhanced the accessibility to effects of greater numbers of genes. Typically, however, the number of experimental conditions compared is small and the conclusions remain correspondingly limited. In contrast, studying complex traits in genetic reference populations, in which genetic influences are varied systematically, provides insight into the architecture of relationships between phenotypes and putative molecular mechanisms. We describe that the correlation network among transcripts that builds around the adult neurogenesis phenotype and its endophenotypes is, as expected, a small-world network and scale free. The high degree of connectivity implies that adult neurogenesis is essentially an "omnigenic" process. From any gene of interest, a link to adult hippocampal neurogenesis can be constructed in just a few steps. We show that, at a minimum correlation of 0.6, the hippocampal transcriptome network associated with adult neurogenesis exhibits only two "degrees of separation." This fact has many interesting consequences for our attempts to unravel the (molecular) causality structure underlying adult neurogenesis and other complex biological systems. Our article is not written with the expert on network theory in mind but rather aims to raise interest among neurobiologists, active in neurogenesis and related fields, in network theory and analysis as a set of tools that hold great promise for coping with the study of "omnigenic" phenotypes and systems.
Collapse
Affiliation(s)
- Rupert W Overall
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
28
|
Kim JM, Lee C, Lee GI, Kim NKD, Ki CS, Park WY, Kim BJ, Kim SJ. Identification of the PROM1 Mutation p.R373C in a Korean Patient With Autosomal Dominant Stargardt-like Macular Dystrophy. Ann Lab Med 2018; 37:536-539. [PMID: 28840994 PMCID: PMC5587829 DOI: 10.3343/alm.2017.37.6.536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/21/2017] [Accepted: 07/12/2017] [Indexed: 01/11/2023] Open
Abstract
Stargardt-like macular dystrophy 4 (STGD4) is a rare macular dystrophy characterized by bull's eye atrophy of the macula and the underlying retinal pigment epithelium. Patients with STGD4 show decreased central vision, which often progresses to severe vision loss. The PROM1 gene encodes prominin-1, which is a 5-transmembrane glycoprotein also known as CD133 and is involved in photoreceptor disk morphogenesis. PROM1 mutations have been identified as genetic causes for STGD4 and other retinal degenerations such as retinitis pigmentosa. We report a case of STGD4 with a PROM1 p.R373C mutation in a Korean patient. Ophthalmic examinations of a 38-yr old man complaining of decreased visual acuity revealed bilateral atrophic macular lesions consistent with STGD4. Targeted exome sequencing of known inherited retinal degeneration genes revealed a heterozygous missense mutation c.1117C>T (p.R373C) of PROM1, which was confirmed by Sanger sequencing. To the best of our knowledge, this is the first case of a PROM1 mutation causing STGD4 in Koreans.
Collapse
Affiliation(s)
- Jong Min Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Ga In Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nayoung K D Kim
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
29
|
Transcription factor Runx1 is pro-neurogenic in adult hippocampal precursor cells. PLoS One 2018; 13:e0190789. [PMID: 29324888 PMCID: PMC5764282 DOI: 10.1371/journal.pone.0190789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/20/2017] [Indexed: 01/12/2023] Open
Abstract
Transcription factor Runx1 (Runt Related Transcription Factor 1), plays an important role in the differentiation of hematopoetic stem cells, angiogenesis and the development of nociceptive neurons. These known functions have in common that they relate to lineage decisions. We thus asked whether such role might also be found for Runx1 in adult hippocampal neurogenesis as a process, in which such decisions have to be regulated lifelong. Runx1 shows a widespread low expression in the adult mouse brain, not particularly prominent in the hippocampus and the resident neural precursor cells. Isoforms 1 and 2 of Runx1 (but not 3 to 5) driven by the proximal promoter were expressed in hippocampal precursor cells ex vivo, albeit again at very low levels, and were markedly increased after stimulation with TGF-β1. Under differentiation conditions (withdrawal of growth factors) Runx1 became down-regulated. Overexpression of Runx1 in vitro reduced proliferation, increased survival of precursor cells by reducing apoptosis, and increased neuronal differentiation, while slightly reducing dendritic morphology and complexity. Transfection with dominant-negative Runx1 in hippocampal precursor cells in vitro did not result in differences in neurogenesis. Hippocampal expression of Runx1 correlated with adult neurogenesis (precursor cell proliferation) across BXD recombinant strains of mice and covarying transcripts enriched in the GO categories “neural precursor cell proliferation” and “neuron differentiation”. Runx1 is thus a plausible candidate gene to be involved in regulating initial differentiation-related steps of adult neurogenesis. It seems, however, that the relative contribution of Runx1 to such effect is complementary and will explain only small parts of the cell-autonomous pro-differentiation effect.
