1
|
Lv L, Liu S, Fu Y, Zhang Y, Wang M, Sun J, Wang Y, Lu Y, Niu G. A tunable and reversible thermo-inducible bio-switch for streptomycetes. Nucleic Acids Res 2025; 53:gkae1236. [PMID: 39704119 PMCID: PMC11754652 DOI: 10.1093/nar/gkae1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Programmable control of bacterial gene expression holds great significance for both applied and academic research. This is particularly true for Streptomyces, a genus of Gram-positive bacteria and major producers of prodigious natural products. Despite that a few inducible regulatory systems have been developed for use in Streptomyces, there is an increasing pursuit to augment the toolkit of high-performance induction systems. We herein report a robust and reversible thermo-inducible bio-switch, designated as StrepT-switch. This bio-switch enables tunable and reversible control of gene expression using physiological temperatures as stimulation inputs. It has been proven successful in highly efficient CRISPR/Cas9-mediated genome engineering, as well as programmable control of antibiotic production and morphological differentiation. The versatility of the device is also demonstrated by thermal induction of a site-specific relaxase ZouA for overproduction of actinorhodin, a blue pigmented polyketide antibiotic. This study showcases the exploration a temperature-sensing module and exemplifies its versatility for programmable control of various target genes in Streptomyces species.
Collapse
Affiliation(s)
- Lanxin Lv
- College of Agronomy and Biotechnology, Southwest University, No.2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Shuo Liu
- College of Agronomy and Biotechnology, Southwest University, No.2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Yudie Fu
- College of Agronomy and Biotechnology, Southwest University, No.2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Yuxin Zhang
- College of Agronomy and Biotechnology, Southwest University, No.2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Meiyan Wang
- College of Agronomy and Biotechnology, Southwest University, No.2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Jiahe Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, No.2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Yi Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, No.2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, No.100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Guoqing Niu
- College of Agronomy and Biotechnology, Southwest University, No.2, Tiansheng Road, Beibei District, Chongqing 400715, China
| |
Collapse
|
2
|
Silva KPT, Khare A. Antibiotic resistance mediated by gene amplifications. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:35. [PMID: 39843582 PMCID: PMC11721125 DOI: 10.1038/s44259-024-00052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 01/24/2025]
Abstract
Apart from horizontal gene transfer and sequence-altering mutational events, antibiotic resistance can emerge due to the formation of tandem repeats of genomic regions. This phenomenon, also known as gene amplification, has been implicated in antibiotic resistance in both laboratory and clinical scenarios, where the evolution of resistance via amplifications can affect treatment efficacy. Antibiotic resistance mediated by gene amplifications is unstable and consequently can be difficult to detect, due to amplification loss in the absence of the selective pressure of the antibiotic. Further, due to variable copy numbers in a population, amplifications result in heteroresistance, where only a subpopulation is resistant to an antibiotic. While gene amplifications typically lead to resistance by increasing the expression of resistance determinants due to the higher copy number, the underlying mechanisms of resistance are diverse. In this review article, we describe the various pathways by which gene amplifications cause antibiotic resistance, from efflux and modification of the antibiotic, to target modification and bypass. We also discuss how gene amplifications can engender resistance by alternate mutational outcomes such as altered regulation and protein structure, in addition to just an increase in copy number and expression. Understanding how amplifications contribute to bacterial survival following antibiotic exposure is critical to counter their role in the rise of antimicrobial resistance.
Collapse
Affiliation(s)
- Kalinga Pavan T Silva
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Bury-Moné S, Thibessard A, Lioy VS, Leblond P. Dynamics of the Streptomyces chromosome: chance and necessity. Trends Genet 2023; 39:873-887. [PMID: 37679290 DOI: 10.1016/j.tig.2023.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023]
Abstract
Streptomyces are prolific producers of specialized metabolites with applications in medicine and agriculture. Remarkably, these bacteria possess a large linear chromosome that is genetically compartmentalized: core genes are grouped in the central part, while the ends are populated by poorly conserved genes including antibiotic biosynthetic gene clusters. The genome is highly unstable and exhibits distinct evolutionary rates along the chromosome. Recent chromosome conformation capture (3C) and comparative genomics studies have shed new light on the interplay between genome dynamics in space and time. Here, we review insights that illustrate how the balance between chance (random genome variations) and necessity (structural and functional constraints) may have led to the emergence of spatial structuring of the Streptomyces chromosome.
Collapse
Affiliation(s)
- Stéphanie Bury-Moné
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | | | - Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| |
Collapse
|
4
|
Doyle V, Giftos G, Kugler S, Melanson A, Needham D, Raber R, Solomon J, Webster A, Neely M, Molloy S. Genome sequence of cluster A15 Gordonia terrae bacteriophage Nebulosus. Microbiol Resour Announc 2023; 12:e0069923. [PMID: 37750701 PMCID: PMC10586128 DOI: 10.1128/mra.00699-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 09/27/2023] Open
Abstract
The temperate Gordonia phage Nebulosus was isolated from soil on Gordonia terrae and is a siphovirus. The genome is 52,175 bp in length, has 62% GC content, and encodes 96 protein-coding genes. Nebulosus encodes a partitioning system, ParABS, which is likely involved in lysogeny maintenance.
Collapse
Affiliation(s)
- Veronica Doyle
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- The Honors College, University of Maine, Orono, Maine, USA
| | - Gabriella Giftos
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- The Honors College, University of Maine, Orono, Maine, USA
| | - Strix Kugler
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- The Honors College, University of Maine, Orono, Maine, USA
| | - Andrew Melanson
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- The Honors College, University of Maine, Orono, Maine, USA
| | - Dominic Needham
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- The Honors College, University of Maine, Orono, Maine, USA
| | - Ryleigh Raber
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Justin Solomon
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- The Honors College, University of Maine, Orono, Maine, USA
| | - Apple Webster
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Melody Neely
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Sally Molloy
- Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- The Honors College, University of Maine, Orono, Maine, USA
| |
Collapse
|
5
|
He H, Huang J, Zhao Z, Du P, Li J, Xin J, Xu H, Feng W, Zheng X. Whole genome analysis of Streptomyces sp. RerS4, a Rehmannia glutinosa rhizosphere microbe producing a new lipopeptide. Heliyon 2023; 9:e19543. [PMID: 37681179 PMCID: PMC10480658 DOI: 10.1016/j.heliyon.2023.e19543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/06/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Rehmannia glutinosa, a valuable medicinal plant, is threatened by ring rot, a condition that greatly affects its yield and quality. Interactions between plant and the rhizosphere soil microbiome in the context of pathogen invasion are generally more specific, with recruitment of specialized microbes potentially antagonistic to a certain pathogen. Isolation of microorganisms from rhizosphere soil of healthy and ring rot-infected R. glutinosa was carried out to screen antifungal microbes. A strain designated RerS4 isolated from ring rot-infected R. glutinosa rhizosphere soil with strong antifungal activities was selected for further study. RerS4 was taxonomically characterized as the genus Streptomyces according to its morphology and 16S rRNA sequences that were most closely related to Streptomyces racemochromogenes NRRL B-5430T (99.72%) and Streptomyces polychromogenes NBRC 13072T (99.72%). A new lipopeptide isolated from RerS4 showed restrained proliferation, but was devoid of significant antibacterial and antioxidant activity with minimum inhibitory concentration (MIC) values of 20.3 ± 2.5 and 70.8 ± 3.7 μg/mL and half-maximal inhibitory concentration (IC50) values of 23.3 ± 0.8 and 58.8 ± 2.9 μg/mL, respectively. In addition, we report the complete genome sequence of Streptomyces sp. RerS4, which consists of a 7,301,482 bp linear chromosome and a 242,139 bp plasmid. Genome analysis revealed that Streptomyces sp. RerS4 contained 25 biosynthetic gene clusters (BGCs) for secondary metabolites, among which 68% had low similarities with known BGCs, leading us to believe that Streptomyces sp. RerS4 could produce valuable bioactive compounds.
