1
|
Filippopoulou C, Thomé CC, Perdikari S, Ntini E, Simos G, Bohnsack KE, Chachami G. Hypoxia-driven deSUMOylation of EXOSC10 promotes adaptive changes in the transcriptome profile. Cell Mol Life Sci 2024; 81:58. [PMID: 38279024 PMCID: PMC10817850 DOI: 10.1007/s00018-023-05035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 01/28/2024]
Abstract
Reduced oxygen availability (hypoxia) triggers adaptive cellular responses via hypoxia-inducible factor (HIF)-dependent transcriptional activation. Adaptation to hypoxia also involves transcription-independent processes like post-translational modifications; however, these mechanisms are poorly characterized. Investigating the involvement of protein SUMOylation in response to hypoxia, we discovered that hypoxia strongly decreases the SUMOylation of Exosome subunit 10 (EXOSC10), the catalytic subunit of the RNA exosome, in an HIF-independent manner. EXOSC10 is a multifunctional exoribonuclease enriched in the nucleolus that mediates the processing and degradation of various RNA species. We demonstrate that the ubiquitin-specific protease 36 (USP36) SUMOylates EXOSC10 and we reveal SUMO1/sentrin-specific peptidase 3 (SENP3) as the enzyme-mediating deSUMOylation of EXOSC10. Under hypoxia, EXOSC10 dissociates from USP36 and translocates from the nucleolus to the nucleoplasm concomitant with its deSUMOylation. Loss of EXOSC10 SUMOylation does not detectably affect rRNA maturation but affects the mRNA transcriptome by modulating the expression levels of hypoxia-related genes. Our data suggest that dynamic modulation of EXOSC10 SUMOylation and localization under hypoxia regulates the RNA degradation machinery to facilitate cellular adaptation to low oxygen conditions.
Collapse
Affiliation(s)
- Chrysa Filippopoulou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Chairini C Thomé
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Sofia Perdikari
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Greece
| | - Evgenia Ntini
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
2
|
Zhang X, Xie Q, Xiang L, Lei Z, Huang Q, Zhang J, Cai M, Chen T. AtSIEK, an EXD1-like protein with KH domain, involves in salt stress response by interacting with FRY2/CPL1. Int J Biol Macromol 2023; 233:123369. [PMID: 36693612 DOI: 10.1016/j.ijbiomac.2023.123369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Abiotic stress has great impacts on plant germination, growth and development and crop yield. Therefore, it is important to understand the molecular mechanism of plants response to abiotic stress. In this study, we identified a plant specific protein AtSIEK (stress-induced protein with EXD1-like domain and KH domain) response to salt stress. AtSIEK encodes a hnRNP K homology (KH) protein localized in nucleus. Amino acid sequences analysis found that SIEK protein is specific in plants, containing two domains with EXD1-like domain and KH domain, while SIEK homolog in animals only had EXD1-like domain without KH domain. Physiology experiments revealed that AtSIEK was significantly induced under salt stress and the siek mutant shows sensitive to salt stress, indicating that AtSIEK was a positive regulator in stress response. Further, molecular, biochemical, and genetic assays suggested that AtSIEK interacts with FRY2/CPL1, a known regulator in response to abiotic stress, and they function synergistically in response to salt stress. Taken together, these results shed new light on the regulation of plant adaption to abiotic stress, which deepen our understanding of the molecular mechanisms of abiotic stress regulation in plants.
Collapse
Affiliation(s)
- Xiangxiang Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Qinyu Xie
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Lijun Xiang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Zhonghua Lei
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Qixiu Huang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Juncheng Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Maohong Cai
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China.
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
3
|
Kaur R, Nikkel DJ, Aboelnga MM, Wetmore SD. The Impact of DFT Functional, Cluster Model Size, and Implicit Solvation on the Structural Description of Single-Metal-Mediated DNA Phosphodiester Bond Cleavage: The Case Study of APE1. J Phys Chem B 2022; 126:10672-10683. [PMID: 36485014 DOI: 10.1021/acs.jpcb.2c06756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphodiester bond hydrolysis in nucleic acids is a ubiquitous reaction that can be facilitated by enzymes called nucleases, which often use metal ions to achieve catalytic function. While a two-metal-mediated pathway has been well established for many enzymes, there is growing support that some enzymes require only one metal for the catalytic step. Using human apurinic/apyrimidinic endonuclease (APE1) as a prototypical example and cluster models, this study clarifies the impact of DFT functional, cluster model size, and implicit solvation on single-metal-mediated phosphodiester bond cleavage and provides insight into how to efficiently model this chemistry. Initially, a model containing 69 atoms built from a high-resolution X-ray crystal structure is used to explore the reaction pathway mapped by a range of DFT functionals and basis sets, which provides support for the use of standard functionals (M06-2X and B3LYP-D3) to study this reaction. Subsequently, systematically increasing the model size to 185 atoms by including additional amino acids and altering residue truncation points highlights that small models containing only a few amino acids or β carbon truncation points introduce model strains and lead to incorrect metal coordination. Indeed, a model that contains all key residues (general base and acid, residues that stabilize the substrate, and amino acids that maintain the metal coordination) is required for an accurate structural depiction of the one-metal-mediated phosphodiester bond hydrolysis by APE1, which results in 185 atoms. The additional inclusion of the broader enzyme environment through continuum solvation models has negligible effects. The insights gained in the present work can be used to direct future computational studies of other one-metal-dependent nucleases to provide a greater understanding of how nature achieves this difficult chemistry.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Mohamed M Aboelnga
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.,Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
4
|
Petit FG, Jamin SP, Kernanec PY, Becker E, Halet G, Primig M. EXOSC10/Rrp6 is essential for the eight-cell embryo/morula transition. Dev Biol 2021; 483:58-65. [PMID: 34965385 DOI: 10.1016/j.ydbio.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/03/2022]
Abstract
The conserved 3'-5' exoribonuclease EXOSC10/Rrp6 is required for gametogenesis, brain development, erythropoiesis and blood cell enhancer function. The human ortholog is essential for mitosis in cultured cancer cells. Little is known, however, about the role of Exosc10 during embryo development and organogenesis. We generated an Exosc10 knockout model and find that Exosc10-/- mice show an embryonic lethal phenotype. We demonstrate that Exosc10 maternal wild type mRNA is present in mutant oocytes and that the gene is expressed during all stages of early embryogenesis. Furthermore, we observe that EXOSC10 early on localizes to the periphery of nucleolus precursor bodies in blastomeres, which is in keeping with the protein's role in rRNA processing and may indicate a function in the establishment of chromatin domains during initial stages of embryogenesis. Finally, we infer from genotyping data for embryonic days e7.5, e6.5 and e4.5 and embryos cultured in vitro that Exosc10-/- mutants arrest at the eight-cell embryo/morula transition. Our results demonstrate a novel essential role for Exosc10 during early embryogenesis, and they are consistent with earlier work showing that impaired ribosome biogenesis causes a developmental arrest at the morula stage.
Collapse
Affiliation(s)
- Fabrice G Petit
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Soazik P Jamin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Pierre-Yves Kernanec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | | | - Guillaume Halet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, F-35000, Rennes, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
5
|
Stuparević I, Novačić A, Rahmouni AR, Fernandez A, Lamb N, Primig M. Regulation of the conserved 3'-5' exoribonuclease EXOSC10/Rrp6 during cell division, development and cancer. Biol Rev Camb Philos Soc 2021; 96:1092-1113. [PMID: 33599082 DOI: 10.1111/brv.12693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
The conserved 3'-5' exoribonuclease EXOSC10/Rrp6 processes and degrades RNA, regulates gene expression and participates in DNA double-strand break repair and control of telomere maintenance via degradation of the telomerase RNA component. EXOSC10/Rrp6 is part of the multimeric nuclear RNA exosome and interacts with numerous proteins. Previous clinical, genetic, biochemical and genomic studies revealed the protein's essential functions in cell division and differentiation, its RNA substrates and its relevance to autoimmune disorders and oncology. However, little is known about the regulatory mechanisms that control the transcription, translation and stability of EXOSC10/Rrp6 during cell growth, development and disease and how these mechanisms evolved from yeast to human. Herein, we provide an overview of the RNA- and protein expression profiles of EXOSC10/Rrp6 during cell division, development and nutritional stress, and we summarize interaction networks and post-translational modifications across species. Additionally, we discuss how known and predicted protein interactions and post-translational modifications influence the stability of EXOSC10/Rrp6. Finally, we explore the idea that different EXOSC10/Rrp6 alleles, which potentially alter cellular protein levels or affect protein function, might influence human development and disease progression. In this review we interpret information from the literature together with genomic data from knowledgebases to inspire future work on the regulation of this essential protein's stability in normal and malignant cells.
