1
|
Jagadeesh J, Vembar SS. Evolution of sequence, structural and functional diversity of the ubiquitous DNA/RNA-binding Alba domain. Sci Rep 2024; 14:30363. [PMID: 39638848 PMCID: PMC11621453 DOI: 10.1038/s41598-024-79937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
The DNA/RNA-binding Alba domain is prevalent across all kingdoms of life. First discovered in archaea, this protein domain has evolved from RNA- to DNA-binding, with a concomitant expansion in the range of cellular processes that it regulates. Despite its widespread presence, the full extent of its sequence, structural, and functional diversity remains unexplored. In this study, we employed iterative searches in PSI-BLAST to identify 15,161 unique Alba domain-containing proteins from the NCBI non-redundant protein database. Sequence similarity network (SSN) analysis clustered them into 13 distinct subgroups, including the archaeal Alba and eukaryotic Rpp20/Pop7 and Rpp25/Pop6 groups, as well as novel fungal and Plasmodium-specific Albas. Sequence and structural conservation analysis of the subgroups indicated high preservation of the dimer interface, with Alba domains from unicellular eukaryotes notably exhibiting structural deviations towards their C-terminal end. Finally, phylogenetic analysis, while supporting SSN clustering, revealed the evolutionary branchpoint at which the eukaryotic Rpp20- and Rpp25-like clades emerged from archaeal Albas, and the subsequent taxonomic lineage-based divergence within each clade. Taken together, this comprehensive analysis enhances our understanding of the evolutionary history of Alba domain-containing proteins across diverse organisms.
Collapse
Affiliation(s)
- Jaiganesh Jagadeesh
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | | |
Collapse
|
2
|
Perederina A, Berezin I, Krasilnikov AS. In vitro reconstitution and analysis of eukaryotic RNase P RNPs. Nucleic Acids Res 2019; 46:6857-6868. [PMID: 29722866 PMCID: PMC6061874 DOI: 10.1093/nar/gky333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/22/2018] [Indexed: 12/23/2022] Open
Abstract
RNase P is a ubiquitous site-specific endoribonuclease primarily responsible for the maturation of tRNA. Throughout the three domains of life, the canonical form of RNase P is a ribonucleoprotein (RNP) built around a catalytic RNA. The core RNA is well conserved from bacteria to eukaryotes, whereas the protein parts vary significantly. The most complex and the least understood form of RNase P is found in eukaryotes, where multiple essential proteins playing largely unknown roles constitute the bulk of the enzyme. Eukaryotic RNase P was considered intractable to in vitro reconstitution, mostly due to insolubility of its protein components, which hindered its studies. We have developed a robust approach to the in vitro reconstitution of Saccharomyces cerevisiae RNase P RNPs and used it to analyze the interplay and roles of RNase P components. The results eliminate the major obstacle to biochemical and structural studies of eukaryotic RNase P, identify components required for the activation of the catalytic RNA, reveal roles of proteins in the enzyme stability, localize proteins on RNase P RNA, and demonstrate the interdependence of the binding of RNase P protein modules to the core RNA.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Tian L, Qi J, Oderinde O, Yao C, Song W, Wang Y. Planar intercalated copper (II) complex molecule as small molecule enzyme mimic combined with Fe3O4 nanozyme for bienzyme synergistic catalysis applied to the microRNA biosensor. Biosens Bioelectron 2018; 110:110-117. [DOI: 10.1016/j.bios.2018.03.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/23/2022]
|
4
|
Post-Translational Dosage Compensation Buffers Genetic Perturbations to Stoichiometry of Protein Complexes. PLoS Genet 2017; 13:e1006554. [PMID: 28121980 PMCID: PMC5266272 DOI: 10.1371/journal.pgen.1006554] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/28/2016] [Indexed: 01/07/2023] Open
Abstract
Understanding buffering mechanisms for various perturbations is essential for understanding robustness in cellular systems. Protein-level dosage compensation, which arises when changes in gene copy number do not translate linearly into protein level, is one mechanism for buffering against genetic perturbations. Here, we present an approach to identify genes with dosage compensation by increasing the copy number of individual genes using the genetic tug-of-war technique. Our screen of chromosome I suggests that dosage-compensated genes constitute approximately 10% of the genome and consist predominantly of subunits of multi-protein complexes. Importantly, because subunit levels are regulated in a stoichiometry-dependent manner, dosage compensation plays a crucial role in maintaining subunit stoichiometries. Indeed, we observed changes in the levels of a complex when its subunit stoichiometries were perturbed. We further analyzed compensation mechanisms using a proteasome-defective mutant as well as ribosome profiling, which provided strong evidence for compensation by ubiquitin-dependent degradation but not reduced translational efficiency. Thus, our study provides a systematic understanding of dosage compensation and highlights that this post-translational regulation is a critical aspect of robustness in cellular systems. Cells are exposed to environmental changes leading to fluctuations in biological processes. For example, changes in gene copy number are a source of such fluctuations. An increase in gene copy number generally leads to a linear increase in the amount of protein; however, a small number of genes do not show a proportional increase in protein level. We investigated how many of the genes exhibit this nonlinearity between gene copy number and protein level. Our screen of chromosome I suggests that genes with such nonlinear relationships constitute approximately 10% of the genome and consist predominantly of subunits of multi-protein complexes. Because previous studies showed that an imbalance of complex subunits is very toxic for cell growth, a function of the nonlinear relationship may be to correct the balance of complex subunits. We also investigated the underlying mechanisms of the nonlinearity by focusing on protein synthesis and degradation. Our data indicate that protein degradation, but not synthesis, is responsible for maintaining a balance of complex subunits. Thus, this study provides insight into the mechanisms for coping with the fluctuations in biological processes.
Collapse
|
5
|
Fagerlund RD, Perederina A, Berezin I, Krasilnikov AS. Footprinting analysis of interactions between the largest eukaryotic RNase P/MRP protein Pop1 and RNase P/MRP RNA components. RNA (NEW YORK, N.Y.) 2015; 21:1591-605. [PMID: 26135751 PMCID: PMC4536320 DOI: 10.1261/rna.049007.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/03/2015] [Indexed: 05/06/2023]
Abstract
Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA-RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P.
Collapse
Affiliation(s)
- Robert D Fagerlund
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Anna Perederina
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
6
|
Peres da Silva R, Puccia R, Rodrigues ML, Oliveira DL, Joffe LS, César GV, Nimrichter L, Goldenberg S, Alves LR. Extracellular vesicle-mediated export of fungal RNA. Sci Rep 2015; 5:7763. [PMID: 25586039 PMCID: PMC5379013 DOI: 10.1038/srep07763] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play an important role in the biology of various organisms, including fungi, in which they are required for the trafficking of molecules across the cell wall. Fungal EVs contain a complex combination of macromolecules, including proteins, lipids and glycans. In this work, we aimed to describe and characterize RNA in EV preparations from the human pathogens Cryptococcus neoformans, Paracoccidiodes brasiliensis and Candida albicans, and from the model yeast Saccharomyces cerevisiae. The EV RNA content consisted mostly of molecules less than 250 nt long and the reads obtained aligned with intergenic and intronic regions or specific positions within the mRNA. We identified 114 ncRNAs, among them, six small nucleolar (snoRNA), two small nuclear (snRNA), two ribosomal (rRNA) and one transfer (tRNA) common to all the species considered, together with 20 sequences with features consistent with miRNAs. We also observed some copurified mRNAs, as suggested by reads covering entire transcripts, including those involved in vesicle-mediated transport and metabolic pathways. We characterized for the first time RNA molecules present in EVs produced by fungi. Our results suggest that RNA-containing vesicles may be determinant for various biological processes, including cell communication and pathogenesis.