Collapse
Affiliation(s)
- Hairong He
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiarui Huang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhenzhu Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pengqiang Du
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiansong Li
- Institute of Applied Biotechnology, School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, 318000, China
| | - Jile Xin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Huifang Xu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
6
|
Zhu M, Wang L, Zhang H, Zhang L, Tan B, Huang Q, Zhu Y, Zhang C. Biosynthesis and Engineered Overproduction of Everninomicins with Promising Activity against Multidrug-Resistant Bacteria. ACS Synth Biol 2023; 12:1520-1532. [PMID: 37084337 DOI: 10.1021/acssynbio.3c00055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Ribosome-targeting oligosaccharides, everninomicins (EVNs), are promising drug leads with a unique mode of action distinct from that of currently used antibiotics in human therapy. However, the low yields in natural microbial producers hamper an efficient preparation of EVNs for detailed structure-activity relationship analysis. Herein, we enhance the production of EVNs by duplicating the biosynthetic gene cluster (BGC) in Micromonospora sp. SCSIO 07395 and thus obtain multiple EVNs that are sufficient for bioactivity evaluation. EVNs (1-5) are shown to significantly inhibit the growth of multidrug-resistant Gram-positive staphylococcal, enterococcal, and streptococcal strains and Gram-negative pathogens Acinetobacter baumannii and Vibrio cholerae, with micromolar to nanomolar potency, which are comparable or superior to vancomycin, linezolid, and daptomycin. Furthermore, the BGC duplication strategy is proven effective in stepwisely improving titers of the bioactive EVN M (5) from the trace amount to 98.6 mg L-1. Our findings demonstrate the utility of a bioengineering approach for enhanced production and chemical diversification of the medicinally promising EVNs.
Collapse
Affiliation(s)
- Mengyi Zhu
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lijuan Wang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Bin Tan
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, College of Veterinary Medicine, Wuhan 430070, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
7
|
WEI W, WANG W, LI C, TANG Y, GUO Z, CHEN Y. Construction and heterologous expression of the di-AFN A1 biosynthetic gene cluster in Streptomyces model strains. Chin J Nat Med 2022; 20:873-880. [DOI: 10.1016/s1875-5364(22)60197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/23/2022]
|
8
|
Hulst MB, Grocholski T, Neefjes JJC, van Wezel GP, Metsä-Ketelä M. Anthracyclines: biosynthesis, engineering and clinical applications. Nat Prod Rep 2021; 39:814-841. [PMID: 34951423 DOI: 10.1039/d1np00059d] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: January 1995 to June 2021Anthracyclines are glycosylated microbial natural products that harbour potent antiproliferative activities. Doxorubicin has been widely used as an anticancer agent in the clinic for several decades, but its use is restricted due to severe side-effects such as cardiotoxicity. Recent studies into the mode-of-action of anthracyclines have revealed that effective cardiotoxicity-free anthracyclines can be generated by focusing on histone eviction activity, instead of canonical topoisomerase II poisoning leading to double strand breaks in DNA. These developments have coincided with an increased understanding of the biosynthesis of anthracyclines, which has allowed generation of novel compound libraries by metabolic engineering and combinatorial biosynthesis. Coupled to the continued discovery of new congeners from rare Actinobacteria, a better understanding of the biology of Streptomyces and improved production methodologies, the stage is set for the development of novel anthracyclines that can finally surpass doxorubicin at the forefront of cancer chemotherapy.
Collapse
Affiliation(s)
- Mandy B Hulst
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Thadee Grocholski
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Jacques J C Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Mikko Metsä-Ketelä
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
9
|
Li H, Pan Y, Liu G. Multiplying the heterologous production of spinosad through tandem amplification of its biosynthetic gene cluster in Streptomyces coelicolor. Microb Biotechnol 2021; 15:1550-1560. [PMID: 34796664 PMCID: PMC9049625 DOI: 10.1111/1751-7915.13965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Heterologous expression of the biosynthetic gene cluster (BGC) is important for studying the microbial natural products (NPs), especially for those kept in silent or poorly expressed in their original strains. Here, we cloned the spinosad BGC through the Cas9-Assisted Targeting of Chromosome segments and amplified it to five copies through a ZouA-dependent DNA amplification system in Streptomyces coelicolor M1146. The resulting strain produced 1253.9 ± 78.2 μg l-1 of spinosad, which was about 224-fold compared with that of the parent strain carrying only one copy of the spinosad BGC. Moreover, we further increased spinosad to 1958.9 ± 73.5 μg l-1 by the dynamic regulation of intracellular triacylglycerol degradation. Our study indicates that tandem amplification of the targeted gene cluster is particularly suitable to enhance the heterologous production of valuable NPs with efficiency and simplicity.
Collapse
Affiliation(s)
- Hong Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100864, China
| |
Collapse
|
10
|
Li H, Gao W, Cui Y, Pan Y, Liu G. Remarkable enhancement of bleomycin production through precise amplification of its biosynthetic gene cluster in Streptomyces verticillus. SCIENCE CHINA. LIFE SCIENCES 2021; 65:1248-1256. [PMID: 34668129 DOI: 10.1007/s11427-021-1998-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
Amplification of biosynthetic gene clusters is important to increase secondary metabolite production. However, the copy number of amplified gene clusters is difficult to control precisely. In this study, the tandem amplification of a 70 kb bleomycin biosynthetic gene cluster was precisely regulated through the combined strategy of a ZouA-dependent DNA amplification system and double-reporter-guided recombinant selection in Streptomyces verticillus ATCC15003. The production of bleomycin in the recombinant strain containing six copies of the bleomycin gene cluster was 9.59-fold higher than that in the wild-type strain. The combined strategy used in this study is powerful and applicable for precisely regulating the amplification of gene clusters and improving the corresponding secondary metabolite production.
Collapse
Affiliation(s)
- Hong Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yifan Cui
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100864, China.
| |
Collapse
|
11
|
Heterogeneous A40926 Self-Resistance Profile in Nonomuraea gerenzanensis Population Informs Strain Improvement. FERMENTATION 2021. [DOI: 10.3390/fermentation7030140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nonomuraea gerenzanensis ATCC 39727 produces the glycopeptide antibiotic A40926, which is the natural precursor of the semi-synthetic, last-resort drug dalbavancin. To reduce the cost of dalbavancin production, it is mandatory to improve the productivity of the producing strain. Here, we report that the exposure of N. gerenzanensis wild-type population to sub-inhibitory concentrations of A40926 led to the isolation of differently resistant phenotypes to which a diverse A40926 productivity was associated. The most resistant population (G, grand colonies) represented at least the 20% of the colonies growing on 2 µg/mL of A40926. It showed a stable phenotype after sub-culturing and a homogeneous profile of self-resistance to A40926 in population analysis profile (PAP) experiments. The less resistant population (P, petit) was represented by slow-growing colonies to which a lower A40926 productivity was associated. At bioreactor scale, the G variant produced twice more than the wild-type (ca. 400 mg/L A40926 versus less than 200 mg/L, respectively), paving the way for a rational strain improvement based on the selection of increasingly self-resistant colonies.
Collapse
|
12
|
Engineering of Streptoalloteichus tenebrarius 2444 for Sustainable Production of Tobramycin. Molecules 2021; 26:molecules26144343. [PMID: 34299618 PMCID: PMC8304502 DOI: 10.3390/molecules26144343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Tobramycin is a broad-spectrum aminoglycoside antibiotic agent. The compound is obtained from the base-catalyzed hydrolysis of carbamoyltobramycin (CTB), which is naturally produced by the actinomycete Streptoalloteichus tenebrarius. However, the strain uses the same precursors to synthesize several structurally related aminoglycosides. Consequently, the production yields of tobramycin are low, and the compound’s purification is very challenging, costly, and time-consuming. In this study, the production of the main undesired product, apramycin, in the industrial isolate Streptoalloteichus tenebrarius 2444 was decreased by applying the fermentation media M10 and M11, which contained high concentrations of starch and dextrin. Furthermore, the strain was genetically engineered by the inactivation of the aprK gene (∆aprK), resulting in the abolishment of apramycin biosynthesis. In the next step of strain development, an additional copy of the tobramycin biosynthetic gene cluster (BGC) was introduced into the ∆aprK mutant. Fermentation by the engineered strain (∆aprK_1-17L) in M11 medium resulted in a 3- to 4-fold higher production than fermentation by the precursor strain (∆aprK). The phenotypic stability of the mutant without selection pressure was validated. The use of the engineered S. tenebrarius 2444 facilitates a step-saving, efficient, and, thus, more sustainable production of the valuable compound tobramycin on an industrial scale.