Collapse
Affiliation(s)
- Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - A Rachid Rahmouni
- Centre de Biophysique Moléculaire, UPR4301 du CNRS, Orléans, 45071, France
| | - Anne Fernandez
- Institut de Génétique Humaine, UMR 9002 CNRS, Montpellier, France
| | - Ned Lamb
- Institut de Génétique Humaine, UMR 9002 CNRS, Montpellier, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, 35000, France
| |
Collapse
|
6
|
Gao Y, Liu H, Zhang C, Su S, Chen Y, Chen X, Li Y, Shao Z, Zhang Y, Shao Q, Li J, Huang Z, Ma J, Gan J. Structural basis for guide RNA trimming by RNase D ribonuclease in Trypanosoma brucei. Nucleic Acids Res 2021; 49:568-583. [PMID: 33332555 PMCID: PMC7797062 DOI: 10.1093/nar/gkaa1197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Infection with kinetoplastid parasites, including Trypanosoma brucei (T. brucei), Trypanosoma cruzi (T. cruzi) and Leishmania can cause serious disease in humans. Like other kinetoplastid species, mRNAs of these disease-causing parasites must undergo posttranscriptional editing in order to be functional. mRNA editing is directed by gRNAs, a large group of small RNAs. Similar to mRNAs, gRNAs are also precisely regulated. In T. brucei, overexpression of RNase D ribonuclease (TbRND) leads to substantial reduction in the total gRNA population and subsequent inhibition of mRNA editing. However, the mechanisms regulating gRNA binding and cleavage by TbRND are not well defined. Here, we report a thorough structural study of TbRND. Besides Apo- and NMP-bound structures, we also solved one TbRND structure in complexed with single-stranded RNA. In combination with mutagenesis and in vitro cleavage assays, our structures indicated that TbRND follows the conserved two-cation-assisted mechanism in catalysis. TbRND is a unique RND member, as it contains a ZFD domain at its C-terminus. In addition to T. brucei, our studies also advanced our understanding on the potential gRNA degradation pathway in T. cruzi, Leishmania, as well for as other disease-associated parasites expressing ZFD-containing RNDs.
Collapse
Affiliation(s)
- Yanqing Gao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hehua Liu
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chong Zhang
- College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiqing Chen
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xi Chen
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yangyang Li
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhiwei Shao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yixi Zhang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiyuan Shao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jixi Li
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhen Huang
- College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Lingaraju M, Schuller JM, Falk S, Gerlach P, Bonneau F, Basquin J, Benda C, Conti E. To Process or to Decay: A Mechanistic View of the Nuclear RNA Exosome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:155-163. [PMID: 32493762 DOI: 10.1101/sqb.2019.84.040295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The RNA exosome was originally discovered in yeast as an RNA-processing complex required for the maturation of 5.8S ribosomal RNA (rRNA), one of the constituents of the large ribosomal subunit. The exosome is now known in eukaryotes as the major 3'-5' RNA degradation machine involved in numerous processing, turnover, and surveillance pathways, both in the nucleus and the cytoplasm. Yet its role in maturing the 5.8S rRNA in the pre-60S ribosomal particle remains probably the most intricate and emblematic among its functions, as it involves all the RNA unwinding, degradation, and trimming activities embedded in this macromolecular complex. Here, we propose a comprehensive mechanistic model, based on current biochemical and structural data, explaining the dual functions of the nuclear exosome-the constructive versus the destructive mode.
Collapse
Affiliation(s)
- Mahesh Lingaraju
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Jan M Schuller
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Sebastian Falk
- Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, 1030, Vienna, Austria
| | - Piotr Gerlach
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Fabien Bonneau
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Jérôme Basquin
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Christian Benda
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Elena Conti
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| |
Collapse
|
8
|
Abstract
The RNA exosome is a ribonucleolytic multiprotein complex that is conserved and essential in all eukaryotes. Although we tend to speak of "the" exosome complex, it should be more correctly viewed as several different subtypes that share a common core. Subtypes of the exosome complex are present in the cytoplasm, the nucleus and the nucleolus of all eukaryotic cells, and carry out the 3'-5' processing and/or degradation of a wide range of RNA substrates.Because the substrate specificity of the exosome complex is determined by cofactors, the system is highly adaptable, and different organisms have adjusted the machinery to their specific needs. Here, we present an overview of exosome complexes and their cofactors that have been described in different eukaryotes.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany.
| |
Collapse
|
9
|
Abstract
The exoribonuclease Rrp6p is critical for RNA decay in the nucleus. While Rrp6p acts on a large range of diverse substrates, it does not indiscriminately degrade all RNAs. How Rrp6p accomplishes this task is not understood. Here, we measure Rrp6p-RNA binding and degradation kinetics in vitro at single-nucleotide resolution and find an intrinsic substrate selectivity that enables Rrp6p to discriminate against specific RNAs. RNA length and the four 3'-terminal nucleotides contribute most to substrate selectivity and collectively enable Rrp6p to discriminate between different RNAs by several orders of magnitude. The most pronounced discrimination is seen against RNAs ending with CCA-3'. These RNAs correspond to 3' termini of uncharged tRNAs, which are not targeted by Rrp6p in cells. The data show that in contrast to many other proteins that use substrate selectivity to preferentially interact with specific RNAs, Rrp6p utilizes its selectivity to discriminate against specific RNAs. This ability allows Rrp6p to target diverse substrates while avoiding a subset of RNAs.
Collapse
|
10
|
Singh SS, Naiyer S, Bharadwaj R, Kumar A, Singh YP, Ray AK, Subbarao N, Bhattacharya A, Bhattacharya S. Stress-induced nuclear depletion of Entamoeba histolytica 3'-5' exoribonuclease EhRrp6 and its role in growth and erythrophagocytosis. J Biol Chem 2018; 293:16242-16260. [PMID: 30171071 DOI: 10.1074/jbc.ra118.004632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/10/2018] [Indexed: 01/24/2023] Open
Abstract
The 3'-5' exoribonuclease Rrp6 is a key enzyme in RNA homeostasis involved in processing and degradation of many stable RNA precursors, aberrant transcripts, and noncoding RNAs. We previously have shown that in the protozoan parasite Entamoeba histolytica, the 5'-external transcribed spacer fragment of pre-rRNA accumulates under serum starvation-induced growth stress. This fragment is a known target of degradation by Rrp6. Here, we computationally and biochemically characterized EhRrp6 and found that it contains the catalytically important EXO and HRDC domains and exhibits exoribonuclease activity with both unstructured and structured RNA substrates, which required the conserved DEDD-Y catalytic-site residues. It lacked the N-terminal PMC2NT domain for binding of the cofactor Rrp47, but could functionally complement the growth defect of a yeast rrp6 mutant. Of note, no Rrp47 homologue was detected in E. histolytica Immunolocalization studies revealed that EhRrp6 is present both in the nucleus and cytosol of normal E. histolytica cells. However, growth stress induced its complete loss from the nuclei, reversed by proteasome inhibitors. EhRrp6-depleted E. histolytica cells were severely growth restricted, and EhRrp6 overexpression protected the cells against stress, suggesting that EhRrp6 functions as a stress sensor. Importantly EhRrp6 depletion reduced erythrophagocytosis, an important virulence determinant of E. histolytica This reduction was due to a specific decrease in transcript levels of some phagocytosis-related genes (Ehcabp3 and Ehrho1), whereas expression of other genes (Ehcabp1, Ehcabp6, Ehc2pk, and Eharp2/3) was unaffected. This is the first report of the role of Rrp6 in cell growth and stress responses in a protozoan parasite.
Collapse
Affiliation(s)
| | | | - Ravi Bharadwaj
- the School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Amarjeet Kumar
- the School of Computational and Integrative Sciences, and
| | | | | | - Naidu Subbarao
- the School of Computational and Integrative Sciences, and
| | - Alok Bhattacharya
- the School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | | |
Collapse
|
11
|
Jiang N, Yu S, Yang N, Feng Y, Sang X, Wang Y, Wahlgren M, Chen Q. Characterization of the Catalytic Subunits of the RNA Exosome-like Complex in Plasmodium falciparum. J Eukaryot Microbiol 2018; 65:843-853. [PMID: 29664138 PMCID: PMC6282785 DOI: 10.1111/jeu.12625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
The eukaryotic ribonucleic acid (RNA) exosome is a versatile multiribonuclease complex that mediates the processing, surveillance, and degradation of virtually all classes of RNA in both the nucleus and cytoplasm. The complex, composed of 10 to 11 subunits, has been widely described in many organisms. Bioinformatic analyses revealed that there may be also an exosome‐like complex in Plasmodium falciparum, a parasite of great importance in public health, with eight predicted subunits having high sequence similarity to their counterparts in yeast and human. In this work, the putative RNA catalytic components, designated as PfRrp4, PfRrp41, PfDis3, and PfRrp6, were identified and systematically analyzed. Quantitative polymerase chain reaction (QPCR) analyses suggested that all of them were transcribed steadily throughout the asexual stage. The expression of these proteins was determined by Western blot, and their localization narrowed to the cytoplasm of the parasite by indirect immunofluorescence. The recombinant proteins of PfRrp41, PfDis3, and PfRrp6 exhibited catalytic activity for single‐stranded RNA (ssRNA), whereas PfRrp4 showed no processing activity of both ssRNA and dsRNA. The identification of these putative components of the RNA exosome complex opens up new perspectives for a deep understanding of RNA metabolism in the malarial parasite P. falciparum.
