1
|
Axakova A, Ding M, Cote AG, Subramaniam R, Senguttuvan V, Zhang H, Weile J, Douville SV, Gebbia M, Al-Chalabi A, Wahl A, Reuter J, Hurt J, Mitchell A, Fradette S, Andersen PM, van Loggerenberg W, Roth FP. Landscapes of missense variant impact for human superoxide dismutase 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640191. [PMID: 40060668 PMCID: PMC11888409 DOI: 10.1101/2025.02.25.640191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease for which important subtypes are caused by variation in the Superoxide Dismutase 1 gene SOD1. Diagnosis based on SOD1 sequencing can not only be definitive but also indicate specific therapies available for SOD1-associated ALS (SOD1-ALS). Unfortunately, SOD1-ALS diagnosis is limited by the fact that a substantial fraction (currently 26%) of ClinVar SOD1 missense variants are classified as "variants of uncertain significance" (VUS). Although functional assays can provide strong evidence for clinical variant interpretation, SOD1 assay validation is challenging, given the current incomplete and controversial understanding of SOD1-ALS disease mechanism. Using saturation mutagenesis and multiplexed cell-based assays, we measured the functional impact of over two thousand SOD1 amino acid substitutions on both enzymatic function and protein abundance. The resulting 'missense variant effect maps' not only reflect prior biochemical knowledge of SOD1 but also provide sequence-structure-function insights. Importantly, our variant abundance assay can discriminate pathogenic missense variation and provides new evidence for 41% of missense variants that had been previously reported as VUS, offering the potential to identify additional patients who would benefit from therapy approved for SOD1-ALS.
Collapse
Affiliation(s)
- Anna Axakova
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Megan Ding
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Atina G Cote
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Radha Subramaniam
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Vignesh Senguttuvan
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Haotian Zhang
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jochen Weile
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Samuel V Douville
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
- Faculty of Health Science, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Marinella Gebbia
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RX, UK
| | - Alexander Wahl
- Labcorp Genetics (Formerly Invitae Corp.), CA 94103, USA
| | - Jason Reuter
- Labcorp Genetics (Formerly Invitae Corp.), CA 94103, USA
| | | | | | | | | | - Warren van Loggerenberg
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Frederick P Roth
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Sureshan M, Prabhu D, Kadhirvel S. Computational identification and experimental validation of anti-filarial lead molecules targeting metal binding/substrate channel residues of Cu/Zn SOD1 from Wuchereria bancrofti. J Biomol Struct Dyn 2023; 41:8715-8728. [PMID: 36305196 DOI: 10.1080/07391102.2022.2136245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
Abstract
Lymphatic filariasis (LF) is a neglected mosquito-borne parasitic disease, widely caused by Wuchereria bancrofti (Wb) in tropical and sub-tropical countries. During a blood meal, the filarial nematodes are transmitted to humans by the infected mosquito. To counter attack the invaded nematodes, the human immune system produces reactive oxygen species. However, the anti-oxidant enzymes of nematodes counteract the host oxidative cytotoxicity. Cu/Zn Superoxide dismutase (SOD1), a member of antioxidant enzymes and are widely used by the nematodes to sustain the host oxidative stress across its lifecycle, hence targeting SOD1 to develop suitable drug molecules would help to overcome the problems related to efficacy and activity of drugs upon different stages of nematodes. In order to find the potent inhibitors, a three-dimensional structure of Cu/Zn WbSOD1 was modelled and the structural stability was analysed through simulation studies. The structure-guided virtual screening approach has been used to identify lead molecules from the ChemBridge based on the docking score, ADMET properties and protein-ligand complex stability analysis. The identified compounds were observed to interact with the copper, metal binding residues (His48, His63, His80 and His120) and catalytically important residue Arg146, which play a crucial role in the disproportionation of incoming superoxide radicals of Cu/Zn WbSOD1. Further, in vitro validation of the selected leads in the filarial worm Setaria digitata exhibited higher inhibition and better IC50 compared to the standard drug ivermectin. Thus, the identified leads could potentially inhibit enzyme activity, which could subsequently act as drug candidates to control LF.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muthusamy Sureshan
- Biomolecular Crystallography Lab, Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Dhamodharan Prabhu
- Research and Development Wing, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Saraboji Kadhirvel
- Biomolecular Crystallography Lab, Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
- Department of Computational Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
3
|
Zaji HD, Seyedalipour B, Hanun HM, Baziyar P, Hosseinkhani S, Akhlaghi M. Computational insight into in silico analysis and molecular dynamics simulation of the dimer interface residues of ALS-linked hSOD1 forms in apo/holo states: a combined experimental and bioinformatic perspective. 3 Biotech 2023; 13:92. [PMID: 36845075 PMCID: PMC9944573 DOI: 10.1007/s13205-023-03514-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
The aggregation of misfolded SOD1 proteins in neurodegenerative illnesses is a key pathological hallmark in amyotrophic lateral sclerosis (ALS). SOD1 is stabilized and enzymatically activated after binding to Cu/Zn and forming intramolecular disulfide. SOD1 aggregation/oligomerization is triggered by the dissociation of Cu and/or Zn ions. Therefore, we compared the possible effects of ALS-associated point mutations of the holo/apo forms of WT/I149T/V148G SOD1 variants located at the dimer interface to determine structural characterization using spectroscopic methods, computational approaches as well as molecular dynamics (MD) simulations. Predictive results of computational analysis of single-nucleotide polymorphisms (SNPs) suggested that mutant SOD1 has a deleterious effect on activity and structure destabilization. MD data analysis indicated that changes in flexibility, stability, hydrophobicity of the protein as well as increased intramolecular interactions of apo-SOD1 were more than holo-SOD1. Furthermore, a decrease in enzymatic activity in apo-SOD1 was observed compared to holo-SOD1. Comparative intrinsic and ANS fluorescence results of holo/apo-WT-hSOD1 and mutants indicated structural alterations in the local environment of tryptophan residue and hydrophobic patches, respectively. Experimental and MD data supported that substitution effect and metal deficiency of mutants (apo forms) in the dimer interface may promote the tendency to protein mis-folding and aggregation, consequently disrupting the dimer-monomer equilibrium and increased propensity to dissociation dimer into SOD-monomer ultimately leading to loss of stability and function. Overall, data analysis of apo/holo SOD1 forms on protein structure and function using computational and experimental studies will contribute to a better understanding of ALS pathogenicity.
Collapse
Affiliation(s)
- Hamza Dakhil Zaji
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Haider Munzer Hanun
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mona Akhlaghi
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
4
|
A Short Tale of the Origin of Proteins and Ribosome Evolution. Microorganisms 2022; 10:microorganisms10112115. [DOI: 10.3390/microorganisms10112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins are the workhorses of the cell and have been key players throughout the evolution of all organisms, from the origin of life to the present era. How might life have originated from the prebiotic chemistry of early Earth? This is one of the most intriguing unsolved questions in biology. Currently, however, it is generally accepted that amino acids, the building blocks of proteins, were abiotically available on primitive Earth, which would have made the formation of early peptides in a similar fashion possible. Peptides are likely to have coevolved with ancestral forms of RNA. The ribosome is the most evident product of this coevolution process, a sophisticated nanomachine that performs the synthesis of proteins codified in genomes. In this general review, we explore the evolution of proteins from their peptide origins to their folding and regulation based on the example of superoxide dismutase (SOD1), a key enzyme in oxygen metabolism on modern Earth.
Collapse
|
5
|
Sarkar A, Gasic AG, Cheung MS, Morrison G. Effects of Protein Crowders and Charge on the Folding of Superoxide Dismutase 1 Variants: A Computational Study. J Phys Chem B 2022; 126:4458-4471. [PMID: 35686856 DOI: 10.1021/acs.jpcb.2c00819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neurodegenerative disease amyotrophic lateral sclerosis (ALS) is associated with the misfolding and aggregation of the metalloenzyme protein superoxide dismutase 1 (SOD1) via mutations that destabilize the monomer-dimer interface. In a cellular environment, crowding and electrostatic screening play essential roles in the folding and aggregation of the SOD1 monomers. Despite numerous studies on the effects of mutations on SOD1 folding, a clear understanding of the interplay between crowding, folding, and aggregation in vivo remains lacking. Using a structure-based minimal model for molecular dynamics simulations, we investigate the role of self-crowding and charge on the folding stability of SOD1 and the G41D mutant where experimentalists were intrigued by an alteration of the folding mechanism by a single point mutation from glycine to charged aspartic acid. We show that unfolded SOD1 configurations are significantly affected by charge and crowding, a finding that would be extremely costly to achieve with all-atom simulations, while the native state is not significantly altered. The mutation at residue 41 alters the interactions between proteins in the unfolded states instead of those within a protein. This paper suggests electrostatics may play an important role in the folding pathway of SOD1 and modifying the charge via mutation and ion concentration may change the dominant interactions between proteins, with potential impacts for aggregation of the mutants. This work provides a plausible reason for the alteration of the unfolded states to address why the mutant G41D causes the changes to the folding mechanism of SOD1 that have intrigued experimentalists.