Collapse
Affiliation(s)
- Roberta Peres da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia da Escola Paulista de Medicina-UNIFESP, São Paulo, SP, Brazil
| | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia da Escola Paulista de Medicina-UNIFESP, São Paulo, SP, Brazil
| | - Marcio L Rodrigues
- 1] Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil [2] Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Débora L Oliveira
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luna S Joffe
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Gabriele V César
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Samuel Goldenberg
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Fiocruz-PR, Curitiba, PR, Brazil
| | - Lysangela R Alves
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Fiocruz-PR, Curitiba, PR, Brazil
| |
Collapse
|
7
|
Harnessing natural sequence variation to dissect posttranscriptional regulatory networks in yeast. G3-GENES GENOMES GENETICS 2014; 4:1539-53. [PMID: 24938291 PMCID: PMC4132183 DOI: 10.1534/g3.114.012039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding how genomic variation influences phenotypic variation through the molecular networks of the cell is one of the central challenges of biology. Transcriptional regulation has received much attention, but equally important is the posttranscriptional regulation of mRNA stability. Here we applied a systems genetics approach to dissect posttranscriptional regulatory networks in the budding yeast Saccharomyces cerevisiae. Quantitative sequence-to-affinity models were built from high-throughput in vivo RNA binding protein (RBP) binding data for 15 yeast RBPs. Integration of these models with genome-wide mRNA expression data allowed us to estimate protein-level RBP regulatory activity for individual segregants from a genetic cross between two yeast strains. Treating these activities as a quantitative trait, we mapped trans-acting loci (activity quantitative trait loci, or aQTLs) that act via posttranscriptional regulation of transcript stability. We predicted and experimentally confirmed that a coding polymorphism at the IRA2 locus modulates Puf4p activity. Our results also indicate that Puf3p activity is modulated by distinct loci, depending on whether it acts via the 5′ or the 3′ untranslated region of its target mRNAs. Together, our results validate a general strategy for dissecting the connectivity between posttranscriptional regulators and their upstream signaling pathways.
Collapse
|
8
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
9
|
Aulds J, Wierzbicki S, McNairn A, Schmitt ME. Global identification of new substrates for the yeast endoribonuclease, RNase mitochondrial RNA processing (MRP). J Biol Chem 2012; 287:37089-97. [PMID: 22977255 DOI: 10.1074/jbc.m112.389023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27(Kip1), SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease.
Collapse
Affiliation(s)
- Jason Aulds
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
10
|
Martin F. Fifteen years of the yeast three-hybrid system: RNA-protein interactions under investigation. Methods 2012; 58:367-75. [PMID: 22841566 DOI: 10.1016/j.ymeth.2012.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/04/2012] [Accepted: 07/13/2012] [Indexed: 01/14/2023] Open
Abstract
In 1996, the Wickens and the Kuhl labs developed the yeast three-hybrid system independently. By expressing two chimeric proteins and one chimeric RNA molecule in Saccharomyces cerevisiae, this method allows in vivo monitoring of RNA-protein interactions by measuring the expression levels of HIS3 and LacZ reporter genes. Specific RNA targets have been used to characterize unknown RNA binding proteins. Previously described RNA binding proteins have also been used as bait to select new RNA targets. Finally, this method has been widely used to investigate or confirm previously suspected RNA-protein interactions. However, this method falls short in some aspects, such as RNA display and selection of false positive molecules. This review will summarize the results obtained with this method from the past 15years, as well as on recent efforts to improve its specificity.
Collapse
Affiliation(s)
- Franck Martin
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg CEDEX, France.
| |
Collapse
|
11
|
Krehan M, Heubeck C, Menzel N, Seibel P, Schön A. RNase MRP RNA and RNase P activity in plants are associated with a Pop1p containing complex. Nucleic Acids Res 2012; 40:7956-66. [PMID: 22641852 PMCID: PMC3439889 DOI: 10.1093/nar/gks476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
RNase P processes the 5'-end of tRNAs. An essential catalytic RNA has been demonstrated in Bacteria, Archaea and the nuclei of most eukaryotes; an organism-specific number of proteins complement the holoenzyme. Nuclear RNase P from yeast and humans is well understood and contains an RNA, similar to the sister enzyme RNase MRP. In contrast, no protein subunits have yet been identified in the plant enzymes, and the presence of a nucleic acid in RNase P is still enigmatic. We have thus set out to identify and characterize the subunits of these enzymes in two plant model systems. Expression of the two known Arabidopsis MRP RNA genes in vivo was verified. The first wheat MRP RNA sequences are presented, leading to improved structure models for plant MRP RNAs. A novel mRNA encoding the central RNase P/MRP protein Pop1p was identified in Arabidopsis, suggesting the expression of distinct protein variants from this gene in vivo. Pop1p-specific antibodies precipitate RNase P activity and MRP RNAs from wheat extracts. Our results provide evidence that in plants, Pop1p is associated with MRP RNAs and with the catalytic subunit of RNase P, either separately or in a single large complex.
Collapse
Affiliation(s)
- Mario Krehan
- Molekulare Zelltherapie, Biotechnologisch-Biomedizinisches Zentrum, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
12
|
Wang SQ, Shi DQ, Long YP, Liu J, Yang WC. GAMETOPHYTE DEFECTIVE 1, a putative subunit of RNases P/MRP, is essential for female gametogenesis and male competence in Arabidopsis. PLoS One 2012; 7:e33595. [PMID: 22509260 PMCID: PMC3324470 DOI: 10.1371/journal.pone.0033595] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/13/2012] [Indexed: 01/15/2023] Open
Abstract
RNA biogenesis, including biosynthesis and maturation of rRNA, tRNA and mRNA, is a fundamental process that is critical for cell growth, division and differentiation. Previous studies showed that mutations in components involved in RNA biogenesis resulted in abnormalities in gametophyte and leaf development in Arabidopsis. In eukaryotes, RNases P/MRP (RNase mitochondrial RNA processing) are important ribonucleases that are responsible for processing of tRNA, and transcription of small non-coding RNAs. Here we report that Gametophyte Defective 1 (GAF1), a gene encoding a predicted protein subunit of RNases P/MRP, AtRPP30, plays a role in female gametophyte development and male competence. Embryo sacs were arrested at stages ranging from FG1 to FG7 in gaf1 mutant, suggesting that the progression of the gametophytic division during female gametogenesis was impaired in gaf1 mutant. In contrast, pollen development was not affected in gaf1. However, the fitness of the mutant pollen tube was weaker than that of the wild-type, leading to reduced transmission through the male gametes. GAF1 is featured as a typical RPP30 domain protein and interacts physically with AtPOP5, a homologue of RNases P/MRP subunit POP5 of yeast. Together, our data suggest that components of the RNases P/MRP family, such as RPP30, play important roles in gametophyte development and function in plants.
Collapse
Affiliation(s)
- Si-Qi Wang
- State Key Laboratory of Molecular Developmental Biology, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (DQS); (WCY)
| | - Yan-Ping Long
- State Key Laboratory of Molecular Developmental Biology, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Molecular Developmental Biology, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (DQS); (WCY)
| |
Collapse
|
13
|
Khanova E, Esakova O, Perederina A, Berezin I, Krasilnikov AS. Structural organizations of yeast RNase P and RNase MRP holoenzymes as revealed by UV-crosslinking studies of RNA-protein interactions. RNA (NEW YORK, N.Y.) 2012; 18:720-8. [PMID: 22332141 PMCID: PMC3312559 DOI: 10.1261/rna.030874.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Elena Khanova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Anna Perederina
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrey S. Krasilnikov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding author.E-mail .
| |
Collapse
|
14
|
Hipp K, Galani K, Batisse C, Prinz S, Böttcher B. Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy. Nucleic Acids Res 2012; 40:3275-88. [PMID: 22167472 PMCID: PMC3326328 DOI: 10.1093/nar/gkr1217] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 01/01/2023] Open
Abstract
Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8 S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates.