Collapse
|
13
|
Li YP, Bu QT, Li JF, Xie H, Su YT, Du YL, Li YQ. Genome-based rational engineering of Actinoplanes deccanensis for improving fidaxomicin production and genetic stability. BIORESOURCE TECHNOLOGY 2021; 330:124982. [PMID: 33743279 DOI: 10.1016/j.biortech.2021.124982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Microbial fermentation is currently still the major way to produce structural complicated clinical drugs. Yet, the low productivity and genetic instability of producing strains remain the bottlenecks in microbial pharmaceutical industry. Fidaxomicin is a microbial drug against the Clostridium difficile infection. Here, a genome-based combinatorial engineering strategy was established to improve both fidaxomicin production and the genetic stability of Actinoplanes deccanensis YP-1. Guided by genomic analysis, several genetic instability-associated elements were cumulatively deleted, generating a more genetically stable mutant. Further rational engineering approaches including elimination of a pigment pathway, duplication of the fidaxomicin gene cluster, overexpression of a positive regulator and optimization of the fermentation medium, led to an overall 27-folds improvement in fidaxomicin production. Taken together, the genome-based rational combinatorial engineering strategy was efficient to enhance the fidaxomicin production and ameliorate the genetic stability of YP-1, it can also be widely used in other industrial actinomycetes for strain improvement.
Collapse
Affiliation(s)
- Yue-Ping Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qing-Ting Bu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Ji-Feng Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Huang Xie
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yi-Ting Su
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yi-Ling Du
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China.
| |
Collapse
|
14
|
Biotechnological and Ecological Potential of Micromonospora provocatoris sp. nov., a Gifted Strain Isolated from the Challenger Deep of the Mariana Trench. Mar Drugs 2021; 19:md19050243. [PMID: 33923039 PMCID: PMC8146288 DOI: 10.3390/md19050243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
A Micromonospora strain, isolate MT25T, was recovered from a sediment collected from the Challenger Deep of the Mariana Trench using a selective isolation procedure. The isolate produced two major metabolites, n-acetylglutaminyl glutamine amide and desferrioxamine B, the chemical structures of which were determined using 1D and 2D-NMR, including 1H-15N HSQC and 1H-15N HMBC 2D-NMR, as well as high resolution MS. A whole genome sequence of the strain showed the presence of ten natural product-biosynthetic gene clusters, including one responsible for the biosynthesis of desferrioxamine B. Whilst 16S rRNA gene sequence analyses showed that the isolate was most closely related to the type strain of Micromonospora chalcea, a whole genome sequence analysis revealed it to be most closely related to Micromonospora tulbaghiae 45142T. The two strains were distinguished using a combination of genomic and phenotypic features. Based on these data, it is proposed that strain MT25T (NCIMB 15245T, TISTR 2834T) be classified as Micromonospora provocatoris sp. nov. Analysis of the genome sequence of strain MT25T (genome size 6.1 Mbp) revealed genes predicted to responsible for its adaptation to extreme environmental conditions that prevail in deep-sea sediments.
Collapse
|
15
|
Ji Z, Nie Q, Yin Y, Zhang M, Pan H, Hou X, Tang G. Activation and Characterization of Cryptic Gene Cluster: Two Series of Aromatic Polyketides Biosynthesized by Divergent Pathways. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen‐Yu Ji
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qiu‐Yue Nie
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yue Yin
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Mei Zhang
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hai‐Xue Pan
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xian‐Feng Hou
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Gong‐Li Tang
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
16
|
Ji ZY, Nie QY, Yin Y, Zhang M, Pan HX, Hou XF, Tang GL. Activation and Characterization of Cryptic Gene Cluster: Two Series of Aromatic Polyketides Biosynthesized by Divergent Pathways. Angew Chem Int Ed Engl 2019; 58:18046-18054. [PMID: 31553109 DOI: 10.1002/anie.201910882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/15/2022]
Abstract
One biosynthetic gene cluster (BGC) usually governs the biosynthesis of a series of compounds exhibiting either the same or similar molecular scaffolds. Reported here is a multiplex activation strategy to awaken a cryptic BGC associated with tetracycline polyketides, resulting in the discovery of compounds having different core structures. By constitutively expressing a positive regulator gene in tandem mode, a single BGC directed the biosynthesis of eight aromatic polyketides with two types of frameworks, two pentacyclic isomers and six glycosylated tetracyclines. The proposed biosynthetic pathway, based on systematic gene inactivation and identification of intermediates, employs two sets of tailoring enzymes with a branching point from the same intermediate. These findings not only provide new insights into the role of tailoring enzymes in the diversification of polyketides, but also highlight a reliable strategy for genome mining of natural products.
Collapse
Affiliation(s)
- Zhen-Yu Ji
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qiu-Yue Nie
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yue Yin
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Mei Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hai-Xue Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xian-Feng Hou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
17
|
Wang C, Wang J, Yuan J, Jiang L, Jiang X, Yang B, Zhao G, Liu B, Huang D. Generation of
Streptomyces hygroscopicus
cell factories with enhanced ascomycin production by combined elicitation and pathway‐engineering strategies. Biotechnol Bioeng 2019; 116:3382-3395. [DOI: 10.1002/bit.27158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Cheng Wang
- Department of Forestry Engineering, College of ForestryNorthwest A&F UniversityYangling Shaanxi China
| | - Junhua Wang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin China
| | - Jian Yuan
- Key Laboratory of Molecular Microbiology and TechnologyMinistry of EducationTianjin China
- TEDA Institute of Biological Sciences and BiotechnologyNankai UniversityTianjin China
| | - Lingyan Jiang
- Key Laboratory of Molecular Microbiology and TechnologyMinistry of EducationTianjin China
- TEDA Institute of Biological Sciences and BiotechnologyNankai UniversityTianjin China
| | - Xiaolong Jiang
- Key Laboratory of Molecular Microbiology and TechnologyMinistry of EducationTianjin China
- TEDA Institute of Biological Sciences and BiotechnologyNankai UniversityTianjin China
| | - Bin Yang
- Key Laboratory of Molecular Microbiology and TechnologyMinistry of EducationTianjin China
- TEDA Institute of Biological Sciences and BiotechnologyNankai UniversityTianjin China
| | - Guang Zhao
- Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao Shandong China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and TechnologyMinistry of EducationTianjin China
- TEDA Institute of Biological Sciences and BiotechnologyNankai UniversityTianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai UniversityTianjin China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and TechnologyMinistry of EducationTianjin China
- TEDA Institute of Biological Sciences and BiotechnologyNankai UniversityTianjin China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringNankai UniversityTianjin China
| |
Collapse
|
18
|
Xiang H, Sun-Waterhouse D, Waterhouse GI, Cui C, Ruan Z. Fermentation-enabled wellness foods: A fresh perspective. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Li L, Liu X, Wei K, Lu Y, Jiang W. Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems. Biotechnol Adv 2019; 37:730-745. [PMID: 30951810 DOI: 10.1016/j.biotechadv.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Industrial biotechnology is reliant on native pathway engineering or foreign pathway introduction for efficient biosynthesis of target products. Chromosomal integration, with intrinsic genetic stability, is an indispensable step for reliable expression of homologous or heterologous genes and pathways in large-scale and long-term fermentation. With advances in synthetic biology and CRISPR-based genome editing approaches, a wide variety of novel enabling technologies have been developed for single-step, markerless, multi-locus genomic integration of large biochemical pathways, which significantly facilitate microbial overproduction of chemicals, pharmaceuticals and other value-added biomolecules. Notably, the newly discovered homology-mediated end joining strategy could be widely applicable for high-efficiency genomic integration in a number of homologous recombination-deficient microbes. In this review, we explore the fundamental principles and characteristics of genomic integration, and highlight the development and applications of targeted integration approaches in the three representative industrial microbial systems, including Escherichia coli, actinomycetes and yeasts.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaocao Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Keke Wei
- Department of Biochemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201210, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, 200232, China.
