1
|
Nascimento M, Moura S, Parra L, Vasconcellos V, Costa G, Leite D, Dias M, Fernandes TVA, Hoelz L, Pimentel L, Bastos M, Boechat N. Ponatinib: A Review of the History of Medicinal Chemistry behind Its Development. Pharmaceuticals (Basel) 2024; 17:1361. [PMID: 39459001 PMCID: PMC11510555 DOI: 10.3390/ph17101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The primary treatment for chronic myeloid leukemia (CML) involves first- and second-generation tyrosine kinase inhibitors (TKIs), such as imatinib, nilotinib, bosutinib, and dasatinib. However, these medications are ineffective against mutations in the kinase domain of the ABL1 protein, particularly in the protein with the T315I mutation. To address this, ponatinib (PNT), a third-generation inhibitor, was developed. Despite its efficacy in treating the BCR-ABL1T315I mutation, the use of PNT was briefly suspended in 2013 due to serious adverse effects but was subsequently reintroduced to the market. During the drug discovery and development process, it is rare to consolidate all information into a single article, as is the case with ponatinib. This review aims to compile and chronologically organize the research on the discovery of ponatinib using medicinal chemistry tools and computational methods. It includes in silico calculations, such as the octanol/water partition coefficient (cLogP) via SwissAdme, and 2D maps of intermolecular interactions through molecular docking. This approach enhances understanding for both specialists and those interested in medicinal chemistry and pharmacology, while also contextualizing future directions for further optimizations of ponatinib, facilitating the development of new analogs of this crucial inhibitor for the treatment of CML and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL).
Collapse
Affiliation(s)
- Mayara Nascimento
- Programa de Pós-Graduação em Farmacologia e Química Medicinal do Instituto de Ciências Biomédicas–ICB-UFRJ, Centro de Ciências da Saúde-CCS, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil; (M.N.); (S.M.)
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Stefany Moura
- Programa de Pós-Graduação em Farmacologia e Química Medicinal do Instituto de Ciências Biomédicas–ICB-UFRJ, Centro de Ciências da Saúde-CCS, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil; (M.N.); (S.M.)
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Lidia Parra
- Programa de Pós-Graduação Acadêmico em Pesquisa Translacional em Fármacos e Medicamentos–Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil;
| | - Valeska Vasconcellos
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
- Programa de Pós-Graduação Acadêmico em Pesquisa Translacional em Fármacos e Medicamentos–Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil;
| | - Gabriela Costa
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Debora Leite
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Maria Dias
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Tácio Vinício Amorim Fernandes
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Lucas Hoelz
- Laboratório Computacional de Química Medicinal—LCQM, Instituto Federal do Rio de Janeiro—IFRJ, Campus Pinheiral, Pinheiral 27197-000, RJ, Brazil;
| | - Luiz Pimentel
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Monica Bastos
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Nubia Boechat
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| |
Collapse
|
2
|
Wang Y, Nan X, Duan Y, Wang Q, Liang Z, Yin H. FDA-approved small molecule kinase inhibitors for cancer treatment (2001-2015): Medical indication, structural optimization, and binding mode Part I. Bioorg Med Chem 2024; 111:117870. [PMID: 39128361 DOI: 10.1016/j.bmc.2024.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
The dysregulation of kinases has emerged as a major class of targets for anticancer drug discovery given its node roles in the etiology of tumorigenesis, progression, invasion, and metastasis of malignancies, which is validated by the FDA approval of 28 small molecule kinase inhibitor (SMKI) drugs for cancer treatment at the end of 2015. While the preclinical and clinical data of these drugs are widely presented, it is highly essential to give an updated review on the medical indications, design principles and binding modes of these anti-tumor SMKIs approved by the FDA to offer insights for the future development of SMKIs with specific efficacy and safety.
Collapse
Affiliation(s)
- Ying Wang
- Department of Electrophysiological Diagnosis, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong 723000, China
| | - Xiang Nan
- College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China; Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yanping Duan
- College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Qiuxu Wang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Zhigang Liang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Hanrong Yin
- Department of Electrophysiological Diagnosis, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong 723000, China.
| |
Collapse
|
3
|
Delgado T, Veselá D, Dostálová H, Kryštof V, Vojáčková V, Jorda R, Castro A, Bertrand J, Rivera G, Faúndez M, Strnad M, Espinosa-Bustos C, Salas CO. New Inhibitors of Bcr-Abl Based on 2,6,9-Trisubstituted Purine Scaffold Elicit Cytotoxicity in Chronic Myeloid Leukemia-Derived Cell Lines Sensitive and Resistant to TKIs. Pharmaceutics 2024; 16:649. [PMID: 38794311 PMCID: PMC11125181 DOI: 10.3390/pharmaceutics16050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Bcr-Abl is an oncoprotein with aberrant tyrosine kinase activity involved in the progression of chronic myeloid leukemia (CML) and has been targeted by inhibitors such as imatinib and nilotinib. However, despite their efficacy in the treatment of CML, a mechanism of resistance to these drugs associated with mutations in the kinase region has emerged. Therefore, in this work, we report the synthesis of 14 new 2,6,9-trisubstituted purines designed from our previous Bcr-Abl inhibitors. Here, we highlight 11b, which showed higher potency against Bcr-Abl (IC50 = 0.015 μM) than imatinib and nilotinib and exerted the most potent antiproliferative properties on three CML cells harboring the Bcr-Abl rearrangement (GI50 = 0.7-1.3 μM). In addition, these purines were able to inhibit the growth of KCL22 cell lines expressing Bcr-AblT315I, Bcr-AblE255K, and Bcr-AblY253H point mutants in micromolar concentrations. Imatinib and nilotinib were ineffective in inhibiting the growth of KCL22 cells expressing Bcr-AblT315I (GI50 > 20 μM) compared to 11b-f (GI50 = 6.4-11.5 μM). Molecular docking studies explained the structure-activity relationship of these purines in Bcr-AblWT and Bcr-AblT315I. Finally, cell cycle cytometry assays and immunodetection showed that 11b arrested the cells in G1 phase, and that 11b downregulated the protein levels downstream of Bcr-Abl in these cells.
Collapse
Affiliation(s)
- Thalia Delgado
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile; (T.D.); (J.B.)
| | - Denisa Veselá
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (D.V.); (H.D.); (V.V.); (R.J.)
| | - Hana Dostálová
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (D.V.); (H.D.); (V.V.); (R.J.)
| | - Vladimír Kryštof
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (D.V.); (H.D.); (V.V.); (R.J.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Veronika Vojáčková
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (D.V.); (H.D.); (V.V.); (R.J.)
| | - Radek Jorda
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (D.V.); (H.D.); (V.V.); (R.J.)
| | - Alejandro Castro
- Laboratorio de Bioproductos Farmacéuticos y Cosméticos, Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Jeanluc Bertrand
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile; (T.D.); (J.B.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro s/n, Reynosa 88710, Mexico;
| | - Mario Faúndez
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile; (M.F.); (C.E.-B.)
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic;
| | - Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile; (M.F.); (C.E.-B.)
| | - Cristian O. Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile; (T.D.); (J.B.)
| |
Collapse
|
4
|
Rana N, Grover P, Singh H. Recent Developments and Future Perspectives of Purine Derivatives as a Promising Scaffold in Drug Discovery. Curr Top Med Chem 2024; 24:541-579. [PMID: 38288806 DOI: 10.2174/0115680266290152240110074034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 05/31/2024]
Abstract
Numerous purine-containing compounds have undergone extensive investigation for their medical efficacy across various diseases. The swift progress in purine-based medicinal chemistry has brought to light the therapeutic capabilities of purine-derived compounds in addressing challenging medical conditions. Defined by a heterocyclic ring comprising a pyrimidine ring linked with an imidazole ring, purine exhibits a diverse array of therapeutic attributes. This review systematically addresses the multifaceted potential of purine derivatives in combating various diseases, including their roles as anticancer agents, antiviral compounds (anti-herpes, anti-HIV, and anti-influenzae), autoimmune and anti-inflammatory agents, antihyperuricemic and anti-gout solutions, antimicrobial agents, antitubercular compounds, anti-leishmanial agents, and anticonvulsants. Emphasis is placed on the remarkable progress made in developing purine-based compounds, elucidating their significant target sites. The article provides a comprehensive exploration of developments in both natural and synthetic purines, offering insights into their role in managing a diverse range of illnesses. Additionally, the discussion delves into the structure-activity relationships and biological activities of the most promising purine molecules. The intriguing capabilities revealed by these purine-based scaffolds unequivocally position them at the forefront of drug candidate development. As such, this review holds potential significance for researchers actively involved in synthesizing purine-based drug candidates, providing a roadmap for the continued advancement of this promising field.