Collapse
Affiliation(s)
- Ning Jiang
- Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang, China
| | - Shengchao Yu
- Key Laboratory of Zoonosis, Jilin University, 53333 Xi An Da Lu, Changchun, 130062, China
| | - Na Yang
- Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang, China
| | - Ying Feng
- Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang, China
| | - Yao Wang
- Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang, China
| | - Mats Wahlgren
- Department of Microbiology, Tumour and Cellular Biology, Karolinska Institutet, Nobels väg 16, Stockholm, Sweden
| | - Qijun Chen
- Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang, China.,Department of Microbiology, Tumour and Cellular Biology, Karolinska Institutet, Nobels väg 16, Stockholm, Sweden
| |
Collapse
|
12
|
Tomecki R, Sikorski PJ, Zakrzewska-Placzek M. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. FEBS Lett 2017; 591:1801-1850. [PMID: 28524231 DOI: 10.1002/1873-3468.12682] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Abstract
Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | | | | |
Collapse
|
13
|
Wasmuth EV, Lima CD. The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome. Nucleic Acids Res 2016; 45:846-860. [PMID: 27899565 PMCID: PMC5314766 DOI: 10.1093/nar/gkw1152] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic RNA exosome is an essential, multi-subunit complex that catalyzes RNA turnover, maturation, and quality control processes. Its non-catalytic donut-shaped core includes 9 subunits that associate with the 3′ to 5′ exoribonucleases Rrp6, and Rrp44/Dis3, a subunit that also catalyzes endoribonuclease activity. Although recent structures and biochemical studies of RNA bound exosomes from S. cerevisiae revealed that the Exo9 central channel guides RNA to either Rrp6 or Rrp44 using partially overlapping and mutually exclusive paths, several issues related to RNA recruitment remain. Here, we identify activities for the highly basic Rrp6 C-terminal tail that we term the ‘lasso’ because it binds RNA and stimulates ribonuclease activities associated with Rrp44 and Rrp6 within the 11-subunit nuclear exosome. Stimulation is dependent on the Exo9 central channel, and the lasso contributes to degradation and processing activities of exosome substrates in vitro and in vivo. Finally, we present evidence that the Rrp6 lasso may be a conserved feature of the eukaryotic RNA exosome.
Collapse
Affiliation(s)
- Elizabeth V Wasmuth
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA .,Howard Hughes Medical Institute, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
14
|
Zinder JC, Wasmuth EV, Lima CD. Nuclear RNA Exosome at 3.1 Å Reveals Substrate Specificities, RNA Paths, and Allosteric Inhibition of Rrp44/Dis3. Mol Cell 2016; 64:734-745. [PMID: 27818140 DOI: 10.1016/j.molcel.2016.09.038] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/12/2016] [Accepted: 09/28/2016] [Indexed: 01/24/2023]
Abstract
The eukaryotic RNA exosome is an essential and conserved 3'-to-5' exoribonuclease complex that degrades or processes nearly every class of cellular RNA. The nuclear RNA exosome includes a 9-subunit non-catalytic core that binds Rrp44 (Dis3) and Rrp6 subunits to modulate their processive and distributive 3'-to-5' exoribonuclease activities, respectively. Here we utilize an engineered RNA with two 3' ends to obtain a crystal structure of an 11-subunit nuclear exosome bound to RNA at 3.1 Å. The structure reveals an extended RNA path to Rrp6 that penetrates into the non-catalytic core; contacts between the non-catalytic core and Rrp44, which inhibit exoribonuclease activity; and features of the Rrp44 exoribonuclease site that support its ability to degrade 3' phosphate RNA substrates. Using reconstituted exosome complexes, we show that 3' phosphate RNA is not a substrate for Rrp6 but is readily degraded by Rrp44 in the nuclear exosome.
Collapse
Affiliation(s)
- John C Zinder
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Structural Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Elizabeth V Wasmuth
- Structural Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
15
|
Yang Z, Chen KM, Pandey RR, Homolka D, Reuter M, Janeiro BKR, Sachidanandam R, Fauvarque MO, McCarthy AA, Pillai RS. PIWI Slicing and EXD1 Drive Biogenesis of Nuclear piRNAs from Cytosolic Targets of the Mouse piRNA Pathway. Mol Cell 2015; 61:138-52. [PMID: 26669262 PMCID: PMC4712191 DOI: 10.1016/j.molcel.2015.11.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 11/19/2022]
Abstract
PIWI-interacting RNAs (piRNAs) guide PIWI proteins to suppress transposons in the cytoplasm and nucleus of animal germ cells, but how silencing in the two compartments is coordinated is not known. Here we demonstrate that endonucleolytic slicing of a transcript by the cytosolic mouse PIWI protein MILI acts as a trigger to initiate its further 5'→3' processing into non-overlapping fragments. These fragments accumulate as new piRNAs within both cytosolic MILI and the nuclear MIWI2. We also identify Exonuclease domain-containing 1 (EXD1) as a partner of the MIWI2 piRNA biogenesis factor TDRD12. EXD1 homodimers are inactive as a nuclease but function as an RNA adaptor within a PET (PIWI-EXD1-Tdrd12) complex. Loss of Exd1 reduces sequences generated by MILI slicing, impacts biogenesis of MIWI2 piRNAs, and de-represses LINE1 retrotransposons. Thus, piRNA biogenesis triggered by PIWI slicing, and promoted by EXD1, ensures that the same guides instruct PIWI proteins in the nucleus and cytoplasm.
Collapse
Affiliation(s)
- Zhaolin Yang
- European Molecular Biology Laboratory, Grenoble Outstation, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France; Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - Kuan-Ming Chen
- European Molecular Biology Laboratory, Grenoble Outstation, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France; Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - Radha Raman Pandey
- European Molecular Biology Laboratory, Grenoble Outstation, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France; Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - David Homolka
- European Molecular Biology Laboratory, Grenoble Outstation, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France; Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - Michael Reuter
- European Molecular Biology Laboratory, Grenoble Outstation, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France; Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - Bruno Kotska Rodino Janeiro
- European Molecular Biology Laboratory, Grenoble Outstation, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France; Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Sinai, One Gustave L. Levy Place, NY 10029, USA
| | | | - Andrew A McCarthy
- European Molecular Biology Laboratory, Grenoble Outstation, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France; Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - Ramesh S Pillai
- European Molecular Biology Laboratory, Grenoble Outstation, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France; Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France.
| |
Collapse
|
16
|
|
17
|
Schuch B, Feigenbutz M, Makino DL, Falk S, Basquin C, Mitchell P, Conti E. The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase. EMBO J 2014; 33:2829-46. [PMID: 25319414 DOI: 10.15252/embj.201488757] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The exosome is a conserved multi-subunit ribonuclease complex that functions in 3' end processing, turnover and surveillance of nuclear and cytoplasmic RNAs. In the yeast nucleus, the 10-subunit core complex of the exosome (Exo-10) physically and functionally interacts with the Rrp6 exoribonuclease and its associated cofactor Rrp47, the helicase Mtr4 and Mpp6. Here, we show that binding of Mtr4 to Exo-10 in vitro is dependent upon both Rrp6 and Rrp47, whereas Mpp6 binds directly and independently of other cofactors. Crystallographic analyses reveal that the N-terminal domains of Rrp6 and Rrp47 form a highly intertwined structural unit. Rrp6 and Rrp47 synergize to create a composite and conserved surface groove that binds the N-terminus of Mtr4. Mutation of conserved residues within Rrp6 and Mtr4 at the structural interface disrupts their interaction and inhibits growth of strains expressing a C-terminal GFP fusion of Mtr4. These studies provide detailed structural insight into the interaction between the Rrp6-Rrp47 complex and Mtr4, revealing an important link between Mtr4 and the core exosome.
