1
|
Characterizing crosstalk in epigenetic signaling to understand disease physiology. Biochem J 2023; 480:57-85. [PMID: 36630129 PMCID: PMC10152800 DOI: 10.1042/bcj20220550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Epigenetics, the inheritance of genomic information independent of DNA sequence, controls the interpretation of extracellular and intracellular signals in cell homeostasis, proliferation and differentiation. On the chromatin level, signal transduction leads to changes in epigenetic marks, such as histone post-translational modifications (PTMs), DNA methylation and chromatin accessibility to regulate gene expression. Crosstalk between different epigenetic mechanisms, such as that between histone PTMs and DNA methylation, leads to an intricate network of chromatin-binding proteins where pre-existing epigenetic marks promote or inhibit the writing of new marks. The recent technical advances in mass spectrometry (MS) -based proteomic methods and in genome-wide DNA sequencing approaches have broadened our understanding of epigenetic networks greatly. However, further development and wider application of these methods is vital in developing treatments for disorders and pathologies that are driven by epigenetic dysregulation.
Collapse
|
2
|
Barbé L, Finkbeiner S. Genetic and Epigenetic Interplay Define Disease Onset and Severity in Repeat Diseases. Front Aging Neurosci 2022; 14:750629. [PMID: 35592702 PMCID: PMC9110800 DOI: 10.3389/fnagi.2022.750629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Repeat diseases, such as fragile X syndrome, myotonic dystrophy, Friedreich ataxia, Huntington disease, spinocerebellar ataxias, and some forms of amyotrophic lateral sclerosis, are caused by repetitive DNA sequences that are expanded in affected individuals. The age at which an individual begins to experience symptoms, and the severity of disease, are partially determined by the size of the repeat. However, the epigenetic state of the area in and around the repeat also plays an important role in determining the age of disease onset and the rate of disease progression. Many repeat diseases share a common epigenetic pattern of increased methylation at CpG islands near the repeat region. CpG islands are CG-rich sequences that are tightly regulated by methylation and are often found at gene enhancer or insulator elements in the genome. Methylation of CpG islands can inhibit binding of the transcriptional regulator CTCF, resulting in a closed chromatin state and gene down regulation. The downregulation of these genes leads to some disease-specific symptoms. Additionally, a genetic and epigenetic interplay is suggested by an effect of methylation on repeat instability, a hallmark of large repeat expansions that leads to increasing disease severity in successive generations. In this review, we will discuss the common epigenetic patterns shared across repeat diseases, how the genetics and epigenetics interact, and how this could be involved in disease manifestation. We also discuss the currently available stem cell and mouse models, which frequently do not recapitulate epigenetic patterns observed in human disease, and propose alternative strategies to study the role of epigenetics in repeat diseases.
Collapse
Affiliation(s)
- Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Steve Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Steve Finkbeiner,
| |
Collapse
|
3
|
Ruiz Buendía GA, Leleu M, Marzetta F, Vanzan L, Tan JY, Ythier V, Randall EL, Marques AC, Baubec T, Murr R, Xenarios I, Dion V. Three-dimensional chromatin interactions remain stable upon CAG/CTG repeat expansion. SCIENCE ADVANCES 2020; 6:eaaz4012. [PMID: 32656337 PMCID: PMC7334000 DOI: 10.1126/sciadv.aaz4012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Expanded CAG/CTG repeats underlie 13 neurological disorders, including myotonic dystrophy type 1 (DM1) and Huntington's disease (HD). Upon expansion, disease loci acquire heterochromatic characteristics, which may provoke changes to chromatin conformation and thereby affect both gene expression and repeat instability. Here, we tested this hypothesis by performing 4C sequencing at the DMPK and HTT loci from DM1 and HD-derived cells. We find that allele sizes ranging from 15 to 1700 repeats displayed similar chromatin interaction profiles. This was true for both loci and for alleles with different DNA methylation levels and CTCF binding. Moreover, the ectopic insertion of an expanded CAG repeat tract did not change the conformation of the surrounding chromatin. We conclude that CAG/CTG repeat expansions are not enough to alter chromatin conformation in cis. Therefore, it is unlikely that changes in chromatin interactions drive repeat instability or changes in gene expression in these disorders.