Collapse
Affiliation(s)
- Neha Rana
- School of Pharmacy (SOP), Noida International University, Yamuna Expressway, Gautam Budh Nagar, 203201, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - Hridayanand Singh
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, 201204, Uttar Pradesh, India
| |
Collapse
|
5
|
Bertrand J, Dostálová H, Kryštof V, Jorda R, Delgado T, Castro-Alvarez A, Mella J, Cabezas D, Faúndez M, Espinosa-Bustos C, Salas CO. Design, Synthesis, In Silico Studies and Inhibitory Activity towards Bcr-Abl, BTK and FLT3-ITD of New 2,6,9-Trisubstituted Purine Derivatives as Potential Agents for the Treatment of Leukaemia. Pharmaceutics 2022; 14:pharmaceutics14061294. [PMID: 35745866 PMCID: PMC9228270 DOI: 10.3390/pharmaceutics14061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
We report 31 new compounds designed, synthesized and evaluated on Bcr-Abl, BTK and FLT3-ITD as part of our program to develop 2,6,9-trisubstituted purine derivatives as inhibitors of oncogenic kinases. The design was inspired by the chemical structures of well-known kinase inhibitors and our previously developed purine derivatives. The synthesis of these purines was simple and used a microwave reactor for the final step. Kinase assays showed three inhibitors with high selectivity for each protein that were identified: 4f (IC50 = 70 nM for Bcr-Abl), 5j (IC50 = 0.41 μM for BTK) and 5b (IC50 = 0.38 μM for FLT-ITD). The 3D-QSAR analysis and molecular docking studies suggested that two fragments are potent and selective inhibitors of these three kinases: a substitution at the 6-phenylamino ring and the length and volume of the alkyl group at N-9. The N-7 and the N-methyl-piperazine moiety linked to the aminophenyl ring at C-2 are also requirements for obtaining the activity. Furthermore, most of these purine derivatives were shown to have a significant inhibitory effect in vitro on the proliferation of leukaemia and lymphoma cells (HL60, MV4-11, CEM, K562 and Ramos) at low concentrations. Finally, we show that the selected purines (4i, 5b and 5j) inhibit the downstream signalling of the respective kinases in cell models. Thus, this study provides new evidence regarding how certain chemical modifications of purine ring substituents provide novel inhibitors of target kinases as potential anti-leukaemia drugs.
Collapse
Affiliation(s)
- Jeanluc Bertrand
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile; (J.B.); (T.D.)
| | - Hana Dostálová
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (H.D.); (R.J.)
| | - Vladimír Kryštof
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (H.D.); (R.J.)
- Correspondence: (V.K.); (C.O.S.)
| | - Radek Jorda
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (H.D.); (R.J.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Thalía Delgado
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile; (J.B.); (T.D.)
| | - Alejandro Castro-Alvarez
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Manuel Montt 112, Temuco 4780000, Chile;
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso 2360102, Chile; (J.M.); (D.C.)
- Facultad de Farmacia, Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Avenida Gran Bretaña 1093, Valparaíso 2360102, Chile
| | - David Cabezas
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso 2360102, Chile; (J.M.); (D.C.)
| | - Mario Faúndez
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile; (M.F.); (C.E.-B.)
| | - Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile; (M.F.); (C.E.-B.)
| | - Cristian O. Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile; (J.B.); (T.D.)
- Correspondence: (V.K.); (C.O.S.)
| |
Collapse
|
6
|
Momelotinib is a highly potent inhibitor of FLT3-mutant AML. Blood Adv 2021; 6:1186-1192. [PMID: 34768286 PMCID: PMC8864657 DOI: 10.1182/bloodadvances.2021004611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
Kinase activating mutation in FLT3 is the most frequent genetic lesion associated with poor prognosis in acute myeloid leukemia (AML). Therapeutic response to FLT3 tyrosine kinase inhibitor (TKI) therapy is dismal, and many patients relapse even after allogenic stem cell transplantation. Despite the introduction of more selective FLT3 inhibitors, remissions are short-lived, and patients show progressive disease after an initial response. Acquisition of resistance-conferring genetic mutations and growth factor signaling are two principal mechanisms that drive relapse. FLT3 inhibitors targeting both escape mechanisms could lead to a more profound and lasting clinical responses. Here we show that the JAK2 inhibitor, momelotinib, is an equipotent type-1 FLT3 inhibitor. Momelotinib showed potent inhibitory activity on both mouse and human cells expressing FLT3-ITD, including clinically relevant resistant mutations within the activation loop at residues, D835, D839, and Y842. Additionally, momelotinib efficiently suppressed the resistance mediated by FLT3 ligand (FL) and hematopoietic cytokine activated JAK2 signaling. Interestingly, unlike gilteritinib, momelotinib inhibits the expression of MYC in leukemic cells. Consequently, concomitant inhibition of FLT3 and downregulation of MYC by momelotinib treatment showed better efficacy in suppressing the leukemia in a preclinical murine model of AML. Altogether, these data provide evidence that momelotinib is an effective type-1 dual JAK2/FLT3 inhibitor and may offer an alternative to gilteritinib. Its ability to impede the resistance conferred by growth factor signaling and activation loop mutants suggests that momelotinib treatment could provide a deeper and durable response; thus, warrants its clinical evaluation.
Collapse
|
7
|
Hoemberger M, Pitsawong W, Kern D. Cumulative mechanism of several major imatinib-resistant mutations in Abl kinase. Proc Natl Acad Sci U S A 2020; 117:19221-19227. [PMID: 32719139 PMCID: PMC7431045 DOI: 10.1073/pnas.1919221117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the outstanding success of the cancer drug imatinib, one obstacle in prolonged treatment is the emergence of resistance mutations within the kinase domain of its target, Abl. We noticed that many patient-resistance mutations occur in the dynamic hot spots recently identified to be responsible for imatinib's high selectivity toward Abl. In this study, we provide an experimental analysis of the mechanism underlying drug resistance for three major resistance mutations (G250E, Y253F, and F317L). Our data settle controversies, revealing unexpected resistance mechanisms. The mutations alter the energy landscape of Abl in complex ways: increased kinase activity, altered affinity, and cooperativity for the substrates, and, surprisingly, only a modestly decreased imatinib affinity. Only under cellular adenosine triphosphate (ATP) concentrations, these changes cumulate in an order of magnitude increase in imatinib's half-maximal inhibitory concentration (IC50). These results highlight the importance of characterizing energy landscapes of targets and its changes by drug binding and by resistance mutations developed by patients.
Collapse
Affiliation(s)
- Marc Hoemberger
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
- HHMI, Brandeis University, Waltham, MA 02454
| | - Warintra Pitsawong
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
- HHMI, Brandeis University, Waltham, MA 02454
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University, Waltham, MA 02454;
- HHMI, Brandeis University, Waltham, MA 02454
| |
Collapse
|
8
|
Carofiglio F, Lopalco A, Lopedota A, Cutrignelli A, Nicolotti O, Denora N, Stefanachi A, Leonetti F. Bcr-Abl Tyrosine Kinase Inhibitors in the Treatment of Pediatric CML. Int J Mol Sci 2020; 21:ijms21124469. [PMID: 32586039 PMCID: PMC7352889 DOI: 10.3390/ijms21124469] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
The therapeutic approach to Chronic Myeloid Leukemia (CML) has changed since the advent of the tyrosine kinase inhibitor (TKI) imatinib, which was then followed by the second generation TKIs dasatinib, nilotinib, and, finally, by ponatinib, a third-generation drug. At present, these therapeutic options represent the first-line treatment for adults. Based on clinical experience, imatinb, dasatinib, and nilotinib have been approved for children even though the studies that were concerned with efficacy and safety toward pediatric patients are still awaiting more specific and high-quality data. In this scenario, it is of utmost importance to prospectively validate data extrapolated from adult studies to set a standard therapeutic management for pediatric CML by employing appropriate formulations on the basis of pediatric clinical trials, which allow a careful monitoring of TKI-induced adverse effects especially in growing children exposed to long-term therapy.
Collapse
MESH Headings
- Child
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Prognosis
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
| | | | | | | | | | | | - Angela Stefanachi
- Correspondence: (A.S.); (F.L.); Tel.: +39-08-0544-2783 (A.S.); +39-08-0544-2784 (F.L.)
| | - Francesco Leonetti
- Correspondence: (A.S.); (F.L.); Tel.: +39-08-0544-2783 (A.S.); +39-08-0544-2784 (F.L.)
