1
|
Wald J, Marlovits TC. Holliday junction branch migration driven by AAA+ ATPase motors. Curr Opin Struct Biol 2023; 82:102650. [PMID: 37604043 DOI: 10.1016/j.sbi.2023.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 08/23/2023]
Abstract
Holliday junctions are key intermediate DNA structures during genetic recombination. One of the first Holliday junction-processing protein complexes to be discovered was the well conserved RuvAB branch migration complex present in bacteria that mediates an ATP-dependent movement of the Holliday junction (branch migration). Although the RuvAB complex served as a paradigm for the processing of the Holliday junction, due to technical limitations the detailed structure and underlying mechanism of the RuvAB branch migration complex has until now remained unclear. Recently, structures of a reconstituted RuvAB complex actively-processing a Holliday junction were resolved using time-resolved cryo-electron microscopy. These structures showed distinct conformational states at different stages of the migration process. These structures made it possible to propose an integrated model for RuvAB Holliday junction branch migration. Furthermore, they revealed unexpected insights into the highly coordinated and regulated mechanisms of the nucleotide cycle powering substrate translocation in the hexameric AAA+ RuvB ATPase. Here, we review these latest advances and describe areas for future research.
Collapse
Affiliation(s)
- Jiri Wald
- Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany; Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße 85, 22607 Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Thomas C Marlovits
- Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany; Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße 85, 22607 Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany.
| |
Collapse
|
2
|
Mahmoud R, Dhakal S. Single-Molecule Analysis of DNA Branch Migration under Biomimetic Environments. J Phys Chem B 2022; 126:7252-7261. [DOI: 10.1021/acs.jpcb.2c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roaa Mahmoud
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
3
|
Wald J, Fahrenkamp D, Goessweiner-Mohr N, Lugmayr W, Ciccarelli L, Vesper O, Marlovits TC. Mechanism of AAA+ ATPase-mediated RuvAB-Holliday junction branch migration. Nature 2022; 609:630-639. [PMID: 36002576 PMCID: PMC9477746 DOI: 10.1038/s41586-022-05121-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 07/18/2022] [Indexed: 12/12/2022]
Abstract
The Holliday junction is a key intermediate formed during DNA recombination across all kingdoms of life1. In bacteria, the Holliday junction is processed by two homo-hexameric AAA+ ATPase RuvB motors, which assemble together with the RuvA-Holliday junction complex to energize the strand-exchange reaction2. Despite its importance for chromosome maintenance, the structure and mechanism by which this complex facilitates branch migration are unknown. Here, using time-resolved cryo-electron microscopy, we obtained structures of the ATP-hydrolysing RuvAB complex in seven distinct conformational states, captured during assembly and processing of a Holliday junction. Five structures together resolve the complete nucleotide cycle and reveal the spatiotemporal relationship between ATP hydrolysis, nucleotide exchange and context-specific conformational changes in RuvB. Coordinated motions in a converter formed by DNA-disengaged RuvB subunits stimulate hydrolysis and nucleotide exchange. Immobilization of the converter enables RuvB to convert the ATP-contained energy into a lever motion, which generates the pulling force driving the branch migration. We show that RuvB motors rotate together with the DNA substrate, which, together with a progressing nucleotide cycle, forms the mechanistic basis for DNA recombination by continuous branch migration. Together, our data decipher the molecular principles of homologous recombination by the RuvAB complex, elucidate discrete and sequential transition-state intermediates for chemo-mechanical coupling of hexameric AAA+ motors and provide a blueprint for the design of state-specific compounds targeting AAA+ motors.