Collapse
Affiliation(s)
- Katharina Hipp
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK and Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kyriaki Galani
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK and Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Claire Batisse
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK and Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Simone Prinz
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK and Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bettina Böttcher
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK and Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
15
|
Pendrak ML, Roberts DD. Ribosomal RNA processing in Candida albicans. RNA (NEW YORK, N.Y.) 2011; 17:2235-48. [PMID: 22028364 PMCID: PMC3222135 DOI: 10.1261/rna.028050.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 09/16/2011] [Indexed: 05/25/2023]
Abstract
Ribosome assembly begins with conversion of a polycistronic precursor into 18S, 5.8S, and 25S rRNAs. In the ascomycete fungus Candida albicans, rRNA transcription starts 604 nt upstream of the 18S rRNA junction (site A1). One major internal processing site in the 5' external transcribed spacer (A0) occurs 108 nt from site A1. The A0-A1 fragment persists as a stable species during log phase growth and can be used to assess proliferation rates. Separation of the small and large subunit pre-rRNAs occurs at sites A2 and A3 in internal transcribed spacer-1 Saccharomyces cerevisiae pre-rRNA. However, the 5' end of the 5.8S rRNA is represented by only a 5.8S (S) form, and a 7S rRNA precursor of the 5.8S rRNA extends into internal transcribed spacer 1 to site A2, which differs from S. cerevisiae. External transcribed spacer 1 and internal transcribed spacers 1 and 2 show remarkable structural similarity with S. cerevisiae despite low sequence identity. Maturation of C. albicans rRNA resembles other eukaryotes in that processing can occur cotranscriptionally or post-transcriptionally. During rapid proliferation, U3 snoRNA-dependent processing occurs before large and small subunit rRNA separation, consistent with cotranscriptional processing. As cells pass the diauxic transition, the 18S pre-rRNA accumulates into stationary phase as a 23S species, possessing an intact 5' external transcribed spacer extending to site A3. Nutrient addition to starved cells results in the disappearance of the 23S rRNA, indicating a potential role in normal physiology. Therefore, C. albicans reveals new mechanisms that regulate post- versus cotranscriptional rRNA processing.
Collapse
MESH Headings
- Base Sequence
- Candida albicans/genetics
- Candida albicans/metabolism
- DNA Polymerase I/metabolism
- DNA, Ribosomal Spacer/genetics
- Gene Expression Regulation, Fungal
- Gene Order
- Molecular Sequence Data
- Molecular Weight
- Nucleic Acid Conformation
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Michael L Pendrak
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
16
|
Assembly of the complex between archaeal RNase P proteins RPP30 and Pop5. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:891531. [PMID: 22162665 PMCID: PMC3227427 DOI: 10.1155/2011/891531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 01/27/2023]
Abstract
RNase P is a highly conserved ribonucleoprotein enzyme that represents a model complex for understanding macromolecular RNA-protein interactions. Archaeal RNase P consists of one RNA and up to five proteins (Pop5, RPP30, RPP21, RPP29, and RPP38/L7Ae). Four of these proteins function in pairs (Pop5-RPP30 and RPP21–RPP29). We have used nuclear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC) to characterize the interaction between Pop5 and RPP30 from the hyperthermophilic archaeon Pyrococcus furiosus (Pfu). NMR backbone resonance assignments of free RPP30 (25 kDa) indicate that the protein is well structured in solution, with a secondary structure matching that observed in a closely related crystal structure. Chemical shift perturbations upon the addition of Pop5 (14 kDa) reveal its binding surface on RPP30. ITC experiments confirm a net 1 : 1 stoichiometry for this tight protein-protein interaction and exhibit complex isotherms, indicative of higher-order binding. Indeed, light scattering and size exclusion chromatography data reveal the complex to exist as a 78 kDa heterotetramer with two copies each of Pop5 and RPP30. These results will inform future efforts to elucidate the functional role of the Pop5-RPP30 complex in RNase P assembly and catalysis.
Collapse
|
17
|
Perederina A, Khanova E, Quan C, Berezin I, Esakova O, Krasilnikov AS. Interactions of a Pop5/Rpp1 heterodimer with the catalytic domain of RNase MRP. RNA (NEW YORK, N.Y.) 2011; 17:1922-31. [PMID: 21878546 PMCID: PMC3185923 DOI: 10.1261/rna.2855511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/27/2011] [Indexed: 05/22/2023]
Abstract
Ribonuclease (RNase) MRP is a multicomponent ribonucleoprotein complex closely related to RNase P. RNase MRP and eukaryotic RNase P share most of their protein components, as well as multiple features of their catalytic RNA moieties, but have distinct substrate specificities. While RNase P is practically universally found in all three domains of life, RNase MRP is essential in eukaryotes. The structural organizations of eukaryotic RNase P and RNase MRP are poorly understood. Here, we show that Pop5 and Rpp1, protein components found in both RNase P and RNase MRP, form a heterodimer that binds directly to the conserved area of the putative catalytic domain of RNase MRP RNA. The Pop5/Rpp1 binding site corresponds to the protein binding site in bacterial RNase P RNA. Structural and evolutionary roles of the Pop5/Rpp1 heterodimer in RNases P and MRP are discussed.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elena Khanova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chao Quan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrey S. Krasilnikov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding author.E-mail .
| |
Collapse
|
18
|
Reiner R, Alfiya-Mor N, Berrebi-Demma M, Wesolowski D, Altman S, Jarrous N. RNA binding properties of conserved protein subunits of human RNase P. Nucleic Acids Res 2011; 39:5704-14. [PMID: 21450806 PMCID: PMC3141246 DOI: 10.1093/nar/gkr126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human nuclear RNase P is required for transcription and processing of tRNA. This catalytic RNP has an H1 RNA moiety associated with ten distinct protein subunits. Five (Rpp20, Rpp21, Rpp25, Rpp29 and Pop5) out of eight of these protein subunits, prepared in refolded recombinant forms, bind to H1 RNA in vitro. Rpp20 and Rpp25 bind jointly to H1 RNA, even though each protein can interact independently with this transcript. Nuclease footprinting analysis reveals that Rpp20 and Rpp25 recognize overlapping regions in the P2 and P3 domains of H1 RNA. Rpp21 and Rpp29, which are sufficient for reconstitution of the endonucleolytic activity, bind to separate regions in the catalytic domain of H1 RNA. Common themes and discrepancies in the RNA-protein interactions between human nuclear RNase P and its related yeast and archaeal counterparts provide a rationale for the assembly of the fully active form of this enzyme.
Collapse
Affiliation(s)
- Robert Reiner
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
19
|
Stamatopoulou V, Toumpeki C, Tzakos A, Vourekas A, Drainas D. Domain Architecture of the DRpp29 Protein and Its Interaction with the RNA Subunit of Dictyostelium discoideum RNase P. Biochemistry 2010; 49:10714-27. [DOI: 10.1021/bi101297z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Chrisavgi Toumpeki
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| | - Andreas Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Anastassios Vourekas
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| | - Denis Drainas
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| |
Collapse
|
20
|
Abstract
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
21
|
Hands-Taylor KLD, Martino L, Tata R, Babon JJ, Bui TT, Drake AF, Beavil RL, Pruijn GJM, Brown PR, Conte MR. Heterodimerization of the human RNase P/MRP subunits Rpp20 and Rpp25 is a prerequisite for interaction with the P3 arm of RNase MRP RNA. Nucleic Acids Res 2010; 38:4052-66. [PMID: 20215441 PMCID: PMC2896528 DOI: 10.1093/nar/gkq141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 01/15/2023] Open
Abstract
Rpp20 and Rpp25 are two key subunits of the human endoribonucleases RNase P and MRP. Formation of an Rpp20-Rpp25 complex is critical for enzyme function and sub-cellular localization. We present the first detailed in vitro analysis of their conformational properties, and a biochemical and biophysical characterization of their mutual interaction and RNA recognition. This study specifically examines the role of the Rpp20/Rpp25 association in the formation of the ribonucleoprotein complex. The interaction of the individual subunits with the P3 arm of the RNase MRP RNA is revealed to be negligible whereas the 1:1 Rpp20:Rpp25 complex binds to the same target with an affinity of the order of nM. These results unambiguously demonstrate that Rpp20 and Rpp25 interact with the P3 RNA as a heterodimer, which is formed prior to RNA binding. This creates a platform for the design of future experiments aimed at a better understanding of the function and organization of RNase P and MRP. Finally, analyses of interactions with deletion mutant proteins constructed with successively shorter N- and C-terminal sequences indicate that the Alba-type core domain of both Rpp20 and Rpp25 contains most of the determinants for mutual association and P3 RNA recognition.