Collapse
Affiliation(s)
- Atrayee Sarkar
- Department of Physics, University of Houston, Houston, Texas 77204, United States.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Andrei G Gasic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Margaret S Cheung
- Department of Physics, University of Houston, Houston, Texas 77204, United States.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Pacific Northwest National Laboratory, Seattle Research Center, Seattle, Washington 98109, United States
| | - Greg Morrison
- Department of Physics, University of Houston, Houston, Texas 77204, United States.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Brunori M, Gianni S. An Outlook on the Complexity of Protein Morphogenesis in Health and Disease. Front Mol Biosci 2022; 9:909567. [PMID: 35769915 PMCID: PMC9234464 DOI: 10.3389/fmolb.2022.909567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
The study of the mechanisms whereby proteins achieve their native functionally competent conformation has been a key issue in molecular biosciences over the last 6 decades. Nevertheless, there are several debated issues and open problems concerning some aspects of this fundamental problem. By considering the emerging complexity of the so-called “native state,” we attempt hereby to propose a personal account on some of the key topics in the field, ranging from the relationships between misfolding and diseases to the significance of protein disorder. Finally, we briefly describe the recent and exciting advances in predicting protein structures from their amino acid sequence.
Collapse
Affiliation(s)
- Maurizio Brunori
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università, Rome, Italy
- Accademia Nazionale dei Lincei, Rome, Italy
- *Correspondence: Maurizio Brunori,
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università, Rome, Italy
| |
Collapse
|
7
|
Nanotheranostic agents for neurodegenerative diseases. Emerg Top Life Sci 2021; 4:645-675. [PMID: 33320185 DOI: 10.1042/etls20190141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), affect the ageing population worldwide and while severely impairing the quality of life of millions, they also cause a massive economic burden to countries with progressively ageing populations. Parallel with the search for biomarkers for early detection and prediction, the pursuit for therapeutic approaches has become growingly intensive in recent years. Various prospective therapeutic approaches have been explored with an emphasis on early prevention and protection, including, but not limited to, gene therapy, stem cell therapy, immunotherapy and radiotherapy. Many pharmacological interventions have proved to be promising novel avenues, but successful applications are often hampered by the poor delivery of the therapeutics across the blood-brain-barrier (BBB). To overcome this challenge, nanoparticle (NP)-mediated drug delivery has been considered as a promising option, as NP-based drug delivery systems can be functionalized to target specific cell surface receptors and to achieve controlled and long-term release of therapeutics to the target tissue. The usefulness of NPs for loading and delivering of drugs has been extensively studied in the context of NDDs, and their biological efficacy has been demonstrated in numerous preclinical animal models. Efforts have also been made towards the development of NPs which can be used for targeting the BBB and various cell types in the brain. The main focus of this review is to briefly discuss the advantages of functionalized NPs as promising theranostic agents for the diagnosis and therapy of NDDs. We also summarize the results of diverse studies that specifically investigated the usage of different NPs for the treatment of NDDs, with a specific emphasis on AD and PD, and the associated pathophysiological changes. Finally, we offer perspectives on the existing challenges of using NPs as theranostic agents and possible futuristic approaches to improve them.
Collapse
|
8
|
Molecular and pharmacological chaperones for SOD1. Biochem Soc Trans 2021; 48:1795-1806. [PMID: 32794552 PMCID: PMC7458393 DOI: 10.1042/bst20200318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
The efficacy of superoxide dismutase-1 (SOD1) folding impacts neuronal loss in motor system neurodegenerative diseases. Mutations can prevent SOD1 post-translational processing leading to misfolding and cytoplasmic aggregation in familial amyotrophic lateral sclerosis (ALS). Evidence of immature, wild-type SOD1 misfolding has also been observed in sporadic ALS, non-SOD1 familial ALS and Parkinson's disease. The copper chaperone for SOD1 (hCCS) is a dedicated and specific chaperone that assists SOD1 folding and maturation to produce the active enzyme. Misfolded or misfolding prone SOD1 also interacts with heat shock proteins and macrophage migration inhibitory factor to aid folding, refolding or degradation. Recognition of specific SOD1 structures by the molecular chaperone network and timely dissociation of SOD1-chaperone complexes are, therefore, important steps in SOD1 processing. Harnessing these interactions for therapeutic benefit is actively pursued as is the modulation of SOD1 behaviour with pharmacological and peptide chaperones. This review highlights the structural and mechanistic aspects of a selection of SOD1-chaperone interactions together with their impact on disease models.
Collapse
|
9
|
Niu B, Mackness BC, Zitzewitz JA, Matthews CR, Gross ML. Trifluoroethanol Partially Unfolds G93A SOD1 Leading to Protein Aggregation: A Study by Native Mass Spectrometry and FPOP Protein Footprinting. Biochemistry 2020; 59:3650-3659. [PMID: 32924445 DOI: 10.1021/acs.biochem.0c00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Misfolding of Cu, Zn superoxide dismutase (SOD1) variants may lead to protein aggregation and ultimately amyotrophic lateral sclerosis (ALS). The mechanism and protein conformational changes during this process are complex and remain unclear. To study SOD1 variant aggregation at the molecular level and in solution, we chemically induced aggregation of a mutant variant (G93A SOD1) with trifluoroethanol (TFE) and used both native mass spectrometry (MS) to analyze the intact protein and fast photochemical oxidation of proteins (FPOP) to characterize the structural changes induced by TFE. We found partially unfolded G93A SOD1 monomers prior to oligomerization and identified regions of the N-terminus, C-terminus, and strands β5, β6 accountable for the partial unfolding. We propose that exposure of hydrophobic interfaces of these unstructured regions serves as a precursor to aggregation. Our results provide a possible mechanism and molecular basis for ALS-linked SOD1 misfolding and aggregation.
Collapse
Affiliation(s)
- Ben Niu
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brian C Mackness
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - C Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
10
|
Jahan I, Nayeem SM. Conformational dynamics of superoxide dismutase (SOD1) in osmolytes: a molecular dynamics simulation study. RSC Adv 2020; 10:27598-27614. [PMID: 35516947 PMCID: PMC9055598 DOI: 10.1039/d0ra02151b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease caused by the misfolding of Cu, Zn superoxide dismutase (SOD1). Several earlier studies have shown that monomeric apo SOD1 undergoes significant local unfolding dynamics and is the predecessor for aggregation. Here, we have employed atomistic molecular dynamics (MD) simulations to study the structure and dynamics of monomeric apo and holo SOD1 in water, aqueous urea and aqueous urea-TMAO (trimethylamine oxide) solutions. Loop IV (zinc-binding loop) and loop VII (electrostatic loop) of holo SOD1 are considered as functionally important loops as they are responsible for the structural stability of holo SOD1. We found larger local unfolding of loop IV and VII of apo SOD1 as compared to holo SOD1 in water. Urea induced more unfolding in holo SOD1 than apo SOD1, whereas the stabilization of both the form of SOD1 was observed in ternary solution (i.e. water/urea/TMAO solution) but the extent of stabilization was higher in holo SOD1 than apo SOD1. The partially unfolded structures of apo SOD1 in water, urea and holo SOD1 in urea were identified by the exposure of the hydrophobic cores, which are highly dynamic and these may be the initial events of aggregation in SOD1. Our simulation studies support the formation of aggregates by means of the local unfolding of monomeric apo SOD1 as compared to holo SOD1 in water.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Chemistry, Aligarh Muslim University Aligarh-202002 U.P. India +91-9412527078
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University Aligarh-202002 U.P. India +91-9412527078
| |
Collapse
|
11
|
Tompa DR, Muthusamy S, Srikanth S, Kadhirvel S. Molecular dynamics of far positioned surface mutations of Cu/Zn SOD1 promotes altered structural stability and metal-binding site: Structural clues to the pathogenesis of amyotrophic lateral sclerosis. J Mol Graph Model 2020; 100:107678. [PMID: 32768728 DOI: 10.1016/j.jmgm.2020.107678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) mutations are associated to the motor neuron disorder, amyotrophic lateral sclerosis (ALS), which is characterized by aggregates of the misfolded proteins. The distribution of mutations all over the three-dimensional structure of SOD1 makes it complex to determine the exact molecular mechanism underlying SOD1 destabilization and the associated ALS pathology. In this study, we have examined structure and dynamics of SOD1 protein upon two ALS associated point mutations at the surface residue Glu100 (E100G and E100K), which is located far from the Cu and Zn sites and dimer interface. The molecular dynamics simulations were performed for these mutants for 50ns using GROMACS package. Our results indicate that the mutations result in structural destabilization by affecting the gate keeping role of Glu100 and loss of electrostatic interactions on the protein surface which stabilizes the β-barrel structure of the native form. Further, these mutations could increase the fluctuations in the zinc-binding loop (loop IV), primarily due to loss of hydrogen bond between Asp101 and Arg79. The relaxed conformation of Arg79 further affects the native conformation of His80 and Asp83, that results in altered zinc site geometry and the structure of the substrate channel. Our results clearly suggest that, similar to the mutations located at metal sites/dimer interface/disulfide regions, the mutations at the far positioned site (Glu100) also induce significant conformational changes that could affect the metallation and structure of SOD1 molecule, resulting in formation of toxic intermediate species that cause ALS.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Sureshan Muthusamy
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Srimari Srikanth
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Saraboji Kadhirvel
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
12
|
Lee S, Choi MC, Al Adem K, Lukman S, Kim TY. Aggregation and Cellular Toxicity of Pathogenic or Non-pathogenic Proteins. Sci Rep 2020; 10:5120. [PMID: 32198463 PMCID: PMC7083973 DOI: 10.1038/s41598-020-62062-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/28/2020] [Indexed: 02/03/2023] Open
Abstract
More than 20 unique diseases such as diabetes, Alzheimer’s disease, Parkinson’s disease are caused by the abnormal aggregations of pathogenic proteins such as amylin, β-amyloid (Aβ), and α-synuclein. All pathogenic proteins differ from each other in biological function, primary sequences, and morphologies; however, the proteins are toxic when aggregated. Here, we investigated the cellular toxicity of pathogenic or non-pathogenic protein aggregates. In this study, six proteins were selected and they were incubated at acid pH and high temperature. The aggregation kinetic and cellular toxicity of protein species with time were characterized. Three non-pathogenic proteins, bovine serum albumin (BSA), catalase, and pepsin at pH 2 and 65 °C were stable in protein structure and non-toxic at a lower concentration of 1 mg/mL. They formed aggregates at a higher concentration of 20 mg/mL with time and they induced the toxicity in short incubation time points, 10 min and 20 min only and they became non-toxic after 30 min. Other three pathogenic proteins, lysozyme, superoxide dismutase (SOD), and insulin, also produced the aggregates with time and they caused cytotoxicity at both 1 mg/mL and 20 mg/mL after 10 min. TEM images and DSC analysis demonstrated that fibrils or aggregates at 1 mg/mL induced cellular toxicity due to low thermal stability. In DSC data, fibrils or aggregates of pathogenic proteins had low thermal transition compared to fresh samples. The results provide useful information to understand the aggregation and cellular toxicity of pathogenic and non-pathogenic proteins.