Collapse
|
30
|
McEwen SC, Siddarth P, Abedelsater B, Kim Y, Mui W, Wu P, Emerson ND, Lee J, Greenberg S, Shelton T, Kaiser S, Small GW, Merrill DA. Simultaneous Aerobic Exercise and Memory Training Program in Older Adults with Subjective Memory Impairments. J Alzheimers Dis 2018; 62:795-806. [PMID: 29480182 PMCID: PMC5870016 DOI: 10.3233/jad-170846] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Several modifiable lifestyle factors have been shown to have potential beneficial effects in slowing cognitive decline. Two such factors that may affect cognitive performance and slow the progression of memory loss into dementia in older adults are cognitive training and physical activity. There are currently no effective treatments for dementia; therefore, preventative strategies to delay or prevent the onset of dementia are of critical importance. OBJECTIVE The aim of this study was to determine the relative effectiveness of simultaneous performance of memory training and aerobic exercise to a sequential performance intervention on memory functioning in older adults. METHODS 55 older adults (aged 60- 75) with subjective memory impairments (non-demented and non-MCI) completed the intervention that consisted of 90-minute small group classes held twice weekly. Participants were randomized to either 4-weeks of supervised strategy-based memory training done simultaneously while stationary cycling (SIM) or sequentially after the stationary cycling (SEQ). Standardized neurocognitive measures of memory, executive functioning, speed of processing, attention, and cognitive flexibility were assessed at baseline and post-intervention. RESULTS The SIM group, but not the SEQ group, had a significant improvement on composite memory following the intervention (t(51) = 2.7, p = 0.01, effect size (ES) = 0.42) and transfer to non-trained reasoning abilities (t(51) = 6.0, ES = 0.49) and complex attention (t(51) = 3.1, p = 0.003, ES = 0.70). Conversely, the SEQ group, but not the SIM, showed significant improvement in executive functioning (t(51) = 5.0, p = 0.0001, ES = 0.96). CONCLUSION These findings indicate that a 4-week simultaneous memory training and aerobic exercise program is sufficient to improve memory, attention, and reasoning abilities in older adults.
Collapse
Affiliation(s)
- Sarah C. McEwen
- Department of Psychiatry, School of Medicine at UCSD, La Jolla, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, and Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Prabha Siddarth
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, and Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Berna Abedelsater
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, and Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Yena Kim
- Motion Picture Television Fund, Woodland Hills, CA, USA
| | - Wenli Mui
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, and Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Pauline Wu
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, and Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Natacha D. Emerson
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, and Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Jacob Lee
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, and Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Shayna Greenberg
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, and Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Tiffany Shelton
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, and Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Scott Kaiser
- Motion Picture Television Fund, Woodland Hills, CA, USA
| | - Gary W. Small
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, and Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - David A. Merrill
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, and Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| |
Collapse
|
31
|
Wiget F, van Dijk RM, Louet ER, Slomianka L, Amrein I. Effects of Strain and Species on the Septo-Temporal Distribution of Adult Neurogenesis in Rodents. Front Neurosci 2017; 11:719. [PMID: 29311796 PMCID: PMC5742116 DOI: 10.3389/fnins.2017.00719] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/08/2017] [Indexed: 01/05/2023] Open