Collapse
Affiliation(s)
- Katherine L. D. Hands-Taylor
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Renée Tata
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Jeffrey J. Babon
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Tam T. Bui
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Alex F. Drake
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Rebecca L. Beavil
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Ger J. M. Pruijn
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Paul R. Brown
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Sun FJ, Caetano-Anollés G. The ancient history of the structure of ribonuclease P and the early origins of Archaea. BMC Bioinformatics 2010; 11:153. [PMID: 20334683 PMCID: PMC2858038 DOI: 10.1186/1471-2105-11-153] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/24/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. RESULTS To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. CONCLUSIONS The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms.
Collapse
Affiliation(s)
- Feng-Jie Sun
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun 130024, Jilin Province, PR China
- W.M. Keck Center for Comparative and Functional Genomics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
23
|
Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain. EMBO J 2010; 29:761-9. [PMID: 20075859 DOI: 10.1038/emboj.2009.396] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/08/2009] [Indexed: 11/09/2022] Open
Abstract
Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 A. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.
Collapse
|
24
|
Lai LB, Vioque A, Kirsebom LA, Gopalan V. Unexpected diversity of RNase P, an ancient tRNA processing enzyme: challenges and prospects. FEBS Lett 2009; 584:287-96. [PMID: 19931535 DOI: 10.1016/j.febslet.2009.11.048] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/09/2009] [Accepted: 11/13/2009] [Indexed: 12/16/2022]
Abstract
For an enzyme functioning predominantly in a seemingly housekeeping role of 5' tRNA maturation, RNase P displays a remarkable diversity in subunit make-up across the three domains of life. Despite the protein complexity of this ribonucleoprotein enzyme increasing dramatically from bacteria to eukarya, the catalytic function rests with the RNA subunit during evolution. However, the recent demonstration of a protein-only human mitochondrial RNase P has added further intrigue to the compositional variability of this enzyme. In this review, we discuss some possible reasons underlying the structural diversity of the active sites, and use them as thematic bases for elaborating new directions to understand how functional variations might have contributed to the complex evolution of RNase P.
Collapse
Affiliation(s)
- Lien B Lai
- Department of Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
25
|
Abstract
The "RNA World" hypothesis suggests that life developed from RNA enzymes termed ribozymes, which carry out reactions without assistance from proteins. Ribonuclease (RNase) P is one ribozyme that appears to have adapted these origins to modern cellular life by adding protein to the RNA core in order to broaden the potential functions. This RNA-protein complex plays diverse roles in processing RNA, but its best-understood reaction is pre-tRNA maturation, resulting in mature 5' ends of tRNAs. The core catalytic activity resides in the RNA subunit of almost all RNase P enzymes but broader substrate tolerance is required for recognizing not only the diverse sequences of tRNAs, but also additional cellular RNA substrates. This broader substrate tolerance is provided by the addition of protein to the RNA core and allows RNase P to selectively recognize different RNAs, and possibly ribonucleoprotein (RNP) substrates. Thus, increased protein content correlated with evolution from bacteria to eukaryotes has further enhanced substrate potential enabling the enzyme to function in a complex cellular environment.
Collapse
Affiliation(s)
- Michael C. Marvin
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan 48109-0606
| | - David R. Engelke
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan 48109-0606
| |
Collapse
|
26
|
Xu Y, Amero CD, Pulukkunat DK, Gopalan V, Foster MP. Solution structure of an archaeal RNase P binary protein complex: formation of the 30-kDa complex between Pyrococcus furiosus RPP21 and RPP29 is accompanied by coupled protein folding and highlights critical features for protein-protein and protein-RNA interactions. J Mol Biol 2009; 393:1043-55. [PMID: 19733182 DOI: 10.1016/j.jmb.2009.08.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/28/2009] [Accepted: 08/30/2009] [Indexed: 01/05/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) enzyme that catalyzes the Mg(2+)-dependent 5' maturation of precursor tRNAs. In all domains of life, it is a ribozyme: the RNase P RNA (RPR) component has been demonstrated to be responsible for catalysis. However, the number of RNase P protein subunits (RPPs) varies from 1 in bacteria to 9 or 10 in eukarya. The archaeal RPR is associated with at least 4 RPPs, which function in pairs (RPP21-RPP29 and RPP30-POP5). We used solution NMR spectroscopy to determine the three-dimensional structure of the protein-protein complex comprising Pyrococcus furiosus RPP21 and RPP29. We found that the protein-protein interaction is characterized by coupled folding of secondary structural elements that participate in interface formation. In addition to detailing the intermolecular contacts that stabilize this 30-kDa binary complex, the structure identifies surfaces rich in conserved basic residues likely vital for recognition of the RPR and/or precursor tRNA. Furthermore, enzymatic footprinting experiments allowed us to localize the RPP21-RPP29 complex to the specificity domain of the RPR. These findings provide valuable new insights into mechanisms of RNP assembly and serve as important steps towards a three-dimensional model of this ancient RNP enzyme.
Collapse
Affiliation(s)
- Yiren Xu
- Ohio State Biochemistry Program, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
27
|
Krycer JR, Pang CNI, Wilkins MR. High throughput protein-protein interaction data: clues for the architecture of protein complexes. Proteome Sci 2008; 6:32. [PMID: 19032795 PMCID: PMC2621150 DOI: 10.1186/1477-5956-6-32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 11/26/2008] [Indexed: 11/23/2022] Open
Abstract
Background High-throughput techniques are becoming widely used to study protein-protein interactions and protein complexes on a proteome-wide scale. Here we have explored the potential of these techniques to accurately determine the constituent proteins of complexes and their architecture within the complex. Results Two-dimensional representations of the 19S and 20S proteasome, mediator, and SAGA complexes were generated and overlaid with high quality pairwise interaction data, core-module-attachment classifications from affinity purifications of complexes and predicted domain-domain interactions. Pairwise interaction data could accurately determine the members of each complex, but was unexpectedly poor at deciphering the topology of proteins in complexes. Core and module data from affinity purification studies were less useful for accurately defining the member proteins of these complexes. However, these data gave strong information on the spatial proximity of many proteins. Predicted domain-domain interactions provided some insight into the topology of proteins within complexes, but was affected by a lack of available structural data for the co-activator complexes and the presence of shared domains in paralogous proteins. Conclusion The constituent proteins of complexes are likely to be determined with accuracy by combining data from high-throughput techniques. The topology of some proteins in the complexes will be able to be clearly inferred. We finally suggest strategies that can be employed to use high throughput interaction data to define the membership and understand the architecture of proteins in novel complexes.
Collapse
|
28
|
Amero CD, Boomershine WP, Xu Y, Foster M. Solution structure of Pyrococcus furiosus RPP21, a component of the archaeal RNase P holoenzyme, and interactions with its RPP29 protein partner. Biochemistry 2008; 47:11704-10. [PMID: 18922021 PMCID: PMC2650222 DOI: 10.1021/bi8015982] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNase P is the ubiquitous ribonucleoprotein metalloenzyme responsible for cleaving the 5'-leader sequence of precursor tRNAs during their maturation. While the RNA subunit is catalytically active on its own at high monovalent and divalent ion concentrations, four protein subunits are associated with archaeal RNase P activity in vivo: RPP21, RPP29, RPP30, and POP5. These proteins have been shown to function in pairs: RPP21-RPP29 and POP5-RPP30. We have determined the solution structure of RPP21 from the hyperthermophilic archaeon Pyrococcus furiosus ( Pfu) using conventional and paramagnetic NMR techniques. Pfu RPP21 in solution consists of an unstructured N-terminus, two alpha-helices, a zinc binding motif, and an unstructured C-terminus. Moreover, we have used chemical shift perturbations to characterize the interaction of RPP21 with RPP29. The data show that the primary contact with RPP29 is localized to the two helices of RPP21. This information represents a fundamental step toward understanding structure-function relationships of the archaeal RNase P holoenzyme.