Collapse
Affiliation(s)
- Benjamin Schuch
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Monika Feigenbutz
- Molecular Biology and Biotechnology Department, The University of Sheffield, Sheffield, UK
| | - Debora L Makino
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Falk
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Claire Basquin
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Phil Mitchell
- Molecular Biology and Biotechnology Department, The University of Sheffield, Sheffield, UK
| | - Elena Conti
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
18
|
Wasmuth EV, Januszyk K, Lima CD. Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA. Nature 2014; 511:435-9. [PMID: 25043052 PMCID: PMC4310248 DOI: 10.1038/nature13406] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/23/2014] [Indexed: 01/24/2023]
Abstract
The eukaryotic RNA exosome processes and degrades RNA by directing substrates to the distributive or processive 3' to 5' exoribonuclease activities of Rrp6 or Rrp44, respectively. The non-catalytic nine-subunit exosome core (Exo9) features a prominent central channel. Although RNA can pass through the channel to engage Rrp44, it is not clear how RNA is directed to Rrp6 or whether Rrp6 uses the central channel. Here we report a 3.3 Å crystal structure of a ten-subunit RNA exosome complex from Saccharomyces cerevisiae composed of the Exo9 core and Rrp6 bound to single-stranded poly(A) RNA. The Rrp6 catalytic domain rests on top of the Exo9 S1/KH ring above the central channel, the RNA 3' end is anchored in the Rrp6 active site, and the remaining RNA traverses the S1/KH ring in an opposite orientation to that observed in a structure of a Rrp44-containing exosome complex. Solution studies with human and yeast RNA exosome complexes suggest that the RNA path to Rrp6 is conserved and dependent on the integrity of the S1/KH ring. Although path selection to Rrp6 or Rrp44 is stochastic in vitro, the fate of a particular RNA may be determined in vivo by the manner in which cofactors present RNA to the RNA exosome.
Collapse
Affiliation(s)
- Elizabeth V. Wasmuth
- Structural Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Kurt Januszyk
- Structural Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Christopher D. Lima
- Structural Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| |
Collapse
|
19
|
Dedic E, Seweryn P, Jonstrup AT, Flygaard RK, Fedosova NU, Hoffmann SV, Boesen T, Brodersen DE. Structural analysis of the yeast exosome Rrp6p-Rrp47p complex by small-angle X-ray scattering. Biochem Biophys Res Commun 2014; 450:634-40. [PMID: 24937447 DOI: 10.1016/j.bbrc.2014.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
The RNase D-type 3'-5' exonuclease Rrp6p from Saccharomyces cerevisiae is a nuclear-specific cofactor of the RNA exosome and associates in vivo with Rrp47p (Lrp1p). Here, we show using biochemistry and small-angle X-ray scattering (SAXS) that Rrp6p and Rrp47p associate into a stable, heterodimeric complex with an elongated shape consistent with binding of Rrp47p to the nuclease domain and opposite of the HRDC domain of Rrp6p. Rrp47p reduces the exonucleolytic activity of Rrp6p on both single-stranded and structured RNA substrates without significantly altering the affinity towards RNA or the ability of Rrp6p to degrade RNA secondary structure.
Collapse
Affiliation(s)
- Emil Dedic
- Centre for mRNP Biogenesis and Metabolism, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Paulina Seweryn
- Centre for mRNP Biogenesis and Metabolism, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Anette Thyssen Jonstrup
- Centre for mRNP Biogenesis and Metabolism, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Rasmus Koch Flygaard
- Centre for mRNP Biogenesis and Metabolism, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Natalya U Fedosova
- Department of Biomedicine, Ole Worms Allé 6, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Søren Vrønning Hoffmann
- Institute for Storage Ring Facilities (ISA), Department of Physics and Astronomy, Ny Munkegade 120, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Thomas Boesen
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ditlev Egeskov Brodersen
- Centre for mRNP Biogenesis and Metabolism, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Gustav Wieds Vej 10c, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
20
|
Barbosa RL, Legrand P, Wien F, Pineau B, Thompson A, Guimarães BG. RRP6 from Trypanosoma brucei: crystal structure of the catalytic domain, association with EAP3 and activity towards structured and non-structured RNA substrates. PLoS One 2014; 9:e89138. [PMID: 24558481 PMCID: PMC3928423 DOI: 10.1371/journal.pone.0089138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/20/2014] [Indexed: 11/19/2022] Open
Abstract
RRP6 is a 3′–5′ exoribonuclease associated to the eukaryotic exosome, a multiprotein complex essential for various RNA processing and degradation pathways. In Trypanosoma brucei, RRP6 associates with the exosome in stoichiometric amounts and was localized in both cytoplasm and nucleus, in contrast to yeast Rrp6 which is exclusively nuclear. Here we report the biochemical and structural characterization of T. brucei RRP6 (TbRRP6) and its interaction with the so-called T. brucei Exosome Associated Protein 3 (TbEAP3), a potential orthologue of the yeast Rrp6 interacting protein, Rrp47. Recombinant TbEAP3 is a thermo stable homodimer in solution, however it forms a heterodimeric complex with TbRRP6 with 1∶1 stoichiometry. The crystallographic structure of the TbRRP6 catalytic core exposes for the first time the native catalytic site of this RNase and also reveals a disulfide bond linking two helices of the HRDC domain. RNA degradation assays show the distributive exoribonuclease activity of TbRRP6 and novel findings regarding the structural range of its RNA substrates. TbRRP6 was able to degrade single and double-stranded RNAs and also RNA substrates containing stem-loops including those with 3′ stem-loop lacking single-stranded extensions. Finally, association with TbEAP3 did not significantly interfere with the TbRRP6 catalytic activity in vitro.
Collapse
Affiliation(s)
| | | | - Frank Wien
- Synchrotron SOLEIL, Gif-sur Yvette, France
| | | | | | | |
Collapse
|
21
|
Januszyk K, Lima CD. The eukaryotic RNA exosome. Curr Opin Struct Biol 2014; 24:132-40. [PMID: 24525139 DOI: 10.1016/j.sbi.2014.01.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/24/2022]
Abstract
The eukaryotic RNA exosome is an essential multi-subunit ribonuclease complex that contributes to the degradation or processing of nearly every class of RNA in both the nucleus and cytoplasm. Its nine-subunit core shares structural similarity to phosphorolytic exoribonucleases such as bacterial PNPase. PNPase and the RNA exosome core feature a central channel that can accommodate single stranded RNA although unlike PNPase, the RNA exosome core is devoid of ribonuclease activity. Instead, the core associates with Rrp44, an endoribonuclease and processive 3'→5' exoribonuclease, and Rrp6, a distributive 3'→5' exoribonuclease. Recent biochemical and structural studies suggest that the exosome core is essential because it coordinates Rrp44 and Rrp6 recruitment, RNA can pass through the central channel, and the association with the core modulates Rrp44 and Rrp6 activities.
Collapse
Affiliation(s)
- Kurt Januszyk
- Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, NY, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, NY, USA; Howard Hughes Medical Institute, Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, NY, USA.
| |
Collapse
|
22
|
Feigenbutz M, Garland W, Turner M, Mitchell P. The exosome cofactor Rrp47 is critical for the stability and normal expression of its associated exoribonuclease Rrp6 in Saccharomyces cerevisiae. PLoS One 2013; 8:e80752. [PMID: 24224060 PMCID: PMC3818262 DOI: 10.1371/journal.pone.0080752] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/15/2013] [Indexed: 11/18/2022] Open
Abstract
Rrp6 is a conserved catalytic subunit of the eukaryotic nuclear exosome ribonuclease complex that functions in the productive 3' end maturation of stable RNAs, the degradation of transiently expressed noncoding transcripts and in discard pathways that eradicate the cell of incorrectly processed or assembled RNAs. The function of Rrp6 in these pathways is at least partially dependent upon its interaction with a small nuclear protein called Rrp47/Lrp1, but the underlying mechanism(s) by which Rrp47 functions in concert with Rrp6 are not established. Previous work on yeast grown in rich medium has suggested that Rrp6 expression is not markedly reduced in strains lacking Rrp47. Here we show that Rrp6 expression in rrp47∆ mutants is substantially reduced during growth in minimal medium through effects on both transcript levels and protein stability. Exogenous expression of Rrp6 enables normal levels to be attained in rrp47∆ mutants. Strikingly, exogenous expression of Rrp6 suppresses many, but not all, of the RNA processing and maturation defects observed in an rrp47∆ mutant and complements the synthetic lethality of rrp47∆ mpp6∆ and rrp47∆ rex1∆ double mutants. Increased Rrp6 expression in the resultant rrp47∆ rex1∆ double mutant suppresses the defect in the 3' maturation of box C/D snoRNAs. In contrast, increased Rrp6 expression in the rrp47∆ mpp6∆ double mutant diminishes the block in the turnover of CUTs and in the degradation of the substrates of RNA discard pathways. These results demonstrate that a principal function of Rrp47 is to facilitate appropriate expression levels of Rrp6 and support the conclusion that the Rrp6/Rrp47 complex and Rex1 provide redundant exonuclease activities for the 3' end maturation of box C/D snoRNAs.