Collapse
Affiliation(s)
- Jiri Wald
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| | - Dirk Fahrenkamp
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
| | - Nikolaus Goessweiner-Mohr
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- Institute of Biophysics, Johannes Kepler University (JKU), Linz, Austria
| | - Wolfgang Lugmayr
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Luciano Ciccarelli
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- GlaxoSmithKline Vaccines, Siena, Italy
| | - Oliver Vesper
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Thomas C Marlovits
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| |
Collapse
|
4
|
Bianco PR, Lu Y. Single-molecule insight into stalled replication fork rescue in Escherichia coli. Nucleic Acids Res 2021; 49:4220-4238. [PMID: 33744948 PMCID: PMC8096234 DOI: 10.1093/nar/gkab142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023] Open
Abstract
DNA replication forks stall at least once per cell cycle in Escherichia coli. DNA replication must be restarted if the cell is to survive. Restart is a multi-step process requiring the sequential action of several proteins whose actions are dictated by the nature of the impediment to fork progression. When fork progress is impeded, the sequential actions of SSB, RecG and the RuvABC complex are required for rescue. In contrast, when a template discontinuity results in the forked DNA breaking apart, the actions of the RecBCD pathway enzymes are required to resurrect the fork so that replication can resume. In this review, we focus primarily on the significant insight gained from single-molecule studies of individual proteins, protein complexes, and also, partially reconstituted regression and RecBCD pathways. This insight is related to the bulk-phase biochemical data to provide a comprehensive review of each protein or protein complex as it relates to stalled DNA replication fork rescue.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yue Lu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
5
|
Gibbs DR, Dhakal S. Single-Molecule Imaging Reveals Conformational Manipulation of Holliday Junction DNA by the Junction Processing Protein RuvA. Biochemistry 2018; 57:3616-3624. [PMID: 29767969 DOI: 10.1021/acs.biochem.8b00404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Interactions between DNA and motor proteins regulate nearly all biological functions of DNA such as gene expression, DNA replication and repair, and transcription. During the late stages of homologous recombination (HR), the Escherichia coli recombination machinery, RuvABC, resolves the four-way DNA motifs called Holliday junctions (HJs) that are formed during exchange of nucleotide sequences between two homologous duplex DNA. Although the formation of the RuvA-HJ complex is known to be the first critical step in the RuvABC pathway, the mechanism for the binding interaction between RuvA and HJ has remained elusive. Here, using single-molecule fluorescence resonance energy transfer (smFRET) and ensemble analyses, we show that RuvA stably binds to the HJ, halting its conformational dynamics. Our FRET experiments in different ionic environments created by Mg2+ and Na+ ions suggest that RuvA binds to the HJ via electrostatic interaction. Further, while recent studies have indicated that the HR process can be modulated for therapeutic applications by selective targeting of the HJ by chemotherapeutic drugs, we investigated the effect of drug-modified HJ on binding. Using cisplatin as a proof-of-concept drug, we show that RuvA binds to the cisplatin-modified HJ as efficiently as to the unmodified HJ, demonstrating that RuvA accommodates for the cisplatin-introduced charges and/or topological changes on the HJ.
Collapse
Affiliation(s)
- Dalton R Gibbs
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284 , United States
| | - Soma Dhakal
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284 , United States
| |
Collapse
|
6
|
Nautiyal A, Rani PS, Sharples GJ, Muniyappa K. Mycobacterium tuberculosis RuvX is a Holliday junction resolvase formed by dimerisation of the monomeric YqgF nuclease domain. Mol Microbiol 2016; 100:656-74. [PMID: 26817626 DOI: 10.1111/mmi.13338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 01/07/2023]
Abstract
The Mycobacterium tuberculosis genome possesses homologues of the ruvC and yqgF genes that encode putative Holliday junction (HJ) resolvases. However, their gene expression profiles and enzymatic properties have not been experimentally defined. Here we report that expression of ruvC and yqgF is induced in response to DNA damage. Protein-DNA interaction assays with purified M. tuberculosis RuvC (MtRuvC) and YqgF (MtRuvX) revealed that both associate preferentially with HJ DNA, albeit with differing affinities. Although both MtRuvC and MtRuvX cleaved HJ DNA in vitro, the latter displayed robust HJ resolution activity by symmetrically related, paired incisions. MtRuvX showed a higher binding affinity for the HJ structure over other branched recombination and replication intermediates. An MtRuvX(D28N) mutation, eliminating one of the highly conserved catalytic residues in this class of endonucleases, dramatically reduced its ability to cleave HJ DNA. Furthermore, a unique cysteine (C38) fulfils a crucial role in HJ cleavage, consistent with disulfide-bond mediated dimerization being essential for MtRuvX activity. In contrast, E. coli YqgF is monomeric and exhibits no branched DNA binding or cleavage activity. These results fit with a functional modification of YqgF in M. tuberculosis so that it can act as a dimeric HJ resolvase analogous to that of RuvC.