Abstract
The functional septo-temporal (dorso-ventral) differentiation of the hippocampus is accompanied by gradients of adult hippocampal neurogenesis (AHN) in laboratory rodents. An extensive septal AHN in laboratory mice suggests an emphasis on a relation of AHN to tasks that also depend on the septal hippocampus. Domestication experiments indicate that AHN dynamics along the longitudinal axis are subject to selective pressure, questioning if the septal emphasis of AHN in laboratory mice is a rule applying to rodents in general. In this study, we used C57BL/6 and DBA2/Crl mice, wild-derived F1 house mice and wild-captured wood mice and bank voles to look for evidence of strain and species specific septo-temporal differences in AHN. We confirmed the septal > temporal gradient in C57BL/6 mice, but in the wild species, AHN was low septally and high temporally. Emphasis on the temporal hippocampus was particularly strong for doublecortin positive (DCX+) young neurons and more pronounced in bank voles than in wood mice. The temporal shift was stronger in female wood mice than in males, while we did not see sex differences in bank voles. AHN was overall low in DBA and F1 house mice, but they exhibited the same inversed gradient as wood mice and bank voles. DCX+ young neurons were usually confined to the subgranular zone and deep granule cell layer. This pattern was seen in all animals in the septal and intermediate dentate gyrus. In bank voles and wood mice however, the majority of temporal DCX+ cells were radially dispersed throughout the granule cell layer. Some but not all of the septo-temporal differences were accompanied by changes in the DCX+/Ki67+ cell ratios, suggesting that new neuron numbers can be regulated by both proliferation or the time course of maturation and survival of young neurons. Some of the septo-temporal differences we observe have also been found in laboratory rodents after the experimental manipulation of the molecular mechanisms that control AHN. Adaptations of AHN under natural conditions may operate on these or similar mechanisms, adjusting neurogenesis to the requirements of hippocampal function.
Collapse
Affiliation(s)
- Franziska Wiget
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - R Maarten van Dijk
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilian-University, Munich, Germany
| | - Estelle R Louet
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Lutz Slomianka
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Irmgard Amrein
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Comparison of Adult Hippocampal Neurogenesis and Susceptibility to Treadmill Exercise in Nine Mouse Strains. Neural Plast 2017; 2017:5863258. [PMID: 29391953 PMCID: PMC5748094 DOI: 10.1155/2017/5863258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 12/13/2022] Open
Abstract
The genetic background of mice has various influences on the efficacy of physical exercise, as well as adult neurogenesis in the hippocampus. In this study, we investigated the basal level of hippocampal neurogenesis, as well as the effects of treadmill exercise on adult hippocampal neurogenesis in 9 mouse strains: 8 very commonly used laboratory inbred mouse strains (C57BL/6, BALB/c, A/J, C3H/HeJ, DBA/1, DBA/2, 129/SvJ, and FVB) and 1 outbred mouse strain (ICR). All 9 strains showed diverse basal levels of cell proliferation, neuroblast differentiation, and integration into granule cells in the sedentary group. C57BL/6 mice showed the highest levels of cell proliferation, neuroblast differentiation, and integration into granule cells at basal levels, and the DBA/2 mice showed the lowest levels. The efficacy of integration into granule cells was maximal in ICR mice. Treadmill exercise increased adult hippocampal neurogenesis in all 9 mouse strains. These results suggest that the genetic background of mice affects hippocampal neurogenesis and C57BL/6 mice are the most useful strain to assess basal levels of cell proliferation and neuroblast differentiation, but not maturation into granule cells. In addition, the DBA/2 strain is not suitable for studying hippocampal neurogenesis.