Collapse
Affiliation(s)
- Gustavo A. Ruiz Buendía
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Marion Leleu
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Flavia Marzetta
- Vital-IT Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Ludovica Vanzan
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Jennifer Y. Tan
- Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Victor Ythier
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Emma L. Randall
- UK Dementia Research Institute at Cardiff University at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK
| | - Ana C. Marques
- Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Tuncay Baubec
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Rabih Murr
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Ioannis Xenarios
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Vincent Dion
- UK Dementia Research Institute at Cardiff University at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK
| |
Collapse
|
4
|
Chromosome conformation capture that detects novel cis- and trans-interactions in budding yeast. Methods 2019; 170:4-16. [PMID: 31252061 DOI: 10.1016/j.ymeth.2019.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 11/22/2022] Open
Abstract
Chromosome Conformation Capture (3C) has emerged as a powerful approach for revealing the conformation and features of three-dimensional (3D) genomic organization. Yet attainment of higher resolution in organisms with compact genomes presents a challenge. Here, we describe modifications in the 3C technique that substantially enhance its resolution and sensitivity when applied to the 3D genome of budding yeast. Keys to our approach include use of a 4 bp cutter, Taq I, for cleaving the genome and quantitative PCR for measuring the frequency of ligation. Most importantly, we normalize the percent digestion at each restriction site to account for variation in accessibility of local chromatin structure under a given physiological condition. This strategy has led to the detection of physical interactions between regulatory elements and gene coding regions as well as intricate, stimulus-specific interchromosomal interactions between activated genes. We provide an algorithm that incorporates these and other modifications and allows quantitative determination of chromatin interaction frequencies in yeast under any physiological condition.
Collapse
|
5
|
Huang G, Zhu H, Wu S, Cui M, Xu T. Long Noncoding RNA Can Be a Probable Mechanism and a Novel Target for Diagnosis and Therapy in Fragile X Syndrome. Front Genet 2019; 10:446. [PMID: 31191598 PMCID: PMC6541098 DOI: 10.3389/fgene.2019.00446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/30/2019] [Indexed: 01/06/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common congenital hereditary disease of low intelligence after Down syndrome. Its main pathogenic gene is fragile X mental retardation 1 (FMR1) gene associated with intellectual disability, autism, and fragile X-related primary ovarian insufficiency (FXPOI) and fragile X-associated tremor/ataxia syndrome (FXTAS). FMR1 gene transcription leads to the absence of fragile X mental retardation protein (FMRP). How to relieve or cure disorders associated with FXS has also become a clinically disturbing problem. Previous studies have recently shown that long noncoding RNAs (lncRNAs) contribute to the pathogenesis. And it has been identified that several lncRNAs including FMR4, FMR5, and FMR6 contribute to developing FXPOI/FXTAS, originating from the FMR1 gene locus. FMR4 is a product of RNA polymerase II and can regulate the expression of relevant genes during differentiation of human neural precursor cells. FMR5 is a sense-oriented transcript while FMR6 is an antisense lncRNA produced by the 3' UTR of FMR1. FMR6 is likely to contribute to developing FXPOI, and it overlaps exons 15-17 of FMR1 as well as two microRNA binding sites. Additionally, BC1 can bind FMRP to form an inhibitory complex and lncRNA TUG1 also can control axonal development by directly interacting with FMRP through modulating SnoN-Ccd1 pathway. Therefore, these lncRNAs provide pharmaceutical targets and novel biomarkers. This review will: (1) describe the clinical manifestations and traditional pathogenesis of FXS and FXTAS/FXPOI; (2) summarize what is known about the role of lncRNAs in the pathogenesis of FXS and FXTAS/FXPOI; and (3) provide an outlook of potential effects and future directions of lncRNAs in FXS and FXTAS/FXPOI researches.
Collapse
Affiliation(s)
- Ge Huang
- The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- The Second Hospital of Jilin University, Changchun, China
| | - Shuying Wu
- The Second Hospital of Jilin University, Changchun, China
| | - Manhua Cui
- The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
The Application of Adeno-Associated Viral Vector Gene Therapy to the Treatment of Fragile X Syndrome. Brain Sci 2019; 9:brainsci9020032. [PMID: 30717399 PMCID: PMC6406794 DOI: 10.3390/brainsci9020032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/18/2023] Open
Abstract
Viral vector-mediated gene therapy has grown by leaps and bounds over the past several years. Although the reasons for this progress are varied, a deeper understanding of the basic biology of the viruses, the identification of new and improved versions of viral vectors, and simply the vast experience gained by extensive testing in both animal models of disease and in clinical trials, have been key factors. Several studies have investigated the efficacy of adeno-associated viral (AAV) vectors in the mouse model of fragile X syndrome where AAVs have been used to express fragile X mental retardation protein (FMRP), which is missing or highly reduced in the disorder. These studies have demonstrated a range of efficacies in different tests from full correction, to partial rescue, to no effect. Here we provide a backdrop of recent advances in AAV gene therapy as applied to central nervous system disorders, outline the salient features of the fragile X studies, and discuss several key issues for moving forward. Collectively, the findings to date from the mouse studies on fragile X syndrome, and data from clinical trials testing AAVs in other neurological conditions, indicate that AAV-mediated gene therapy could be a viable strategy for treating fragile X syndrome.