Collapse
Affiliation(s)
- Astha Nautiyal
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - P Sandhya Rani
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Gary J Sharples
- Department of Chemistry, School of Biological and Biomedical Sciences, Biophysical Sciences Institute, University of Durham, DH1 3LE, UK
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| |
Collapse
|
7
|
Biological Nanomotors with a Revolution, Linear, or Rotation Motion Mechanism. Microbiol Mol Biol Rev 2016; 80:161-86. [PMID: 26819321 DOI: 10.1128/mmbr.00056-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ubiquitous biological nanomotors were classified into two categories in the past: linear and rotation motors. In 2013, a third type of biomotor, revolution without rotation (http://rnanano.osu.edu/movie.html), was discovered and found to be widespread among bacteria, eukaryotic viruses, and double-stranded DNA (dsDNA) bacteriophages. This review focuses on recent findings about various aspects of motors, including chirality, stoichiometry, channel size, entropy, conformational change, and energy usage rate, in a variety of well-studied motors, including FoF1 ATPase, helicases, viral dsDNA-packaging motors, bacterial chromosome translocases, myosin, kinesin, and dynein. In particular, dsDNA translocases are used to illustrate how these features relate to the motion mechanism and how nature elegantly evolved a revolution mechanism to avoid coiling and tangling during lengthy dsDNA genome transportation in cell division. Motor chirality and channel size are two factors that distinguish rotation motors from revolution motors. Rotation motors use right-handed channels to drive the right-handed dsDNA, similar to the way a nut drives the bolt with threads in same orientation; revolution motors use left-handed motor channels to revolve the right-handed dsDNA. Rotation motors use small channels (<2 nm in diameter) for the close contact of the channel wall with single-stranded DNA (ssDNA) or the 2-nm dsDNA bolt; revolution motors use larger channels (>3 nm) with room for the bolt to revolve. Binding and hydrolysis of ATP are linked to different conformational entropy changes in the motor that lead to altered affinity for the substrate and allow work to be done, for example, helicase unwinding of DNA or translocase directional movement of DNA.
Collapse
|
8
|
Iwasa T, Han YW, Hiramatsu R, Yokota H, Nakao K, Yokokawa R, Ono T, Harada Y. Synergistic effect of ATP for RuvA-RuvB-Holliday junction DNA complex formation. Sci Rep 2015; 5:18177. [PMID: 26658024 PMCID: PMC4677358 DOI: 10.1038/srep18177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/13/2015] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli RuvB hexameric ring motor proteins, together with RuvAs, promote branch migration of Holliday junction DNA. Zero mode waveguides (ZMWs) constitute of nanosized holes and enable the visualization of a single fluorescent molecule under micromolar order of the molecules, which is applicable to characterize the formation of RuvA–RuvB–Holliday junction DNA complex. In this study, we used ZMWs and counted the number of RuvBs binding to RuvA–Holliday junction DNA complex. Our data demonstrated that different nucleotide analogs increased the amount of Cy5-RuvBs binding to RuvA–Holliday junction DNA complex in the following order: no nucleotide, ADP, ATPγS, and mixture of ADP and ATPγS. These results suggest that not only ATP binding to RuvB but also ATP hydrolysis by RuvB facilitates a stable RuvA–RuvB–Holliday junction DNA complex formation.
Collapse
Affiliation(s)
- Takuma Iwasa
- Institute for Integrated Cell-Materials Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.,Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yong-Woon Han
- Institute for Integrated Cell-Materials Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.,CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda, Tokyo 102-0075, Japan
| | - Ryo Hiramatsu
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hiroaki Yokota
- Institute for Integrated Cell-Materials Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Kimiko Nakao
- Institute for Integrated Cell-Materials Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Technology, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Teruo Ono
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yoshie Harada
- Institute for Integrated Cell-Materials Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.,Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8501, Japan.,CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda, Tokyo 102-0075, Japan
| |
Collapse
|
9
|
Common mechanisms of DNA translocation motors in bacteria and viruses using one-way revolution mechanism without rotation. Biotechnol Adv 2015; 32:853-72. [PMID: 24913057 DOI: 10.1016/j.biotechadv.2014.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 12/15/2022]
Abstract
Biomotors were once described into two categories: linear motor and rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24h, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, and T7 as well as bacterial DNA translocase FtsK and SpoIIIE or the large eukaryotic dsDNA viruses such as mimivirus and vaccinia virus as examples to elucidate the puzzles. These motors use ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, that is the size of dsDNA, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-chiral arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism that avoids DNA coiling in translocating the lengthy genomic dsDNA helix could be advantageous for cell replication such as bacterial binary fission and cell mitosis without the need for topoisomerase or helicase to consume additional energy.