Collapse
|
33
|
Neuron and neuroblast numbers and cytogenesis in the dentate gyrus of aged APP swe /PS1 dE9 transgenic mice: Effect of long-term treatment with paroxetine. Neurobiol Dis 2017; 104:50-60. [DOI: 10.1016/j.nbd.2017.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/07/2017] [Accepted: 04/27/2017] [Indexed: 11/20/2022] Open
|
34
|
Lipp HP. Evolutionary Shaping of Adult Hippocampal Neurogenesis in Mammals-Cognitive Gain or Developmental Priming of Personality Traits? Front Neurosci 2017; 11:420. [PMID: 28785199 PMCID: PMC5519572 DOI: 10.3389/fnins.2017.00420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hans-Peter Lipp
- Institute of Evolutionary Medicine, University of ZurichZurich, Switzerland.,Institute of Anatomy, University of ZurichZurich, Switzerland.,Department of Physiology, School of Laboratory Medicine, University of Kwazulu-NatalDurban, South Africa
| |
Collapse
|
35
|
Adult Neurogenesis Leads to the Functional Reconstruction of a Telencephalic Neural Circuit. J Neurosci 2017; 36:8947-56. [PMID: 27559175 DOI: 10.1523/jneurosci.0553-16.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/08/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Seasonally breeding songbirds exhibit pronounced annual changes in song behavior, and in the morphology and physiology of the telencephalic neural circuit underlying production of learned song. Each breeding season, new adult-born neurons are added to the pallial nucleus HVC in response to seasonal changes in steroid hormone levels, and send long axonal projections to their target nucleus, the robust nucleus of the arcopallium (RA). We investigated the role that adult neurogenesis plays in the seasonal reconstruction of this circuit. We labeled newborn HVC neurons with BrdU, and RA-projecting HVC neurons (HVCRA) with retrograde tracer injected in RA of adult male white-crowned sparrows (Zonotrichia leucophrys gambelii) in breeding or nonbreeding conditions. We found that there were many more HVCRA neurons in breeding than nonbreeding birds. Furthermore, we observed that more newborn HVC neurons were back-filled by the tracer in breeding animals. Behaviorally, song structure degraded as the HVC-RA circuit degenerated, and recovered as the circuit regenerated, in close correlation with the number of new HVCRA neurons. These results support the hypothesis that the HVC-RA circuit degenerates in nonbreeding birds, and that newborn neurons reconstruct the circuit in breeding birds, leading to functional recovery of song behavior. SIGNIFICANCE STATEMENT We investigated the role that adult neurogenesis plays in the seasonal reconstruction of a telencephalic neural circuit that controls song behavior in white-crowned sparrows. We showed that nonbreeding birds had a 36%-49% reduction in the number of projection neurons compared with breeding birds, and the regeneration of the circuit in the breeding season is due to the integration of adult-born projection neurons. Additionally, song structure degraded as the circuit degenerated and recovered as the circuit regenerated, in close correlation with new projection neuron number. This study demonstrates that steroid hormones can help reestablish functional neuronal circuits following degeneration in the adult brain and shows non-injury-induced degeneration and reconstruction of a neural circuit critical for producing a learned behavior.
Collapse
|
36
|
Can Valproic Acid Regulate Neurogenesis from Nestin+ Cells in the Adult Midbrain? Neurochem Res 2017; 42:2127-2134. [PMID: 28434161 DOI: 10.1007/s11064-017-2259-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/10/2017] [Accepted: 03/31/2017] [Indexed: 02/04/2023]
Abstract
Degeneration of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) causes the motor symptoms (e.g. tremor, muscle rigidity, bradykinesia, postural instability) of Parkinson's disease (PD). It is generally agreed that replacing these neurons will provide better motor symptom relief and fewer side effects than current pharmacotherapies. One potential approach to this is up-regulating endogenous DA neurogenesis in SNc. In the present study, we conducted bioinformatics analyses to identify signalling pathways that control expression of Pax6 and Msx1 genes, which have been identified as potentially important neurogenic regulators in the adult midbrain. From this Valproic acid (VPA) was identified as a regulator of these pathways, and we tested VPA for its ability to regulate midbrain neurogenesis in adult mice. VPA was infused directly into the midbrain of adult NesCreERT2/R26eYFP mice using osmotic pumps attached to implanted cannula. These mice enable permanent eYFP+ labelling of adult Nestin-expressing neural precursor cells and their progeny/ontogeny. VPA did not affect the number of eYFP+ midbrain cells, but significantly reduced the number of Pax6+, Pax6+/NeuN+, eYFP+/NeuN+ and eYFP-/NeuN+ cells. However, this reduction in NeuN expression was probably via VPA's Histone de-acetylase inhibitory properties rather than reduced neuronal differentiation by eYFP + cells. We conclude that Pax6 and Msx1 are not viable targets for regulating neurogenesis in the adult midbrain.