Collapse
|
7
|
Abstract
This introduction presents a molecular approach that uses formaldehyde cross-linking to investigate genome structure and function-chromosome conformation capture (3C). This approach allows us to determine the spatial proximity of distant functional genomic sites (by looping). 3C-based techniques to interrogate chromosome folding and long-range interactions between genomic sequences in vivo are detailed.
Collapse
|
8
|
Moisan S, Berlivet S, Ka C, Le Gac G, Dostie J, Férec C. Analysis of long-range interactions in primary human cells identifies cooperative CFTR regulatory elements. Nucleic Acids Res 2015; 44:2564-76. [PMID: 26615198 PMCID: PMC4824072 DOI: 10.1093/nar/gkv1300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/07/2015] [Indexed: 12/19/2022] Open
Abstract
A mechanism by which control DNA elements regulate transcription over large linear genomic distances is by achieving close physical proximity with genes, and looping of the intervening chromatin paths. Alterations of such regulatory 'chromatin looping' systems are likely to play a critical role in human genetic disease at large. Here, we studied the spatial organization of a ≈790 kb locus encompassing the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Dysregulation of CFTR is responsible for cystic fibrosis, which is the most common lethal genetic disorder in Caucasian populations. CFTR is a relatively large gene of 189 kb with a rather complex tissue-specific and temporal expression profile. We used chromatin conformation at the CFTR locus to identify new DNA sequences that regulate its transcription. By comparing 5C chromatin interaction maps of the CFTR locus in expressing and non-expressing human primary cells, we identified several new contact points between the CFTR promoter and its surroundings, in addition to regions featuring previously described regulatory elements. We demonstrate that two of these novel interacting regions cooperatively increase CFTR expression, and suggest that the new enhancer elements located on either side of the gene are brought together through chromatin looping via CTCF.
Collapse
Affiliation(s)
- Stéphanie Moisan
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR ScInBioS, CHRU de Brest, Établissement Français du Sang - Bretagne, Brest, France
| | - Soizik Berlivet
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, H3G 1Y6, Canada
| | - Chandran Ka
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR ScInBioS, CHRU de Brest, Établissement Français du Sang - Bretagne, Brest, France
| | - Gérald Le Gac
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR ScInBioS, CHRU de Brest, Établissement Français du Sang - Bretagne, Brest, France
| | - Josée Dostie
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, H3G 1Y6, Canada
| | - Claude Férec
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR ScInBioS, CHRU de Brest, Établissement Français du Sang - Bretagne, Brest, France
| |
Collapse
|
9
|
Bhattacharyya A, Zhao X. Human pluripotent stem cell models of Fragile X syndrome. Mol Cell Neurosci 2015; 73:43-51. [PMID: 26640241 DOI: 10.1016/j.mcn.2015.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/03/2015] [Accepted: 11/25/2015] [Indexed: 01/18/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism. The causal mutation in FXS is a trinucleotide CGG repeat expansion in the FMR1 gene that leads to human specific epigenetic silencing and loss of Fragile X Mental Retardation Protein (FMRP) expression. Human pluripotent stem cells (PSCs), including human embryonic stem cells (ESCs) and particularly induced PSCs (iPSCs), offer a model system to reveal cellular and molecular events underlying human neuronal development and function in FXS. Human FXS PSCs have been established and have provided insight into the epigenetic silencing of the FMR1 gene as well as aspects of neuronal development.
Collapse
Affiliation(s)
- Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States.
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
10
|
Hsieh THS, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ. Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C. Cell 2015; 162:108-19. [PMID: 26119342 DOI: 10.1016/j.cell.2015.05.048] [Citation(s) in RCA: 504] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/23/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022]
Abstract
We describe a Hi-C-based method, Micro-C, in which micrococcal nuclease is used instead of restriction enzymes to fragment chromatin, enabling nucleosome resolution chromosome folding maps. Analysis of Micro-C maps for budding yeast reveals abundant self-associating domains similar to those reported in other species, but not previously observed in yeast. These structures, far shorter than topologically associating domains in mammals, typically encompass one to five genes in yeast. Strong boundaries between self-associating domains occur at promoters of highly transcribed genes and regions of rapid histone turnover that are typically bound by the RSC chromatin-remodeling complex. Investigation of chromosome folding in mutants confirms roles for RSC, "gene looping" factor Ssu72, Mediator, H3K56 acetyltransferase Rtt109, and the N-terminal tail of H4 in folding of the yeast genome. This approach provides detailed structural maps of a eukaryotic genome, and our findings provide insights into the machinery underlying chromosome compaction.