Collapse
|
10
|
Lipfert J, van Oene MM, Lee M, Pedaci F, Dekker NH. Torque spectroscopy for the study of rotary motion in biological systems. Chem Rev 2014; 115:1449-74. [PMID: 25541648 DOI: 10.1021/cr500119k] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich, and Center for NanoScience (CeNS), Ludwig-Maximilian-University Munich , Amalienstrasse 54, 80799 Munich, Germany
| | | | | | | | | |
Collapse
|
11
|
Wolfe A, Phipps K, Weitao T. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions. Cell Biosci 2014; 4:31. [PMID: 24995125 PMCID: PMC4080785 DOI: 10.1186/2045-3701-4-31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/13/2014] [Indexed: 01/15/2023] Open
Abstract
DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.
Collapse
Affiliation(s)
- Annie Wolfe
- Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
| | - Kara Phipps
- Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
| | - Tao Weitao
- Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
| |
Collapse
|
12
|
Abstract
Homologous recombination is an ubiquitous process that shapes genomes and repairs DNA damage. The reaction is classically divided into three phases: presynaptic, synaptic, and postsynaptic. In Escherichia coli, the presynaptic phase involves either RecBCD or RecFOR proteins, which act on DNA double-stranded ends and DNA single-stranded gaps, respectively; the central synaptic steps are catalyzed by the ubiquitous DNA-binding protein RecA; and the postsynaptic phase involves either RuvABC or RecG proteins, which catalyze branch-migration and, in the case of RuvABC, the cleavage of Holliday junctions. Here, we review the biochemical properties of these molecular machines and analyze how, in light of these properties, the phenotypes of null mutants allow us to define their biological function(s). The consequences of point mutations on the biochemical properties of recombination enzymes and on cell phenotypes help refine the molecular mechanisms of action and the biological roles of recombination proteins. Given the high level of conservation of key proteins like RecA and the conservation of the principles of action of all recombination proteins, the deep knowledge acquired during decades of studies of homologous recombination in bacteria is the foundation of our present understanding of the processes that govern genome stability and evolution in all living organisms.
Collapse
|
13
|
Bryant Z, Oberstrass FC, Basu A. Recent developments in single-molecule DNA mechanics. Curr Opin Struct Biol 2012; 22:304-12. [PMID: 22658779 DOI: 10.1016/j.sbi.2012.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 04/26/2012] [Indexed: 12/11/2022]
Abstract
Over the past two decades, measurements on individual stretched and twisted DNA molecules have helped define the basic elastic properties of the double helix and enabled real-time functional assays of DNA-associated molecular machines. Recently, new magnetic tweezers approaches for simultaneously measuring freely fluctuating twist and extension have begun to shed light on the structural dynamics of large nucleoprotein complexes. Related technical advances have facilitated direct measurements of DNA torque, contributing to a better understanding of abrupt structural transitions in mechanically stressed DNA. The new measurements have also been exploited in studies that hint at a developing synergistic relationship between single-molecule manipulation and structural DNA nanotechnology.
Collapse
Affiliation(s)
- Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
14
|
STARIKOV EB, HENNIG D, YAMADA H, GUTIERREZ R, NORDÉN B, CUNIBERTI G. SCREW MOTION OF DNA DUPLEX DURING TRANSLOCATION THROUGH PORE I: INTRODUCTION OF THE COARSE-GRAINED MODEL. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048009000995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Based upon the structural properties of DNA duplexes and their counterion-water surrounding in solution, we have introduced here a screw model which may describe translocation of DNA duplexes through artificial nanopores of the proper diameter (where the DNA counterion–hydration shell can be intact) in a qualitatively correct way. This model represents DNA as a kind of "screw," whereas the counterion-hydration shell is a kind of "nut." Mathematical conditions for stable dynamics of the DNA screw model are investigated in detail. When an electrical potential is applied across an artificial membrane with a nanopore, the "screw" and "nut" begin to move with respect to each other, so that their mutual rotation is coupled with their mutual translation. As a result, there are peaks of electrical current connected with the mutual translocation of DNA and its counterion–hydration shell, if DNA is possessed of some non-regular base-pair sequence. The calculated peaks of current strongly resemble those observed in the pertinent experiments. An analogous model could in principle be applied to DNA translocation in natural DNA–protein complexes of biological interest, where the role of "nut" would be played by protein-tailored "channels." In such cases, the DNA screw model is capable of qualitatively explaining chemical-to-mechanical energy conversion in DNA–protein molecular machines via symmetry breaking in DNA–protein friction.