Collapse
|
37
|
Effects of early-life stress on cognitive function and hippocampal structure in female rodents. Neuroscience 2017; 342:101-119. [DOI: 10.1016/j.neuroscience.2015.08.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 01/30/2023]
|
38
|
Palomera-Ávalos V, Griñán-Ferré C, Izquierdo V, Camins A, Sanfeliu C, Pallàs M. Metabolic Stress Induces Cognitive Disturbances and Inflammation in Aged Mice: Protective Role of Resveratrol. Rejuvenation Res 2017; 20:202-217. [PMID: 27998210 DOI: 10.1089/rej.2016.1885] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inflammation and oxidative stress (OS) are key points in age progression. Both processes impact negatively in cognition and in brain functions. Resveratrol (RV) has been postulated as a potent antioxidant natural compound, with rejuvenating properties. Inducing a metabolic stress by high-fat (HF) diet in aged C56/BL6 (24 months) led to cognitive disturbances compared with control age mated and with young mice. These changes were prevented by RV. Molecular determinations demonstrated a significant increase in some inflammatory parameters (TNF-α, Cxcl10, IL-1, IL-6, and Ccl3) in old mice, but slight changes in OS machinery. RV mainly induced the recovery of the metabolically stressed animals. The study of key markers involved in senescence and rejuvenation (mitochondrial biogenesis and Sirt1-AMPK-PGC1-α) demonstrated that RV is also able to modulate the changes in these cellular metabolic pathways. Moreover, changes of epigenetic marks (methylation and acetylation) that are depending on OS were demonstrated. On the whole, results showed the importance of integrative role of different cellular mechanisms in the deleterious effects of age in cognition and the beneficial role of RV. The work presented in this study showed a wide range of processes modified in old age and by metabolic stress, weighting the importance of each one and the role of RV as a possible strategy for fighting against.
Collapse
Affiliation(s)
- Veronica Palomera-Ávalos
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Christian Griñán-Ferré
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Vanesa Izquierdo
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Antonio Camins
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Coral Sanfeliu
- 2 Institut d'Investigacions Biomèdiques de Barcelona (IIBB) , CSIC, and IDIBAPS, Barcelona, Spain
| | - Mercè Pallàs
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| |
Collapse
|
39
|
Overall RW. Integrating Multidimensional Data Sources to Identify Genes Regulating Complex Phenotypes. Methods Mol Biol 2017; 1488:239-250. [PMID: 27933527 DOI: 10.1007/978-1-4939-6427-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Phenotypes collected with a view to quantitative trait locus mapping can be augmented with compatible whole-transcriptome expression data and information from several other sources. These different data sources can be assembled into multidimensional network models which allow the identification of key genes potentially driving the phenotype of interest. The following chapter describes this approach using an example workflow. Several alternatives and potential limitations are discussed to aid the researcher when applying these techniques to their own work.
Collapse
Affiliation(s)
- Rupert W Overall
- CRTD - DFG Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany.
| |
Collapse
|
40
|
Lipp HP, Bonfanti L. Adult Neurogenesis in Mammals: Variations and Confusions. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:205-221. [DOI: 10.1159/000446905] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammalian adult neurogenesis has remained enigmatic. Two lines of research have emerged. One focuses on a potential repair mechanism in the human brain. The other aims at elucidating its functional role in the hippocampal formation, chiefly in cognitive processes; however, thus far it has been unsuccessful. Here, we try to recognize the sources of errors and conceptual confusion in comparative studies and neurobehavioral approaches with a focus on mice. Evolutionarily, mammalian adult neurogenesis appears as protracted juvenile neurogenesis originating from precursor cells in the secondary proliferation zones, from where newly formed cells migrate to target regions in the forebrain. This late developmental process is downregulated differentially in various brain structures depending on species and age. Adult neurogenesis declines substantially during early adulthood and persists at low levels into senescence. Short-lasting episodes in proliferation or reduction of adult neurogenesis may reflect a multitude of factors, and have been studied chiefly in mice and rats. Comparative studies face both species-specific variations in staining and technical abilities of laboratories, lacking quantification of important reference measures (e.g. granule cell number) and evaluation of maturational markers whose persistence might be functionally more relevant than proliferation rates. Likewise, the confusion about the functional role of variations in adult hippocampal neurogenesis has many causes. Prominent is an inferential statistical approach, usually with low statistical power. Interpretation is complicated by multiple theories about hippocampal function, often unrealistically extrapolating from humans to rodents. We believe that the field of mammalian adult neurogenesis needs more critical thinking, more sophisticated hypotheses, better statistical, technical and behavioral approaches, and a broader conceptual perspective incorporating comparative aspects rather than neglecting them.