| |
Collapse
|
9
|
Wang L, Zheng G, Liu X, Ni D, He X, Cheng J, Lu S. Molecular dynamics simulations provide insights into the origin of gleevec's selectivity toward human tyrosine kinases. J Biomol Struct Dyn 2018; 37:2733-2744. [PMID: 30052122 DOI: 10.1080/07391102.2018.1496139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein kinases are critical drug targets against cancer. Since the discovery of Gleevec, a specific inhibitor of Abl kinase, the capability of this drug to distinguish between Abl and other tyrosine kinases, such as Src, has been intensely investigated but the origin of Gleevec's selectivity to Abl against Src is less studied. Here, we performed molecular dynamics (MD) simulations, dynamical cross-correlation matrices (DCCM), dynamical network analysis, and binding free energy calculations to explore Gleevec's selectivity based on the crystal structures of Abl, Src, and their common ancestors (ANC-AS) and the two constructed mutation systems (AS→Abl and AS→Src). MD simulations revealed that the conformation of the phosphate-binding loop (P-loop) was altered significantly in the AS→Abl system. DCCM results unraveled that mutations increased anticorrelated motions in the AS→Abl system. Community network analysis suggested that the P-loop established special contacts in the AS→Abl system that are devoid in the AS→Src system. The binding free energy calculations unveiled that the affinity of Gleevec to AS→Abl increased to near the Abl level, whereas its affinity to AS→Src decreased to near the Src level. Analysis of individual residue contributions showed that the differences were located mainly at the P-loop. This study is valuable for understanding the sensitivity of Gleevec to human tyrosine kinases. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lulu Wang
- a Department of Critical Care Medicine , Binzhou Medical University Hospital , Binzhou , Shandong , China
| | - Guodong Zheng
- b Department of VIP clinic , Changhai Hospital, Naval Military Medical University , Shanghai , China
| | - Xianxian Liu
- c Department of Infectious Diseases , Binzhou Medical University Hospital , Binzhou , Shandong , China
| | - Duan Ni
- d Department of Pathophysiology Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Xinheng He
- d Department of Pathophysiology Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Jinying Cheng
- c Department of Infectious Diseases , Binzhou Medical University Hospital , Binzhou , Shandong , China
| | - Shaoyong Lu
- d Department of Pathophysiology Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| |
Collapse
|
10
|
Xu H, Liu M, Huang X, Min Q, Zhu JJ. Multiplexed Quantitative MALDI MS Approach for Assessing Activity and Inhibition of Protein Kinases Based on Postenrichment Dephosphorylation of Phosphopeptides by Metal–Organic Framework-Templated Porous CeO2. Anal Chem 2018; 90:9859-9867. [DOI: 10.1021/acs.analchem.8b01938] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hongmei Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Meng Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaodan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
11
|
Gaboriaud-Kolar N, Myrianthopoulos V, Vougogiannopoulou K, Gerolymatos P, Horne DA, Jove R, Mikros E, Nam S, Skaltsounis AL. Natural-Based Indirubins Display Potent Cytotoxicity toward Wild-Type and T315I-Resistant Leukemia Cell Lines. JOURNAL OF NATURAL PRODUCTS 2016; 79:2464-2471. [PMID: 27726390 PMCID: PMC9132125 DOI: 10.1021/acs.jnatprod.6b00285] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Drug resistance in chronic myelogenous leukemia (CML) requires the development of new CML chemotherapeutic drugs. Indirubin, a well-known mutikinase inhibitor, is the major active component of "Danggui Longhui Wan", a Chinese traditional medicine used for the treatment of CML symptoms. An in-house collection of indirubin derivatives was screened at 1 μM on wild-type and imatinib-resistant T315I mutant CML cells. Herein are reported that only 15 analogues of the natural 6-bromoindirubin displayed potent cytotoxicity in the submicromolar range. Kinase assays in vitro show that eight out of the 15 active molecules strongly inhibited both c-Src and Abl oncogenic kinases in the nanomolar range. Most importantly, these eight molecules blocked the activity of T315I mutant Abl kinase at the submicromolar level and with analogue 22 exhibiting inhibitory activity at the low nanomolar range. Docking calculations suggested that active indirubins might inhibit T315I Abl kinase through an unprecedented binding to both active and Src-like inactive conformations. Analogue 22 is the first derivative of a natural product identified as an inhibitor of wild-type and imatinib-resistant T315I mutant Abl kinases.
Collapse
Affiliation(s)
- Nicolas Gaboriaud-Kolar
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Vasillios Myrianthopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Konstantina Vougogiannopoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Panagiotis Gerolymatos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - David A. Horne
- Molecular Medicine; Beckman Research Institute; City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, United States
| | - Richard Jove
- Cell Therapy Institute, 3301 College Avenue, Fort Lauderdale, Nova Southeastern University, Florida 33314, USA
| | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Sangkil Nam
- Molecular Medicine; Beckman Research Institute; City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, United States
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| |
Collapse
|
12
|
Design strategies, structure activity relationship and mechanistic insights for purines as kinase inhibitors. Eur J Med Chem 2016; 112:298-346. [PMID: 26907156 DOI: 10.1016/j.ejmech.2016.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/22/2022]
Abstract
Kinases control a diverse set of cellular processes comprising of reversible phosphorylation of proteins. Protein kinases play a pivotal role in human tumor cell proliferation, migration and survival of neoplasia. In the recent past, purine based molecules have emerged as significantly potent kinase inhibitors. In view of their promising potential for the inhibition of kinases, this review article focuses on purines which have progressed as kinase inhibitors during the last five years. A detailed account of the design strategies employed for the synthesis of purine analogs exerting inhibitory effects on diverse kinases has been presented. Apart from presenting the design strategies, the article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of the purine analogs for kinase inhibition. The interactions with the amino acid residues responsible for kinase inhibitory potential of purine based molecules have also been discussed. In this assemblage, purine based protein kinase inhibitors patented in the past have also been summarized in the tabular form. This compilation will be of great interest for the researchers working in the area of protein kinase inhibitors.
Collapse
|
13
|
Lovera S, Morando M, Pucheta-Martinez E, Martinez-Torrecuadrada JL, Saladino G, Gervasio FL. Towards a Molecular Understanding of the Link between Imatinib Resistance and Kinase Conformational Dynamics. PLoS Comput Biol 2015; 11:e1004578. [PMID: 26606374 PMCID: PMC4659586 DOI: 10.1371/journal.pcbi.1004578] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/01/2015] [Indexed: 11/18/2022] Open
Abstract
Due to its inhibition of the Abl kinase domain in the BCR-ABL fusion protein, imatinib is strikingly effective in the initial stage of chronic myeloid leukemia with more than 90% of the patients showing complete remission. However, as in the case of most targeted anti-cancer therapies, the emergence of drug resistance is a serious concern. Several drug-resistant mutations affecting the catalytic domain of Abl and other tyrosine kinases are now known. But, despite their importance and the adverse effect that they have on the prognosis of the cancer patients harboring them, the molecular mechanism of these mutations is still debated. Here by using long molecular dynamics simulations and large-scale free energy calculations complemented by in vitro mutagenesis and microcalorimetry experiments, we model the effect of several widespread drug-resistant mutations of Abl. By comparing the conformational free energy landscape of the mutants with those of the wild-type tyrosine kinases we clarify their mode of action. It involves significant and complex changes in the inactive-to-active dynamics and entropy/enthalpy balance of two functional elements: the activation-loop and the conserved DFG motif. What is more the T315I gatekeeper mutant has a significant impact on the binding mechanism itself and on the binding kinetics.
Collapse
MESH Headings
- Computational Biology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/physiology
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate/chemistry
- Imatinib Mesylate/metabolism
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive
- Molecular Dynamics Simulation
- Mutagenesis, Site-Directed
- Thermodynamics
Collapse
Affiliation(s)
- Silvia Lovera
- Department of Chemistry, University College London, London, United Kingdom
| | - Maria Morando
- Center of Technological Development in Health, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | | | | | - Giorgio Saladino
- Department of Chemistry, University College London, London, United Kingdom
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
- * E-mail: (GS); (FLG)
| | - Francesco L. Gervasio
- Department of Chemistry, University College London, London, United Kingdom
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
- * E-mail: (GS); (FLG)
| |
Collapse
|
14
|
Kesarwani M, Huber E, Kincaid Z, Evelyn CR, Biesiada J, Rance M, Thapa MB, Shah NP, Meller J, Zheng Y, Azam M. Targeting substrate-site in Jak2 kinase prevents emergence of genetic resistance. Sci Rep 2015; 5:14538. [PMID: 26419724 PMCID: PMC4588578 DOI: 10.1038/srep14538] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022] Open
Abstract
Emergence of genetic resistance against kinase inhibitors poses a great challenge for durable therapeutic response. Here, we report a novel mechanism of JAK2 kinase inhibition by fedratinib (TG101348) that prevents emergence of genetic resistance. Using in vitro drug screening, we identified 211 amino-acid substitutions conferring resistance to ruxolitinib (INCB018424) and cross-resistance to the JAK2 inhibitors AZD1480, CYT-387 and lestaurtinib. In contrast, these resistant variants were fully sensitive to fedratinib. Structural modeling, coupled with mutagenesis and biochemical studies, revealed dual binding sites for fedratinib. In vitro binding assays using purified proteins showed strong affinity for the substrate-binding site (Kd = 20 nM) while affinity for the ATP site was poor (Kd = ~8 μM). Our studies demonstrate that mutations affecting the substrate-binding pocket encode a catalytically incompetent kinase, thereby preventing emergence of resistant variants. Most importantly, our data suggest that in order to develop resistance-free kinase inhibitors, the next-generation drug design should target the substrate-binding site.