Collapse
Affiliation(s)
- Monika Feigenbutz
- Molecular Biology and Biotechnology Department, The University of Sheffield, Sheffield, United Kingdom
| | - William Garland
- Molecular Biology and Biotechnology Department, The University of Sheffield, Sheffield, United Kingdom
| | - Martin Turner
- Molecular Biology and Biotechnology Department, The University of Sheffield, Sheffield, United Kingdom
| | - Phil Mitchell
- Molecular Biology and Biotechnology Department, The University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Morris MR, Astuti D, Maher ER. Perlman syndrome: overgrowth, Wilms tumor predisposition and DIS3L2. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:106-13. [PMID: 23613427 DOI: 10.1002/ajmg.c.31358] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Perlman syndrome is a rare autosomal recessively inherited congenital overgrowth syndrome characterized by polyhydramnios, macrosomia, characteristic facial dysmorphology, renal dysplasia and nephroblastomatosis and multiple congenital anomalies. Perlman syndrome is associated with high neonatal mortality and, survivors have developmental delay and a high risk of Wilms tumor. Recently a Perlman syndrome locus was mapped to chromosome 2q37 and homozygous or compound heterozygous mutations were characterized in DIS3L2. The DIS3L2 gene product has ribonuclease activity and homology to the DIS3 component of the RNA exosome. It has been postulated that the clinical features of Perlman syndrome result from disordered RNA metabolism and, though the precise targets of DIS3L2 have yet to be characterized, in cellular models DIS3L2 knockdown is associated with abnormalities of cell growth and division.
Collapse
|
24
|
Turk EM, Das V, Seibert RD, Andrulis ED. The mitochondrial RNA landscape of Saccharomyces cerevisiae. PLoS One 2013; 8:e78105. [PMID: 24143261 PMCID: PMC3797045 DOI: 10.1371/journal.pone.0078105] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 09/09/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are essential organelles that harbor a reduced genome, and expression of that genome requires regulated metabolism of its transcriptome by nuclear-encoded proteins. Despite extensive investigation, a comprehensive map of the yeast mitochondrial transcriptome has not been developed and all of the RNA-metabolizing proteins have not been identified, both of which are prerequisites to elucidating the basic RNA biology of mitochondria. Here, we present a mitochondrial transcriptome map of the yeast S288C reference strain. Using RNAseq and bioinformatics, we show the expression level of all transcripts, revise all promoter, origin of replication, and tRNA annotations, and demonstrate for the first time the existence of alternative splicing, mirror RNAs, and a novel RNA processing site in yeast mitochondria. The transcriptome map has revealed new aspects of mitochondrial RNA biology and we expect it will serve as a valuable resource. As a complement to the map, we present our compilation of all known yeast nuclear-encoded ribonucleases (RNases), and a screen of this dataset for those that are imported into mitochondria. We sought to identify RNases that are refractory to recovery in traditional mitochondrial screens due to an essential function or eclipsed accumulation in another cellular compartment. Using this in silico approach, the essential RNase of the nuclear and cytoplasmic exosome, Dis3p, emerges as a strong candidate. Bioinformatics and in vivo analyses show that Dis3p has a conserved and functional mitochondrial-targeting signal (MTS). A clean and marker-less chromosomal deletion of the Dis3p MTS results in a defect in the decay of intron and mirror RNAs, thus revealing a role for Dis3p in mitochondrial RNA decay.
Collapse
Affiliation(s)
- Edward M. Turk
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Science Department, Gilmour Academy, Gates Mills, Ohio, United States of America
| | - Vaijayanti Das
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Ryan D. Seibert
- Science Department, Gilmour Academy, Gates Mills, Ohio, United States of America
| | - Erik D. Andrulis
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
25
|
Poly(A) tail-mediated gene regulation by opposing roles of Nab2 and Pab2 nuclear poly(A)-binding proteins in pre-mRNA decay. Mol Cell Biol 2013; 33:4718-31. [PMID: 24081329 DOI: 10.1128/mcb.00887-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The 3' end of most eukaryotic transcripts is decorated by poly(A)-binding proteins (PABPs), which influence the fate of mRNAs throughout gene expression. However, despite the fact that multiple PABPs coexist in the nuclei of most eukaryotes, how functional interplay between these nuclear PABPs controls gene expression remains unclear. By characterizing the ortholog of the Nab2/ZC3H14 zinc finger PABP in Schizosaccharomyces pombe, we show here that the two major fission yeast nuclear PABPs, Pab2 and Nab2, have opposing roles in posttranscriptional gene regulation. Notably, we find that Nab2 functions in gene-specific regulation in a manner opposite to that of Pab2. By studying the ribosomal-protein-coding gene rpl30-2, which is negatively regulated by Pab2 via a nuclear pre-mRNA decay pathway that depends on the nuclear exosome subunit Rrp6, we show that Nab2 promotes rpl30-2 expression by acting at the level of the unspliced pre-mRNA. Our data support a model in which Nab2 impedes Pab2/Rrp6-mediated decay by competing with Pab2 for polyadenylated transcripts in the nucleus. The opposing roles of Pab2 and Nab2 reveal that interplay between nuclear PABPs can influence gene regulation.
Collapse
|
26
|
Brodersen DE, Andersen GR, Andersen CBF. Mimer: an automated spreadsheet-based crystallization screening system. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:815-20. [PMID: 23832216 DOI: 10.1107/s1744309113014425] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/24/2013] [Indexed: 11/10/2022]
Abstract
In this paper, a simple low-cost alternative to large commercial systems for preparing macromolecular crystallization conditions is described. Using an intuitive spreadsheet-based approach, the system allows the rapid calculation of relevant pipetting volumes given known stock-solution concentrations and incorporates the automatic design of custom crystallization screens via the incomplete-factorial and grid-screen approaches. Automated dispensing of the resulting crystallization screens is achieved using a generic and relatively inexpensive liquid handler.
Collapse
Affiliation(s)
- Ditlev Egeskov Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
27
|
Feigenbutz M, Jones R, Besong TMD, Harding SE, Mitchell P. Assembly of the yeast exoribonuclease Rrp6 with its associated cofactor Rrp47 occurs in the nucleus and is critical for the controlled expression of Rrp47. J Biol Chem 2013; 288:15959-70. [PMID: 23580640 PMCID: PMC3668751 DOI: 10.1074/jbc.m112.445759] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Rrp6 is a key catalytic subunit of the nuclear RNA exosome that plays a pivotal role in the processing, degradation, and quality control of a wide range of cellular RNAs. Here we report our findings on the assembly of the complex involving Rrp6 and its associated protein Rrp47, which is required for many Rrp6-mediated RNA processes. Recombinant Rrp47 is expressed as a non-globular homodimer. Analysis of the purified recombinant Rrp6·Rrp47 complex revealed a heterodimer, suggesting that Rrp47 undergoes a structural reconfiguration upon interaction with Rrp6. Studies using GFP fusion proteins show that Rrp6 and Rrp47 are localized to the yeast cell nucleus independently of one another. Consistent with this data, Rrp6, but not Rrp47, is found associated with the nuclear import adaptor protein Srp1. We show that the interaction with Rrp6 is critical for Rrp47 stability in vivo; in the absence of Rrp6, newly synthesized Rrp47 is rapidly degraded in a proteasome-dependent manner. These data resolve independent nuclear import routes for Rrp6 and Rrp47, reveal a structural reorganization of Rrp47 upon its interaction with Rrp6, and demonstrate a proteasome-dependent mechanism that efficiently suppresses the expression of Rrp47 in the absence of Rrp6.
Collapse
Affiliation(s)
- Monika Feigenbutz
- Molecular Biology and Biotechnology Department, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
29
|
Virtanen A, Henriksson N, Nilsson P, Nissbeck M. Poly(A)-specific ribonuclease (PARN): an allosterically regulated, processive and mRNA cap-interacting deadenylase. Crit Rev Biochem Mol Biol 2013; 48:192-209. [PMID: 23496118 DOI: 10.3109/10409238.2013.771132] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Deadenylation of eukaryotic mRNA is a mechanism critical for mRNA function by influencing mRNA turnover and efficiency of protein synthesis. Here, we review poly(A)-specific ribonuclease (PARN), which is one of the biochemically best characterized deadenylases. PARN is unique among the currently known eukaryotic poly(A) degrading nucleases, being the only deadenylase that has the capacity to directly interact during poly(A) hydrolysis with both the m(7)G-cap structure and the poly(A) tail of the mRNA. In short, PARN is a divalent metal-ion dependent poly(A)-specific, processive and cap-interacting 3'-5' exoribonuclease that efficiently degrades poly(A) tails of eukaryotic mRNAs. We discuss in detail the mechanisms of its substrate recognition, catalysis, allostery and processive mode of action. On the basis of biochemical and structural evidence, we present and discuss a working model for PARN action. Models of regulation of PARN activity by trans-acting factors are discussed as well as the physiological relevance of PARN.