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
20
|
Genome-Wide Mutagenesis Links Multiple Metabolic Pathways with Actinorhodin Production in Streptomyces coelicolor. Appl Environ Microbiol 2019; 85:AEM.03005-18. [PMID: 30709825 PMCID: PMC6585502 DOI: 10.1128/aem.03005-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/25/2019] [Indexed: 12/22/2022] Open
Abstract
Streptomyces species are important antibiotic-producing organisms that tightly regulate their antibiotic production. Actinorhodin is a typical antibiotic produced by the model actinomycete Streptomyces coelicolor To discover the regulators of actinorhodin production, we constructed a library of 50,000 independent mutants with hyperactive Tn5 transposase-based transposition systems. Five hundred fifty-one genes were found to influence actinorhodin production in 988 individual mutants. Genetic complementation suggested that most of the insertions (76%) were responsible for the changes in antibiotic production. Genes involved in diverse cellular processes such as amino acid biosynthesis, carbohydrate metabolism, cell wall homeostasis, and DNA metabolism affected actinorhodin production. Genome-wide mutagenesis can identify novel genes and pathways that impact antibiotic levels, potentially aiding in engineering strains to optimize the production of antibiotics in Streptomyces IMPORTANCE Previous studies have shown that various genes can influence antibiotic production in Streptomyces and that intercommunication between regulators can complicate antibiotic production. Therefore, to gain a better understanding of antibiotic regulation, a genome-wide perspective on genes that influence antibiotic production was needed. We searched for genes that affected production of the antibiotic actinorhodin using a genome-wide gene disruption system. We identified 551 genes that altered actinorhodin levels, and more than half of these genes were newly identified effectors. Some of these genes may be candidates for engineering Streptomyces strains to improve antibiotic production levels.
Collapse
|
21
|
Computational identification of co-evolving multi-gene modules in microbial biosynthetic gene clusters. Commun Biol 2019; 2:83. [PMID: 30854475 PMCID: PMC6395733 DOI: 10.1038/s42003-019-0333-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/22/2019] [Indexed: 11/09/2022] Open
Abstract
The biosynthetic machinery responsible for the production of bacterial specialised metabolites is encoded by physically clustered group of genes called biosynthetic gene clusters (BGCs). The experimental characterisation of numerous BGCs has led to the elucidation of subclusters of genes within BGCs, jointly responsible for the same biosynthetic function in different genetic contexts. We developed an unsupervised statistical method able to successfully detect a large number of modules (putative functional subclusters) within an extensive set of predicted BGCs in a systematic and automated manner. Multiple already known subclusters were confirmed by our method, proving its efficiency and sensitivity. In addition, the resulting large collection of newly defined modules provides new insights into the prevalence and putative biosynthetic role of these modular genetic entities. The automated and unbiased identification of hundreds of co-evolving group of genes is an essential breakthrough for the discovery and biosynthetic engineering of high-value compounds.
Collapse
|
22
|
Heterologous expression-facilitated natural products' discovery in actinomycetes. J Ind Microbiol Biotechnol 2018; 46:415-431. [PMID: 30446891 DOI: 10.1007/s10295-018-2097-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/21/2018] [Indexed: 12/22/2022]
Abstract
Actinomycetes produce many of the drugs essential for human and animal health as well as crop protection. Genome sequencing projects launched over the past two decades reveal dozens of cryptic natural product biosynthetic gene clusters in each actinomycete genome that are not expressed under regular laboratory conditions. This so-called 'chemical dark matter' represents a potentially rich untapped resource for drug discovery in the genomic era. Through improved understanding of natural product biosynthetic logic coupled with the development of bioinformatic and genetic tools, we are increasingly able to access this 'dark matter' using a wide variety of strategies with downstream potential application in drug development. In this review, we discuss recent research progress in the field of cloning of natural product biosynthetic gene clusters and their heterologous expression in validating the potential of this methodology to drive next-generation drug discovery.
Collapse
|
23
|
Genome guided investigation of antibiotics producing actinomycetales strain isolated from a Macau mangrove ecosystem. Sci Rep 2018; 8:14271. [PMID: 30250135 PMCID: PMC6155160 DOI: 10.1038/s41598-018-32076-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/31/2018] [Indexed: 01/15/2023] Open
Abstract
Actinomycetes are a heterogeneous group of gram positive filamentous bacteria that have been found to produce a wide range of valuable bioactive secondary metabolites, particularly antibiotics. Moreover, actinomycetes isolated from unexplored environments show an unprecedented potential to generate novel active compounds. Hence, in order to search for novel antibiotics, we isolated and characterized actinomycetes strains from plant samples collected from a mangrove in Macau. Within the class of actinobacteria, fourteen actinomycetes isolates have been isolated and identified belonging to the genus of Streptomyces, Micromonospora, Mycobacterium, Brevibacterium, Curtobacterium and Kineococcus based on their 16S rRNA sequences. Further whole genome sequencing analysis of one of the isolated Streptomyces sp., which presented 99.13% sequence similarity with Streptomyces parvulus strain 2297, showed that it consisted of 118 scaffolds, 8,348,559 base pairs and had a 72.28% G + C content. In addition, genome-mining revealed that the isolated Streptomyces sp. contains 109 gene clusters responsible for the biosynthesis of known and/or novel secondary metabolites, including different types of terpene, T1pks, T2pks, T3pks, Nrps, indole, siderophore, bacteriocin, thiopeptide, phosphonate, lanthipeptide, ectoine, butyrolactone, T3pks-Nrps, and T1pks-Nrps. Meanwhile, the small molecules present in ethyl acetate extract of the fermentation broth of this strain were analyzed by LC-MS. Predicted secondary metabolites of melanin and desferrioxamine B were identified and both of them were firstly found to be produced by the Streptomyces parvulus strain. Our study highlights that combining genome mining is an efficient method to detect potentially promising natural products from mangrove-derived actinomycetes.
Collapse
|
24
|
Horbal L, Marques F, Nadmid S, Mendes MV, Luzhetskyy A. Secondary metabolites overproduction through transcriptional gene cluster refactoring. Metab Eng 2018; 49:299-315. [DOI: 10.1016/j.ymben.2018.09.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 11/26/2022]
|
25
|
Ogawara H. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. Molecules 2018; 23:E1476. [PMID: 29912169 PMCID: PMC6100412 DOI: 10.3390/molecules23061476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Drug resistance, especially antibiotic resistance, is a growing threat to human health. To overcome this problem, it is significant to know precisely the mechanisms of drug resistance and/or self-resistance in various kingdoms, from bacteria through plants to animals, once more. This review compares the molecular mechanisms of the resistance against phycotoxins, toxins from marine and terrestrial animals, plants and fungi, and antibiotics. The results reveal that each kingdom possesses the characteristic features. The main mechanisms in each kingdom are transporters/efflux pumps in phycotoxins, mutation and modification of targets and sequestration in marine and terrestrial animal toxins, ABC transporters and sequestration in plant toxins, transporters in fungal toxins, and various or mixed mechanisms in antibiotics. Antibiotic producers in particular make tremendous efforts for avoiding suicide, and are more flexible and adaptable to the changes of environments. With these features in mind, potential alternative strategies to overcome these resistance problems are discussed. This paper will provide clues for solving the issues of drug resistance.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
26
|
Skyrud W, Liu J, Thankachan D, Cabrera M, Seipke RF, Zhang W. Biosynthesis of the 15-Membered Ring Depsipeptide Neoantimycin. ACS Chem Biol 2018; 13:1398-1406. [PMID: 29693372 DOI: 10.1021/acschembio.8b00298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antimycins are a family of natural products possessing outstanding biological activities and unique structures, which have intrigued chemists for over a half century. Of particular interest are the ring-expanded antimycins that show promising anticancer potential and whose biosynthesis remains uncharacterized. Specifically, neoantimycin and its analogs have been shown to be effective regulators of the oncogenic proteins GRP78/BiP and K-Ras. The neoantimycin structural skeleton is built on a 15-membered tetralactone ring containing one methyl, one hydroxy, one benzyl, and three alkyl moieties, as well as an amide linkage to a conserved 3-formamidosalicylic acid moiety. Although the biosynthetic gene cluster for neoantimycins was recently identified, the enzymatic logic that governs the synthesis of neoantimycins has not yet been revealed. In this work, the neoantimycin gene cluster is identified, and an updated sequence and annotation is provided delineating a nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) hybrid scaffold. Using cosmid expression and CRISPR/Cas-based genome editing, several heterologous expression strains for neoantimycin production are constructed in two separate Streptomyces species. A combination of in vivo and in vitro analysis is further used to completely characterize the biosynthesis of neoantimycins including the megasynthases and trans-acting domains. This work establishes a set of highly tractable hosts for producing and engineering neoantimycins and their C11 oxidized analogs, paving the way for neoantimycin-based drug discovery and development.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenjun Zhang
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
27
|
Genome plasticity is governed by double strand break DNA repair in Streptomyces. Sci Rep 2018; 8:5272. [PMID: 29588483 PMCID: PMC5869714 DOI: 10.1038/s41598-018-23622-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
The linear chromosome of the bacterium Streptomyces exhibits a remarkable genetic organization with grossly a central conserved region flanked by variable chromosomal arms. The terminal diversity co-locates with an intense DNA plasticity including the occurrence of large deletions associated to circularization and chromosomal arm exchange. These observations prompted us to assess the role of double strand break (DSB) repair in chromosome plasticity following. For that purpose, DSBs were induced along the chromosome using the meganuclease I-SceI. DSB repair in the central region of the chromosome was mutagenic at the healing site but kept intact the whole genome structure. In contrast, DSB repair in the chromosomal arms was mostly associated to the loss of the targeted chromosomal arm and extensive deletions beyond the cleavage sites. While homologous recombination occurring between copies of DNA sequences accounted for the most part of the chromosome rescue events, Non Homologous End Joining was involved in mutagenic repair as well as in huge genome rearrangements (i.e. circularization). Further, NHEJ repair was concomitant with the integration of genetic material at the healing site. We postulate that DSB repair drives genome plasticity and evolution in Streptomyces and that NHEJ may foster horizontal transfer in the environment.