Collapse
Affiliation(s)
- Carlos D Amero
- Biophysics Program, Ohio State University, Columbus OH 43210
| | | | - Yiren Xu
- Department of Biochemistry, Ohio State University, Columbus OH 43210
| | - Mark Foster
- Biophysics Program, Ohio State University, Columbus OH 43210
- Department of Biochemistry, Ohio State University, Columbus OH 43210
| |
Collapse
|
29
|
Honda T, Kakuta Y, Kimura K, Saho J, Kimura M. Structure of an archaeal homolog of the human protein complex Rpp21-Rpp29 that is a key core component for the assembly of active ribonuclease P. J Mol Biol 2008; 384:652-62. [PMID: 18929577 DOI: 10.1016/j.jmb.2008.09.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/09/2008] [Accepted: 09/17/2008] [Indexed: 11/29/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the processing of the 5'-leader sequence of precursor tRNA. Human RNase P protein subunits Rpp21 and Rpp29, which bind to each other, with catalytic RNA (H1 RNA) are sufficient for activating endonucleolytic cleavage of precursor tRNA. Here we have determined the crystal structure of the complex between the Pyrococcus horikoshii RNase P proteins PhoRpp21 and PhoRpp29, the archaeal homologs of Rpp21 and Rpp29, respectively. PhoRpp21 and PhoRpp29 form a heterodimeric structure where the two N-terminal helices (alpha1 and alpha2) in PhoRpp21 predominantly interact with the N-terminal extended structure, the beta-strand (beta2), and the C-terminal helix (alpha3) in PhoRpp29. The interface is dominated by hydrogen bonds and several salt bridges, rather than hydrophobic interactions. The electrostatic potential on the surface of the heterodimer shows a positively charged cluster on one face, suggesting a possible RNA-binding surface of the PhoRpp21-PhoRpp29 complex. The present structure, along with the result of a mutational analysis, suggests that heterodimerization between PhoRpp21 and PhoRpp29 plays an important role in the function of P. horikoshii RNase P.
Collapse
Affiliation(s)
- Takashi Honda
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
30
|
A direct interaction between the Utp6 half-a-tetratricopeptide repeat domain and a specific peptide in Utp21 is essential for efficient pre-rRNA processing. Mol Cell Biol 2008; 28:6547-56. [PMID: 18725399 DOI: 10.1128/mcb.00906-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The small subunit (SSU) processome is a ribosome biogenesis intermediate that assembles from its subcomplexes onto the pre-18S rRNA with yet unknown order and structure. Here, we investigate the architecture of the UtpB subcomplex of the SSU processome, focusing on the interaction between the half-a-tetratricopeptide repeat (HAT) domain of Utp6 and a specific peptide in Utp21. We present a comprehensive map of the interactions within the UtpB subcomplex and further show that the N-terminal domain of Utp6 interacts with Utp18 while the HAT domain interacts with Utp21. Using a panel of point and deletion mutants of Utp6, we show that an intact HAT domain is essential for efficient pre-rRNA processing and cell growth. Further investigation of the Utp6-Utp21 interaction using both genetic and biophysical methods shows that the HAT domain binds a specific peptide ligand in Utp21, the first example of a HAT domain peptide ligand, with a dissociation constant of 10 muM.
Collapse
|
31
|
Perederina A, Esakova O, Koc H, Schmitt ME, Krasilnikov AS. Specific binding of a Pop6/Pop7 heterodimer to the P3 stem of the yeast RNase MRP and RNase P RNAs. RNA (NEW YORK, N.Y.) 2007; 13:1648-55. [PMID: 17717080 PMCID: PMC1986809 DOI: 10.1261/rna.654407] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pop6 and Pop7 are protein subunits of Saccharomyces cerevisiae RNase MRP and RNase P. Here we show that bacterially expressed Pop6 and Pop7 form a soluble heterodimer that binds the RNA components of both RNase MRP and RNase P. Footprint analysis of the interaction between the Pop6/7 heterodimer and the RNase MRP RNA, combined with gel mobility assays, demonstrates that the Pop6/7 complex binds to a conserved region of the P3 domain. Binding of these proteins to the MRP RNA leads to local rearrangement in the structure of the P3 loop and suggests that direct interaction of the Pop6/7 complex with the P3 domain of the RNA components of RNases MRP and P may mediate binding of other protein components. These results suggest a role for a key element in the RNase MRP and RNase P RNAs in protein binding, and demonstrate the feasibility of directly studying RNA-protein interactions in the eukaryotic RNases MRP and P complexes.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
32
|
Aspinall TV, Gordon JM, Bennett HJ, Karahalios P, Bukowski JP, Walker SC, Engelke DR, Avis JM. Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture. Nucleic Acids Res 2007; 35:6439-50. [PMID: 17881380 PMCID: PMC2095792 DOI: 10.1093/nar/gkm553] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein–RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein–protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.
Collapse
Affiliation(s)
- Tanya V. Aspinall
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - James M.B. Gordon
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Hayley J. Bennett
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Panagiotis Karahalios
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - John-Paul Bukowski
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Scott C. Walker
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - David R. Engelke
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Johanna M. Avis
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
- *To whom correspondence should be addressed. +44 161 306 4216+44 161 306 5201
| |
Collapse
|
33
|
Rosenblad MA, López MD, Piccinelli P, Samuelsson T. Inventory and analysis of the protein subunits of the ribonucleases P and MRP provides further evidence of homology between the yeast and human enzymes. Nucleic Acids Res 2006; 34:5145-56. [PMID: 16998185 PMCID: PMC1636426 DOI: 10.1093/nar/gkl626] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The RNases P and MRP are involved in tRNA and rRNA processing, respectively. Both enzymes in eukaryotes are composed of an RNA molecule and 9–12 protein subunits. Most of the protein subunits are shared between RNases P and MRP. We have here performed a computational analysis of the protein subunits in a broad range of eukaryotic organisms using profile-based searches and phylogenetic methods. A number of novel homologues were identified, giving rise to a more complete inventory of RNase P/MRP proteins. We present evidence of a relationship between fungal Pop8 and the protein subunit families Rpp14/Pop5 as well as between fungal Pop6 and metazoan Rpp25. These relationships further emphasize a structural and functional similarity between the yeast and human P/MRP complexes. We have also identified novel P and MRP RNAs and analysis of all available sequences revealed a K-turn motif in a large number of these RNAs. We suggest that this motif is a binding site for the Pop3/Rpp38 proteins and we discuss other structural features of the RNA subunit and possible relationships to the protein subunit repertoire.
Collapse
Affiliation(s)
| | | | | | - Tore Samuelsson
- To whom correspondence should be addressed. Tel: +46 31 773 34 68; Fax: +46 31 41 61 08;
| |
Collapse
|
34
|
Xiao S, Hsieh J, Nugent RL, Coughlin DJ, Fierke CA, Engelke DR. Functional characterization of the conserved amino acids in Pop1p, the largest common protein subunit of yeast RNases P and MRP. RNA (NEW YORK, N.Y.) 2006; 12:1023-37. [PMID: 16618965 PMCID: PMC1464857 DOI: 10.1261/rna.23206] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
RNase P and RNase MRP are ribonucleoprotein enzymes required for 5'-end maturation of precursor tRNAs (pre-tRNAs) and processing of precursor ribosomal RNAs, respectively. In yeast, RNase P and MRP holoenzymes have eight protein subunits in common, with Pop1p being the largest at >100 kDa. Little is known about the functions of Pop1p, beyond the fact that it binds specifically to the RNase P RNA subunit, RPR1 RNA. In this study, we refined the previous Pop1 phylogenetic sequence alignment and found four conserved regions. Highly conserved amino acids in yeast Pop1p were mutagenized by randomization and conditionally defective mutations were obtained. Effects of the Pop1p mutations on pre-tRNA processing, pre-rRNA processing, and stability of the RNA subunits of RNase P and MRP were examined. In most cases, functional defects in RNase P and RNase MRP in vivo were consistent with assembly defects of the holoenzymes, although moderate kinetic defects in RNase P were also observed. Most mutations affected both pre-tRNA and pre-rRNA processing, but a few mutations preferentially interfered with only RNase P or only RNase MRP. In addition, one temperature-sensitive mutation had no effect on either tRNA or rRNA processing, consistent with an additional role for RNase P, RNase MRP, or Pop1p in some other form. This study shows that the Pop1p subunit plays multiple roles in the assembly and function of of RNases P and MRP, and that the functions can be differentiated through the mutations in conserved residues.