Collapse
Affiliation(s)
- Anders Virtanen
- Department of Cell and Molecular Biology, Program of Chemical Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
30
|
Chlebowski A, Lubas M, Jensen TH, Dziembowski A. RNA decay machines: the exosome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:552-60. [PMID: 23352926 DOI: 10.1016/j.bbagrm.2013.01.006] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
The multisubunit RNA exosome complex is a major ribonuclease of eukaryotic cells that participates in the processing, quality control and degradation of virtually all classes of RNA in Eukaryota. All this is achieved by about a dozen proteins with only three ribonuclease activities between them. At first glance, the versatility of the pathways involving the exosome and the sheer multitude of its substrates are astounding. However, after fifteen years of research we have some understanding of how exosome activity is controlled and applied inside the cell. The catalytic properties of the eukaryotic exosome are fairly well described and attention is now drawn to how the interplay between these activities impacts cell physiology. Also, it has become evident that exosome function relies on many auxiliary factors, which are intensely studied themselves. In this way, the focus of exosome research is slowly leaving the test tube and moving back into the cell. The exosome also has an interesting evolutionary history, which is evident within the eukaryotic lineage but only fully appreciated when considering similar protein complexes found in Bacteria and Archaea. Thus, while we keep this review focused on the most comprehensively described yeast and human exosomes, we shall point out similarities or dissimilarities to prokaryotic complexes and proteins where appropriate. The article is divided into three parts. In Part One we describe how the exosome is built and how it manifests in cells of different organisms. In Part Two we detail the enzymatic properties of the exosome, especially recent data obtained for holocomplexes. Finally, Part Three presents an overview of the RNA metabolism pathways that involve the exosome. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
31
|
Crystal structure of a 9-subunit archaeal exosome in pre-catalytic states of the phosphorolytic reaction. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:721869. [PMID: 23319881 PMCID: PMC3539426 DOI: 10.1155/2012/721869] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/04/2012] [Indexed: 11/25/2022]
Abstract
The RNA exosome is an important protein complex that functions in the 3′ processing and degradation of RNA in archaeal and eukaryotic organisms. The archaeal exosome is functionally similar to bacterial polynucleotide phosphorylase (PNPase) and RNase PH enzymes as it uses inorganic phosphate (Pi) to processively cleave RNA substrates releasing nucleoside diphosphates. To shed light on the mechanism of catalysis, we have determined the crystal structures of mutant archaeal exosome in complex with either Pi or with both RNA and Pi at resolutions of 1.8 Å and 2.5 Å, respectively. These structures represent views of precatalytic states of the enzyme and allow the accurate determination of the substrate binding geometries. In the structure with both Pi and RNA bound, the Pi closely approaches the phosphate of the 3′-end nucleotide of the RNA and is in a perfect position to perform a nucleophilic attack. The presence of negative charge resulting from the close contacts between the phosphates appears to be neutralized by conserved positively charged residues in the active site of the archaeal exosome. The high degree of structural conservation between the archaeal exosome and the PNPase including the requirement for divalent metal ions for catalysis is discussed.
Collapse
|
32
|
Abstract
BACKGROUND Reverse docking approaches have been explored in previous studies on drug discovery to overcome some problems in traditional virtual screening. However, current reverse docking approaches are problematic in that the target spaces of those studies were rather small, and their applications were limited to identifying new drug targets. In this study, we expanded the scope of target space to a set of all protein structures currently available and developed several new applications of reverse docking method. RESULTS We generated 2D Matrix of docking scores among all the possible protein structures in yeast and human and 35 famous drugs. By clustering the docking profile data and then comparing them with fingerprint-based clustering of drugs, we first showed that our data contained accurate information on their chemical properties. Next, we showed that our method could be used to predict the druggability of target proteins. We also showed that a combination of sequence similarity and docking profile similarity could predict the enzyme EC numbers more accurately than sequence similarity alone. In two case studies, 5-fluorouracil and cycloheximide, we showed that our method can successfully find identifying target proteins. CONCLUSIONS By using a large number of protein structures, we improved the sensitivity of reverse docking and showed that using as many protein structure as possible was important in finding real binding targets.
Collapse
Affiliation(s)
- Minho Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | | |
Collapse
|
33
|
Abstract
Most RNAs in eukaryotic cells are produced as precursors that undergo processing at the 3' and/or 5' end to generate the mature transcript. In addition, many transcripts are degraded not only as part of normal recycling, but also when recognized as aberrant by the RNA surveillance machinery. The exosome, a conserved multiprotein complex containing two nucleases, is involved in both the 3' processing and the turnover of many RNAs in the cell. A series of factors, including the TRAMP (Trf4-Air2-Mtr4 polyadenylation) complex, Mpp6 and Rrp47, help to define the targets to be processed and/or degraded and assist in exosome function. The majority of the data on the exosome and RNA maturation/decay have been derived from work performed in the yeast Saccharomyces cerevisiae. In the present paper, we provide an overview of the exosome and its role in RNA processing/degradation and discuss important new insights into exosome composition and function in human cells.
Collapse
|
34
|
Abstract
The composition of the multisubunit eukaryotic RNA exosome was described more than a decade ago, and structural studies conducted since that time have contributed to our mechanistic understanding of factors that are required for 3'-to-5' RNA processing and decay. This chapter describes the organization of the eukaryotic RNA exosome with a focus on presenting results related to the noncatalytic nine-subunit exosome core as well as the hydrolytic exo- and endoribonuclease Rrp44 (Dis3) and the exoribonuclease Rrp6. This is achieved in large part by describing crystal structures of Rrp44, Rrp6, and the nine-subunit exosome core with an emphasis on how these molecules interact to endow the RNA exosome with its catalytic activities.
Collapse
Affiliation(s)
- Elizabeth V Wasmuth
- Structural Biology Program, Sloan-Kettering Institute, New York, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, USA
| | | |
Collapse
|
35
|
Johnson SJ, Jackson RN. Ski2-like RNA helicase structures: common themes and complex assemblies. RNA Biol 2012; 10:33-43. [PMID: 22995828 DOI: 10.4161/rna.22101] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ski2-like RNA helicases are large multidomain proteins involved in a variety of RNA processing and degradation events. Recent structures of Mtr4, Ski2 and Brr2 provide our first view of these intricate helicases. Here we review these structures, which reveal a conserved ring-like architecture that extends beyond the canonical RecA domains to include a winged helix and ratchet domain. Comparison of apo- and RNA-bound Mtr4 structures suggests a role for the winged helix domain as a molecular hub that coordinates RNA interacting events throughout the helicase. Unique accessory domains provide expanded diversity and functionality to each Ski2-like family member. A common theme is the integration of Ski2-like RNA helicases into larger protein assemblies. We describe the central role of Mtr4 and Ski2 in formation of complexes that activate RNA decay by the eukaryotic exosome. The current structures provide clues into what promises to be a fascinating view of these dynamic assemblies.
Collapse
Affiliation(s)
- Sean J Johnson
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, USA.
| | | |
Collapse
|
36
|
Extensive degradation of RNA precursors by the exosome in wild-type cells. Mol Cell 2012; 48:409-21. [PMID: 23000176 DOI: 10.1016/j.molcel.2012.08.018] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/23/2012] [Accepted: 08/16/2012] [Indexed: 11/22/2022]
Abstract
The exosome is a complex involved in the maturation of rRNA and sn-snoRNA, in the degradation of short-lived noncoding RNAs, and in the quality control of RNAs produced in mutants. It contains two catalytic subunits, Rrp6p and Dis3p, whose specific functions are not fully understood. We analyzed the transcriptome of combinations of Rrp6p and Dis3p catalytic mutants by high-resolution tiling arrays. We show that Dis3p and Rrp6p have both overlapping and specific roles in degrading distinct classes of substrates. We found that transcripts derived from more than half of intron-containing genes are degraded before splicing. Surprisingly, we also show that the exosome degrades large amounts of tRNA precursors despite the absence of processing defects. These results underscore the notion that large amounts of RNAs produced in wild-type cells are discarded before entering functional pathways and suggest that kinetic competition with degradation proofreads the efficiency and accuracy of processing.
Collapse
|
37
|
Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel. Mol Cell 2012; 48:133-44. [PMID: 22902556 DOI: 10.1016/j.molcel.2012.07.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/20/2012] [Accepted: 07/10/2012] [Indexed: 11/21/2022]
Abstract
The RNA exosome is an essential multisubunit ribonuclease (RNase) that contributes to cytoplasmic and nuclear RNA decay and quality control. The 9-subunit exosome core (Exo9) features a prominent central channel formed by stacked asymmetric rings of six RNase PH-like proteins and three S1/KH domain proteins. Exo9 is catalytically inert but associates with Rrp44, an endoribonuclease and processive 3'→5' exoribonuclease, and Rrp6, a distributive 3'→5' exoribonuclease. We show that Exo9 and its central channel modulate all three yeast exosome RNase activities because channel occlusion attenuates RNA binding and RNase activities in vitro and fails to complement exosome functions in vivo. We find that Rrp6 stimulates Rrp44 RNase activities and that Rrp6 is inhibited by a mutation in the Rrp44 exoribonuclease active site in 11-subunit nuclear exosomes. These results suggest the exosome core and central channel is essential because it modulates each of the known RNase activities of the yeast RNA exosome.