Collapse
|
28
|
Diverse genetic error modes constrain large-scale bio-based production. Nat Commun 2018; 9:787. [PMID: 29463788 PMCID: PMC5820350 DOI: 10.1038/s41467-018-03232-w] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/26/2018] [Indexed: 11/18/2022] Open
Abstract
A transition toward sustainable bio-based chemical production is important for green growth. However, productivity and yield frequently decrease as large-scale microbial fermentation progresses, commonly ascribed to phenotypic variation. Yet, given the high metabolic burden and toxicities, evolutionary processes may also constrain bio-based production. We experimentally simulate large-scale fermentation with mevalonic acid-producing Escherichia coli. By tracking growth rate and production, we uncover how populations fully sacrifice production to gain fitness within 70 generations. Using ultra-deep (>1000×) time-lapse sequencing of the pathway populations, we identify multiple recurring intra-pathway genetic error modes. This genetic heterogeneity is only detected using deep-sequencing and new population-level bioinformatics, suggesting that the problem is underestimated. A quantitative model explains the population dynamics based on enrichment of spontaneous mutant cells. We validate our model by tuning production load and escape rate of the production host and apply multiple orthogonal strategies for postponing genetically driven production declines. The declining performance of scale-up bioreactor cultures is commonly attributed to phenotypic and physical heterogeneities. Here, the authors reveal multiple recurring intra-pathway error modes that limit engineered E. coli mevalonic acid production over time- and industrial-scale fermentations.
Collapse
|
29
|
Pait IGU, Kitani S, Roslan FW, Ulanova D, Arai M, Ikeda H, Nihira T. Discovery of a new diol-containing polyketide by heterologous expression of a silent biosynthetic gene cluster from Streptomyces lavendulae FRI-5. J Ind Microbiol Biotechnol 2017; 45:77-87. [PMID: 29255990 DOI: 10.1007/s10295-017-1997-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/09/2017] [Indexed: 11/29/2022]
Abstract
The genome of streptomycetes has the ability to produce many novel and potentially useful bioactive compounds, but most of which are not produced under standard laboratory cultivation conditions and are referred to as silent/cryptic secondary metabolites. Streptomyces lavendulae FRI-5 produces several types of bioactive compounds. However, this strain may also have the potential to biosynthesize more useful secondary metabolites. Here, we activated a silent biosynthetic gene cluster of an uncharacterized compound from S. lavendulae FRI-5 using heterologous expression. The engineered strain carrying the silent gene cluster produced compound 5, which was undetectable in the culture broth of S. lavendulae FRI-5. Using various spectroscopic analyses, we elucidated the chemical structure of compound 5 (named lavendiol) as a new diol-containing polyketide. The proposed assembly line of lavendiol shows a unique biosynthetic mechanism for polyketide compounds. The results of this study suggest the possibility of discovering more silent useful compounds from streptomycetes by genome mining and heterologous expression.
Collapse
Affiliation(s)
- Ivy Grace Umadhay Pait
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Kitani
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Farah Wahidah Roslan
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Dana Ulanova
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Takuya Nihira
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand.
| |
Collapse
|
30
|
Li L, Jiang W, Lu Y. New strategies and approaches for engineering biosynthetic gene clusters of microbial natural products. Biotechnol Adv 2017; 35:936-949. [DOI: 10.1016/j.biotechadv.2017.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 12/11/2022]
|
31
|
Increased Biosynthetic Gene Dosage in a Genome-Reduced Defensive Bacterial Symbiont. mSystems 2017; 2:mSystems00096-17. [PMID: 29181447 PMCID: PMC5698493 DOI: 10.1128/msystems.00096-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022] Open
Abstract
Secondary metabolites, which are small-molecule organic compounds produced by living organisms, provide or inspire drugs for many different diseases. These natural products have evolved over millions of years to provide a survival benefit to the producing organism and often display potent biological activity with important therapeutic applications. For instance, defensive compounds in the environment may be cytotoxic to eukaryotic cells, a property exploitable for cancer treatment. Here, we describe the genome of an uncultured symbiotic bacterium that makes such a cytotoxic metabolite. This symbiont is losing genes that do not endow a selective advantage in a hospitable host environment. Secondary metabolism genes, however, are repeated multiple times in the genome, directly demonstrating their selective advantage. This finding shows the strength of selective forces in symbiotic relationships and suggests that uncultured bacteria in such relationships should be targeted for drug discovery efforts. A symbiotic lifestyle frequently results in genome reduction in bacteria; the isolation of small populations promotes genetic drift and the fixation of deletions and deleterious mutations over time. Transitions in lifestyle, including host restriction or adaptation to an intracellular habitat, are thought to precipitate a wave of sequence degradation events and consequent proliferation of pseudogenes. We describe here a verrucomicrobial symbiont of the tunicate Lissoclinum sp. that appears to be undergoing such a transition, with low coding density and many identifiable pseudogenes. However, despite the overall drive toward genome reduction, this symbiont maintains seven copies of a large polyketide synthase (PKS) pathway for the mandelalides (mnd), cytotoxic compounds that likely constitute a chemical defense for the host. There is evidence of ongoing degradation in a small number of these repeats—including variable borders, internal deletions, and single nucleotide polymorphisms (SNPs). However, the gene dosage of most of the pathway is increased at least 5-fold. Correspondingly, this single pathway accounts for 19% of the genome by length and 25.8% of the coding capacity. This increased gene dosage in the face of generalized sequence degradation and genome reduction suggests that mnd genes are under strong purifying selection and are important to the symbiotic relationship. IMPORTANCE Secondary metabolites, which are small-molecule organic compounds produced by living organisms, provide or inspire drugs for many different diseases. These natural products have evolved over millions of years to provide a survival benefit to the producing organism and often display potent biological activity with important therapeutic applications. For instance, defensive compounds in the environment may be cytotoxic to eukaryotic cells, a property exploitable for cancer treatment. Here, we describe the genome of an uncultured symbiotic bacterium that makes such a cytotoxic metabolite. This symbiont is losing genes that do not endow a selective advantage in a hospitable host environment. Secondary metabolism genes, however, are repeated multiple times in the genome, directly demonstrating their selective advantage. This finding shows the strength of selective forces in symbiotic relationships and suggests that uncultured bacteria in such relationships should be targeted for drug discovery efforts. Author Video: An author video summary of this article is available.
Collapse
|
32
|
Cao G, Zhang P, Gu Y, Pang X. Gene Overexpression in Streptomyces hygroscopicus Associated with DNA Amplification. Curr Microbiol 2017; 74:979-986. [PMID: 28585046 DOI: 10.1007/s00284-017-1278-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/03/2017] [Indexed: 11/30/2022]
Abstract
The genetics of the Streptomyces hygroscopicus strain 10-22 is of interest due to the ability of this strain to produce antifungal compounds. Strain T110 was obtained through insertional mutagenesis of strain 10-22 and was found to have undergone DNA amplification, as determined by both conventional and pulsed-field gel electrophoresis (PFGE). pIJ702, the vector used for insertional mutagenesis, was shown to have integrated into and co-amplified with the chromosomal DNA sequence of T110, as pIJ702 hybridized predominantly with two of the three amplified BamHI fragments. The amplified DNA sequence in T110 is 10.8 kb in length and consists of 5.18 kb of Streptomyces chromosomal DNA and the entire 5.62 kb pIJ702 sequence. Sequence analysis of the 5.18 kb chromosomal sequence revealed two open reading frames, one encoding a putative IS5 family transposase and the other encoding a putative dihydroxy-acid dehydratase. Real-time PCR analysis showed that expression of the putative dehydratase gene in T110 is about 50 times greater than in the wild-type strain, consistent with the high level of amplification of this DNA region, and therefore this system has the potential for producing economically or clinically important molecules.