Collapse
Affiliation(s)
- Shaohua Xiao
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | |
Collapse
|
35
|
Evans D, Marquez SM, Pace NR. RNase P: interface of the RNA and protein worlds. Trends Biochem Sci 2006; 31:333-41. [PMID: 16679018 DOI: 10.1016/j.tibs.2006.04.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/07/2006] [Accepted: 04/24/2006] [Indexed: 01/27/2023]
Abstract
Ribonuclease P (RNase P) is an endonuclease involved in processing tRNA. It contains both RNA and protein subunits and occurs in all three domains of life: namely, Archaea, Bacteria and Eukarya. The RNase P RNA subunits from bacteria and some archaea are catalytically active in vitro, whereas those from eukaryotes and most archaea require protein subunits for activity. RNase P has been characterized biochemically and genetically in several systems, and detailed structural information is emerging for both RNA and protein subunits from phylogenetically diverse organisms. In vitro reconstitution of activity is providing insight into the role of proteins in the RNase P holoenzyme. Together, these findings are beginning to impart an understanding of the coevolution of the RNA and protein worlds.
Collapse
Affiliation(s)
- Donald Evans
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Campus Box 347, Boulder, CO 80309-0347, USA
| | | | | |
Collapse
|
36
|
Abstract
Ribonuclease P (RNase P) is an ancient and essential endonuclease that catalyses the cleavage of the 5' leader sequence from precursor tRNAs (pre-tRNAs). The enzyme is one of only two ribozymes which can be found in all kingdoms of life (Bacteria, Archaea, and Eukarya). Most forms of RNase P are ribonucleoproteins; the bacterial enzyme possesses a single catalytic RNA and one small protein. However, in archaea and eukarya the enzyme has evolved an increasingly more complex protein composition, whilst retaining a structurally related RNA subunit. The reasons for this additional complexity are not currently understood. Furthermore, the eukaryotic RNase P has evolved into several different enzymes including a nuclear activity, organellar activities, and the evolution of a distinct but closely related enzyme, RNase MRP, which has different substrate specificities, primarily involved in ribosomal RNA biogenesis. Here we examine the relationship between the bacterial and archaeal RNase P with the eukaryotic enzyme, and summarize recent progress in characterizing the archaeal enzyme. We review current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes, focusing on the relationship between these enzymes by examining their composition, structure and functions.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
37
|
Wilson RC, Bohlen CJ, Foster MP, Bell CE. Structure of Pfu Pop5, an archaeal RNase P protein. Proc Natl Acad Sci U S A 2006; 103:873-8. [PMID: 16418270 PMCID: PMC1347986 DOI: 10.1073/pnas.0508004103] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Indexed: 11/18/2022] Open
Abstract
We have used NMR spectroscopy and x-ray crystallography to determine the three-dimensional structure of PF1378 (Pfu Pop5), one of four protein subunits of archaeal RNase P that shares a homolog in the eukaryotic enzyme. RNase P is an essential and ubiquitous ribonucleoprotein enzyme required for maturation of tRNA. In bacteria, the enzyme's RNA subunit is responsible for cleaving the single-stranded 5' leader sequence of precursor tRNA molecules (pre-tRNA), whereas the protein subunit assists in substrate binding. Although in bacteria the RNase P holoenzyme consists of one large catalytic RNA and one small protein subunit, in archaea and eukarya the enzyme contains several (> or =4) protein subunits, each of which lacks sequence similarity to the bacterial protein. The functional role of the proteins is poorly understood, as is the increased complexity in comparison to the bacterial enzyme. Pfu Pop5 has been directly implicated in catalysis by the observation that it pairs with PF1914 (Pfu Rpp30) to functionally reconstitute the catalytic domain of the RNA subunit. The protein adopts an alpha-beta sandwich fold highly homologous to the single-stranded RNA binding RRM domain. Furthermore, the three-dimensional arrangement of Pfu Pop5's structural elements is remarkably similar to that of the bacterial protein subunit. NMR spectra have been used to map the interaction of Pop5 with Pfu Rpp30. The data presented permit tantalizing hypotheses regarding the role of this protein subunit shared by archaeal and eukaryotic RNase P.
Collapse
Affiliation(s)
- Ross C Wilson
- Ohio State Biochemistry Program, Department of Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
38
|
Sharin E, Schein A, Mann H, Ben-Asouli Y, Jarrous N. RNase P: role of distinct protein cofactors in tRNA substrate recognition and RNA-based catalysis. Nucleic Acids Res 2005; 33:5120-32. [PMID: 16155184 PMCID: PMC1201335 DOI: 10.1093/nar/gki828] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli ribonuclease P (RNase P) has a protein component, termed C5, which acts as a cofactor for the catalytic M1 RNA subunit that processes the 5′ leader sequence of precursor tRNA. Rpp29, a conserved protein subunit of human RNase P, can substitute for C5 protein in reconstitution assays of M1 RNA activity. To better understand the role of the former protein, we compare the mode of action of Rpp29 to that of the C5 protein in activation of M1 RNA. Enzyme kinetic analyses reveal that complexes of M1 RNA–Rpp29 and M1 RNA–C5 exhibit comparable binding affinities to precursor tRNA but different catalytic efficiencies. High concentrations of substrate impede the activity of the former complex. Rpp29 itself exhibits high affinity in substrate binding, which seems to reduce the catalytic efficiency of the reconstituted ribonucleoprotein. Rpp29 has a conserved C-terminal domain with an Sm-like fold that mediates interaction with M1 RNA and precursor tRNA and can activate M1 RNA. The results suggest that distinct protein folds in two unrelated protein cofactors can facilitate transition from RNA- to ribonucleoprotein-based catalysis by RNase P.
Collapse
Affiliation(s)
| | | | | | | | - Nayef Jarrous
- To whom correspondence should be addressed. Tel: +972 2 6758233; Fax: +972 2 6784010;
| |
Collapse
|
39
|
Walker SC, Aspinall TV, Gordon JMB, Avis JM. Probing the structure of Saccharomyces cerevisiae RNase MRP. Biochem Soc Trans 2005; 33:479-81. [PMID: 15916546 DOI: 10.1042/bst0330479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In yeast, RNase MRP (mitochondrial RNA processing), a ribonucleoprotein precursor rRNA processing enzyme, possesses one putatively catalytic RNA and ten protein subunits and is highly related to RNase P. Structural analysis of the MRP RNA provides data that closely match a previous secondary-structure model derived from phylogenetic analysis, with the exception of an additional stem. This stem occupies an equivalent position to the P7 stem of RNase P RNA and its inclusion confers on MRP RNA a greater similarity to the core P RNA structure. In vivo studies indicate that the P7-like stem can form, but is not a part of, the active enzyme structure. Stem formation would increase RNA stability in the absence of proteins and our alternative structure may be a valid intermediate species in RNase MRP assembly. Further ongoing studies of this enzyme reveal an extensive network of interactions between subunits and a probable central role for the Pop1, Pop4 and Pop7 subunits.