Collapse
Affiliation(s)
- Sungmun Lee
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Myung Chul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Kenana Al Adem
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Science, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Tae-Yeon Kim
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Cohen NR, Kayatekin C, Zitzewitz JA, Bilsel O, Matthews CR. Friction-Limited Folding of Disulfide-Reduced Monomeric SOD1. Biophys J 2020; 118:1992-2000. [PMID: 32191862 DOI: 10.1016/j.bpj.2020.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/04/2020] [Accepted: 02/28/2020] [Indexed: 11/16/2022] Open
Abstract
The folding reaction of a stable monomeric variant of Cu/Zn superoxide dismutase (mSOD1), an enzyme responsible for the conversion of superoxide free radicals into hydrogen peroxide and oxygen, is known to be among the slowest folding processes that adhere to two-state behavior. The long lifetime, ∼10 s, of the unfolded state presents ample opportunities for the polypeptide chain to transiently sample nonnative structures before the formation of the productive folding transition state. We recently observed the formation of a nonnative structure in a peptide model of the C-terminus of SOD1, a sequence that might serve as a potential source of internal chain friction-limited folding. To test for friction-limited folding, we performed a comprehensive thermodynamic and kinetic analysis of the folding mechanism of mSOD1 in the presence of the viscogens glycerol and glucose. Using a, to our knowledge, novel analysis of the folding reactions, we found the disulfide-reduced form of the protein that exposes the C-terminal sequence, but not its disulfide-oxidized counterpart that protects it, experiences internal chain friction during folding. The sensitivity of the internal friction to the disulfide bond status suggests that one or both of the cross-linked regions play a critical role in driving the friction-limited folding. We speculate that the molecular mechanisms giving rise to the internal friction of disulfide-reduced mSOD1 might play a role in the amyotrophic lateral sclerosis-linked aggregation of SOD1.
Collapse
Affiliation(s)
- Noah R Cohen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Can Kayatekin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts; Rare and Neurological Therapeutic Area, Sanofi, Framingham, Massachusetts
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - C R Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
14
|
Mouro PR, Povinelli APR, Leite VBP, Chahine J. Exploring Folding Aspects of Monomeric Superoxide Dismutase. J Phys Chem B 2020; 124:650-661. [DOI: 10.1021/acs.jpcb.9b09640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paulo R. Mouro
- São Paulo State University (UNESP), IBILCE, São José do Rio Preto 15054-000, Brazil
| | - Ana P. R. Povinelli
- São Paulo State University (UNESP), IBILCE, São José do Rio Preto 15054-000, Brazil
| | - Vitor B. P. Leite
- São Paulo State University (UNESP), IBILCE, São José do Rio Preto 15054-000, Brazil
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Jorge Chahine
- São Paulo State University (UNESP), IBILCE, São José do Rio Preto 15054-000, Brazil
| |
Collapse
|
15
|
Abstract
Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.
Collapse
|
16
|
Yang F, Wang H, Logan DT, Mu X, Danielsson J, Oliveberg M. The Cost of Long Catalytic Loops in Folding and Stability of the ALS-Associated Protein SOD1. J Am Chem Soc 2018; 140:16570-16579. [PMID: 30359015 DOI: 10.1021/jacs.8b08141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A conspicuous feature of the amyotrophic lateral sclerosis (ALS)-associated protein SOD1 is that its maturation into a functional enzyme relies on local folding of two disordered loops into a catalytic subdomain. To drive the disorder-to-order transition, the protein employs a single Zn2+ ion. The question is then if the entropic penalty of maintaining such disordered loops in the immature apoSOD1 monomer is large enough to explain its unusually low stability, slow folding, and pathological aggregation in ALS. To find out, we determined the effects of systematically altering the SOD1-loop lengths by protein redesign. The results show that the loops destabilize the apoSOD1 monomer by ∼3 kcal/mol, rendering the protein marginally stable and accounting for its aggregation behavior. Yet the effect on the global folding kinetics remains much smaller with a transition-state destabilization of <1 kcal/mol. Notably, this 1/3 transition-state to folded-state stability ratio provides a clear-cut example of the enigmatic disagreement between the Leffler α value from loop-length alterations (typically 1/3) and the "standard" reaction coordinates based on solvent perturbations (typically >2/3). Reconciling the issue, we demonstrate that the disagreement disappears when accounting for the progressive loop shortening that occurs along the folding pathway. The approach assumes a consistent Flory loop entropy scaling factor of c = 1.48 for both equilibrium and kinetic data and has the added benefit of verifying the tertiary interactions of the folding nucleus as determined by phi-value analysis. Thus, SOD1 not only represents a case where evolution of key catalytic function has come with the drawback of a destabilized apo state but also stands out as a well-suited model system for exploring the physicochemical details of protein self-organization.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Huabing Wang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Derek T Logan
- Division of Biochemistry & Structural Biology, Department of Chemistry , Lund University , Box 124, 22100 Lund , Sweden
| | - Xin Mu
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| |
Collapse
|
17
|
Pokrishevsky E, McAlary L, Farrawell NE, Zhao B, Sher M, Yerbury JJ, Cashman NR. Tryptophan 32-mediated SOD1 aggregation is attenuated by pyrimidine-like compounds in living cells. Sci Rep 2018; 8:15590. [PMID: 30349065 PMCID: PMC6197196 DOI: 10.1038/s41598-018-32835-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
Over 160 mutations in superoxide dismutase 1 (SOD1) are associated with familial amyotrophic lateral sclerosis (fALS), where the main pathological feature is deposition of SOD1 into proteinaceous cytoplasmic inclusions. We previously showed that the tryptophan residue at position 32 (W32) mediates the prion-like propagation of SOD1 misfolding in cells, and that a W32S substitution blocks this phenomenon. Here, we used in vitro protein assays to demonstrate that a W32S substitution in SOD1-fALS mutants significantly diminishes their propensity to aggregate whilst paradoxically decreasing protein stability. We also show SOD1-W32S to be resistant to seeded aggregation, despite its high abundance of unfolded protein. A cell-based aggregation assay demonstrates that W32S substitution significantly mitigates inclusion formation. Furthermore, this assay reveals that W32 in SOD1 is necessary for the formation of a competent seed for aggregation under these experimental conditions. Following the observed importance of W32 for aggregation, we established that treatment of living cells with the W32-interacting 5-Fluorouridine (5-FUrd), and its FDA approved analogue 5-Fluorouracil (5-FU), substantially attenuate inclusion formation similarly to W32S substitution. Altogether, we highlight W32 as a significant contributor to SOD1 aggregation, and propose that 5-FUrd and 5-FU present promising lead drug candidates for the treatment of SOD1-associated ALS.
Collapse
Affiliation(s)
- Edward Pokrishevsky
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Luke McAlary
- Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Natalie E Farrawell
- Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Beibei Zhao
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Mine Sher
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Justin J Yerbury
- Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
18
|
Bunck DN, Atsavapranee B, Museth AK, VanderVelde D, Heath JR. Modulating the Folding Landscape of Superoxide Dismutase 1 with Targeted Molecular Binders. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- David N. Bunck
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard MC 172-27 USA
| | - Beatriz Atsavapranee
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard MC 172-27 USA
| | - Anna K. Museth
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard MC 172-27 USA
| | - David VanderVelde
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard MC 172-27 USA
| | - James R. Heath
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard MC 172-27 USA
| |
Collapse
|
19
|
TFE-induced local unfolding and fibrillation of SOD1: bridging the experiment and simulation studies. Biochem J 2018; 475:1701-1719. [DOI: 10.1042/bcj20180085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 01/03/2023]
Abstract
Misfolding and aggregation of Cu, Zn Superoxide dismutase (SOD1) is involved in the neurodegenerative disease, amyotrophic lateral sclerosis. Many studies have shown that metal-depleted, monomeric form of SOD1 displays substantial local unfolding dynamics and is the precursor for aggregation. Here, we have studied the structure and dynamics of different apo monomeric SOD1 variants associated with unfolding and aggregation in aqueous trifluoroethanol (TFE) through experiments and simulation. TFE induces partially unfolded β-sheet-rich extended conformations in these SOD1 variants, which subsequently develops aggregates with fibril-like characteristics. Fibrillation was achieved more easily in disulfide-reduced monomeric SOD1 when compared with wild-type and mutant monomeric SOD1. At higher concentrations of TFE, a native-like structure with the increase in α-helical content was observed. The molecular dynamics simulation results illustrate distinct structural dynamics for different regions of SOD1 variants and show uniform local unfolding of β-strands. The strands protected by the zinc-binding and electrostatic loops were found to unfold first in 20% (v/v) TFE, leading to a partial unfolding of β-strands 4, 5, and 6 which are prone to aggregation. Our results thus shed light on the role of local unfolding and conformational dynamics in SOD1 misfolding and aggregation.