Collapse
|
41
|
Overall RW, Walker TL, Fischer TJ, Brandt MD, Kempermann G. Different Mechanisms Must Be Considered to Explain the Increase in Hippocampal Neural Precursor Cell Proliferation by Physical Activity. Front Neurosci 2016; 10:362. [PMID: 27536215 PMCID: PMC4971098 DOI: 10.3389/fnins.2016.00362] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022] Open
Abstract
The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field.
Collapse
Affiliation(s)
- Rupert W Overall
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| | - Tara L Walker
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| | - Tim J Fischer
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| | - Moritz D Brandt
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden Dresden, Germany
| | - Gerd Kempermann
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| |
Collapse
|
42
|
Nuechterlein KH, Ventura J, McEwen SC, Gretchen-Doorly D, Vinogradov S, Subotnik KL. Enhancing Cognitive Training Through Aerobic Exercise After a First Schizophrenia Episode: Theoretical Conception and Pilot Study. Schizophr Bull 2016; 42 Suppl 1:S44-52. [PMID: 27460618 PMCID: PMC4960434 DOI: 10.1093/schbul/sbw007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cognitive training (CT) and aerobic exercise have separately shown promise for improving cognitive deficits in schizophrenia. Aerobic exercise releases brain-derived neurotrophic factor, which promotes synaptic plasticity and neurogenesis. Thus, aerobic exercise provides a neurotrophic platform for neuroplasticity-based CT. The combination of aerobic exercise and CT may yield more robust effects than CT alone, particularly in the initial course of schizophrenia. In a pilot study, 7 patients with a recent onset of schizophrenia were assigned to Cognitive Training & Exercise (CT&E) and 9 to CT alone for a 10-week period. Posit Science programs were used for CT. Neurocognitive training focused on tuning neural circuits related to perceptual processing and verbal learning and memory. Social cognitive training used the same learning principles with social and affective stimuli. Both groups participated in these training sessions 2d/wk, 2h/d. The CT&E group also participated in an aerobic conditioning program for 30 minutes at our clinic 2d/wk and at home 2d/wk. The effect size for improvement in the MATRICS Consensus Cognitive Battery Overall Composite score for CT&E patients relative to CT patients was large. Functional outcome, particularly independent living skills, also tended to improve more in the CT&E than in the CT group. Muscular endurance, cardiovascular fitness, and diastolic blood pressure also showed relative improvement in the CT&E compared to the CT group. These encouraging pilot study findings support the promise of combining CT and aerobic exercise to improve the early course of schizophrenia.