Collapse
Affiliation(s)
- Meenu Kesarwani
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Erika Huber
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Zachary Kincaid
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Chris R Evelyn
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Jacek Biesiada
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology University of Cincinnati College of Medicine, University of Cincinnati, Ohio 45229 USA
| | - Mahendra B Thapa
- Department of Molecular Genetics, Biochemistry and Microbiology University of Cincinnati College of Medicine, University of Cincinnati, Ohio 45229 USA
| | - Neil P Shah
- Division of Hematology-Oncology UCSF School of Medicine, San Francisco, California, 94143 USA
| | - Jarek Meller
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Yi Zheng
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Mohammad Azam
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA.,Department of Molecular Genetics, Biochemistry and Microbiology University of Cincinnati College of Medicine, University of Cincinnati, Ohio 45229 USA
| |
Collapse
|
15
|
Kesarwani M, Huber E, Kincaid Z, Azam M. A method for screening and validation of resistant mutations against kinase inhibitors. J Vis Exp 2014:51984. [PMID: 25549138 PMCID: PMC4362691 DOI: 10.3791/51984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The discovery of BCR/ABL as a driver oncogene in chronic myeloid leukemia (CML) resulted in the development of Imatinib, which, in fact, demonstrated the potential of targeting the kinase in cancers by effectively treating the CML patients. This observation revolutionized drug development to target the oncogenic kinases implicated in various other malignancies, such as, EGFR, B-RAF, KIT and PDGFRs. However, one major drawback of anti-kinase therapies is the emergence of drug resistance mutations rendering the target to have reduced or lost affinity for the drug. Understanding the mechanisms employed by resistant variants not only helps in developing the next generation inhibitors but also gives impetus to clinical management using personalized medicine. We reported a retroviral vector based screening strategy to identify the spectrum of resistance conferring mutations in BCR/ABL, which has helped in developing the next generation BCR/ABL inhibitors. Using Ruxolitinib and JAK2 as a drug target pair, here we describe in vitro screening methods that utilizes the mouse BAF3 cells expressing the random mutation library of JAK2 kinase.
Collapse
Affiliation(s)
- Meenu Kesarwani
- Divisions of Experimental Hematology and Cancer Pathology, Cancer Blood Disease Institute, Cincinnati Children's Hospital Medical Center
| | - Erika Huber
- Divisions of Experimental Hematology and Cancer Pathology, Cancer Blood Disease Institute, Cincinnati Children's Hospital Medical Center
| | - Zachary Kincaid
- Divisions of Experimental Hematology and Cancer Pathology, Cancer Blood Disease Institute, Cincinnati Children's Hospital Medical Center
| | - Mohammad Azam
- Divisions of Experimental Hematology and Cancer Pathology, Cancer Blood Disease Institute, Cincinnati Children's Hospital Medical Center;
| |
Collapse
|
16
|
Energetic dissection of Gleevec's selectivity toward human tyrosine kinases. Nat Struct Mol Biol 2014; 21:848-53. [PMID: 25218445 PMCID: PMC4266587 DOI: 10.1038/nsmb.2891] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/20/2014] [Indexed: 01/16/2023]
Abstract
Protein kinases are obvious drug targets against cancer due to their central role in cellular regulation. Since the discovery of Gleevec, a potent and specific inhibitor of Abl kinase, as a highly successful cancer therapeutic, the ability of this drug to distinguish between Abl and other tyrosine kinases like Src has been intensely investigated, but without much success. Using NMR and fast kinetics, we establish a novel model that solves this longstanding question of two tyrosine kinases adopting almost identical structures when bound to Gleevec, yet having vastly different affinities. In contrast to all other proposed models we show that the origin of Abl’s high affinity lies predominantly in a conformational change after binding. An energy landscape that provides tight affinity via an induced-fit and binding plasticity via conformational selection mechanism is likely to be general for many inhibitors.
Collapse
|
17
|
Zeng GH, Fang DQ, Wu WJ, Wang JP, Xie WG, Ma SJ, Wu JH, Shen Y. Theoretical Studies on Pyrazolo[3,4-d
]pyrimidine Derivatives as Potent Dual c-Src/Abl Inhibitors Using 3D-QSAR and Docking Approaches. Mol Inform 2014; 33:183-200. [DOI: 10.1002/minf.201300126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/07/2014] [Indexed: 11/07/2022]
|
18
|
Gani OABSM, Narayanan D, Engh RA. Evaluating the predictivity of virtual screening for ABL kinase inhibitors to hinder drug resistance. Chem Biol Drug Des 2013; 82:506-19. [PMID: 23746052 PMCID: PMC4265857 DOI: 10.1111/cbdd.12170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/29/2013] [Accepted: 06/05/2013] [Indexed: 12/19/2022]
Abstract
Virtual screening methods are now widely used in early stages of drug discovery, aiming to rank potential inhibitors. However, any practical ligand set (of active or inactive compounds) chosen for deriving new virtual screening approaches cannot fully represent all relevant chemical space for potential new compounds. In this study, we have taken a retrospective approach to evaluate virtual screening methods for the leukemia target kinase ABL1 and its drug-resistant mutant ABL1-T315I. ‘Dual active’ inhibitors against both targets were grouped together with inactive ligands chosen from different decoy sets and tested with virtual screening approaches with and without explicit use of target structures (docking). We show how various scoring functions and choice of inactive ligand sets influence overall and early enrichment of the libraries. Although ligand-based methods, for example principal component analyses of chemical properties, can distinguish some decoy sets from active compounds, the addition of target structural information via docking improves enrichment, and explicit consideration of multiple target conformations (i.e. types I and II) achieves best enrichment of active versus inactive ligands, even without assuming knowledge of the binding mode. We believe that this study can be extended to other therapeutically important kinases in prospective virtual screening studies.
Collapse
Affiliation(s)
- Osman A B S M Gani
- The Norwegian Structural Biology Center, Department of Chemistry, University of Tromsø, 9037, Tromsø, Norway
| | | | | |
Collapse
|
19
|
Affiliation(s)
- M Kesarwani
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, OH, USA
| | | | | |
Collapse
|
20
|
Krishnan H, Miller WT, Goldberg GS. SRC points the way to biomarkers and chemotherapeutic targets. Genes Cancer 2012; 3:426-35. [PMID: 23226580 DOI: 10.1177/1947601912458583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of Src in tumorigenesis has been extensively studied since the work of Peyton Rous over a hundred years ago. Src is a non-receptor tyrosine kinase that plays key roles in signaling pathways controlling tumor cell growth and migration. Src regulates the activities of numerous molecules to induce cell transformation. However, transformed cells do not always migrate and realize their tumorigenic potential. They can be normalized by surrounding nontransformed cells by a process called contact normalization. Tumor cells need to override contact normalization to become malignant or metastatic. In this review, we discuss the role of Src in cell migration and contact normalization, with emphasis on Cas and Abl pathways. This paradigm illuminates several chemotherapeutic targets and may lead to the identification of new biomarkers and the development of effective anticancer treatments.
Collapse
Affiliation(s)
- Harini Krishnan
- University of Medicine and Dentistry of New Jersey, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Stratford, NJ, USA
| | | | | |
Collapse
|
21
|
An in vitro screening to identify drug-resistant mutations for target-directed chemotherapeutic agents. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012. [PMID: 22956142 DOI: 10.1007/978-1-62703-008-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The discovery of oncogenes and tumor suppressors as a driver of cancer development has triggered the development of target-specific small molecule anticancer compounds. As exemplified by Imatinib (Gleevec), a specific inhibitor of the Chronic Myeloid Leukemia-associated BCR/ABL kinase, these agents promise impressive activity in clinical trials, with low levels of clinical toxicity. However, such therapy is susceptible to the emergence of drug resistance mainly due to amino acid substitutions in the target protein. Defining the spectrum of such mutations is important for patient monitoring and the design of next-generation inhibitors. Using Imatinib and BCR/ABL as a paradigm for a drug-target pair, we reported a retroviral vector-based screening strategy to identify the spectrum of resistance-conferring mutations, which has helped in designing the next-generation BCR/ABL inhibitors such as Nilotinib, Dasatinib, and Ponatinib. Here we provide a detailed methodology for the screen, which can be generally applied to any drug-target pair.
Collapse
|
22
|
Abstract
c-Src and Bcr-Abl are two cytoplasmatic tyrosine kinases (TKs) involved in the development of malignancies. In particular, Bcr-Abl is the etiologic agent of chronic myeloid leukemia, where Src is also involved; the latter is hyperactivated in several solid tumors. Because of the structural homology between Src and Abl, several compounds originally synthesized as Src inhibitors have also been shown to be Abl inhibitors, useful in overcoming the onset of some types of chronic myeloid leukemia resistances, which frequently appear in the advanced phases of pathology. In recent years, the development of such compounds has been promoted by both excellent preclinical and clinical results, and by the theory that dual or multi-targeted inhibitors might be more effective than selective inhibitors. This review is an update on the most important dual inhibitors already in clinical trials and includes information regarding compounds that have appeared in the literature in recent years.