Collapse
Affiliation(s)
- E. B. STARIKOV
- Institute for Materials Science, Technical University of Dresden, D-01062 Dresden, Germany
- Institute for Theoretical Solid State Physics, University of Karlsruhe, Wolfgang-Gaede Str.1, D-76131 Karlsruhe, Germany
| | - D. HENNIG
- Institute for Physics, Humboldt University of Berlin, Newtonstraße 15, D-12489 Berlin, Germany
| | - H. YAMADA
- Yamada Physics Research Laboratory, Aoyama 5-7-14-205, Niigata 950-2002, Japan
| | - R. GUTIERREZ
- Institute for Materials Science, Technical University of Dresden, D-01062 Dresden, Germany
| | - B. NORDÉN
- Department of Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - G. CUNIBERTI
- Institute for Materials Science, Technical University of Dresden, D-01062 Dresden, Germany
| |
Collapse
|
15
|
Lipfert J, Wiggin M, Kerssemakers JWJ, Pedaci F, Dekker NH. Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids. Nat Commun 2011; 2:439. [PMID: 21863006 PMCID: PMC4354108 DOI: 10.1038/ncomms1450] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/21/2011] [Indexed: 11/28/2022] Open
Abstract
The double-stranded nature of DNA links its replication, transcription and repair to rotational motion and torsional strain. Magnetic tweezers (MT) are a powerful single-molecule technique to apply both forces and torques to individual DNA or RNA molecules. However, conventional MT do not track rotational motion directly and constrain the free rotation of the nucleic acid tether. Here we present freely orbiting MT (FOMT) that allow the measurement of equilibrium fluctuations and changes in the twist of tethered nucleic acid molecules. Using a precisely aligned vertically oriented magnetic field, FOMT enable tracking of the rotation angle from straight forward (x,y)-position tracking and permits the application of calibrated stretching forces, without biasing the tether's free rotation. We utilize FOMT to measure the force-dependent torsional stiffness of DNA from equilibrium rotational fluctuations and to follow the assembly of recombination protein A filaments on DNA. Rotational motion and torsional strain affects DNA replication, transcription and repair. Lipfert et al. have developed a new technique that uses freely orbiting magnetic tweezers to measure equilibrium fluctuations and determine the twist of tethered nucleic acid molecules.
Collapse
Affiliation(s)
- Jan Lipfert
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Lobo S, Escauriaza C, Celedon A. Measurement of surface effects on the rotational diffusion of a colloidal particle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:2142-2145. [PMID: 21322571 DOI: 10.1021/la1049452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A growing number of nanotechnologies involve rotating particles. Because the particles are normally close to a solid surface, hydrodynamic interaction may affect particle rotation. Here, we track probes composed of two particles tethered to a solid surface by a DNA molecule to measure for the first time the effect of a surface on the rotational viscous drag. We use a model that superimposes solutions of the Stokes equation in the presence of a wall to confirm and interpret our measurements. We show that the hydrodynamic interaction between the surface and the probe increases the rotational viscous drag and that the effect strongly depends on the geometry of the probe.