Collapse
Affiliation(s)
- Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA;,Department of Psychology, UCLA, Los Angeles, CA;,*To whom correspondence should be addressed; Department of Psychiatry and Biobehavioral Sciences, UCLA, 300 UCLA Medical Plaza, Room 2240, Los Angeles, CA 90095-6968, US; tel: 310-825-0036, fax: 310-206-3651, e-mail:
| | - Joseph Ventura
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Sarah C. McEwen
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Denise Gretchen-Doorly
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | - Kenneth L. Subotnik
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
43
|
Neuner SM, Garfinkel BP, Wilmott LA, Ignatowska-Jankowska BM, Citri A, Orly J, Lu L, Overall RW, Mulligan MK, Kempermann G, Williams RW, O'Connell KMS, Kaczorowski CC. Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging. Neurobiol Aging 2016; 46:58-67. [PMID: 27460150 DOI: 10.1016/j.neurobiolaging.2016.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/07/2016] [Accepted: 06/11/2016] [Indexed: 12/13/2022]
Abstract
An individual's genetic makeup plays an important role in determining susceptibility to cognitive aging. Identifying the specific genes that contribute to cognitive aging may aid in early diagnosis of at-risk patients, as well as identify novel therapeutics targets to treat or prevent development of symptoms. Challenges to identifying these specific genes in human studies include complex genetics, difficulty in controlling environmental factors, and limited access to human brain tissue. Here, we identify Hp1bp3 as a novel modulator of cognitive aging using a genetically diverse population of mice and confirm that HP1BP3 protein levels are significantly reduced in the hippocampi of cognitively impaired elderly humans relative to cognitively intact controls. Deletion of functional Hp1bp3 in mice recapitulates memory deficits characteristic of aged impaired mice and humans, further supporting the idea that Hp1bp3 and associated molecular networks are modulators of cognitive aging. Overall, our results suggest Hp1bp3 may serve as a potential target against cognitive aging and demonstrate the utility of genetically diverse animal models for the study of complex human disease.
Collapse
Affiliation(s)
- Sarah M Neuner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Benjamin P Garfinkel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Lynda A Wilmott
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bogna M Ignatowska-Jankowska
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Joseph Orly
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rupert W Overall
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany
| | - Megan K Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gerd Kempermann
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden 01307, Germany
| | - Robert W Williams
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kristen M S O'Connell
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Catherine C Kaczorowski
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
44
|
Environmental experiences influence cortical volume in territorial and nonterritorial side-blotched lizards, Uta stansburiana. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Control of adult neurogenesis by programmed cell death in the mammalian brain. Mol Brain 2016; 9:43. [PMID: 27098178 PMCID: PMC4839132 DOI: 10.1186/s13041-016-0224-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/14/2016] [Indexed: 01/19/2023] Open
Abstract
The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.
Collapse
|
46
|
Kannan S, Nicola Z, Overall RW, Ichwan M, Ramírez-Rodríguez G, N. Grzyb A, Patone G, Saar K, Hübner N, Kempermann G. Systems Genetics Analysis of a Recombinant Inbred Mouse Cell Culture Panel Reveals Wnt Pathway Member Lrp6 as a Regulator of Adult Hippocampal Precursor Cell Proliferation. Stem Cells 2016; 34:674-84. [DOI: 10.1002/stem.2313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/28/2015] [Accepted: 10/25/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Suresh Kannan
- CRTD-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
- Department of Biomedical Sciences; Sri Ramachandra University; Porur Chennai India
| | - Zeina Nicola
- German Center for Neurodegenerative Diseases (DZNE) Dresden; Dresden Germany
| | - Rupert W. Overall
- CRTD-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
| | - Muhammad Ichwan
- CRTD-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
| | - Gerardo Ramírez-Rodríguez
- Laboratory of Neurogenesis, Division of Clinical Investigations; National Institute of Psychiatry “Ramón de la Fuente Muñiz; ” México D.F. México
| | - Anna N. Grzyb
- German Center for Neurodegenerative Diseases (DZNE) Dresden; Dresden Germany
| | | | - Kathrin Saar
- Max-Delbrück Center for Molecular Medicine; Berlin Germany
| | - Norbert Hübner
- Max-Delbrück Center for Molecular Medicine; Berlin Germany
| | - Gerd Kempermann
- CRTD-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden; Dresden Germany
| |
Collapse
|
47
|
Abstract
When adult neurogenesis was discovered in the mammalian brain it was often considered an atavism and, even today, many people are convinced that there has been a "phylogenetic reduction" away from lifelong neurogenesis, favoring stability for complex brains. Adult neurogenesis is found throughout the animal kingdom but varies to a large extent. Mammals might have fewer neurogenic zones than, for example, fish, but within their remaining neurogenic zones, the new neurons are highly functional. Especially, humans have very substantial quantities of neurogenesis in their hippocampus. At least for the mammalian dentate gyrus, one can thus argue that there has been evolution toward neurogenesis-based plasticity rather than away from it.