Collapse
|
23
|
Chang KH, Sanchez-Aguilera A, Shen S, Sengupta A, Madhu MN, Ficker AM, Dunn SK, Kuenzi AM, Arnett JL, Santho RA, Agirre X, Perentesis JP, Deininger MW, Zheng Y, Bustelo XR, Williams DA, Cancelas JA. Vav3 collaborates with p190-BCR-ABL in lymphoid progenitor leukemogenesis, proliferation, and survival. Blood 2012; 120:800-11. [PMID: 22692505 PMCID: PMC3412345 DOI: 10.1182/blood-2011-06-361709] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 05/29/2012] [Indexed: 11/20/2022] Open
Abstract
Despite the introduction of tyrosine kinase inhibitor therapy, the prognosis for p190-BCR-ABL(+) acute lymphoblastic leukemia remains poor. In the present study, we present the cellular and molecular roles of the Rho GTPase guanine nucleotide exchange factor Vav in lymphoid leukemogenesis and explore the roles of Vav proteins in BCR-ABL-dependent signaling. We show that genetic deficiency of the guanine nucleotide exchange factor Vav3 delays leukemogenesis by p190-BCR-ABL and phenocopies the effect of Rac2 deficiency, a downstream effector of Vav3. Compensatory up-regulation of expression and activation of Vav3 in Vav1/Vav2-deficient B-cell progenitors increases the transformation ability of p190-BCR-ABL. Vav3 deficiency induces apoptosis of murine and human leukemic lymphoid progenitors, decreases the activation of Rho GTPase family members and p21-activated kinase, and is associated with increased Bad phosphorylation and up-regulation of Bax, Bak, and Bik. Finally, Vav3 activation only partly depends on ABL TK activity, and Vav3 deficiency collaborates with tyrosine kinase inhibitors to inhibit CrkL activation and impair leukemogenesis in vitro and in vivo. We conclude that Vav3 represents a novel specific molecular leukemic effector for multitarget therapy in p190-BCR-ABL-expressing acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Kyung Hee Chang
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Xu R, Liu D, Cowburn D. Abl kinase constructs expressed in bacteria: facilitation of structural and functional studies including segmental labeling by expressed protein ligation. MOLECULAR BIOSYSTEMS 2012; 8:1878-85. [PMID: 22592215 PMCID: PMC3586340 DOI: 10.1039/c2mb25051a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A great portion of tyrosine kinases are involved in cell development and their structural alteration is intimately involved in associated pathologies of development and oncology. These kinases are one of the major groups of targets under investigation for molecular therapeutics. To carry out biochemical and structural biological studies on these kinases, economical production of their purified forms is highly desirable. However over-expressing tyrosine kinases as recombinant forms in bacterial systems and their purification is a significant challenge. Abelson kinase (Abl) has previously been expressed on a large scale to facilitate X-ray crystallography and NMR structure studies mainly in baculovirus infected insect cells. Even though success has been achieved in expression of soluble tyrosine kinases in E. coli with chaperones to improve correct folding, low expression levels of kinases are intrinsic in such systems because of diversion of resources to produce chaperones. Here we present a straightforward method to express and purify isolated Abl kinase domain and SH3-SH2-kinase multi-domain structures. The expressed Abl protein retains its correct folding and biological function. The yield of soluble protein is in a several mg L(-1) range in minimal media. Furthermore we demonstrate that segmental isotopic labelling using expressed protein ligation can be achieved using bacterial expressed Abl kinase domain constructs, which is especially useful in NMR structure-activity studies.
Collapse
Affiliation(s)
- Rong Xu
- Dept. of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
25
|
Vaidya S, Sonawani A, Idicula-Thomas S, Vundinti BR, Ghosh K. Imatinib resistance due to a novel tri-nucleotide insertion in the SH2/C lobe interface of BCR/ABL kinase domain between position K357 and N358. Leuk Res 2012; 36:e110-2. [PMID: 22387050 DOI: 10.1016/j.leukres.2012.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/27/2012] [Accepted: 02/07/2012] [Indexed: 11/19/2022]
|
26
|
Abstract
Better understanding the mechanisms underlying the metastatic process is essential to developing novel targeted therapeutics. Recently, invadopodia have been increasingly recognized as important drivers of local invasion in metastasis. Invadopodia are basally-localized, actin-rich structures that concentrate protease activity to areas of the cell in contact with the extracellular matrix. We recently found that the transcription factor Twist1, a central regulator of the epithelialmesenchymal transition (EMT), promotes invadopodia formation via upregulation of platelet-derived growth factor receptor (PDGFR) expression and activity. This finding, combined with other investigations into the mechanisms of invadopodia formation, reveal several novel targets for clinical inhibition of invadopodia. Here, we provide an overview of clinically-relevant targets for intervention in invadopodia, including Src signaling, PDGFR signaling, and metalloprotease activity.
Collapse
|
27
|
Chevé G, Bories C, Fauvel B, Picot F, Tible A, Daydé-Cazals B, Loget O, Yasri A. De novo design, synthesis and pharmacological evaluation of new azaindole derivatives as dual inhibitors of Abl and Src kinases. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20104f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Dixit A, Verkhivker GM. Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases. PLoS Comput Biol 2011; 7:e1002179. [PMID: 21998569 PMCID: PMC3188506 DOI: 10.1371/journal.pcbi.1002179] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/16/2011] [Indexed: 12/15/2022] Open
Abstract
The emerging structural information about allosteric kinase complexes and the growing number of allosteric inhibitors call for a systematic strategy to delineate and classify mechanisms of allosteric regulation and long-range communication that control kinase activity. In this work, we have investigated mechanistic aspects of long-range communications in ABL and EGFR kinases based on the results of multiscale simulations of regulatory complexes and computational modeling of signal propagation in proteins. These approaches have been systematically employed to elucidate organizing molecular principles of allosteric signaling in the ABL and EGFR multi-domain regulatory complexes and analyze allosteric signatures of the gate-keeper cancer mutations. We have presented evidence that mechanisms of allosteric activation may have universally evolved in the ABL and EGFR regulatory complexes as a product of a functional cross-talk between the organizing αF-helix and conformationally adaptive αI-helix and αC-helix. These structural elements form a dynamic network of efficiently communicated clusters that may control the long-range interdomain coupling and allosteric activation. The results of this study have unveiled a unifying effect of the gate-keeper cancer mutations as catalysts of kinase activation, leading to the enhanced long-range communication among allosterically coupled segments and stabilization of the active kinase form. The results of this study can reconcile recent experimental studies of allosteric inhibition and long-range cooperativity between binding sites in protein kinases. The presented study offers a novel molecular insight into mechanistic aspects of allosteric kinase signaling and provides a quantitative picture of activation mechanisms in protein kinases at the atomic level. Despite recent progress in computational and experimental studies of dynamic regulation in protein kinases, a mechanistic understanding of long-range communication and mechanisms of mutation-induced signaling controlling kinase activity remains largely qualitative. In this study, we have performed a systematic modeling and analysis of allosteric activation in ABL and EGFR kinases at the increasing level of complexity - from catalytic domain to multi-domain regulatory complexes. The results of this study have revealed organizing structural and mechanistic principles of allosteric signaling in protein kinases. Although activation mechanisms in ABL and EGFR kinases have evolved through acquisition of structurally different regulatory complexes, we have found that long-range interdomain communication between common functional segments (αF-helix and αC-helix) may be important for allosteric activation. The results of study have revealed molecular signatures of activating cancer mutations and have shed the light on general mechanistic aspects of mutation-induced signaling in protein kinases. An advanced understanding and further characterization of molecular signatures of kinase mutations may aid in a better rationalization of mutational effects on clinical outcomes and facilitate molecular-based therapeutic strategies to combat kinase mutation-dependent tumorigenesis.