Collapse
|
20
|
Bunck DN, Atsavapranee B, Museth AK, VanderVelde D, Heath JR. Modulating the Folding Landscape of Superoxide Dismutase 1 with Targeted Molecular Binders. Angew Chem Int Ed Engl 2018; 57:6212-6215. [PMID: 29645329 DOI: 10.1002/anie.201802269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Indexed: 01/20/2023]
Abstract
Amyotrophic lateral sclerosis, or Lou Gehrig's disease, is characterized by motor neuron death, with average survival times of two to five years. One cause of this disease is the misfolding of superoxide dismutase 1 (SOD1), a phenomenon influenced by point mutations spanning the protein. Herein, we used an epitope-specific high-throughput screen to identify a peptide ligand that stabilizes the SOD1 native conformation and accelerates its folding by a factor of 2.5. This strategy may be useful for fundamental studies of protein energy landscapes as well as designing new classes of therapeutics.
Collapse
Affiliation(s)
- David N Bunck
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC, 172-27, USA
| | - Beatriz Atsavapranee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC, 172-27, USA
| | - Anna K Museth
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC, 172-27, USA
| | - David VanderVelde
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC, 172-27, USA
| | - James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC, 172-27, USA
| |
Collapse
|
21
|
Kumar V, Prakash A, Lynn AM. Alterations in local stability and dynamics of A4V SOD1 in the presence of trifluoroethanol. Biopolymers 2018; 109:e23102. [DOI: 10.1002/bip.23102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Amresh Prakash
- School of Computational and Integrative Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Andrew M. Lynn
- School of Computational and Integrative Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| |
Collapse
|
22
|
Tompa DR, Kadhirvel S. Molecular dynamics of a far positioned SOD1 mutant V14M reveals pathogenic misfolding behavior. J Biomol Struct Dyn 2017; 36:4085-4098. [PMID: 29157189 DOI: 10.1080/07391102.2017.1407675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human superoxide dismutase (Cu/Zn SOD1) is a homodimeric enzyme. Mutations in Cu/Zn SOD1 causes a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. Though a majority of the mutations are point substitutions, there are a few changes that result in amino acid deletions or truncations of the polypeptide. These pathogenic mutations are scattered throughout the three-dimensional structure of the dimeric enzyme, which creates a puzzling pattern to investigate the molecular determinants of fALS. The most common hypothesis proposed that the misfolding of SOD1 mutants are primarily triggered by decreased affinity for metal ions. However, this hypothesis is challenging, as a significant number of disease-causing mutations are located far away from the metal-binding site and dimer interface. So in the present study, we have investigated the influence of such a far positioned pathogenic mutation, V14M, in altering the stability and folding of the Cu/Zn SOD1. Though the location of Val14 is far positioned, it has a vital role in the stability of SOD1 by preserving its hydrophobic cluster at one end of the β barrel domain. We have performed MD simulations of the V14M mutant for 80 ns timescale. The results reveal the fact that irrespective of its location, V14M mutation triggers a conformational change that is more similar to that of the metal-deficient holo form and could resemble an intermediate state in the folding reaction which results in protein misfolding and aggregation.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- a Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613 401 , India
| | - Saraboji Kadhirvel
- a Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613 401 , India
| |
Collapse
|
23
|
Partially native intermediates mediate misfolding of SOD1 in single-molecule folding trajectories. Nat Commun 2017; 8:1881. [PMID: 29192167 PMCID: PMC5709426 DOI: 10.1038/s41467-017-01996-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
Prion-like misfolding of superoxide dismutase 1 (SOD1) is associated with the disease ALS, but the mechanism of misfolding remains unclear, partly because misfolding is difficult to observe directly. Here we study the most misfolding-prone form of SOD1, reduced un-metallated monomers, using optical tweezers to measure unfolding and refolding of single molecules. We find that the folding is more complex than suspected, resolving numerous previously undetected intermediate states consistent with the formation of individual β-strands in the native structure. We identify a stable core of the protein that unfolds last and refolds first, and directly observe several distinct misfolded states that branch off from the native folding pathways at specific points after the formation of the stable core. Partially folded intermediates thus play a crucial role mediating between native and non-native folding. These results suggest an explanation for SOD1's propensity for prion-like misfolding and point to possible targets for therapeutic intervention.
Collapse
|
24
|
Lim KH, Dasari AKR, Ma R, Hung I, Gan Z, Kelly JW, Fitzgerald MC. Pathogenic Mutations Induce Partial Structural Changes in the Native β-Sheet Structure of Transthyretin and Accelerate Aggregation. Biochemistry 2017; 56:4808-4818. [PMID: 28820582 DOI: 10.1021/acs.biochem.7b00658] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid formation of natively folded proteins involves global and/or local unfolding of the native state to form aggregation-prone intermediates. Here we report solid-state nuclear magnetic resonance (NMR) structural studies of amyloid derived from wild-type (WT) and more aggressive mutant forms of transthyretin (TTR) to investigate the structural changes associated with effective TTR aggregation. We employed selective 13C labeling schemes to investigate structural features of β-structured core regions in amyloid states of WT and two mutant forms (V30M and L55P) of TTR. Analyses of the 13C-13C correlation solid-state NMR spectra revealed that WT TTR aggregates contain an amyloid core consisting of nativelike CBEF and DAGH β-sheet structures, and the mutant TTR amyloids adopt a similar amyloid core structure with nativelike CBEF and AGH β-structures. However, the V30M mutant amyloid was shown to have a different DA β-structure. In addition, strand D is more disordered even in the native state of L55P TTR, indicating that the pathogenic mutations affect the DA β-structure, leading to more effective amyloid formation. The NMR results are consistent with our mass spectrometry-based thermodynamic analyses that showed the amyloidogenic precursor states of WT and mutant TTRs adopt folded structures but the mutant precursor states are less stable than that of WT TTR. Analyses of the oxidation rate of the methionine side chain also revealed that the side chain of residue Met-30 pointing between strands D and A is not protected from oxidation in the V30M mutant, while protected in the native state, supporting the possibility that the DA β-structure might be disrupted in the V30M mutant amyloid.
Collapse
Affiliation(s)
- Kwang Hun Lim
- Department of Chemistry, East Carolina University , Greenville, North Carolina 27858, United States
| | - Anvesh K R Dasari
- Department of Chemistry, East Carolina University , Greenville, North Carolina 27858, United States
| | - Renze Ma
- Department of Chemistry, Duke University , 124 Science Drive, Durham, North Carolina 27708-0346, United States
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL) , 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL) , 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Jeffery W Kelly
- Department of Molecular and Experimental Medicine and Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University , 124 Science Drive, Durham, North Carolina 27708-0346, United States
| |
Collapse
|
25
|
Prakash A, Kumar V, Pandey P, Bharti DR, Vishwakarma P, Singh R, Hassan MI, Lynn AM. Solvent sensitivity of protein aggregation in Cu, Zn superoxide dismutase: a molecular dynamics simulation study. J Biomol Struct Dyn 2017; 36:2605-2617. [PMID: 28782426 DOI: 10.1080/07391102.2017.1364670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Misfolding and aggregation of Cu, Zn Superoxide Dismutase (SOD1) is often found in amyotrophic lateral sclerosis (ALS) patients. The central apo SOD1 barrel was involved in protein maturation and pathological aggregation in ALS. In this work, we employed atomistic molecular dynamics (MD) simulations to study the conformational dynamics of SOD1barrel monomer in different concentrations of trifluoroethanol (TFE). We find concentration dependence unusual structural and dynamical features, characterized by the local unfolding of SOD1barrel. This partially unfolded structure is characterized by the exposure of hydrophobic core, is highly dynamic in nature, and is the precursor of aggregation seen in SOD1barrel. Our computational studies supports the hypothesis of the formation of aggregation 'building blocks' by means of local unfolding of apo monomer as the mechanism of SOD1 fibrillar aggregation. The non-monotonic TFE concentration dependence of protein conformational changes was explored through simulation studies. Our results suggest that altered protein conformation and dynamics within its structure may underlie the aggregation of SOD1 in ALS.