Collapse
Affiliation(s)
- Guangxiang Cao
- The State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Peipei Zhang
- The State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Yuanxin Gu
- The State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Xiuhua Pang
- The State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| |
Collapse
|
33
|
Li L, Zheng G, Chen J, Ge M, Jiang W, Lu Y. Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. Metab Eng 2017; 40:80-92. [DOI: 10.1016/j.ymben.2017.01.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/26/2016] [Accepted: 01/10/2017] [Indexed: 11/27/2022]
|
34
|
Bandyopadhyay AA, Khetan A, Malmberg LH, Zhou W, Hu WS. Advancement in bioprocess technology: parallels between microbial natural products and cell culture biologics. J Ind Microbiol Biotechnol 2017; 44:785-797. [PMID: 28185098 DOI: 10.1007/s10295-017-1913-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
The emergence of natural products and industrial microbiology nearly eight decades ago propelled an era of bioprocess innovation. Half a century later, recombinant protein technology spurred the tremendous growth of biologics and added mammalian cells to the forefront of industrial producing cells in terms of the value of products generated. This review highlights the process technology of natural products and protein biologics. Despite the separation in time, there is a remarkable similarity in their progression. As the new generation of therapeutics for gene and cell therapy emerges, its process technology development can take inspiration from that of natural products and biologics.
Collapse
Affiliation(s)
- Arpan A Bandyopadhyay
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455-0132, USA
| | - Anurag Khetan
- Biological Process Development, Bristol Myers Squibb, 521 NJ-173, Bloomsbury, NJ, 08804, USA
| | - Li-Hong Malmberg
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | | | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455-0132, USA.
| |
Collapse
|
35
|
Coordinate Regulation of Antimycin and Candicidin Biosynthesis. mSphere 2016; 1:mSphere00305-16. [PMID: 27981234 PMCID: PMC5143413 DOI: 10.1128/msphere.00305-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022] Open
Abstract
Natural products produced by members of the phylum Actinobacteria underpin many industrially and medically important compounds; however, the majority of the ~30 biosynthetic pathways harbored by an average species are not expressed in the laboratory. Understanding the diversity of regulatory strategies controlling the expression of these pathways is therefore critical if their biosynthetic potential is to be explored for new drug leads. Our findings reveal that the candicidin cluster-situated regulator FscRI coordinately controls the biosynthesis of both candicidin and antimycin, which is the first observation of cross-regulation of disparate biosynthetic gene clusters specifying unrelated natural products. We anticipate that this will emerge as a major strategy by which members of the phylum Actinobacteria coordinately produce natural products, which will advance our understanding of how the expression of secondary metabolism is controlled and will aid the pursuit of “silent” biosynthetic pathway activation. Streptomyces species produce an incredible array of high-value specialty chemicals and medicinal therapeutics. A single species typically harbors ~30 biosynthetic pathways, but only a few them are expressed in the laboratory; thus, poor understanding of how natural-product biosynthesis is regulated is a major bottleneck in drug discovery. Antimycins are a large family of anticancer compounds widely produced by Streptomyces species, and their regulation is atypical compared to that of most other natural products. Here we demonstrate that antimycin production by Streptomyces albus S4 is regulated by FscRI, a PAS-LuxR family cluster-situated regulator of the polyene antifungal agent candicidin. We report that heterologous production of antimycins by Streptomyces coelicolor is dependent on FscRI and show that FscRI activates the transcription of key biosynthetic genes. We also demonstrate through chromatin immunoprecipitation sequencing that FscRI regulation is direct, and we provide evidence that this regulation strategy is conserved and unique to short-form antimycin gene clusters. Our study provides direct in vivo evidence of the cross-regulation of disparate biosynthetic gene clusters specifying unrelated natural products and expands the paradigmatic understanding of the regulation of secondary metabolism. IMPORTANCE Natural products produced by members of the phylum Actinobacteria underpin many industrially and medically important compounds; however, the majority of the ~30 biosynthetic pathways harbored by an average species are not expressed in the laboratory. Understanding the diversity of regulatory strategies controlling the expression of these pathways is therefore critical if their biosynthetic potential is to be explored for new drug leads. Our findings reveal that the candicidin cluster-situated regulator FscRI coordinately controls the biosynthesis of both candicidin and antimycin, which is the first observation of cross-regulation of disparate biosynthetic gene clusters specifying unrelated natural products. We anticipate that this will emerge as a major strategy by which members of the phylum Actinobacteria coordinately produce natural products, which will advance our understanding of how the expression of secondary metabolism is controlled and will aid the pursuit of “silent” biosynthetic pathway activation.
Collapse
|
36
|
Hoff G, Bertrand C, Zhang L, Piotrowski E, Chipot L, Bontemps C, Confalonieri F, McGovern S, Lecointe F, Thibessard A, Leblond P. Multiple and Variable NHEJ-Like Genes Are Involved in Resistance to DNA Damage in Streptomyces ambofaciens. Front Microbiol 2016; 7:1901. [PMID: 27965636 PMCID: PMC5124664 DOI: 10.3389/fmicb.2016.01901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/14/2016] [Indexed: 11/26/2022] Open
Abstract
Non-homologous end-joining (NHEJ) is a double strand break (DSB) repair pathway which does not require any homologous template and can ligate two DNA ends together. The basic bacterial NHEJ machinery involves two partners: the Ku protein, a DNA end binding protein for DSB recognition and the multifunctional LigD protein composed a ligase, a nuclease and a polymerase domain, for end processing and ligation of the broken ends. In silico analyses performed in the 38 sequenced genomes of Streptomyces species revealed the existence of a large panel of NHEJ-like genes. Indeed, ku genes or ligD domain homologues are scattered throughout the genome in multiple copies and can be distinguished in two categories: the “core” NHEJ gene set constituted of conserved loci and the “variable” NHEJ gene set constituted of NHEJ-like genes present in only a part of the species. In Streptomyces ambofaciens ATCC23877, not only the deletion of “core” genes but also that of “variable” genes led to an increased sensitivity to DNA damage induced by electron beam irradiation. Multiple mutants of ku, ligase or polymerase encoding genes showed an aggravated phenotype compared to single mutants. Biochemical assays revealed the ability of Ku-like proteins to protect and to stimulate ligation of DNA ends. RT-qPCR and GFP fusion experiments suggested that ku-like genes show a growth phase dependent expression profile consistent with their involvement in DNA repair during spores formation and/or germination.
Collapse
Affiliation(s)
- Grégory Hoff
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Claire Bertrand
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Lingli Zhang
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Emilie Piotrowski
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Ludovic Chipot
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Cyril Bontemps
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Fabrice Confalonieri
- Institute for Integrative Biology of the Cell (I2BC), CEA, Centre National de la Recherche Scientifique, Université Paris-Sud Orsay, France
| | - Stephen McGovern
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - François Lecointe
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Annabelle Thibessard
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Pierre Leblond
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| |
Collapse
|
37
|
Thanapipatsiri A, Gomez‐Escribano JP, Song L, Bibb MJ, Al‐Bassam M, Chandra G, Thamchaipenet A, Challis GL, Bibb MJ. Discovery of Unusual Biaryl Polyketides by Activation of a Silent Streptomyces venezuelae Biosynthetic Gene Cluster. Chembiochem 2016; 17:2189-2198. [PMID: 27605017 PMCID: PMC5132015 DOI: 10.1002/cbic.201600396] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 11/22/2022]
Abstract
Comparative transcriptional profiling of a ΔbldM mutant of Streptomyces venezuelae with its unmodified progenitor revealed that the expression of a cryptic biosynthetic gene cluster containing both type I and type III polyketide synthase genes is activated in the mutant. The 29.5 kb gene cluster, which was predicted to encode an unusual biaryl metabolite, which we named venemycin, and potentially halogenated derivatives, contains 16 genes including one-vemR-that encodes a transcriptional activator of the large ATP-binding LuxR-like (LAL) family. Constitutive expression of vemR in the ΔbldM mutant led to the production of sufficient venemycin for structural characterisation, confirming its unusual biaryl structure. Co-expression of the venemycin biosynthetic gene cluster and vemR in the heterologous host Streptomyces coelicolor also resulted in venemycin production. Although the gene cluster encodes two halogenases and a flavin reductase, constitutive expression of all three genes led to the accumulation only of a monohalogenated venemycin derivative, both in the native producer and the heterologous host. A competition experiment in which equimolar quantities of sodium chloride and sodium bromide were fed to the venemycin-producing strains resulted in the preferential incorporation of bromine, thus suggesting that bromide is the preferred substrate for one or both halogenases.