Collapse
Affiliation(s)
- Anshuman Dixit
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
| | - Gennady M. Verkhivker
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Schwartz PA, Murray BW. Protein kinase biochemistry and drug discovery. Bioorg Chem 2011; 39:192-210. [PMID: 21872901 DOI: 10.1016/j.bioorg.2011.07.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 12/19/2022]
Abstract
Protein kinases are fascinating biological catalysts with a rapidly expanding knowledge base, a growing appreciation in cell regulatory control, and an ascendant role in successful therapeutic intervention. To better understand protein kinases, the molecular underpinnings of phosphoryl group transfer, protein phosphorylation, and inhibitor interactions are examined. This analysis begins with a survey of phosphate group and phosphoprotein properties which provide context to the evolutionary selection of phosphorylation as a central mechanism for biological regulation of most cellular processes. Next, the kinetic and catalytic mechanisms of protein kinases are examined with respect to model aqueous systems to define the elements of catalysis. A brief structural biology overview further delves into the molecular basis of catalysis and regulation of catalytic activity. Concomitant with a prominent role in normal physiology, protein kinases have important roles in the disease state. To facilitate effective kinase drug discovery, classic and emerging approaches for characterizing kinase inhibitors are evaluated including biochemical assay design, inhibitor mechanism of action analysis, and proper kinetic treatment of irreversible inhibitors. As the resulting protein kinase inhibitors can modulate intended and unintended targets, profiling methods are discussed which can illuminate a more complete range of an inhibitor's biological activities to enable more meaningful cellular studies and more effective clinical studies. Taken as a whole, a wealth of protein kinase biochemistry knowledge is available, yet it is clear that a substantial extent of our understanding in this field remains to be discovered which should yield many new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Phillip A Schwartz
- Pfizer Worldwide Research and Development, La Jolla, Pfizer Inc., San Diego, CA 92121, United States
| | | |
Collapse
|
30
|
Burke AC, Swords RT, Kelly K, Giles FJ. Current status of agents active against the T315I chronic myeloid leukemia phenotype. Expert Opin Emerg Drugs 2011; 16:85-103. [DOI: 10.1517/14728214.2011.531698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Ma JG, Huang H, Chen SM, Chen Y, Xin XL, Lin LP, Ding J, Liu H, Meng LH. PH006, a novel and selective Src kinase inhibitor, suppresses human breast cancer growth and metastasis in vitro and in vivo. Breast Cancer Res Treat 2010; 130:85-96. [PMID: 21181437 DOI: 10.1007/s10549-010-1302-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/08/2010] [Indexed: 12/13/2022]
Abstract
The central role of Src in tumor progression and metastasis has validated it as an attractive therapeutic target for the treatment of human breast cancer. The aim of this study was to identify potential Src kinase inhibitor, explore its activity, and mechanism of action in human breast cancer. A strategy integrating focused combinatorial library design, virtual screening, chemical synthesis, and high-throughput screening was adopted and a novel 6-hydrazinopurine-based inhibitor of c-Src kinase PH006 was obtained. The kinase enzymatic activities were measured by enzyme-linked immunosorbent assay. The binding mode between PH006 and Src was profiled by surface plasmon resonance approach and molecular simulation. The anti-proliferative activity was evaluated by Sulforhodamin B (SRB) and Colony formation. The anti-invasion and anti-migration activities were assessed by trans-well and wound healing assay. Results indicated that PH006 was an ATP-competitive Src inhibitor, which selectively inhibited c-Src with an IC₅₀ of 0.38 μM among a panel of 14 diverse tyrosine kinases. PH006 potently inhibited c-Src phosphorylation and c-Src-dependent signal transduction, resulting in inhibition of cell proliferation, migration, and invasion in human breast cancer MDA-MB-231 cells. Further study demonstrated that the anti-proliferative activity of PH006 was ascribed to its capability to arrest cells in G1 phase, while its anti-motility activity was related to suppression of MMP2/9 and HGF secretion. Moreover, PH006 exhibited potent activity against tumor growth as well as metastasis of human breast cancer MDA-MB-435 xenograft beard in nude mice, which was accompanied with reduced Src/FAK signaling in tumor tissue. Taken together, PH006 is a novel selective inhibitor of c-Src and possesses potent activity against breast cancer growth and metastasis, which could be potentially developed as a lead candidate against breast cancers with elevated Src tyrosine kinase activity.
Collapse
Affiliation(s)
- Jin-gui Ma
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Verones V, Flouquet N, Farce A, Carato P, Leonce S, Pfeiffer B, Berthelot P, Lebegue N. Synthesis, biological evaluation and docking studies of 4-amino-tetrahydroquinazolino[3,2-e]purine derivatives. Eur J Med Chem 2010; 45:5678-84. [DOI: 10.1016/j.ejmech.2010.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/02/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
|
34
|
Mizutani T, Kondo T, Darmanin S, Tsuda M, Tanaka S, Tobiume M, Asaka M, Ohba Y. A novel FRET-based biosensor for the measurement of BCR-ABL activity and its response to drugs in living cells. Clin Cancer Res 2010; 16:3964-75. [PMID: 20670950 DOI: 10.1158/1078-0432.ccr-10-0548] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To develop a novel diagnostic method for the assessment of drug efficacy in chronic myeloid leukemia (CML) patients individually, we generated a biosensor that enables the evaluation of BCR-ABL kinase activity in living cells using the principle of fluorescence resonance energy transfer (FRET). EXPERIMENTAL DESIGN To develop FRET-based biosensors, we used CrkL, the most characteristic substrate of BCR-ABL, and designed a protein in which CrkL is sandwiched between Venus, a variant of YFP, and enhanced cyan fluorescent protein, so that CrkL intramolecular binding of the SH2 domain to phosphorylated tyrosine (Y207) increases FRET efficiency. After evaluation of the properties of this biosensor by comparison with established methods including Western blotting and flow cytometry, BCR-ABL activity and its response to drugs were examined in CML patient cells. RESULTS After optimization, we obtained a biosensor that possesses higher sensitivity than that of established techniques with respect to measuring BCR-ABL activity and its suppression by imatinib. Thanks to its high sensitivity, this biosensor accurately gauges BCR-ABL activity in relatively small cell numbers and can also detect <1% minor drug-resistant populations within heterogeneous ones. We also noticed that this method enabled us to predict future onset of drug resistance as well as to monitor the disease status during imatinib therapy, using patient cells. CONCLUSION In consideration of its quick and practical nature, this method is potentially a promising tool for the prediction of both current and future therapeutic responses in individual CML patients, which will be surely beneficial for both patients and clinicians.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Antineoplastic Agents/therapeutic use
- Benzamides
- Biosensing Techniques/methods
- Blotting, Western
- Cell Separation
- Drug Resistance, Neoplasm/drug effects
- Flow Cytometry
- Fluorescence Resonance Energy Transfer/methods
- Fusion Proteins, bcr-abl/analysis
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Luminescent Agents
- Nuclear Proteins/metabolism
- Phosphorylation
- Piperazines/therapeutic use
- Pyrimidines/therapeutic use
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Tatsuaki Mizutani
- Laboratory of Pathophysiology and Signal Transduction, Hokkaido University Graduate School of Medicine, Kira-ku, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Schenone S, Brullo C, Musumeci F, Botta M. Novel dual Src/Abl inhibitors for hematologic and solid malignancies. Expert Opin Investig Drugs 2010; 19:931-45. [PMID: 20557276 DOI: 10.1517/13543784.2010.499898] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD c-Src and Bcr-Abl are two non-receptor or cytoplasmic tyrosine kinases (TKs) that play important roles in the development of solid and hematological malignancies. Indeed, Src is overexpressed or hyperactivated in a variety of solid tumors, while Bcr-Abl is the causative agent of chronic myeloid leukemia (CML), where Src is also involved. The two enzymes share significant sequence homology and remarkable structural resemblance. AREAS COVERED IN THIS REVIEW ATP-competitive compounds originally developed as Src inhibitors, showed to be also potent Abl inhibitors. Dasatinib, the first dual Src/Abl inhibitor approved by the US FDA in 2006 for the treatment of imatinib-resistant CML, is currently being tested in several clinical trials for the treatment of different solid tumors. SKI-606 and AZD0530 are two other important dual Src/Abl inhibitors extensively tested in animal models and in clinical trials, but not entered into therapy yet. WHAT THE READER WILL GAIN In this review we will report the latest results regarding dasatinib, SKI-606 and AZD0530, but also the knowledge on new compounds that have appeared in the literature in the last few years, including AP24163, AP24534, XL228, DC2036. We will focus on the most recent clinical trials or on preclinical studies that are in progress on these small-molecule TK inhibitors that represent a targeted therapy with high potential against cancer. TAKE HOME MESSAGE Molecularly targeted therapies, including the inhibition of specific TKs hyperactivated or overexpressed in many human cancers, could be less toxic than the classical non-specific cytotoxic chemotherapeutic agents; they could offer important therapeutic effects, especially if used in association with other agents such as monoclonal antibodies.
Collapse
Affiliation(s)
- Silvia Schenone
- University of Genoa, Dipartimento di Scienze Farmaceutiche, Viale Benedetto VX, Genoa, Italy.
| | | | | | | |
Collapse
|
36
|
Chomel JC, Sorel N, Bonnet ML, Bertrand A, Brizard F, Roy L, Guilhot F, Turhan AG. Extensive analysis of the T315I substitution and detection of additional ABL mutations in progenitors and primitive stem cell compartment in a patient with tyrosine kinase inhibitor-resistant chronic myeloid leukemia. Leuk Lymphoma 2010; 51:2103-11. [DOI: 10.3109/10428194.2010.520774] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Choi HG, Ren P, Adrian F, Sun F, Lee HS, Wang X, Ding Q, Zhang G, Xie Y, Zhang J, Liu Y, Tuntland T, Warmuth M, Manley PW, Mestan J, Gray NS, Sim T. A type-II kinase inhibitor capable of inhibiting the T315I "gatekeeper" mutant of Bcr-Abl. J Med Chem 2010; 53:5439-48. [PMID: 20604564 DOI: 10.1021/jm901808w] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The second generation of Bcr-Abl inhibitors nilotinib, dasatinib, and bosutinib developed to override imatinib resistance are not active against the T315I "gatekeeper" mutation. Here we describe a type-II T315I inhibitor 2 (GNF-7), based upon a 3,4-dihydropyrimido[4,5-d]pyrimidin-2(1H)-one scaffold which is capable of potently inhibiting wild-type and T315I Bcr-Abl as well as other clinically relevant Bcr-Abl mutants such as G250E, Q252H, Y253H, E255K, E255V, F317L, and M351T in biochemical and cellular assays. In addition, compound 2 displayed significant in vivo efficacy against T315I-Bcr-Abl without appreciable toxicity in a bioluminescent xenograft mouse model using a transformed T315I-Bcr-Abl-Ba/F3 cell line that has a stable luciferase expression. Compound 2 is among the first type-II inhibitors capable of inhibiting T315I to be described and will serve as a valuable lead to design the third generation Bcr-Abl kinase inhibitors.