Collapse
Affiliation(s)
- Amresh Prakash
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Vijay Kumar
- b Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi , 110025 , India
| | - Preeti Pandey
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Deepak R Bharti
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Poonam Vishwakarma
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Ruhar Singh
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Md Imtaiyaz Hassan
- b Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi , 110025 , India
| | - Andrew M Lynn
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| |
Collapse
|
26
|
Dasmeh P, Kepp KP. Superoxide dismutase 1 is positively selected to minimize protein aggregation in great apes. Cell Mol Life Sci 2017; 74:3023-3037. [PMID: 28389720 PMCID: PMC11107616 DOI: 10.1007/s00018-017-2519-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
Positive (adaptive) selection has recently been implied in human superoxide dismutase 1 (SOD1), a highly abundant antioxidant protein with energy signaling and antiaging functions, one of very few examples of direct selection on a human protein product (exon); the molecular drivers of this selection are unknown. We mapped 30 extant SOD1 sequences to the recently established mammalian species tree and inferred ancestors, key substitutions, and signatures of selection during the protein's evolution. We detected elevated substitution rates leading to great apes (Hominidae) at ~1 per 2 million years, significantly higher than in other primates and rodents, although these paradoxically generally evolve much faster. The high evolutionary rate was partly due to relaxation of some selection pressures and partly to distinct positive selection of SOD1 in great apes. We then show that higher stability and net charge and changes at the dimer interface were selectively introduced upon separation from old world monkeys and lesser apes (gibbons). Consequently, human, chimpanzee and gorilla SOD1s have a net charge of -6 at physiological pH, whereas the closely related gibbons and macaques have -3. These features consistently point towards selection against the malicious aggregation effects of elevated SOD1 levels in long-living great apes. The findings mirror the impact of human SOD1 mutations that reduce net charge and/or stability and cause ALS, a motor neuron disease characterized by oxidative stress and SOD1 aggregates and triggered by aging. Our study thus marks an example of direct selection for a particular chemical phenotype (high net charge and stability) in a single human protein with possible implications for the evolution of aging.
Collapse
Affiliation(s)
- Pouria Dasmeh
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Biochemistry and Cedergren Center for Bioinformatics and Genomics, Faculty of Medicine, University of Montreal, 2900 Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
27
|
Kumar V, Rahman S, Choudhry H, Zamzami MA, Sarwar Jamal M, Islam A, Ahmad F, Hassan MI. Computing disease-linked SOD1 mutations: deciphering protein stability and patient-phenotype relations. Sci Rep 2017; 7:4678. [PMID: 28680046 PMCID: PMC5498623 DOI: 10.1038/s41598-017-04950-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Protein stability is a requisite in the field of biotechnology, cell biology and drug design. To understand effects of amino acid substitutions, computational models are preferred to save time and expenses. As a systemically important, highly abundant, stable protein, the knowledge of Cu/Zn Superoxide dismutase1 (SOD1) is important, making it a suitable test case for genotype-phenotype correlation in understanding ALS. Here, we report performance of eight protein stability calculators (PoPMuSiC 3.1, I-Mutant 2.0, I-Mutant 3.0, CUPSAT, FoldX, mCSM, BeatMusic and ENCoM) against 54 experimental stability changes due to mutations of SOD1. Four different high-resolution structures were used to test structure sensitivity that may affect protein calculations. Bland-Altman plot was also used to assess agreement between stability analyses. Overall, PoPMuSiC and FoldX emerge as the best methods in this benchmark. The relative performance of all the eight methods was very much structure independent, and also displayed less structural sensitivity. We also analyzed patient's data in relation to experimental and computed protein stabilities for mutations of human SOD1. Correlation between disease phenotypes and stability changes suggest that the changes in SOD1 stability correlate with ALS patient survival times. Thus, the results clearly demonstrate the importance of protein stability in SOD1 pathogenicity.
Collapse
Affiliation(s)
- Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Center of Innovation in Personalized Medicine, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Sarwar Jamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
28
|
Habibi M, Rottler J, Plotkin SS. The unfolding mechanism of monomeric mutant SOD1 by simulated force spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28629863 DOI: 10.1016/j.bbapap.2017.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mechanical unfolding of mutated apo, disulfide-reduced, monomeric superoxide dismutase 1 protein (SOD1) has been simulated via force spectroscopy techniques, using both an all-atom (AA), explicit solvent model and a coarse-grained heavy-atom Gō (HA-Gō) model. The HA-Gō model was implemented at two different pulling speeds for comparison. The most-common sequence of unfolding in the AA model agrees well with the most-common unfolding sequence of the HA-Gō model, when the same normalized pulling rate was used. Clustering of partially-native structures as the protein unfolds shows that the AA and HA-Gō models both exhibit a dominant pathway for early unfolding, which eventually bifurcates repeatedly to multiple branches after the protein is about half-unfolded. The force-extension curve exhibits multiple force drops, which are concomitant with jumps in the local interaction potential energy between specific β-strands in the protein. These sudden jumps in the potential energy coincide with the dissociation of specific pairs of β-strands, and thus intermediate unfolding events. The most common sequence of β-strand dissociation in the unfolding pathway of the AA model is β-strands 5, 4, 8, 7, 1, 2, then finally β-strands 3 and 6. The observation that β-strand 5 is among the first to unfold here, but the last to unfold in simulations of loop-truncated SOD1, could imply the existence of an evolutionary compensation mechanism, which would stabilize β-strands flanking long loops against their entropic penalty by strengthening intramolecular interactions. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Mona Habibi
- Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Jörg Rottler
- Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Steven S Plotkin
- Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
29
|
Physicochemical code for quinary protein interactions in Escherichia coli. Proc Natl Acad Sci U S A 2017; 114:E4556-E4563. [PMID: 28536196 DOI: 10.1073/pnas.1621227114] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How proteins sense and navigate the cellular interior to find their functional partners remains poorly understood. An intriguing aspect of this search is that it relies on diffusive encounters with the crowded cellular background, made up of protein surfaces that are largely nonconserved. The question is then if/how this protein search is amenable to selection and biological control. To shed light on this issue, we examined the motions of three evolutionary divergent proteins in the Escherichia coli cytoplasm by in-cell NMR. The results show that the diffusive in-cell motions, after all, follow simplistic physical-chemical rules: The proteins reveal a common dependence on (i) net charge density, (ii) surface hydrophobicity, and (iii) the electric dipole moment. The bacterial protein is here biased to move relatively freely in the bacterial interior, whereas the human counterparts more easily stick. Even so, the in-cell motions respond predictably to surface mutation, allowing us to tune and intermix the protein's behavior at will. The findings show how evolution can swiftly optimize the diffuse background of protein encounter complexes by just single-point mutations, and provide a rational framework for adjusting the cytoplasmic motions of individual proteins, e.g., for rescuing poor in-cell NMR signals and for optimizing protein therapeutics.
Collapse
|
30
|
Wang H, Lang L, Logan DT, Danielsson J, Oliveberg M. Tricking a Protein To Swap Strands. J Am Chem Soc 2016; 138:15571-15579. [DOI: 10.1021/jacs.6b05151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huabing Wang
- Arrhenius
Laboratories of Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Lisa Lang
- Arrhenius
Laboratories of Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Derek T. Logan
- Division
of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Box
124, 221 00 Lund, Sweden
| | - Jens Danielsson
- Arrhenius
Laboratories of Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Mikael Oliveberg
- Arrhenius
Laboratories of Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
31
|
Zhuang X, Zhao B, Liu S, Song F, Cui F, Liu Z, Li Y. Noncovalent Interactions between Superoxide Dismutase and Flavonoids Studied by Native Mass Spectrometry Combined with Molecular Simulations. Anal Chem 2016; 88:11720-11726. [PMID: 27760293 DOI: 10.1021/acs.analchem.6b03359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Misfolding and aggregation of Cu, Zn superoxide dismutase (SOD1) is implicated in the etiology of amyotrophic lateral sclerosis (ALS). The use of small molecules may stabilize the spatial structure of SOD1 dimer, thus, preventing its dissociation and aggregation. In this study, "native" mass spectrometry (MS) was used to study the noncovalent interactions between SOD1 and flavonoid compounds. MS experiments were performed on a quadruple time-of-flight (Q-ToF) mass spectrometer with an electrospray ionization (ESI) source and T-wave ion mobility. ESI-MS was used to detect the SOD1-flavonoid complexes and compare their relative binding strengths. The complement of ion mobility separation allowed comparison in the binding affinities between flavonoid isomers and provided information on the conformational changes. Molecular docking together with molecular dynamics simulations and MM/PBSA methods were applied to gain insights into the binding modes and free energies of SOD1-flavonoid complexes at the molecule level. Among all the flavonoids investigated, flavonoid glycosides preferentially bind to SOD1 than their aglycone counterparts. Naringin, one of the compounds that has the strongest binding affinity to SOD1, was subjected to further characterization. Experiment results show that the binding of naringin can stabilize SOD1 dimer and inhibit the aggregation of SOD1. Molecular simulation results suggest that naringin could reduce the dissociation of SOD1 dimers through direct interaction with the dimer interface. This developed analytical strategy could also be applied to study the interactions between SOD1 and other drug-like molecules, which may have the effect to reduce the aggregation.
Collapse
Affiliation(s)
- Xiaoyu Zhuang
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Bing Zhao
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | | | | | | | | | | |
Collapse
|
32
|
Lim KH, Dasari AKR, Hung I, Gan Z, Kelly JW, Wright PE, Wemmer DE. Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid. Biochemistry 2016; 55:5272-8. [PMID: 27589034 DOI: 10.1021/acs.biochem.6b00649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range (13)C-(13)C correlation MAS spectra obtained with selectively (13)CO- and (13)Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.