Collapse
Affiliation(s)
- Anyarat Thanapipatsiri
- Department of GeneticsFaculty of ScienceKasetsart University, 50 Ngamwongwan Road, Ladyao, ChatuchakBangkok10900Thailand
- Department of Molecular MicrobiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | | - Lijiang Song
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Maureen J. Bibb
- Department of Molecular MicrobiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Mahmoud Al‐Bassam
- Department of Molecular MicrobiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Department of BioengineeringUniversity of California San Diego9500 Gilman Drive, MC 0412La JollaCA92093-0412USA
| | - Govind Chandra
- Department of Molecular MicrobiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Arinthip Thamchaipenet
- Department of GeneticsFaculty of ScienceKasetsart University, 50 Ngamwongwan Road, Ladyao, ChatuchakBangkok10900Thailand
- Center for Advanced Studies in Tropical Natural ResourcesNRU–KUKasetsart University50 Ngamwongwan Road, Ladyao, ChatuchakBangkok10900Thailand
| | - Gregory L. Challis
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Mervyn J. Bibb
- Department of Molecular MicrobiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
38
|
Wang Y, Tao Z, Zheng H, Zhang F, Long Q, Deng Z, Tao M. Iteratively improving natamycin production in Streptomyces gilvosporeus by a large operon-reporter based strategy. Metab Eng 2016; 38:418-426. [PMID: 27746324 DOI: 10.1016/j.ymben.2016.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/09/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
Many high-value secondary metabolites are assembled by very large multifunctional polyketide synthases or non-ribosomal peptide synthetases encoded by giant genes, for instance, natamycin production in an industrial strain of Streptomyces gilvosporeus. In this study, a large operon reporter-based selection system has been developed using the selectable marker gene neo to report the expression both of the large polyketide synthase genes and of the entire gene cluster, thereby facilitating the selection of natamycin-overproducing mutants by iterative random mutagenesis breeding. In three successive rounds of mutagenesis and selection, the natamycin titer was increased by 110%, 230%, and 340%, respectively, and the expression of the whole biosynthetic gene cluster was correspondingly increased. An additional copy of the natamycin gene cluster was found in one overproducer. These findings support the large operon reporter-based selection system as a useful tool for the improvement of industrial strains utilized in the production of polyketides and non-ribosomal peptides.
Collapse
Affiliation(s)
- Yemin Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhengsheng Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hualiang Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qingshan Long
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
39
|
Widespread interspecies homologous recombination reveals reticulate evolution within the genus Streptomyces. Mol Phylogenet Evol 2016; 102:246-54. [DOI: 10.1016/j.ympev.2016.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 06/07/2016] [Accepted: 06/17/2016] [Indexed: 01/14/2023]
|
40
|
Zhang MM, Wang Y, Ang EL, Zhao H. Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 2016; 33:963-87. [PMID: 27072804 PMCID: PMC4963277 DOI: 10.1039/c6np00017g] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering up to end 2015Microbial fermentation provides an attractive alternative to chemical synthesis for the production of structurally complex natural products. In most cases, however, production titers are low and need to be improved for compound characterization and/or commercial production. Owing to advances in functional genomics and genetic engineering technologies, microbial hosts can be engineered to overproduce a desired natural product, greatly accelerating the traditionally time-consuming strain improvement process. This review covers recent developments and challenges in the engineering of native and heterologous microbial hosts for the production of bacterial natural products, focusing on the genetic tools and strategies for strain improvement. Special emphasis is placed on bioactive secondary metabolites from actinomycetes. The considerations for the choice of host systems will also be discussed in this review.
Collapse
Affiliation(s)
- Mingzi M Zhang
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore
| | | | | | | |
Collapse
|
41
|
Liu X, Jin Y, Cui Z, Nonaka K, Baba S, Funabashi M, Yang Z, Van Lanen SG. The Role of a Nonribosomal Peptide Synthetase in l-Lysine Lactamization During Capuramycin Biosynthesis. Chembiochem 2016; 17:804-10. [PMID: 26840634 PMCID: PMC4933962 DOI: 10.1002/cbic.201500701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Indexed: 01/10/2023]
Abstract
Capuramycins are one of several known classes of natural products that contain an l-Lys-derived l-α-amino-ɛ-caprolactam (l-ACL) unit. The α-amino group of l-ACL in a capuramycin is linked to an unsaturated hexuronic acid component through an amide bond that was previously shown to originate by an ATP-independent enzymatic route. With the aid of a combined in vivo and in vitro approach, a predicted tridomain nonribosomal peptide synthetase CapU is functionally characterized here as the ATP-dependent amide-bond-forming catalyst responsible for the biosynthesis of the remaining amide bond present in l-ACL. The results are consistent with the adenylation domain of CapU as the essential catalytic component for l-Lys activation and thioesterification of the adjacent thiolation domain. However, in contrast to expectations, lactamization does not require any additional domains or proteins and is likely a nonenzymatic event. The results set the stage for examining whether a similar NRPS-mediated mechanism is employed in the biosynthesis of other l-ACL-containing natural products and, just as intriguingly, how spontaneous lactamization is avoided in the numerous NRPS-derived peptides that contain an unmodified l-Lys residue.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Yuanyuan Jin
- Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medicinal Sciences & Peking Union Medical College, Beijing, China
| | - Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Koichi Nonaka
- Biologics Technology Research Laboratories, Daiichi Sankyo, Co. Ltd., Gunma, 370-0503, Japan
| | - Satoshi Baba
- Biologics Technology Research Laboratories, Daiichi Sankyo, Co. Ltd., Gunma, 370-0503, Japan
| | - Masanori Funabashi
- Natural Product Research Group, Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co. Ltd., Tokyo, 134-8630, Japan
| | - Zhaoyong Yang
- Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medicinal Sciences & Peking Union Medical College, Beijing, China
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
42
|
Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 2015; 43:343-70. [PMID: 26364200 DOI: 10.1007/s10295-015-1682-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/28/2015] [Indexed: 12/18/2022]
Abstract
Actinomycetes continue to be important sources for the discovery of secondary metabolites for applications in human medicine, animal health, and crop protection. With the maturation of actinomycete genome mining as a robust approach to identify new and novel cryptic secondary metabolite gene clusters, it is critical to continue developing methods to activate and enhance secondary metabolite biosynthesis for discovery, development, and large-scale manufacturing. This review covers recent reports on promising new approaches and further validations or technical improvements of existing approaches to strain improvement applicable to a wide range of Streptomyces species and other actinomycetes.
Collapse
|
43
|
Fedorenko V, Genilloud O, Horbal L, Marcone GL, Marinelli F, Paitan Y, Ron EZ. Antibacterial Discovery and Development: From Gene to Product and Back. BIOMED RESEARCH INTERNATIONAL 2015; 2015:591349. [PMID: 26339625 PMCID: PMC4538407 DOI: 10.1155/2015/591349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/30/2014] [Accepted: 01/13/2015] [Indexed: 12/23/2022]
Abstract
Concern over the reports of antibiotic-resistant bacterial infections in hospitals and in the community has been publicized in the media, accompanied by comments on the risk that we may soon run out of antibiotics as a way to control infectious disease. Infections caused by Enterococcus faecium, Staphylococcus aureus, Klebsiella species, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, and other Enterobacteriaceae species represent a major public health burden. Despite the pharmaceutical sector's lack of interest in the topic in the last decade, microbial natural products continue to represent one of the most interesting sources for discovering and developing novel antibacterials. Research in microbial natural product screening and development is currently benefiting from progress that has been made in other related fields (microbial ecology, analytical chemistry, genomics, molecular biology, and synthetic biology). In this paper, we review how novel and classical approaches can be integrated in the current processes for microbial product screening, fermentation, and strain improvement.