Collapse
Affiliation(s)
- Hwan Geun Choi
- Dana Farber Cancer Institute, Harvard Medical School, Department of Cancer Biology and Department of Biological Chemistry and Molecular Pharmacology, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kleiner RE, Dumelin CE, Tiu GC, Sakurai K, Liu DR. In vitro selection of a DNA-templated small-molecule library reveals a class of macrocyclic kinase inhibitors. J Am Chem Soc 2010; 132:11779-91. [PMID: 20681606 PMCID: PMC2924185 DOI: 10.1021/ja104903x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Indexed: 12/12/2022]
Abstract
DNA-templated organic synthesis enables the translation of DNA sequences into synthetic small-molecule libraries suitable for in vitro selection. Previously, we described the DNA-templated multistep synthesis of a 13,824-membered small-molecule macrocycle library. Here, we report the discovery of small molecules that modulate the activity of kinase enzymes through the in vitro selection of this DNA-templated small-molecule macrocycle library against 36 biomedically relevant protein targets. DNA encoding selection survivors was amplified by PCR and identified by ultra-high-throughput DNA sequencing. Macrocycles corresponding to DNA sequences enriched upon selection against several protein kinases were synthesized on a multimilligram scale. In vitro assays revealed that these macrocycles inhibit (or activate) the kinases against which they were selected with IC(50) values as low as 680 nM. We characterized in depth a family of macrocycles enriched upon selection against Src kinase, and showed that inhibition was highly dependent on the identity of macrocycle building blocks as well as on backbone conformation. Two macrocycles in this family exhibited unusually strong Src inhibition selectivity even among kinases closely related to Src. One macrocycle was found to activate, rather than inhibit, its target kinase, VEGFR2. Taken together, these results establish the use of DNA-templated synthesis and in vitro selection to discover small molecules that modulate enzyme activities, and also reveal a new scaffold for selective ATP-competitive kinase inhibition.
Collapse
Affiliation(s)
- Ralph E. Kleiner
- Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Christoph E. Dumelin
- Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Gerald C. Tiu
- Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Kaori Sakurai
- Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - David R. Liu
- Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| |
Collapse
|
39
|
Bui MR, Hodson V, King T, Leopold D, Dai S, Fiolkoski V, Oakes S, Duke R, Apelian D, Franzusoff A, DeGregori J. Mutation-specific control of BCR-ABL T315I positive leukemia with a recombinant yeast-based therapeutic vaccine in a murine model. Vaccine 2010; 28:6028-35. [PMID: 20619375 PMCID: PMC3066561 DOI: 10.1016/j.vaccine.2010.06.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 06/28/2010] [Indexed: 01/19/2023]
Abstract
Chromosomal translocations generating the BCR-ABL oncogene cause chronic myeloid leukemia (CML) and a subset of acute lymphoblastic leukemia. The BCR-ABL(T315I) mutation confers drug resistance to FDA-approved targeted therapeutics imatinib mesylate, dasatinib, and nilotinib. We tested the ability of a recombinant yeast-based vaccine expressing the T315I-mutated BCR-ABL antigen to stimulate an anti-BCR-ABL(T315I) immune response. The yeast-based immunotherapy significantly reduced or eliminated BCR-ABL(T315I) leukemia cells from the peripheral blood of immunized animals and extended leukemia-free survival in a murine model of BCR-ABL(+) leukemia compared to animals receiving sham injection or yeast expressing ovalbumin. With immunization, leukemic cells harboring BCR-ABL(T315I) were selectively eliminated after challenge with a mixed population of BCR-ABL and BCR-ABL(T315I) leukemias. In summary, yeast-based immunotherapy represents a novel approach against the emergence of cancer drug resistance by the pre-emptive targeted ablation of tumor escape mutants.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cancer Vaccines/immunology
- Disease-Free Survival
- Fusion Proteins, bcr-abl/immunology
- Genes, MHC Class I
- Immunotherapy
- Leukemia, Experimental/immunology
- Leukemia, Experimental/therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Models, Molecular
- Molecular Sequence Data
- Protein Structure, Tertiary
- Saccharomyces cerevisiae
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Melanie R Bui
- University of Colorado Denver School of Medicine, Aurora, CO, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Khusial PR, Vadla B, Krishnan H, Ramlall TF, Shen Y, Ichikawa H, Geng JG, Goldberg GS. Src activates Abl to augment Robo1 expression in order to promote tumor cell migration. Oncotarget 2010; 1:198-209. [PMID: 21301049 PMCID: PMC3058788 DOI: 10.18632/oncotarget.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/16/2010] [Indexed: 11/25/2022] Open
Abstract
Cell migration is an essential step in cancer invasion and metastasis. A number of orchestrated cellular events involving tyrosine kinases and signaling receptors enable cancer cells to dislodge from primary tumors and colonize elsewhere in the body. For example, activation of the Src and Abl kinases can mediate events that promote tumor cell migration. Also, activation of the Robo1 receptor can induce tumor cell migration. However, while the importance of Src, Abl, and Robo1 in cell migration have been demonstrated, molecular mechanisms by which they collectively influence cell migration have not been clearly elucidated. In addition, little is known about mechanisms that control Robo1 expression. We report here that Src activates Abl to stabilize Robo1 in order to promote cell migration. Inhibition of Abl kinase activity by siRNA or kinase blockers decreased Robo1 protein levels and suppressed the migration of transformed cells. We also provide evidence that Robo1 utilizes Cdc42 and Rac1 GTPases to induce cell migration. In addition, inhibition of Robo1 signaling can suppress transformed cell migration in the face of robust Src and Abl kinase activity. Therefore, inhibitors of Src, Abl, Robo1 and small GTPases may target a coordinated pathway required for tumor cell migration.
Collapse
Affiliation(s)
- P Raaj Khusial
- Molecular Biology Department, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
| | - Bhaskar Vadla
- Molecular Biology Department, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
| | - Harini Krishnan
- Molecular Biology Department, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
| | - Trudy F Ramlall
- Department of Biochemistry and Program in Structural Biology, Weill Medical College of Cornell University, New York, New York 10065, USA
| | - Yongquan Shen
- Molecular Biology Department, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
| | - Hitoshi Ichikawa
- Genetcis Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Jian-Guo Geng
- Vascular Biology Center, Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Gary S Goldberg
- Molecular Biology Department, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
| |
Collapse
|
41
|
Khusial PR, Vadla B, Krishnan H, Ramlall TF, Shen Y, Ichikawa H, Geng JG, Goldberg GS. Src activates Abl to augment Robo1 expression in order to promote tumor cell migration. Oncotarget 2010; 1:198-209. [PMID: 21301049 PMCID: PMC3058788 DOI: 10.18632/oncotarget.100710] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/16/2010] [Indexed: 01/09/2023] Open
Abstract
Cell migration is an essential step in cancer invasion and metastasis. A number of orchestrated cellular events involving tyrosine kinases and signaling receptors enable cancer cells to dislodge from primary tumors and colonize elsewhere in the body. For example, activation of the Src and Abl kinases can mediate events that promote tumor cell migration. Also, activation of the Robo1 receptor can induce tumor cell migration. However, while the importance of Src, Abl, and Robo1 in cell migration have been demonstrated, molecular mechanisms by which they collectively influence cell migration have not been clearly elucidated. In addition, little is known about mechanisms that control Robo1 expression. We report here that Src activates Abl to stabilize Robo1 in order to promote cell migration. Inhibition of Abl kinase activity by siRNA or kinase blockers decreased Robo1 protein levels and suppressed the migration of transformed cells. We also provide evidence that Robo1 utilizes Cdc42 and Rac1 GTPases to induce cell migration. In addition, inhibition of Robo1 signaling can suppress transformed cell migration in the face of robust Src and Abl kinase activity. Therefore, inhibitors of Src, Abl, Robo1 and small GTPases may target a coordinated pathway required for tumor cell migration.
Collapse
Affiliation(s)
- P Raaj Khusial
- Molecular Biology Department, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mand MR, Wu D, Veach DR, Kron SJ. Cell treatment and lysis in 96-well filter-bottom plates for screening Bcr-Abl activity and inhibition in whole-cell extracts. ACTA ACUST UNITED AC 2010; 15:434-40. [PMID: 20237206 DOI: 10.1177/1087057110363307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although conventional high-throughput screens performed in vitro with purified protein kinases are powerful tools to discover new kinase inhibitors, they are far from ideal for determining efficacy in vivo. As a complementary approach, cell-based, target-driven secondary screens may help predict in vivo compound potency and specificity as well as evaluate bioavailability and toxicity. Here the authors report a simple protocol for treating K562 Bcr-Abl-expressing cells with small-molecule kinase inhibitors in 96-well filter-bottom plates followed by in-plate cell lysis. The lysates were assayed via a solid-phase kinase assay, allowing determination of apparent IC(50) for known Bcr-Abl inhibitors as well as facilitating the screening of a small kinase inhibitor library. This approach may have further applications in generating lysates for analyzing kinase activity and inhibition in other nonadherent suspension cell lines.