Collapse
Affiliation(s)
- Sebastian Lobo
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305-3030, United States
| | | | | |
Collapse
|
17
|
Ishida H. Branch migration of Holliday junction in RuvA tetramer complex studied by umbrella sampling simulation using a path-search algorithm. J Comput Chem 2010; 31:2317-29. [PMID: 20575014 DOI: 10.1002/jcc.21525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Branch migration of the Holliday junction takes place at the center of the RuvA tetramer. To elucidate how branch migration occurs, umbrella sampling simulations were performed for complexes of the RuvA tetramer and Holliday junction DNA. Although conventional umbrella sampling simulations set sampling points a priori, the umbrella sampling simulation in this study set the sampling points one by one in order to search for a realistic path of the branch migration during the simulations. Starting from the X-ray structure of the complex, in which the hydrogen bonds between two base-pairs were unformed, the hydrogen bonds between the next base-pairs of the shrinking stems were observed to start to disconnect. At the intermediate stage, three or four of the eight unpaired bases interacted closely with the acidic pins from RuvA. During the final stage, these bases moved away from the pins and formed the hydrogen bonds of the new base-pairs of the growing stems. The free-energy profile along this reaction path showed that the intermediate stage was a meta-stable state between two free-energy barriers of about 10 to 15 kcal/mol. These results imply that the pins play an important role in stabilizing the interactions between the pins and the unpaired base-pairs.
Collapse
Affiliation(s)
- Hisashi Ishida
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan.
| |
Collapse
|
18
|
Abstract
DNA and RNA helicases are organized into six superfamilies of enzymes on the basis of sequence alignments, biochemical data, and available crystal structures. DNA helicases, members of which are found in each of the superfamilies, are an essential group of motor proteins that unwind DNA duplexes into their component single strands in a process that is coupled to the hydrolysis of nucleoside 5'-triphosphates. The purpose of this DNA unwinding is to provide nascent, single-stranded DNA (ssDNA) for the processes of DNA repair, replication, and recombination. Not surprisingly, DNA helicases share common biochemical properties that include the binding of single- and double-stranded DNA, nucleoside 5'-triphosphate binding and hydrolysis, and nucleoside 5'-triphosphate hydrolysis-coupled, polar unwinding of duplex DNA. These enzymes participate in every aspect of DNA metabolism due to the requirement for transient separation of small regions of the duplex genome into its component strands so that replication, recombination, and repair can occur. In Escherichia coli, there are currently twelve DNA helicases that perform a variety of tasks ranging from simple strand separation at the replication fork to more sophisticated processes in DNA repair and genetic recombination. In this chapter, the superfamily classification, role(s) in DNA metabolism, effects of mutations, biochemical analysis, oligomeric nature, and interacting partner proteins of each of the twelve DNA helicases are discussed.
Collapse
|
19
|
Abstract
Homologous recombination (HR) performs crucial functions including DNA repair, segregation of homologous chromosomes, propagation of genetic diversity, and maintenance of telomeres. HR is responsible for the repair of DNA double-strand breaks and DNA interstrand cross-links. The process of HR is initiated at the site of DNA breaks and gaps and involves a search for homologous sequences promoted by Rad51 and auxiliary proteins followed by the subsequent invasion of broken DNA ends into the homologous duplex DNA that then serves as a template for repair. The invasion produces a cross-stranded structure, known as the Holliday junction. Here, we describe the properties of Rad54, an important and versatile HR protein that is evolutionarily conserved in eukaryotes. Rad54 is a motor protein that translocates along dsDNA and performs several important functions in HR. The current review focuses on the recently identified Rad54 activities which contribute to the late phase of HR, especially the branch migration of Holliday junctions.
Collapse
Affiliation(s)
- Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | | | | | |
Collapse
|
20
|
Finkelstein IJ, Greene EC. Single molecule studies of homologous recombination. MOLECULAR BIOSYSTEMS 2008; 4:1094-104. [PMID: 18931785 PMCID: PMC2726709 DOI: 10.1039/b811681b] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Single molecule methods offer an unprecedented opportunity to examine complex macromolecular reactions that are obfuscated by ensemble averaging. The application of single molecule techniques to study DNA processing enzymes has revealed new mechanistic details that are unobtainable from bulk biochemical studies. Homologous DNA recombination is a multi-step pathway that is facilitated by numerous enzymes that must precisely and rapidly manipulate diverse DNA substrates to repair potentially lethal breaks in the DNA duplex. In this review, we present an overview of single molecule assays that have been developed to study key aspects of homologous recombination and discuss the unique information gleaned from these experiments.