Collapse
Affiliation(s)
- Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv 79005, Ukraine
| | - Olga Genilloud
- Fundación MEDINA, Health Sciences Technology Park, 18016 Granada, Spain
| | - Liliya Horbal
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv 79005, Ukraine
| | - Giorgia Letizia Marcone
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- The Protein Factory, Interuniversity Centre Politecnico di Milano, ICRM CNR Milano, and University of Insubria, 21100 Varese, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- The Protein Factory, Interuniversity Centre Politecnico di Milano, ICRM CNR Milano, and University of Insubria, 21100 Varese, Italy
| | - Yossi Paitan
- Clinical Microbiology Laboratory, Meir Medical Center, 44281 Kfar Saba, Israel
| | - Eliora Z. Ron
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 6997801 Tel Aviv, Israel
- Galilee Research Institute (MIGAL), 11016 Kiryat Shmona, Israel
| |
Collapse
|
44
|
Li L, Zhao Y, Ruan L, Yang S, Ge M, Jiang W, Lu Y. A stepwise increase in pristinamycin II biosynthesis by Streptomyces pristinaespiralis through combinatorial metabolic engineering. Metab Eng 2015; 29:12-25. [DOI: 10.1016/j.ymben.2015.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 01/05/2023]
|
45
|
Lincomycin at Subinhibitory Concentrations Potentiates Secondary Metabolite Production by Streptomyces spp. Appl Environ Microbiol 2015; 81:3869-79. [PMID: 25819962 DOI: 10.1128/aem.04214-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/23/2015] [Indexed: 12/27/2022] Open
Abstract
Antibiotics have either bactericidal or bacteriostatic activity. However, they also induce considerable gene expression in bacteria when used at subinhibitory concentrations (below the MIC). We found that lincomycin, which inhibits protein synthesis by binding to the ribosomes of Gram-positive bacteria, was effective for inducing the expression of genes involved in secondary metabolism in Streptomyces strains when added to medium at subinhibitory concentrations. In Streptomyces coelicolor A3(2), lincomycin at 1/10 of its MIC markedly increased the expression of the pathway-specific regulatory gene actII-ORF4 in the blue-pigmented antibiotic actinorhodin (ACT) biosynthetic gene cluster, which resulted in ACT overproduction. Intriguingly, S. lividans 1326 grown in the presence of lincomycin at a subinhibitory concentration (1/12 or 1/3 of its MIC) produced abundant antibacterial compounds that were not detected in cells grown in lincomycin-free medium. Bioassay and mass spectrometry analysis revealed that some antibacterial compounds were novel congeners of calcium-dependent antibiotics. Our results indicate that lincomycin at subinhibitory concentrations potentiates the production of secondary metabolites in Streptomyces strains and suggest that activating these strains by utilizing the dose-response effects of lincomycin could be used to effectively induce the production of cryptic secondary metabolites. In addition to these findings, we also report that lincomycin used at concentrations for markedly increased ACT production resulted in alteration of the cytoplasmic protein (FoF1 ATP synthase α and β subunits, etc.) profile and increased intracellular ATP levels. A fundamental mechanism for these unique phenomena is also discussed.
Collapse
|
46
|
Genome engineering and direct cloning of antibiotic gene clusters via phage ϕBT1 integrase-mediated site-specific recombination in Streptomyces. Sci Rep 2015; 5:8740. [PMID: 25737113 PMCID: PMC4349145 DOI: 10.1038/srep08740] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/03/2015] [Indexed: 11/17/2022] Open
Abstract
Several strategies have been used to clone large DNA fragments directly from bacterial
genome. Most of these approaches are based on different site-specific recombination systems
consisting of a specialized recombinase and its target sites. In this study, a novel
strategy based on phage ϕBT1 integrase-mediated site-specific recombination was developed,
and used for simultaneous Streptomyces genome engineering and cloning of antibiotic
gene clusters. This method has been proved successful for the cloning of actinorhodin gene
cluster from Streptomyces coelicolor M145, napsamycin gene cluster and daptomycin
gene cluster from Streptomyces roseosporus NRRL 15998 at a frequency higher than 80%.
Furthermore, the system could be used to increase the titer of antibiotics as we
demonstrated with actinorhodin and daptomycin, and it will be broadly applicable in many
Streptomyces.
Collapse
|
47
|
Wannarat W, Motoyama S, Masuda K, Kawamura F, Inaoka T. Tetracycline tolerance mediated by gene amplification in Bacillus subtilis. MICROBIOLOGY-SGM 2014; 160:2474-2480. [PMID: 25169108 DOI: 10.1099/mic.0.081505-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacillus subtilis can acquire a higher tolerance to tetracycline by increasing the gene dosage of its resistance gene tetB. In this study, we estimated the multiplication effect of tetB on tetracycline tolerance. Cells harbouring multiple copies of tetB were found to comprise approximately 30 % of the total tetracycline-resistant cell population when selected on medium containing 10 µg tetracycline ml(-1). Disruption of recA resulted in a significant decrease in the frequency of tetB amplification. Although four direct repeats exist around tetB, the majority of tetB amplicons were found to be flanked by non-homologous sequences, indicating that the initial duplication of tetB can occur largely through RecA-independent recombination. The correlation between the tetB copy number and the MIC values for tetracycline indicated that more than three copies of tetB were required for tolerance to 10 µg tetracycline ml(-1). Thus, the RecA-dependent expansion step appears to be necessary for developing significant tetracycline tolerance mediated by tetB amplification.
Collapse
Affiliation(s)
- Wannasiri Wannarat
- Nanotechnology and Biotechnology Unit, Kasetsart Agricultural and Agro-Industrial Production Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand.,Microbial Function Laboratory, National Food Research Institute, National Agriculture Research Organization, Tsukuba, Ibaraki, Japan
| | - Shiori Motoyama
- Microbial Function Laboratory, National Food Research Institute, National Agriculture Research Organization, Tsukuba, Ibaraki, Japan
| | - Kenta Masuda
- Rikkyo University, Department of Life Science, College of Science, Toshima-ku, Tokyo, Japan
| | - Fujio Kawamura
- Rikkyo University, Department of Life Science, College of Science, Toshima-ku, Tokyo, Japan
| | - Takashi Inaoka
- Microbial Function Laboratory, National Food Research Institute, National Agriculture Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
48
|
Enhanced production of validamycin A in Streptomyces hygroscopicus 5008 by engineering validamycin biosynthetic gene cluster. Appl Microbiol Biotechnol 2014; 98:7911-22. [DOI: 10.1007/s00253-014-5943-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/24/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
|
49
|
Genome rearrangements of Streptomyces albus J1074 lead to the carotenoid gene cluster activation. Appl Microbiol Biotechnol 2013; 98:795-806. [PMID: 24337397 DOI: 10.1007/s00253-013-5440-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/24/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Streptomyces albus J1074 is a derivative of the S. albus G1 strain defective in SalG1 restriction-modification system. Genome sequencing of S. albus J1074 revealed that the size of its chromosome is 6.8 Mb with unusually short terminal arms of only 0.3 and 0.4 Mb. Here we present our attempts to evaluate the dispensability of subtelomeric regions of the S. albus J1074 chromosome. A number of large site-directed genomic deletions led to circularization of the S. albus J1074 chromosome and to the overall genome reduction by 307 kb. Two spontaneous mutants with an activated carotenoid cluster were obtained. Genome sequencing and transcriptome analysis indicated that phenotypes of these mutants resulted from the right terminal 0.42 Mb chromosomal region deletion, followed by the carotenoid cluster amplification. Our results indicate that the right terminal 0.42 Mb fragment is dispensable under laboratory conditions. In contrast, the left terminal arm of the S. albus J1074 chromosome contains essential genes and only 42 kb terminal region is proved to be dispensable. We identified overexpressed carotenoid compounds and determined fitness costs of the large genomic rearrangements.
Collapse
|
50
|
Combined gene cluster engineering and precursor feeding to improve gougerotin production in Streptomyces graminearus. Appl Microbiol Biotechnol 2013; 97:10469-77. [DOI: 10.1007/s00253-013-5270-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 01/13/2023]
|