Collapse
|
38
|
Dis3- and exosome subunit-responsive 3' mRNA instability elements. Biochem Biophys Res Commun 2012; 423:461-6. [PMID: 22668878 DOI: 10.1016/j.bbrc.2012.05.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/26/2012] [Indexed: 11/20/2022]
Abstract
Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of ribonucleases (RNases) and RNA-binding proteins. The major RNase of the complex is thought to be Dis3, a multi-functional 3'-5' exoribonuclease and endoribonuclease. Although it is known that Dis3 and core exosome subunits are recruited to transcriptionally active genes and to messenger RNA (mRNA) substrates, this recruitment is thought to occur indirectly. We sought to discover cis-acting elements that recruit Dis3 or other exosome subunits. Using a bioinformatic tool called RNA SCOPE to screen the 3' untranslated regions of up-regulated transcripts from our published Dis3 depletion-derived transcriptomic data set, we identified several motifs as candidate instability elements. Secondary screening using a luciferase reporter system revealed that one cassette-harboring four elements-destabilized the reporter transcript. RNAi-based depletion of Dis3, Rrp6, Rrp4, Rrp40, or Rrp46 diminished the efficacy of cassette-mediated destabilization. Truncation analysis of the cassette showed that two exosome subunit-sensitive elements (ESSEs) destabilized the reporter. Point-directed mutagenesis of ESSE abrogated the destabilization effect. An examination of the transcriptomic data from exosome subunit depletion-based microarrays revealed that mRNAs with ESSEs are found in every up-regulated mRNA data set but are underrepresented or missing from the down-regulated data sets. Taken together, our findings imply a potentially novel mechanism of mRNA turnover that involves direct Dis3 and other exosome subunit recruitment to and/or regulation on mRNA substrates.
Collapse
|
39
|
Eidem TM, Roux CM, Dunman PM. RNA decay: a novel therapeutic target in bacteria. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:443-54. [PMID: 22374855 DOI: 10.1002/wrna.1110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The need for novel antibiotics is greater now than perhaps any time since the pre-antibiotic era. Indeed, the recent collapse of most pharmaceutical antibacterial groups, combined with the emergence of hypervirulent and pan-antibiotic-resistant bacteria have, in effect, created a 'perfect storm' that has severely compromised infection treatment options and led to dramatic increases in the incidence and severity of bacterial infections. To put simply, it is imperative that we develop new classes of antibiotics for the therapeutic intervention of bacterial infections. In that regard, RNA degradation is an essential biological process that has not been exploited for antibiotic development. Herein we discuss the factors that govern bacterial RNA degradation, highlight members of this machinery that represent attractive antimicrobial drug development targets and describe the use of high-throughput screening as a means of developing antimicrobials that target these enzymes. Such agents would represent first-in-class antibiotics that would be less apt to inactivation by currently encountered enzymatic antibiotic-resistance determinants.
Collapse
Affiliation(s)
- Tess M Eidem
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
40
|
Bernstein J, Toth EA. Yeast nuclear RNA processing. World J Biol Chem 2012; 3:7-26. [PMID: 22312453 PMCID: PMC3272586 DOI: 10.4331/wjbc.v3.i1.7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/27/2011] [Accepted: 12/04/2011] [Indexed: 02/05/2023] Open
Abstract
Nuclear RNA processing requires dynamic and intricately regulated machinery composed of multiple enzymes and their cofactors. In this review, we summarize recent experiments using Saccharomyces cerevisiae as a model system that have yielded important insights regarding the conversion of pre-RNAs to functional RNAs, and the elimination of aberrant RNAs and unneeded intermediates from the nuclear RNA pool. Much progress has been made recently in describing the 3D structure of many elements of the nuclear degradation machinery and its cofactors. Similarly, the regulatory mechanisms that govern RNA processing are gradually coming into focus. Such advances invariably generate many new questions, which we highlight in this review.
Collapse
Affiliation(s)
- Jade Bernstein
- Jade Bernstein, Eric A Toth, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | |
Collapse
|
41
|
Lubas M, Chlebowski A, Dziembowski A, Jensen TH. Biochemistry and Function of RNA Exosomes. EUKARYOTIC RNASES AND THEIR PARTNERS IN RNA DEGRADATION AND BIOGENESIS, PART A 2012; 31:1-30. [DOI: 10.1016/b978-0-12-404740-2.00001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Assenholt J, Mouaikel J, Saguez C, Rougemaille M, Libri D, Jensen TH. Implication of Ccr4-Not complex function in mRNA quality control in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2011; 17:1788-94. [PMID: 21862638 PMCID: PMC3185912 DOI: 10.1261/rna.2919911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Production of messenger ribonucleoprotein particles (mRNPs) is subjected to quality control (QC). In Saccharomyces cerevisiae, the RNA exosome and its cofactors are part of the nuclear QC machinery that removes, or stalls, aberrant molecules, thereby ensuring that only correctly formed mRNPs are exported to the cytoplasm. The Ccr4-Not complex, which constitutes the major S. cerevisiae cytoplasmic deadenylase, has recently been implied in nuclear exosome-related processes. Consistent with a possible nuclear function of the complex, the deletion or mutation of Ccr4-Not factors also elicits transcription phenotypes. Here we use genetic depletion of the Mft1p protein of the THO transcription/mRNP packaging complex as a model system to link the Ccr4-Not complex to nuclear mRNP QC. We reveal strong genetic interactions between alleles of the Ccr4-Not complex with both the exosomal RRP6 and MFT1 genes. Moreover, Rrp6p-dependent in vivo QC phenotypes of Δmft1 cells can be rescued by codeletion of several Ccr4-Not components. We discuss how the Ccr4-Not complex may connect with the mRNP QC pathway.
Collapse
Affiliation(s)
- Jannie Assenholt
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, 8000 Aarhus C., Denmark
| | - John Mouaikel
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, 8000 Aarhus C., Denmark
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, 91190 Gif sur Yvette, France
| | - Cyril Saguez
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, 8000 Aarhus C., Denmark
| | - Mathieu Rougemaille
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, 8000 Aarhus C., Denmark
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, 91190 Gif sur Yvette, France
| | - Domenico Libri
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, 8000 Aarhus C., Denmark
- Centre National de la Recherche Scientifique, Centre de Genetique Moleculaire, 91190 Gif sur Yvette, France
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, 8000 Aarhus C., Denmark
- Corresponding author.E-mail .
| |
Collapse
|
43
|
Januszyk K, Liu Q, Lima CD. Activities of human RRP6 and structure of the human RRP6 catalytic domain. RNA (NEW YORK, N.Y.) 2011; 17:1566-77. [PMID: 21705430 PMCID: PMC3153979 DOI: 10.1261/rna.2763111] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/19/2011] [Indexed: 05/24/2023]
Abstract
The eukaryotic RNA exosome is a highly conserved multi-subunit complex that catalyzes degradation and processing of coding and noncoding RNA. A noncatalytic nine-subunit exosome core interacts with Rrp44 and Rrp6, two subunits that possess processive and distributive 3'-to-5' exoribonuclease activity, respectively. While both Rrp6 and Rrp44 are responsible for RNA processing in budding yeast, Rrp6 may play a more prominent role in processing, as it has been demonstrated to be inhibited by stable RNA secondary structure in vitro and because the null allele in budding yeast leads to the buildup of specific structured RNA substrates. Human RRP6, otherwise known as PM/SCL-100 or EXOSC10, shares sequence similarity to budding yeast Rrp6 and is proposed to catalyze 3'-to-5' exoribonuclease activity on a variety of nuclear transcripts including ribosomal RNA subunits, RNA that has been poly-adenylated by TRAMP, as well as other nuclear RNA transcripts destined for processing and/or destruction. To characterize human RRP6, we expressed the full-length enzyme as well as truncation mutants that retain catalytic activity, compared their activities to analogous constructs for Saccharomyces cerevisiae Rrp6, and determined the X-ray structure of a human construct containing the exoribonuclease and HRDC domains that retains catalytic activity. Structural data show that the human active site is more exposed when compared to the yeast structure, and biochemical data suggest that this feature may play a role in the ability of human RRP6 to productively engage and degrade structured RNA substrates more effectively than the analogous budding yeast enzyme.