Collapse
Affiliation(s)
- Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, and CRTD-Center for Regenerative Therapies Dresden at Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
48
|
Kempermann G. Activity Dependency and Aging in the Regulation of Adult Neurogenesis. Cold Spring Harb Perspect Biol 2015; 7:a018929. [PMID: 26525149 PMCID: PMC4632662 DOI: 10.1101/cshperspect.a018929] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Age and activity might be considered the two antagonistic key regulators of adult neurogenesis. Adult neurogenesis decreases with age but remains present, albeit at a very low level, even in the oldest individuals. Activity, be it physical or cognitive, increases adult neurogenesis and thereby seems to counteract age effects. It is, thus, proposed that activity-dependent regulation of adult neurogenesis might contribute to some sort of "neural reserve," the brain's ability to compensate functional loss associated with aging or neurodegeneration. Activity can have nonspecific and specific effects on adult neurogenesis. Mechanistically, nonspecific stimuli that largely affect precursor cell stages might be related by the local microenvironment, whereas more specific, survival-promoting effects take place at later stages of neuronal development and require the synaptic integration of the new cell and its particular synaptic plasticity.
Collapse
Affiliation(s)
- Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
49
|
Chatzi C, Schnell E, Westbrook GL. Localized hypoxia within the subgranular zone determines the early survival of newborn hippocampal granule cells. eLife 2015; 4:e08722. [PMID: 26476335 PMCID: PMC4714973 DOI: 10.7554/elife.08722] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/16/2015] [Indexed: 01/09/2023] Open
Abstract
The majority of adult hippocampal newborn cells die during early differentiation from intermediate progenitors (IPCs) to immature neurons. Neural stem cells in vivo are located in a relative hypoxic environment, and hypoxia enhances their survival, proliferation and stemness in vitro. Thus, we hypothesized that migration of IPCs away from hypoxic zones within the SGZ might result in oxidative damage, thus triggering cell death. Hypoxic niches were observed along the SGZ, composed of adult NSCs and early IPCs, and oxidative byproducts were present in adjacent late IPCs and neuroblasts. Stabilizing hypoxia inducible factor-1α with dimethyloxallyl glycine increased early survival, but not proliferation or differentiation, in neurospheres in vitro and in newly born SGZ cells in vivo. Rescue experiments in Bax(fl/fl) mutants supported these results. We propose that localized hypoxia within the SGZ contributes to the neurogenic microenvironment and determines the early, activity-independent survival of adult hippocampal newborn cells.
Collapse
Affiliation(s)
- Christina Chatzi
- The Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Eric Schnell
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, United States.,United States Department of Veterans Affairs, VA Portland Health Care System, Portland, United States
| | - Gary L Westbrook
- The Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
50
|
Abstract
Of the neurogenic zones in the adult brain, adult hippocampal neurogenesis attracts the most attention, because it is involved in higher cognitive function, most notably memory processes, and certain affective behaviors. Adult hippocampal neurogenesis is also found in humans at a considerable level and appears to contribute significantly to hippocampal plasticity across the life span, because it is regulated by activity. Adult hippocampal neurogenesis generates new excitatory granule cells in the dentate gyrus, whose axons form the mossy fiber tract that links the dentate gyrus to CA3. It originates from a population of radial glia-like precursor cells (type 1 cells) that have astrocytic properties, express markers of neural stem cells and divide rarely. They give rise to intermediate progenitor cells with first glial (type 2a) and then neuronal (type 2b) phenotype. Through a migratory neuroblast-like stage (type 3), the newborn, lineage-committed cells exit the cell cycle and enter a maturation stage, during which they extend their dendrites into a the molecular layer and their axon to CA3. They go through a period of several weeks, during which they show increased synaptic plasticity, before finally becoming indistinguishable from the older granule cells.
Collapse
Affiliation(s)
- Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden and CRTD-Center for Regenerative Therapies Dresden at Technische Universität Dresden, 01307 Dresden, Germany
| | - Hongjun Song
- Institute for Cell Engineering, Stem Cell Program at ICW, The John Hopkins University, Baltimore, Maryland 21205
| | - Fred H Gage
- Laboratory of Genetics LOG-G, The Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|