Collapse
Affiliation(s)
- Kwang Hun Lim
- Department of Chemistry, East Carolina University , Greenville, North Carolina 27858, United States
| | - Anvesh K R Dasari
- Department of Chemistry, East Carolina University , Greenville, North Carolina 27858, United States
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL) , 1800 East, Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL) , 1800 East, Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | | | | | - David E Wemmer
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| |
Collapse
|
33
|
Broom HR, Rumfeldt JAO, Vassall KA, Meiering EM. Destabilization of the dimer interface is a common consequence of diverse ALS-associated mutations in metal free SOD1. Protein Sci 2015; 24:2081-9. [PMID: 26362407 DOI: 10.1002/pro.2803] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 11/08/2022]
Abstract
Neurotoxic misfolding of Cu, Zn-superoxide dismutase (SOD1) is implicated in causing amyotrophic lateral sclerosis, a devastating and incurable neurodegenerative disease. Disease-linked mutations in SOD1 have been proposed to promote misfolding and aggregation by decreasing protein stability and increasing the proportion of less folded forms of the protein. Here we report direct measurement of the thermodynamic effects of chemically and structurally diverse mutations on the stability of the dimer interface for metal free (apo) SOD1 using isothermal titration calorimetry and size exclusion chromatography. Remarkably, all mutations studied, even ones distant from the dimer interface, decrease interface stability, and increase the population of monomeric SOD1. We interpret the thermodynamic data to mean that substantial structural perturbations accompany dimer dissociation, resulting in the formation of poorly packed and malleable dissociated monomers. These findings provide key information for understanding the mechanisms and energetics underlying normal maturation of SOD1, as well as toxic SOD1 misfolding pathways associated with disease. Furthermore, accurate prediction of protein-protein association remains very difficult, especially when large structural changes are involved in the process, and our findings provide a quantitative set of data for such cases, to improve modelling of protein association.
Collapse
Affiliation(s)
- Helen R Broom
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jessica A O Rumfeldt
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Kenrick A Vassall
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Elizabeth M Meiering
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
34
|
Abstract
Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a β-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 °C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein's interplay with the functionally optimized "interaction landscape" of the cellular interior.
Collapse
|
35
|
Abstract
A longstanding challenge in studies of neurodegenerative disease has been that the pathologic protein aggregates in live tissue are not amenable to structural and kinetic analysis by conventional methods. The situation is put in focus by the current progress in demarcating protein aggregation in vitro, exposing new mechanistic details that are now calling for quantitative in vivo comparison. In this study, we bridge this gap by presenting a direct comparison of the aggregation kinetics of the ALS-associated protein superoxide dismutase 1 (SOD1) in vitro and in transgenic mice. The results based on tissue sampling by quantitative antibody assays show that the SOD1 fibrillation kinetics in vitro mirror with remarkable accuracy the spinal cord aggregate buildup and disease progression in transgenic mice. This similarity between in vitro and in vivo data suggests that, despite the complexity of live tissue, SOD1 aggregation follows robust and simplistic rules, providing new mechanistic insights into the ALS pathology and organism-level manifestation of protein aggregation phenomena in general.
Collapse
|
36
|
Kepp KP. Genotype-property patient-phenotype relations suggest that proteome exhaustion can cause amyotrophic lateral sclerosis. PLoS One 2015; 10:e0118649. [PMID: 25798606 PMCID: PMC4370410 DOI: 10.1371/journal.pone.0118649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/08/2015] [Indexed: 12/11/2022] Open
Abstract
Late-onset neurodegenerative diseases remain poorly understood as search continues for the perceived pathogenic protein species. Previously, variants in Superoxide Dismutase 1 (SOD1) causing Amyotrophic Lateral Sclerosis (ALS) were found to destabilize and reduce net charge, suggesting a pathogenic aggregation mechanism. This paper reports analysis of compiled patient data and experimental and computed protein properties for variants of human SOD1, a major risk factor of ALS. Both stability and reduced net charge correlate significantly with disease, with larger significance than previously observed. Using two independent methods and two data sets, a probability < 3% (t-statistical test) is found that ALS-causing mutations share average stability with all possible 2907 SOD1 mutations. Most importantly, un-weighted patient survival times correlate strongly with the misfolded/unfolded protein copy number, expressed as an exponential function of the experimental stabilities (R2 = 0.31, p = 0.002), and this phenotype is further aggravated by charge (R2 = 0.51, p = 1.8 x 10−5). This finding suggests that disease relates to the copy number of misfolded proteins. Exhaustion of motor neurons due to expensive protein turnover of misfolded protein copies is consistent with the data but can further explain e.g. the expression-dependence of SOD1 pathogenicity, the lack of identification of a molecular toxic mode, elevated SOD1 mRNA levels in sporadic ALS, bioenergetic effects and increased resting energy expenditure in ALS patients, genetic risk factors affecting RNA metabolism, and recent findings that a SOD1 mutant becomes toxic when proteasome activity is recovered after washout of a proteasome inhibitor. Proteome exhaustion is also consistent with energy-producing mitochondria accumulating at the neuromuscular junctions where ALS often initiates. If true, this exhaustion mechanism implies a complete change of focus in treatment of ALS towards actively nursing the energy state and protein turnover of the motor neurons.
Collapse
Affiliation(s)
- Kasper P. Kepp
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
- * E-mail:
| |
Collapse
|
37
|
Estácio SG, Leal SS, Cristóvão JS, Faísca PFN, Gomes CM. Calcium binding to gatekeeper residues flanking aggregation-prone segments underlies non-fibrillar amyloid traits in superoxide dismutase 1 (SOD1). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:118-26. [PMID: 25463043 DOI: 10.1016/j.bbapap.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 12/26/2022]
Abstract
Calcium deregulation is a central feature among neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Calcium accumulates in the spinal and brain stem motor neurons of ALS patients triggering multiple pathophysiological processes which have been recently shown to include direct effects on the aggregation cascade of superoxide dismutase 1 (SOD1). SOD1 is a Cu/Zn enzyme whose demetallated form is implicated in ALS protein deposits, contributing to toxic gain of function phenotypes. Here we undertake a combined experimental and computational study aimed at establishing the molecular details underlying the regulatory effects of Ca(2+) over SOD1 aggregation potential. Isothermal titration calorimetry indicates entropy driven low affinity association of Ca(2+) ions to apo SOD1, at pH7.5 and 37°C. Molecular dynamics simulations denote a noticeable loss of native structure upon Ca(2+) association that is especially prominent at the zinc-binding and electrostatic loops, whose decoupling is known to expose the central SOD1 β-barrel triggering aggregation. Structural mapping of the preferential apo SOD1 Ca(2+) binding locations reveals that among the most frequent ligands for Ca(2+) are negatively-charged gatekeeper residues located in boundary positions with respect to segments highly prone to edge-to-edge aggregation. Calcium interactions thus diminish gatekeeping roles of these residues, by shielding repulsive interactions via stacking between aggregating β-sheets, partly blocking fibril formation and promoting amyloidogenic oligomers such as those found in ALS inclusions. Interestingly, many fALS mutations occur at these positions, disclosing how Ca(2+) interactions recreate effects similar to those of genetic defects, a finding with relevance to understand sporadic ALS pathomechanisms.
Collapse
Affiliation(s)
- Sílvia G Estácio
- Centro de Física da Matéria Condensada, Universidade de Lisboa, Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Sónia S Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Joana S Cristóvão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Patrícia F N Faísca
- Centro de Física da Matéria Condensada, Universidade de Lisboa, Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Cláudio M Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
38
|
Garcia-Pardo J, Graña-Montes R, Fernandez-Mendez M, Ruyra A, Roher N, Aviles FX, Lorenzo J, Ventura S. Amyloid formation by human carboxypeptidase D transthyretin-like domain under physiological conditions. J Biol Chem 2014; 289:33783-96. [PMID: 25294878 DOI: 10.1074/jbc.m114.594804] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein aggregation is linked to a growing list of diseases, but it is also an intrinsic property of polypeptides, because the formation of functional globular proteins comes at the expense of an inherent aggregation propensity. Certain proteins can access aggregation-prone states from native-like conformations without the need to cross the energy barrier for unfolding. This is the case of transthyretin (TTR), a homotetrameric protein whose dissociation into its monomers initiates the aggregation cascade. Domains with structural homology to TTR exist in a number of proteins, including the M14B subfamily carboxypeptidases. We show here that the monomeric transthyretin-like domain of human carboxypeptidase D aggregates under close to physiological conditions into amyloid structures, with the population of folded but aggregation-prone states being controlled by the conformational stability of the domain. We thus confirm that the TTR fold keeps a generic residual aggregation propensity upon folding, resulting from the presence of preformed amyloidogenic β-strands in the native state. These structural elements should serve for functional/structural purposes, because they have not been purged out by evolution, but at the same time they put proteins like carboxypeptidase D at risk of aggregation in biological environments and thus can potentially lead to deposition diseases.