Collapse
Affiliation(s)
- Ilya J. Finkelstein
- Departments of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Eric C. Greene
- Departments of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
21
|
Hayashi M, Harada Y. Direct observation of the reversible unwinding of a single DNA molecule caused by the intercalation of ethidium bromide. Nucleic Acids Res 2007; 35:e125. [PMID: 17905818 PMCID: PMC2095801 DOI: 10.1093/nar/gkm529] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ethidium bromide (EtBr) is the conventional intercalator for visualizing DNA. Previous studies suggested that EtBr lengthens and unwinds double-stranded DNA (dsDNA). However, no one has observed the unwinding of a single dsDNA molecule during intercalation. We developed a simple method to observe the twisting motions of a single dsDNA molecule under an optical microscope. A short dsDNA was attached to a glass surface of a flow chamber at one end and to a doublet bead as a rotation marker at the other end. After the addition and removal of EtBr, the bead revolved in opposite directions that corresponded to the unwinding and rewinding of a dsDNA, respectively. The amount of intercalating EtBr was estimated from the revolutions of the bead. EtBr occupied 57% of base pairs on a single dsDNA at 1 mM of EtBr, indicating that EtBr molecules could bind at contiguous sites to each other. The isotherm of intercalation showed that negative cooperativity existed between adjoining EtBr molecules. The association constant of EtBr and dsDNA (1.9 (±0.1) × 105 M−1) was consistent with that of previous results. Our system is useful to investigate the twisting of a single dsDNA interacting with various chemicals and biomolecules.
Collapse
Affiliation(s)
- Masahito Hayashi
- The Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
22
|
Model for RuvAB-mediated branch migration of Holliday junctions. J Theor Biol 2007; 249:566-73. [PMID: 17919660 DOI: 10.1016/j.jtbi.2007.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 08/27/2007] [Accepted: 08/27/2007] [Indexed: 11/21/2022]
Abstract
During RuvAB-mediated Holliday-junction migration two opposite arms of double-stranded DNA (dsDNA) are driven to translocate unidirectional by two respective ring-like hexameric RuvB proteins. However, how the RuvB protein, powered by ATP hydrolysis, drives unidirectional translocation of dsDNA is not clear. Here a model is presented for this mechanochemical-coupling mechanism. In the model, the unidirectional translocation is resulted from both the ATP hydrolysis-induced rotation (power stroke) of the RuvB subunits and the passage of the strong DNA binding from the previous to next RuvB subunits during the sequential ATPase activities around the ring. Using the model, the relationship between the power-stroke size, the step size of DNA translocation and the ratio of the rotational rate of DNA over that of RuvB relative to RuvA is predicted.
Collapse
|
23
|
Seidel R, Dekker C. Single-molecule studies of nucleic acid motors. Curr Opin Struct Biol 2007; 17:80-6. [PMID: 17207989 DOI: 10.1016/j.sbi.2006.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 11/22/2006] [Accepted: 12/15/2006] [Indexed: 11/26/2022]
Abstract
Nucleic acid motors comprise a variety of structurally, mechanistically and functionally very different enzymes. These motor proteins have in common the ability to directionally move DNA or RNA, or to move along DNA or RNA using a chemical energy source such as ATP. Recently, it became possible to study the action of a single motor on single DNA or RNA molecules in real time; this has provided unprecedented insight into the behavior and mechanism of these motors. As a result, the past few years have witnessed an enormous increase in such single-molecule studies of a variety of different motor systems. Particular highlights have included the investigation of the sequence-dependent behavior and helical tracking of motors, and the attainment of the ultimate (i.e. single base pair) resolution, which enables the detection of individual single base motor steps.
Collapse
Affiliation(s)
- Ralf Seidel
- Biotechnological Centre, University of Technology Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | | |
Collapse
|
24
|
Hopfner KP, Michaelis J. Mechanisms of nucleic acid translocases: lessons from structural biology and single-molecule biophysics. Curr Opin Struct Biol 2006; 17:87-95. [PMID: 17157498 DOI: 10.1016/j.sbi.2006.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 10/18/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
Enzymes that translocate nucleic acids using ATP hydrolysis include DNA and RNA helicases, viral genome packaging motors and chromatin remodeling ATPases. Recent structural analysis, in conjunction with single-molecule studies, has revealed a wealth of new insights into how these enzymes use ATP-driven conformational changes to move on nucleic acids.
Collapse
|