Collapse
Affiliation(s)
- Kurt Januszyk
- Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Quansheng Liu
- Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Christopher D. Lima
- Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
44
|
Santos MCT, Goldfeder MB, Zanchin NIT, Oliveira CC. The essential nucleolar yeast protein Nop8p controls the exosome function during 60S ribosomal subunit maturation. PLoS One 2011; 6:e21686. [PMID: 21747919 PMCID: PMC3126838 DOI: 10.1371/journal.pone.0021686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/08/2011] [Indexed: 11/19/2022] Open
Abstract
The yeast nucleolar protein Nop8p has previously been shown to interact with Nip7p and to be required for 60S ribosomal subunit formation. Although depletion of Nop8p in yeast cells leads to premature degradation of rRNAs, the biochemical mechanism responsible for this phenotype is still not known. In this work, we show that the Nop8p amino-terminal region mediates interaction with the 5.8S rRNA, while its carboxyl-terminal portion interacts with Nip7p and can partially complement the growth defect of the conditional mutant strain Δnop8/GAL::NOP8. Interestingly, Nop8p mediates association of Nip7p to pre-ribosomal particles. Nop8p also interacts with the exosome subunit Rrp6p and inhibits the complex activity in vitro, suggesting that the decrease in 60S ribosomal subunit levels detected upon depletion of Nop8p may result from degradation of pre-rRNAs by the exosome. These results strongly indicate that Nop8p may control the exosome function during pre-rRNA processing.
Collapse
Affiliation(s)
- Marcia C. T. Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Mauricio B. Goldfeder
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Nilson I. T. Zanchin
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, São Paulo, Brazil
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, São Paulo, Brazil
| | - Carla C. Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
45
|
Structure and Degradation Mechanisms of 3′ to 5′ Exoribonucleases. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2011. [DOI: 10.1007/978-3-642-21078-5_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
46
|
Niederberger T, Hartung S, Hopfner KP, Tresch A. Processive RNA decay by the exosome: merits of a quantitative Bayesian sampling approach. RNA Biol 2011; 8:55-60. [PMID: 21282980 DOI: 10.4161/rna.8.1.14067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA exosomes are large multi-subunit protein complexes involved in controlled and processive 3' to 5' RNA degradation. Exosomes form large molecular chambers and harbor multiple nuclease sites as well as RNA binding regions. This makes a quantitative kinetic analysis of RNA degradation with reliable parameter and error estimates challenging. For instance, recent quantitative biochemical assays revealed that degradation speed and efficiency depend on various factors, such as the type of RNA binding caps and the RNA length. We propose the combination of a differential equation model with bayesian Markov Chain Monte Carlo (MCMC) sampling for a more robust and reliable analysis of such complex kinetic systems. Using the exosome as a paradigm, it is shown that conventional "best fit" approaches to parameter estimation are outperformed by the MCMC method. The parameter distribution returned by MCMC sampling allows for a reliable and meaningful comparison of the data from different time series. In the case of the exosome, we find that the cap structures of the exosome have a direct effect on the recruitment and degradation of RNA, and that these effects are RNA length-dependent. The described approach can be widely applied to any processive reaction with a similar kinetics like the XRN1-dependent RNA degradation, RNA/DNA synthesis by polymerases, and protein synthesis by the ribosome.
Collapse
Affiliation(s)
- Theresa Niederberger
- Center for Integrated Protein Sciences, Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | |
Collapse
|
47
|
Costello JL, Stead JA, Feigenbutz M, Jones RM, Mitchell P. The C-terminal region of the exosome-associated protein Rrp47 is specifically required for box C/D small nucleolar RNA 3'-maturation. J Biol Chem 2010; 286:4535-43. [PMID: 21135092 PMCID: PMC3039359 DOI: 10.1074/jbc.m110.162826] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cells lacking the exosome-associated protein Rrp47 show similar defects in stable RNA processing to those observed in the absence of the catalytic subunit Rrp6, but the precise mechanism(s) by which Rrp47 functions together with Rrp6 remains unclear. Deletion complementation analyses defined an N-terminal region of Rrp47, largely coincident with the bioinformatically defined Sas10/C1D domain, which was sufficient for protein function in vivo. In vitro protein interaction studies demonstrated that this domain of Rrp47 binds the PMC2NT domain of Rrp6. Expression of the N-terminal domain of Rrp47 in yeast complemented most RNA-processing defects associated with the rrp47Δ mutant but failed to complement the defect observed in 3′-end maturation of box C/D small nucleolar RNAs. Consistent with these results, protein capture assays revealed an interaction between the C-terminal region of Rrp47 and the small nucleolar ribonucleoproteins Nop56 and Nop58. Filter binding assays demonstrated that deletion of the lysine-rich sequence at the C terminus of Rrp47 blocked RNA binding in vitro. Furthermore, a protein mutated both at the C terminus and within the N-terminal domain showed a synergistic defect in RNA binding without impacting on its ability to interact with Rrp6. These studies provide evidence for a role of Rrp47 in registering a small nucleolar ribonucleoprotein particle assembly, functionally characterize the Sas10/C1D domain of Rrp47, and show that both the C terminus of Rrp47 and the N-terminal domain contribute to its RNA-binding activity.
Collapse
Affiliation(s)
- Joe L Costello
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Kim YM, Choi BS. Structure and function of the regulatory HRDC domain from human Bloom syndrome protein. Nucleic Acids Res 2010; 38:7764-77. [PMID: 20639533 PMCID: PMC2995041 DOI: 10.1093/nar/gkq586] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 01/08/2023] Open
Abstract
The helicase and RNaseD C-terminal (HRDC) domain, conserved among members of the RecQ helicase family, regulates helicase activity by virtue of variations in its surface residues. The HRDC domain of Bloom syndrome protein (BLM) is known as a critical determinant of the dissolution function of double Holliday junctions by the BLM-Topoisomerase IIIα complex. In this study, we determined the solution structure of the human BLM HRDC domain and characterized its DNA-binding activity. The BLM HRDC domain consists of five α-helices with a hydrophobic 3(10)-helical loop between helices 1 and 2 and an extended acidic surface comprising residues in helices 3-5. The BLM HRDC domain preferentially binds to ssDNA, though with a markedly low binding affinity (K(d) ∼100 μM). NMR chemical shift perturbation studies suggested that the critical DNA-binding residues of the BLM HRDC domain are located in the hydrophobic loop and the N-terminus of helix 2. Interestingly, the isolated BLM HRDC domain had quite different DNA-binding modes between ssDNA and Holliday junctions in electrophoretic mobility shift assay experiments. Based on its surface charge separation and DNA-binding properties, we suggest that the HRDC domain of BLM may be adapted for a unique function among RecQ helicases--that of bridging protein and DNA interactions.
Collapse
|
49
|
Abstract
Nucleases cleave the phosphodiester bonds of nucleic acids and may be endo or exo, DNase or RNase, topoisomerases, recombinases, ribozymes, or RNA splicing enzymes. In this review, I survey nuclease activities with known structures and catalytic machinery and classify them by reaction mechanism and metal-ion dependence and by their biological function ranging from DNA replication, recombination, repair, RNA maturation, processing, interference, to defense, nutrient regeneration or cell death. Several general principles emerge from this analysis. There is little correlation between catalytic mechanism and biological function. A single catalytic mechanism can be adapted in a variety of reactions and biological pathways. Conversely, a single biological process can often be accomplished by multiple tertiary and quaternary folds and by more than one catalytic mechanism. Two-metal-ion-dependent nucleases comprise the largest number of different tertiary folds and mediate the most diverse set of biological functions. Metal-ion-dependent cleavage is exclusively associated with exonucleases producing mononucleotides and endonucleases that cleave double- or single-stranded substrates in helical and base-stacked conformations. All metal-ion-independent RNases generate 2',3'-cyclic phosphate products, and all metal-ion-independent DNases form phospho-protein intermediates. I also find several previously unnoted relationships between different nucleases and shared catalytic configurations.
Collapse
|
50
|
Slomovic S, Schuster G. Exonucleases and endonucleases involved in polyadenylation-assisted RNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:106-23. [PMID: 21956972 DOI: 10.1002/wrna.45] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
RNA polyadenylation occurs in most forms of life, excluding a small number of biological systems. This posttranscriptional modification undertakes two roles, both of which influence the stability of the polyadenylated transcript. One is associated with the mature 3' ends of nucleus-encoded mRNAs in eukaryotic cells and is important for nuclear exit, translatability, and longevity. The second form of RNA polyadenylation assumes an almost opposite role; it is termed 'transient' and serves to mediate the degradation of RNA. Poly(A)-assisted RNA decay pathways were once thought to occur only in prokaryotes/organelles but are now known to be a common phenomenon, present in bacteria, organelles, archaea, and the nucleus and cytoplasm of eukaryotic cells, regardless of the fact that in some of these systems, stable polyadenylation exists as well. This article will summarize the current knowledge of polyadenylation and degradation factors involved in poly(A)-assisted RNA decay in the domains of life, focusing mainly on that which occurs in prokaryotes and organelles. In addition, it will offer an evolutionary view of the development of RNA polyadenylation and degradation and the cellular machinery that is involved.
Collapse
Affiliation(s)
- Shimyn Slomovic
- Faculty of Biology, Technion - Israel Institue of Technology, Haifa, Israel
| | | |
Collapse
|