Collapse
Affiliation(s)
- Javier Garcia-Pardo
- From the Institut de Biotecnologia i Biomedicina, Departaments de Bioquimica i Biologia Molecular and
| | - Ricardo Graña-Montes
- From the Institut de Biotecnologia i Biomedicina, Departaments de Bioquimica i Biologia Molecular and
| | - Marc Fernandez-Mendez
- From the Institut de Biotecnologia i Biomedicina, Departaments de Bioquimica i Biologia Molecular and
| | - Angels Ruyra
- From the Institut de Biotecnologia i Biomedicina
| | - Nerea Roher
- From the Institut de Biotecnologia i Biomedicina, Biologia Cel·lular, Immunologia i Fisiologia Animal, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Francesc X Aviles
- From the Institut de Biotecnologia i Biomedicina, Departaments de Bioquimica i Biologia Molecular and
| | - Julia Lorenzo
- From the Institut de Biotecnologia i Biomedicina, Departaments de Bioquimica i Biologia Molecular and
| | - Salvador Ventura
- From the Institut de Biotecnologia i Biomedicina, Departaments de Bioquimica i Biologia Molecular and
| |
Collapse
|
39
|
Solsona C, Kahn TB, Badilla CL, Álvarez-Zaldiernas C, Blasi J, Fernandez JM, Alegre-Cebollada J. Altered thiol chemistry in human amyotrophic lateral sclerosis-linked mutants of superoxide dismutase 1. J Biol Chem 2014; 289:26722-26732. [PMID: 25096579 DOI: 10.1074/jbc.m114.565333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases share a common characteristic, the presence of intracellular or extracellular deposits of protein aggregates in nervous tissues. Amyotrophic Lateral Sclerosis (ALS) is a severe and fatal neurodegenerative disorder, which affects preferentially motoneurons. Changes in the redox state of superoxide dismutase 1 (SOD1) are associated with the onset and development of familial forms of ALS. In human SOD1 (hSOD1), a conserved disulfide bond and two free cysteine residues can engage in anomalous thiol/disulfide exchange resulting in non-native disulfides, a hallmark of ALS that is related to protein misfolding and aggregation. Because of the many competing reaction pathways, traditional bulk techniques fall short at quantifying individual thiol/disulfide exchange reactions. Here, we adapt recently developed single-bond chemistry techniques to study individual disulfide isomerization reactions in hSOD1. Mechanical unfolding of hSOD1 leads to the formation of a polypeptide loop held by the disulfide. This loop behaves as a molecular jump rope that brings reactive Cys-111 close to the disulfide. Using force-clamp spectroscopy, we monitor nucleophilic attack of Cys-111 at either sulfur of the disulfide and determine the selectivity of the reaction. Disease-causing mutations G93A and A4V show greatly altered reactivity patterns, which may contribute to the progression of familial ALS.
Collapse
Affiliation(s)
- Carles Solsona
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Faculty of Medicine-Campus Bellvitge, University of Barcelona, Feixa Llarga s/n. Hospitalet de Llobregat, 08907 Barcelona, Spain,; Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, 08908 Barcelona, Spain,.
| | - Thomas B Kahn
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032,; Department of Biological Sciences, Columbia University, New York, New York 10027, and
| | - Carmen L Badilla
- Department of Biological Sciences, Columbia University, New York, New York 10027, and
| | - Cristina Álvarez-Zaldiernas
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Faculty of Medicine-Campus Bellvitge, University of Barcelona, Feixa Llarga s/n. Hospitalet de Llobregat, 08907 Barcelona, Spain,; Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, 08908 Barcelona, Spain
| | - Juan Blasi
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Faculty of Medicine-Campus Bellvitge, University of Barcelona, Feixa Llarga s/n. Hospitalet de Llobregat, 08907 Barcelona, Spain,; Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, 08908 Barcelona, Spain
| | - Julio M Fernandez
- Department of Biological Sciences, Columbia University, New York, New York 10027, and
| | - Jorge Alegre-Cebollada
- Department of Biological Sciences, Columbia University, New York, New York 10027, and; Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Cl. Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
40
|
Zhang T, Faraggi E, Li Z, Zhou Y. Intrinsically semi-disordered state and its role in induced folding and protein aggregation. Cell Biochem Biophys 2014; 67:1193-205. [PMID: 23723000 PMCID: PMC3838602 DOI: 10.1007/s12013-013-9638-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) refer to those proteins without fixed three-dimensional structures under physiological conditions. Although experiments suggest that the conformations of IDPs can vary from random coils, semi-compact globules, to compact globules with different contents of secondary structures, computational efforts to separate IDPs into different states are not yet successful. Recently, we developed a neural-network-based disorder prediction technique SPINE-D that was ranked as one of the top performing techniques for disorder prediction in the biannual meeting of critical assessment of structure prediction techniques (CASP 9, 2010). Here, we further analyze the results from SPINE-D prediction by defining a semi-disordered state that has about 50% predicted probability to be disordered or ordered. This semi-disordered state is partially collapsed with intermediate levels of predicted solvent accessibility and secondary structure content. The relative difference in compositions between semi-disordered and fully disordered regions is highly correlated with amyloid aggregation propensity (a correlation coefficient of 0.86 if excluding four charged residues and proline, 0.73 if not). In addition, we observed that some semi-disordered regions participate in induced folding, and others play key roles in protein aggregation. More specifically, a semi-disordered region is amyloidogenic in fully unstructured proteins (such as alpha-synuclein and Sup35) but prone to local unfolding that exposes the hydrophobic core to aggregation in structured globular proteins (such as SOD1 and lysozyme). A transition from full disorder to semi-disorder at about 30-40 Qs is observed in the poly-Q (poly-glutamine) tract of huntingtin. The accuracy of using semi-disorder to predict binding-induced folding and aggregation is compared with several methods trained for the purpose. These results indicate the usefulness of three-state classification (order, semi-disorder, and full-disorder) in distinguishing nonfolding from induced-folding and aggregation-resistant from aggregation-prone IDPs and in locating weakly stable, locally unfolding, and potentially aggregation regions in structured proteins. A comparison with five representative disorder-prediction methods showed that SPINE-D is the only method with a clear separation of semi-disorder from ordered and fully disordered states.
Collapse
Affiliation(s)
- Tuo Zhang
- School of Informatics, Indiana University Purdue University, Indianapolis, IN, 46202, USA
| | | | | | | |
Collapse
|
41
|
Solid-state NMR studies of metal-free SOD1 fibrillar structures. J Biol Inorg Chem 2014; 19:659-66. [PMID: 24719206 DOI: 10.1007/s00775-014-1130-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
Copper-zinc superoxide dismutase 1 (SOD1) is present in the protein aggregates deposited in motor neurons of amyotrophic lateral sclerosis (ALS) patients. ALS is a neurodegenerative disease that can be either sporadic (ca. 90%) or familial (fALS). The most widely studied forms of fALS are caused by mutations in the sequence of SOD1. Ex mortuo SOD1 aggregates are usually found to be amorphous. In vitro SOD1, in its immature reduced and apo state, forms fibrillar aggregates. Previous literature data have suggested that a monomeric SOD1 construct, lacking loops IV and VII, (apoSODΔIV-VII), shares the same fibrillization properties of apoSOD1, both proteins having the common structural feature of the central β-barrel. In this work, we show that structural information can be obtained at a site-specific level from solid-state NMR. The residues that are sequentially assignable are found to be located at the putative nucleation site for fibrillar species formation in apoSOD, as detected by other experimental techniques.
Collapse
|
42
|
Kepp KP. Computing stability effects of mutations in human superoxide dismutase 1. J Phys Chem B 2014; 118:1799-812. [PMID: 24472010 DOI: 10.1021/jp4119138] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein stability is affected in several diseases and is of substantial interest in efforts to correlate genotypes to phenotypes. Superoxide dismutase 1 (SOD1) is a suitable test case for such correlations due to its abundance, stability, available crystal structures and thermochemical data, and physiological importance. In this work, stability changes of SOD1 mutations were computed with five methods, CUPSAT, I-Mutant2.0, I-Mutant3.0, PoPMuSiC, and SDM, with emphasis on structural sensitivity as a potential issue in structure-based protein calculation. The large correlation between experimental literature data of SOD1 dimers and monomers (r = 0.82) suggests that mutations in separate protein monomers are mostly additive. PoPMuSiC was most accurate (typical MAE ~ 1 kcal/mol, r ~ 0.5). The relative performance of the methods was not very structure-dependent, and the more accurate methods also displayed less structural sensitivity, with the standard deviation from different high-resolution structures down to ~0.2 kcal/mol. Structures of variable resolution and number of protein copies locally affected specific sites, emphasizing the use of state-relevant crystal structures when such sites are of interest, but had little impact on overall batch estimates. Protein-interaction effects (as a mimic of crystal packing) were small for the more accurate methods. Thus, batch computations, relevant to, e.g., comparisons of disease/nondisease mutant sets or different clades in phylogenetic trees, are much more significant than single mutant calculations and may be the only meaningful way to computationally bridge the genotype-phenotype gap of proteomics. Finally, mutations involving glycine were most difficult to model, of relevance to future method improvement. This could be due to structure changes (glycine has a low structural propensity) or water colocalization with glycine.
Collapse
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark , DK 2800 Kongens Lyngby, Denmark
| |
Collapse
|
43
|
Furukawa Y. Redox environment is an intracellular factor to operate distinct pathways for aggregation of Cu,Zn-superoxide dismutase in amyotrophic lateral sclerosis. Front Cell Neurosci 2013; 7:240. [PMID: 24348334 PMCID: PMC3841916 DOI: 10.3389/fncel.2013.00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 11/13/2013] [Indexed: 11/16/2022] Open
Abstract
Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) cause a familial form of amyotrophic lateral sclerosis (fALS). Misfolding and aggregation of mutant SOD1 proteins are a pathological hallmark of SOD1-related fALS cases; however, the molecular mechanism of SOD1 aggregation remains controversial. Here, I have used E. coli as a model organism and shown multiple distinct pathways of SOD1 aggregation that are dependent upon its thiol-disulfide status. Overexpression of fALS-mutant SOD1s in the cytoplasm of E. coli BL21 and SHuffleTM, where redox environment is reducing and oxidizing, respectively, resulted in the formation of insoluble aggregates with notable differences; a disulfide bond of SOD1 was completely reduced in BL21 or abnormally formed between SOD1 molecules in SHuffleTM. Depending upon intracellular redox environment, therefore, mutant SOD1 is considered to misfold/aggregate through distinct pathways, which would be relevant in description of the pathological heterogeneity of SOD1-related fALS cases.