Collapse
Affiliation(s)
- S C Walker
- Faculty of Life Sciences, University of Manchester, Jackson's Mill, P.O. Box 88, Manchester M60 1QD, UK
| | | | | | | |
Collapse
|
40
|
Hall TA, Brown JW. Interactions between RNase P protein subunits in archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:247-54. [PMID: 15810434 PMCID: PMC2685574 DOI: 10.1155/2004/743956] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A yeast two-hybrid system was used to identify protein-protein interactions between the ribonuclease P (RNase P) protein subunits Mth11p, Mth687p, Mth688p and Mth1618p from the archaeon Methanothermobacter thermoautotrophicus. Clear interactions between Mth688p and Mth687p, and between Mth1618p and Mth11p, were confirmed by HIS3 and LacZ reporter expression. Weaker interactions of Mth687p and Mth688p with Mth 11p, and Mth11p with itself, are also suggested. These interactions resemble, and confirm, those previously seen among the homologs of these proteins in the more complex yeast RNase P holoenzyme.
Collapse
Affiliation(s)
- Thomas A. Hall
- Ibis Therapeutics, 2292 Faraday Ave., Carlsbad, CA 92008, USA
| | - James W. Brown
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
- Corresponding author ()
| |
Collapse
|
41
|
Salinas K, Wierzbicki S, Zhou L, Schmitt ME. Characterization and purification of Saccharomyces cerevisiae RNase MRP reveals a new unique protein component. J Biol Chem 2005; 280:11352-60. [PMID: 15637077 DOI: 10.1074/jbc.m409568200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, RNase mitochondrial RNA processing (MRP) is an essential endoribonuclease that consists of one RNA component and at least nine protein components. Characterization of the complex is complicated by the fact that eight of the known protein components are shared with a related endoribonuclease, RNase P. To fully characterize the RNase MRP complex, we purified it to apparent homogeneity in a highly active state using tandem affinity purification. In addition to the nine known protein components, both Rpr2 and a protein encoded by the essential gene YLR145w were present in our preparations of RNase MRP. Precipitation of a tagged version of Ylr145w brought with it the RNase MRP RNA, but not the RNase P RNA. A temperature-sensitive ylr145w mutant was generated and found to exhibit a rRNA processing defect identical to that seen in other RNase MRP mutants, whereas no defect in tRNA processing was observed. Homologues of the Ylr145w protein were found in most yeasts, fungi, and Arabidopsis. Based on this evidence, we propose that YLR145w encodes a novel protein component of RNase MRP, but not RNase P. We recommend that this gene be designated RMP1, for RNase MRP protein 1.
Collapse
Affiliation(s)
- Kelly Salinas
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
42
|
Walker SC, Avis JM. A conserved element in the yeast RNase MRP RNA subunit can participate in a long-range base-pairing interaction. J Mol Biol 2004; 341:375-88. [PMID: 15276830 DOI: 10.1016/j.jmb.2004.05.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 05/26/2004] [Indexed: 11/24/2022]
Abstract
RNase MRP is a ribonucleoprotein endoribonuclease involved in eukaryotic pre-rRNA processing. The enzyme possesses a putatively catalytic RNA subunit, structurally related to that of RNase P. A thorough structure analysis of Saccharomyces cerevisiae MRP RNA, entailing enzymatic and chemical probing, mutagenesis and thermal melting, identifies a previously unrecognised stem that occupies a position equivalent to the P7 stem of RNase P. Inclusion of this P7-like stem confers on yeast MRP RNA a greater degree of similarity to the core RNase P RNA structure than that described previously and better delimits domain 2, the proposed specificity domain. The additional stem is created by participation of a conserved sequence element (ymCR-II) in a long-range base-pairing interaction. There is potential for this base-pairing throughout the known yeast MRP RNA sequences. Formation of a P7-like stem is not required, however, for the pre-rRNA processing or essential function of RNase MRP. Mutants that can base-pair are nonetheless detrimental to RNase MRP function, indicating that the stem will form in vivo but that only the wild-type pairing is accommodated. Although the alternative MRP RNA structure described is clearly not part of the active RNase MRP enzyme, it would be the more stable structure in the absence of protein subunits and the probability that it represents a valid intermediate species in the process of yeast RNase MRP assembly is discussed.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biomolecular Sciences, UMIST, P.O. Box 88, Manchester, M60 1QD, UK
| | | |
Collapse
|
43
|
Numata T, Ishimatsu I, Kakuta Y, Tanaka I, Kimura M. Crystal structure of archaeal ribonuclease P protein Ph1771p from Pyrococcus horikoshii OT3: an archaeal homolog of eukaryotic ribonuclease P protein Rpp29. RNA (NEW YORK, N.Y.) 2004; 10:1423-32. [PMID: 15317976 PMCID: PMC1370628 DOI: 10.1261/rna.7560904] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 06/01/2004] [Indexed: 05/24/2023]
Abstract
Ribonuclease P (RNase P) is the endonuclease responsible for the removal of 5' leader sequences from tRNA precursors. The crystal structure of an archaeal RNase P protein, Ph1771p (residues 36-127) from hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined at 2.0 A resolution by X-ray crystallography. The structure is composed of four helices (alpha1-alpha4) and a six-stranded antiparallel beta-sheet (beta1-beta6) with a protruding beta-strand (beta7) at the C-terminal region. The strand beta7 forms an antiparallel beta-sheet by interacting with strand beta4 in a symmetry-related molecule, suggesting that strands beta4 and beta7 could be involved in protein-protein interactions with other RNase P proteins. Structural comparison showed that the beta-barrel structure of Ph1771p has a topological resemblance to those of Staphylococcus aureus translational regulator Hfq and Haloarcula marismortui ribosomal protein L21E, suggesting that these RNA binding proteins have a common ancestor and then diverged to specifically bind to their cognate RNAs. The structure analysis as well as structural comparison suggested two possible RNA binding sites in Ph1771p, one being a concave surface formed by terminal alpha-helices (alpha1-alpha4) and beta-strand beta6, where positively charged residues are clustered. A second possible RNA binding site is at a loop region connecting strands beta2 and beta3, where conserved hydrophilic residues are exposed to the solvent and interact specifically with sulfate ion. These two potential sites for RNA binding are located in close proximity. The crystal structure of Ph1771p provides insight into the structure and function relationships of archaeal and eukaryotic RNase P.
Collapse
Affiliation(s)
- Tomoyuki Numata
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
44
|
Li X, Zaman S, Langdon Y, Zengel JM, Lindahl L. Identification of a functional core in the RNA component of RNase MRP of budding yeasts. Nucleic Acids Res 2004; 32:3703-11. [PMID: 15254272 PMCID: PMC484176 DOI: 10.1093/nar/gkh689] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNase MRP is an endonuclease participating in ribosomal RNA processing. It consists of one RNA and at least nine protein subunits. Using oligonucleotide-directed mutagenesis, we analyzed the functional role of five of the hairpins in the secondary structure of the RNA subunit of Saccharomyces cerevisiae RNase MRP. Deletion of an entire hairpin was either lethal or resulted in very poor growth. However, peripheral portions constituting up to 70% of a hairpin could be deleted without effects on cell growth rate or processing of rRNA. To determine whether these hairpins perform redundant functions, we analyzed mutants combining four or five benign hairpin deletions. Simultaneous removal of four of these hairpin segments had no detectable effect. Removing five created a temperature- and cold-sensitive enzyme, but these deficiencies could be partially overcome by a mutation in one of the RNase MRP protein subunits, or by increasing the copy number of several of the protein subunit genes. These observations suggest that the peripheral elements of the RNA hairpins contain no structures or sequences required for substrate recognition, catalysis or binding of protein subunits. Thus, the functionally essential elements of the RNase MRP RNA appear to be concentrated in the core of the subunit.