Collapse
Affiliation(s)
- Michael R Mand
- Institute of Cellular and Molecular Biology, University of Texas at Austin, USA
| | | | | | | |
Collapse
|
43
|
Aleksandrov A, Simonson T. Molecular dynamics simulations show that conformational selection governs the binding preferences of imatinib for several tyrosine kinases. J Biol Chem 2010; 285:13807-15. [PMID: 20200154 DOI: 10.1074/jbc.m110.109660] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tyrosine kinases transmit cellular signals through a complex mechanism, involving their phosphorylation and switching between inactive and active conformations. The cancer drug imatinib binds tightly to several homologous kinases, including Abl, but weakly to others, including Src. Imatinib specifically targets the inactive, so-called "DFG-out" conformation of Abl, which differs from the preferred, "DFG-in" conformation of Src in the orientation of a conserved Asp-Phe-Gly (DFG) activation loop. However, recent x-ray structures showed that Src can also adopt the DFG-out conformation and uses it to bind imatinib. The Src/Abl-binding free energy difference can thus be decomposed into two contributions. Contribution i measures the different protein-imatinib interactions when either kinase is in its DFG-out conformation. Contribution ii depends on the ability of imatinib to select or induce this conformation, i.e. on the relative stabilities of the DFG-out and DFG-in conformations of each kinase. Neither contribution has been measured experimentally. We use molecular dynamics simulations to show that contribution i is very small, 0.2 +/- 0.6 kcal/mol; imatinib interactions are very similar in the two kinases, including long range electrostatic interactions with the imatinib positive charge. Contribution ii, deduced using the experimental binding free energy difference, is much larger, 4.4 +/- 0.9 kcal/mol. Thus, conformational selection, easy in Abl, difficult in Src, underpins imatinib specificity. Contribution ii has a simple interpretation; it closely approximates the stability difference between the DFG-out and DFG-in conformations of apo-Src. Additional calculations show that conformational selection also governs the relative binding of imatinib to the kinases c-Kit and Lck. These results should help clarify the current framework for engineering kinase signaling.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91128 Palaiseau, France
| | | |
Collapse
|
44
|
Azam M, Powers JT, Einhorn W, Huang WS, Shakespeare WC, Zhu X, Dalgarno D, Clackson T, Sawyer TK, Daley GQ. AP24163 Inhibits the Gatekeeper Mutant of BCR-ABL and SuppressesIn vitroResistance. Chem Biol Drug Des 2010; 75:223-7. [DOI: 10.1111/j.1747-0285.2009.00911.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Zhang J, Adrián FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, Sim T, Powers J, Dierks C, Sun F, Guo GR, Ding Q, Okram B, Choi Y, Wojciechowski A, Deng X, Liu G, Fendrich G, Strauss A, Vajpai N, Grzesiek S, Tuntland T, Liu Y, Bursulaya B, Azam M, Manley PW, Engen JR, Daley GQ, Warmuth M, Gray NS. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 2010; 463:501-6. [PMID: 20072125 DOI: 10.1038/nature08675] [Citation(s) in RCA: 479] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 11/11/2009] [Indexed: 11/09/2022]
Abstract
In an effort to find new pharmacological modalities to overcome resistance to ATP-binding-site inhibitors of Bcr-Abl, we recently reported the discovery of GNF-2, a selective allosteric Bcr-Abl inhibitor. Here, using solution NMR, X-ray crystallography, mutagenesis and hydrogen exchange mass spectrometry, we show that GNF-2 binds to the myristate-binding site of Abl, leading to changes in the structural dynamics of the ATP-binding site. GNF-5, an analogue of GNF-2 with improved pharmacokinetic properties, when used in combination with the ATP-competitive inhibitors imatinib or nilotinib, suppressed the emergence of resistance mutations in vitro, displayed additive inhibitory activity in biochemical and cellular assays against T315I mutant human Bcr-Abl and displayed in vivo efficacy against this recalcitrant mutant in a murine bone-marrow transplantation model. These results show that therapeutically relevant inhibition of Bcr-Abl activity can be achieved with inhibitors that bind to the myristate-binding site and that combining allosteric and ATP-competitive inhibitors can overcome resistance to either agent alone.
Collapse
Affiliation(s)
- Jianming Zhang
- Dana-Farber Cancer Institute, Harvard Medical School, Department of Cancer Biology, Seeley G. Mudd Building 628, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhou T, Commodore L, Huang WS, Wang Y, Sawyer TK, Shakespeare WC, Clackson T, Zhu X, Dalgarno DC. Structural Analysis of DFG-in and DFG-out Dual Src-Abl Inhibitors Sharing a Common Vinyl Purine Template. Chem Biol Drug Des 2010; 75:18-28. [DOI: 10.1111/j.1747-0285.2009.00905.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
47
|
Stock W. Current treatment options for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Leuk Lymphoma 2009; 51:188-98. [DOI: 10.3109/10428190903452834] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Cooper S, Giles FJ, Savona MR. Overcoming resistance in chronic myelogenous leukemia. Leuk Lymphoma 2009; 50:1785-93. [DOI: 10.3109/10428190903267559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
49
|
Swords R, Mahalingam D, Padmanabhan S, Carew J, Giles F. Nilotinib: optimal therapy for patients with chronic myeloid leukemia and resistance or intolerance to imatinib. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 3:89-101. [PMID: 19920925 PMCID: PMC2769239 DOI: 10.2147/dddt.s3069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic myeloid leukemia (CML) is the consequence of a single balanced translocation that produces the BCR-ABL fusion oncogene which is detectable in over 90% of patients at presentation. The BCR-ABL inhibitor imatinib mesylate (IM) has improved survival in all phases of CML and is the standard of care for newly diagnosed patients in chronic phase. Despite the very significant therapeutic benefits of IM, a small minority of patients with early stage disease do not benefit optimally while IM therapy in patients with advanced disease is of modest benefit in many. Diverse mechanisms may be responsible for IM failures, with point mutations within the Bcr-Abl kinase domain being amongst the most common resistance mechanisms described in patients with advanced CML. The development of novel agents designed to overcome IM resistance, while still primarily targeted on BCR-ABL, led to the creation of the high affinity aminopyrimidine inhibitor, nilotinib. Nilotinib is much more potent as a BCR-ABL inhibitor than IM and inhibits both wild type and IM-resistant BCR-ABL with significant clinical activity across the entire spectrum of BCR-ABL mutants with the exception of T315I. The selection of a second generation tyrosine kinase inhibitor to rescue patients with imatinib failure will be based on several factors including age, co-morbid medical problems and ABL kinase mutational profile. It should be noted that while the use of targeted BCR-ABL kinase inhibitors in CML represents a paradigm shift in CML management these agents are not likely to have activity against the quiescent CML stem cell pool. The purpose of this review is to summarize the pre-clinical and clinical data on nilotinib in patients with CML who have failed prior therapy with IM or dasatinib.
Collapse
Affiliation(s)
- Ronan Swords
- Institute for Drug Development, Cancer Therapy and Research Centre, University of Texas Health Science Centre at San Antonio, 7979 Wurzbach Road, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
50
|
Huang WS, Zhu X, Wang Y, Azam M, Wen D, Sundaramoorthi R, Thomas RM, Liu S, Banda G, Lentini SP, Das S, Xu Q, Keats J, Wang F, Wardwell S, Ning Y, Snodgrass JT, Broudy MI, Russian K, Daley GQ, Iuliucci J, Dalgarno DC, Clackson T, Sawyer TK, Shakespeare WC. 9-(Arenethenyl)purines as dual Src/Abl kinase inhibitors targeting the inactive conformation: design, synthesis, and biological evaluation. J Med Chem 2009; 52:4743-56. [PMID: 19572547 DOI: 10.1021/jm900166t] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A novel series of potent dual Src/Abl kinase inhibitors based on a 9-(arenethenyl)purine core has been identified. Unlike traditional dual Src/Abl inhibitors targeting the active enzyme conformation, these inhibitors bind to the inactive, DFG-out conformation of both kinases. Extensive SAR studies led to the discovery of potent and orally bioavailable inhibitors, some of which demonstrated in vivo efficacy. Once-daily oral administration of inhibitor 9i (AP24226) significantly prolonged the survival of mice injected intravenously with wild type Bcr-Abl expressing Ba/F3 cells at a dose of 10 mg/kg. In a separate model, oral administration of 9i to mice bearing subcutaneous xenografts of Src Y527F expressing NIH 3T3 cells elicited dose-dependent tumor shrinkage with complete tumor regression observed at the highest dose. Notably, several inhibitors (e.g., 14a, AP24163) exhibited modest cellular potency (IC50 = 300-400 nM) against the Bcr-Abl mutant T315I, a variant resistant to all currently marketed therapies for chronic myeloid leukemia.
Collapse
Affiliation(s)
- Wei-Sheng Huang
- ARIAD Pharmaceuticals, Inc., 26 Landsdowne Street, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|