Collapse
Affiliation(s)
- Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University Yokohama, Japan
| |
Collapse
|
44
|
Bille A, Jónsson SÆ, Akke M, Irbäck A. Local unfolding and aggregation mechanisms of SOD1: a Monte Carlo exploration. J Phys Chem B 2013; 117:9194-202. [PMID: 23844996 DOI: 10.1021/jp404500b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Copper, zinc superoxide dismutase 1 (SOD1) is a ubiquitous homodimeric enzyme, whose misfolding and aggregation play a potentially key role in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). SOD1 aggregation is thought to be preceded by dimer dissociation and metal loss, but the mechanisms by which the metal-free monomer aggregates remain incompletely understood. Here we use implicit solvent all-atom Monte Carlo (MC) methods to investigate the local unfolding dynamics of the β-barrel-forming SOD1 monomer. Although event-to-event variations are large, on average, we find clear differences in dynamics among the eight strands forming the β-barrel. Most dynamic is the eighth strand, β8, which is located in the dimer interface of native SOD1. For the four strands in or near the dimer interface (β1, β2, β7, and β8), we perform aggregation simulations to assess the propensity of these chain segments to self-associate. We find that β1 and β2 readily self-associate to form intermolecular parallel β-sheets, whereas β8 shows a very low aggregation propensity.
Collapse
Affiliation(s)
- Anna Bille
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | | | | | | |
Collapse
|
45
|
Leal SS, Cardoso I, Valentine JS, Gomes CM. Calcium ions promote superoxide dismutase 1 (SOD1) aggregation into non-fibrillar amyloid: a link to toxic effects of calcium overload in amyotrophic lateral sclerosis (ALS)? J Biol Chem 2013; 288:25219-25228. [PMID: 23861388 DOI: 10.1074/jbc.m113.470740] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Imbalance in metal ion homeostasis is a hallmark in neurodegenerative conditions involving protein deposition, and amyotrophic lateral sclerosis (ALS) is no exception. In particular, Ca(2+) dysregulation has been shown to correlate with superoxide dismutase-1 (SOD1) aggregation in a cellular model of ALS. Here we present evidence that SOD1 aggregation is enhanced and modulated by Ca(2+). We show that at physiological pH, Ca(2+) induces conformational changes that increase SOD1 β-sheet content, as probed by far UV CD and attenuated total reflectance-FTIR, and enhances SOD1 hydrophobicity, as probed by ANS fluorescence emission. Moreover, dynamic light scattering analysis showed that Ca(2+) boosts the onset of SOD1 aggregation. In agreement, Ca(2+) decreases SOD1 critical concentration and nucleation time during aggregation kinetics, as evidenced by thioflavin T fluorescence emission. Attenuated total reflectance FTIR analysis showed that Ca(2+) induced aggregates consisting preferentially of antiparallel β-sheets, thus suggesting a modulation effect on the aggregation pathway. Transmission electron microscopy and analysis with conformational anti-fibril and anti-oligomer antibodies showed that oligomers and amyloidogenic aggregates constitute the prevalent morphology of Ca(2+)-induced aggregates, thus indicating that Ca(2+) diverts SOD1 aggregation from fibrils toward amorphous aggregates. Interestingly, the same heterogeneity of conformations is found in ALS-derived protein inclusions. We thus hypothesize that transient variations and dysregulation of cellular Ca(2+) levels contribute to the formation of SOD1 aggregates in ALS patients. In this scenario, Ca(2+) may be considered as a pathogenic effector in the formation of ALS proteinaceous inclusions.
Collapse
Affiliation(s)
- Sónia S Leal
- From the Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República 127, 2780-756 Oeiras, Portugal
| | - Isabel Cardoso
- the Molecular Neurobiology Unit, Instituto Biologia Molecular e Celular, 4150-180 Porto, Portugal, and
| | - Joan S Valentine
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Cláudio M Gomes
- From the Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República 127, 2780-756 Oeiras, Portugal,.
| |
Collapse
|
46
|
Danielsson J, Inomata K, Murayama S, Tochio H, Lang L, Shirakawa M, Oliveberg M. Pruning the ALS-associated protein SOD1 for in-cell NMR. J Am Chem Soc 2013; 135:10266-9. [PMID: 23819500 DOI: 10.1021/ja404425r] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To efficiently deliver isotope-labeled proteins into mammalian cells poses a main challenge for structural and functional analysis by in-cell NMR. In this study we have employed cell-penetrating peptides (CPPs) to deliver the ALS-associated protein superoxide dismutase (SOD1) into HeLa cells. Our results show that, although full-length SOD1 cannot be efficiently internalized, a variant in which the active-site loops IV and VII have been truncated (SOD1(ΔIVΔVII)) yields high cytosolic delivery. The reason for the enhanced delivery of SOD1(ΔIVΔVII) seems to be the elimination of negatively charged side chains, which alters the net charge of the CPP-SOD1 complex from neutral to +4. The internalized SOD1(ΔIVΔVII) protein displays high-resolution in-cell NMR spectra similar to, but not identical to, those of the lysate of the cells. Spectral differences are found mainly in the dynamic β strands 4, 5, and 7, triggered by partial protonation of the His moieties of the Cu-binding site. Accordingly, SOD1(ΔIVΔVII) doubles here as an internal pH probe, revealing cytosolic acidification under the experimental treatment. Taken together, these observations show that CPP delivery, albeit inefficient at first trials, can be tuned by protein engineering to allow atomic-resolution NMR studies of specific protein structures that have evaded other in-cell NMR approaches: in this case, the structurally elusive apoSOD1 barrel implicated as precursor for misfolding in ALS.
Collapse
Affiliation(s)
- Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
47
|
Mulligan VK, Chakrabartty A. Protein misfolding in the late-onset neurodegenerative diseases: Common themes and the unique case of amyotrophic lateral sclerosis. Proteins 2013; 81:1285-303. [DOI: 10.1002/prot.24285] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | - Avijit Chakrabartty
- Department of Biochemistry; Toronto Ontario M5G 1L7 Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario M5G 1L7 Canada
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network; Toronto Ontario M5G 1L7 Canada
| |
Collapse
|
48
|
Schmidlin T, Ploeger K, Jonsson AL, Daggett V. Early steps in thermal unfolding of superoxide dismutase 1 are similar to the conformational changes associated with the ALS-associated A4V mutation. Protein Eng Des Sel 2013; 26:503-13. [PMID: 23784844 DOI: 10.1093/protein/gzt030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There are over 100 mutations in Cu/Zn superoxide dismutase (SOD1) that result in a subset of familial amyotrophic lateral sclerosis (fALS) cases. The hypothesis that dissociation of the dimer, misfolding of the monomer and subsequent aggregation of mutant SOD1 leads to fALS has been gaining support as an explanation for how these disparate missense mutations cause the same disease. These forms are only responsible for a fraction of the ALS cases; however, the rest are sporadic. Starting with a folded apo monomer, the species considered most likely to be involved in misfolding, we used high-temperature all-atom molecular dynamics simulations to explore the events of the wild-type protein unfolding through the denatured state. All simulations showed early loss of structure along the β5-β6 edge of the β-sandwich, supporting earlier findings of instability in this region. Transition state structures identified from the simulations are in good agreement with experiment, providing detailed, validated molecular models for this elusive state. Furthermore, we compare the process of thermal unfolding investigated here to that of the lethal A4V mutant-induced unfolding at physiological temperature and find that the pathways are very similar.
Collapse
Affiliation(s)
- Tom Schmidlin
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| | | | | | | |
Collapse
|
49
|
Das A, Plotkin SS. SOD1 exhibits allosteric frustration to facilitate metal binding affinity. Proc Natl Acad Sci U S A 2013; 110:3871-6. [PMID: 23431152 PMCID: PMC3593857 DOI: 10.1073/pnas.1216597110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Superoxide dismutase-1 (SOD1) is a ubiquitous, Cu and Zn binding, free-radical defense enzyme whose misfolding and aggregation play a potential key role in amyotrophic lateral sclerosis, an invariably fatal neurodegenerative disease. Over 150 mutations in SOD1 have been identified with a familial form of the disease, but it is presently not clear what unifying features, if any, these mutants share to make them pathogenic. Here, we develop several unique computational assays for probing the thermo-mechanical properties of both ALS-associated and rationally designed SOD1 variants. Allosteric interaction-free energies between residues and metals are calculated, and a series of atomic force microscopy experiments are simulated with variable tether positions to quantify mechanical rigidity "fingerprints" for SOD1 variants. Mechanical fingerprinting studies of a series of C-terminally truncated mutants, along with an analysis of equilibrium dynamic fluctuations while varying native constraints, potential energy change upon mutation, frustratometer analysis, and analysis of the coupling between local frustration and metal binding interactions for a glycine scan of 90 residues together, reveal that the apo protein is internally frustrated, that these internal stresses are partially relieved by mutation but at the expense of metal-binding affinity, and that the frustration of a residue is directly related to its role in binding metals. This evidence points to apo SOD1 as a strained intermediate with "self-allostery" for high metal-binding affinity. Thus, the prerequisites for the function of SOD1 as an antioxidant compete with apo state thermo-mechanical stability, increasing the susceptibility of the protein to misfold in the apo state.
Collapse
Affiliation(s)
- Atanu Das
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - Steven S. Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| |
Collapse
|
50
|
Das A, Plotkin SS. Mechanical Probes of SOD1 Predict Systematic Trends in Metal and Dimer Affinity of ALS-Associated Mutants. J Mol Biol 2013; 425:850-74. [DOI: 10.1016/j.jmb.2012.12.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/08/2012] [Accepted: 12/21/2012] [Indexed: 01/28/2023]
|