Collapse
Affiliation(s)
- Xing Li
- Department of Biological Sciences, UMBC, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | | | |
Collapse
|
45
|
Welting TJM, van Venrooij WJ, Pruijn GJM. Mutual interactions between subunits of the human RNase MRP ribonucleoprotein complex. Nucleic Acids Res 2004; 32:2138-46. [PMID: 15096576 PMCID: PMC407822 DOI: 10.1093/nar/gkh539] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The eukaryotic ribonuclease for mitochondrial RNA processing (RNase MRP) is mainly located in the nucleoli and belongs to the small nucleolar ribonucleoprotein (snoRNP) particles. RNase MRP is involved in the processing of pre-rRNA and the generation of RNA primers for mitochondrial DNA replication. A closely related snoRNP, which shares protein subunits with RNase MRP and contains a structurally related RNA subunit, is the pre-tRNA processing factor RNase P. Up to now, 10 protein subunits of these complexes have been described, designated hPop1, hPop4, hPop5, Rpp14, Rpp20, Rpp21, Rpp25, Rpp30, Rpp38 and Rpp40. To get more insight into the assembly of the human RNase MRP complex we studied protein-protein and protein-RNA interactions by means of GST pull-down experiments. A total of 19 direct protein-protein and six direct protein-RNA interactions were observed. The analysis of mutant RNase MRP RNAs showed that distinct regions are involved in the direct interaction with protein subunits. The results provide insight into the way the protein and RNA subunits assemble into a ribonucleoprotein particle. Based upon these data a new model for the architecture of the human RNase MRP complex was generated.
Collapse
Affiliation(s)
- Tim J M Welting
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, University of Nijmegen, Nijmegen, The Netherlands
| | | | | |
Collapse
|
46
|
Boomershine WP, McElroy CA, Tsai HY, Wilson RC, Gopalan V, Foster MP. Structure of Mth11/Mth Rpp29, an essential protein subunit of archaeal and eukaryotic RNase P. Proc Natl Acad Sci U S A 2003; 100:15398-403. [PMID: 14673079 PMCID: PMC307579 DOI: 10.1073/pnas.2535887100] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have determined the solution structure of Mth11 (Mth Rpp29), an essential subunit of the RNase P enzyme from the archaebacterium Methanothermobacter thermoautotrophicus (Mth). RNase P is a ubiquitous ribonucleoprotein enzyme primarily responsible for cleaving the 5' leader sequence during maturation of tRNAs in all three domains of life. In eubacteria, this enzyme is made up of two subunits: a large RNA ( approximately 120 kDa) responsible for mediating catalysis, and a small protein cofactor ( approximately 15 kDa) that modulates substrate recognition and is required for efficient in vivo catalysis. In contrast, multiple proteins are associated with eukaryotic and archaeal RNase P, and these proteins exhibit no recognizable homology to the conserved bacterial protein subunit. In reconstitution experiments with recombinantly expressed and purified protein subunits, we found that Mth Rpp29, a homolog of the Rpp29 protein subunit from eukaryotic RNase P, is an essential protein component of the archaeal holoenzyme. Consistent with its role in mediating protein-RNA interactions, we report that Mth Rpp29 is a member of the oligonucleotide/oligosaccharide binding fold family. In addition to a structured beta-barrel core, it possesses unstructured N- and C-terminal extensions bearing several highly conserved amino acid residues. To identify possible RNA contacts in the protein-RNA complex, we examined the interaction of the 11-kDa protein with the full 100-kDa Mth RNA subunit by using NMR chemical shift perturbation. Our findings represent a critical step toward a structural model of the RNase P holoenzyme from archaebacteria and higher organisms.
Collapse
|
47
|
Abstract
In 1996, a new method, termed the yeast three-hybrid system, dedicated to selection of RNA binding proteins using a hybrid RNA molecule as bait was described. In this minireview, we summarize the results that have been obtained using this method. Indeed, approximately 20 unknown proteins have been characterized so far. The three-hybrid strategy has also been used as a tool to dissect RNA-protein interactions. The example of such a study on human histone HBP interaction with its target mRNA is described. Problems that can be encountered are addressed in a troubleshooting section. Especially, our results with tRNA binding proteins are discussed.
Collapse
Affiliation(s)
- Sophie Jaeger
- Institut de Biologie Moléculaire et Cellulaire, UPR No. 9002 du CNRS, 15 rue René Descartes, 67084 Cedex, Strasbourg, France
| | | | | |
Collapse
|
48
|
Abstract
Ribonuclease P (RNase P) is an essential enzyme that processes the 5' leader sequence of precursor tRNA. Eubacterial RNase P is an RNA enzyme, while its eukaryotic counterpart acts as catalytic ribonucleoprotein, consisting of RNA and numerous protein subunits. To study the latter form, we reconstitute human RNase P activity, demonstrating that the subunits H1 RNA, Rpp21, and Rpp29 are sufficient for 5' cleavage of precursor tRNA. The reconstituted RNase P precisely delineates its cleavage sites in various substrates and hydrolyzes the phosphodiester bond. Rpp21 and Rpp29 facilitate catalysis by H1 RNA, which seems to require a phylogenetically conserved pseudoknot structure for function. Unexpectedly, Rpp29 forms a catalytic complex with M1 RNA of E. coli RNase P. The results uncover the core components of eukaryotic RNase P, reveal its evolutionary origin in translation, and provide a paradigm for studying RNA-based catalysis by other nuclear and nucleolar ribonucleoprotein enzymes.
Collapse
Affiliation(s)
- Hagit Mann
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
49
|
Abstract
The 5'-end maturation of tRNAs is catalyzed by the ribonucleoprotein enzyme ribonuclease P (RNase P) in all organisms. Here we provide, for the first time, a comprehensive overview on the representation of individual RNase P protein homologs within the Eukarya and Archaea. Most eukaryotes have homologs for all four protein subunits (Pop4, Rpp1, Pop5 and Rpr2) present in the majority of Archaea. Pop4 is the only RNase P protein subunit identifiable in all Eukarya and Archaea with available genome sequences. Remarkably, there is no structural homology between bacterial and archaeal-eukaryotic RNase P proteins. The simplest interpretation is that RNase P has an 'RNA-alone' origin and progenitors of Bacteria and Archaea diverged very early in evolution and then pursued completely different strategies in the recruitment of protein subunits during the transition from the 'RNA-alone' to the 'RNA-protein' state of the enzyme.
Collapse
Affiliation(s)
- Enno Hartmann
- Institut für Biologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany.
| | | |
Collapse
|
50
|
Kouzuma Y, Mizoguchi M, Takagi H, Fukuhara H, Tsukamoto M, Numata T, Kimura M. Reconstitution of archaeal ribonuclease P from RNA and four protein components. Biochem Biophys Res Commun 2003; 306:666-73. [PMID: 12810070 DOI: 10.1016/s0006-291x(03)01034-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ribonuclease P (RNase P) is an endonuclease responsible for generating the 5(') end of matured tRNA molecules. A homology search of the hyperthermophilic archaeon Pyrococcus horikoshii OT3 genome database revealed that the four genes, PH1481, PH1601, PH1771, and PH1877, have a significant homology to those encoding RNase P protein subunits, hpop5, Rpp21, Rpp29, and Rpp30, of human, respectively. These genes were expressed in Escherichia coli cells, and the resulting proteins Ph1481p, Ph1601p, Ph1771p, and Ph1877p were purified to apparent homogeneity in a set of column chromatographies. The four proteins were characterized in terms of their capability to bind the cognate RNase P RNA from P. horikoshii. All four proteins exhibited the binding activity to the RNase P RNA. In vitro reconstitution of four putative RNase P proteins with the in vitro transcripted P. horikoshii RNase P RNA revealed that three proteins Ph1481p, Ph1601p, and Ph1771p, and RNase P RNA are minimal components for the RNase P activity. However, addition of the fourth protein Ph1877p strongly stimulated enzymatic activity, indicating that all four proteins and RNase P RNA are essential for optimal RNase P activity. The present data will pave the way for the elucidation of the reaction mechanism for archaeal as well as eukaryotic RNase P.
Collapse
MESH Headings
- Animals
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/metabolism
- Base Sequence
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Endoribonucleases/isolation & purification
- Endoribonucleases/metabolism
- Escherichia coli Proteins
- Humans
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Pyrococcus/enzymology
- Pyrococcus/genetics
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/isolation & purification
- RNA, Catalytic/metabolism
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonuclease P
- Ribonucleoproteins/genetics
- Ribonucleoproteins/isolation & purification
- Ribonucleoproteins/metabolism
Collapse
Affiliation(s)
- Yoshiaki Kouzuma
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, 812-8581, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|