Collapse
Affiliation(s)
- Tsung-Han S Hsieh
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Assaf Weiner
- School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel; Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Bryan Lajoie
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Job Dekker
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nir Friedman
- School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel; Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
11
|
Affiliation(s)
- Manuel M. Müller
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
12
|
Grob S, Schmid MW, Luedtke NW, Wicker T, Grossniklaus U. Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture. Genome Biol 2013; 14:R129. [PMID: 24267747 PMCID: PMC4053840 DOI: 10.1186/gb-2013-14-11-r129] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/24/2013] [Indexed: 12/22/2022] Open
Abstract
Background The packaging of long chromatin fibers in the nucleus poses a major challenge, as it must fulfill both physical and functional requirements. Until recently, insights into the chromosomal architecture of plants were mainly provided by cytogenetic studies. Complementary to these analyses, chromosome conformation capture technologies promise to refine and improve our view on chromosomal architecture and to provide a more generalized description of nuclear organization. Results Employing circular chromosome conformation capture, this study describes chromosomal architecture in Arabidopsis nuclei from a genome-wide perspective. Surprisingly, the linear organization of chromosomes is reflected in the genome-wide interactome. In addition, we study the interplay of the interactome and epigenetic marks and report that the heterochromatic knob on the short arm of chromosome 4 maintains a pericentromere-like interaction profile and interactome despite its euchromatic surrounding. Conclusion Despite the extreme condensation that is necessary to pack the chromosomes into the nucleus, the Arabidopsis genome appears to be packed in a predictive manner, according to the following criteria: heterochromatin and euchromatin represent two distinct interactomes; interactions between chromosomes correlate with the linear position on the chromosome arm; and distal chromosome regions have a higher potential to interact with other chromosomes.
Collapse
|
13
|
Comprehensive analysis of the transcriptional landscape of the human FMR1 gene reveals two new long noncoding RNAs differentially expressed in Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome. Hum Genet 2013; 133:59-67. [PMID: 24005575 PMCID: PMC3898532 DOI: 10.1007/s00439-013-1356-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/25/2013] [Indexed: 01/23/2023]
Abstract
The majority of the human genome is transcribed but not translated, giving rise to noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs, >200 nt) that perform a wide range of functions in gene regulation. The Fragile X mental retardation 1 (FMR1) gene is a microsatellite locus that in the general population contains <55 CGG repeats in its 5′-untranslated region. Expansion of this repeat region to a size of 55-200 CGG repeats, known as premutation, is associated with Fragile X tremor and ataxia syndrome (FXTAS). Further expansion beyond 200 CGG repeats, or full mutation, leads to FMR1 gene silencing and results in Fragile X syndrome (FXS). Using a novel technology called “Deep-RACE”, which combines rapid amplification of cDNA ends (RACE) with next generation sequencing, we systematically interrogated the FMR1 gene locus for the occurrence of novel lncRNAs. We discovered two transcripts, FMR5 and FMR6. FMR5 is a sense lncRNA transcribed upstream of the FMR1 promoter, whereas FMR6 is an antisense transcript overlapping the 3′ region of FMR1. FMR5 was expressed in several human brain regions from unaffected individuals and from full and premutation patients. FMR6 was silenced in full mutation and, unexpectedly, in premutation carriers suggesting abnormal transcription and/or chromatin remodeling prior to transition to the full mutation. These lncRNAs may thus be useful as biomarkers, allowing for early detection and therapeutic intervention in FXS and FXTAS. Finally we show that FMR5 and FMR6 are expressed in peripheral blood leukocytes and propose future studies that correlate lncRNA expression with clinical outcomes.
Collapse
|
14
|
Lanni S, Goracci M, Borrelli L, Mancano G, Chiurazzi P, Moscato U, Ferrè F, Helmer-Citterich M, Tabolacci E, Neri G. Role of CTCF protein in regulating FMR1 locus transcription. PLoS Genet 2013; 9:e1003601. [PMID: 23874213 PMCID: PMC3715420 DOI: 10.1371/journal.pgen.1003601] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/13/2013] [Indexed: 01/07/2023] Open
Abstract
Fragile X syndrome (FXS), the leading cause of inherited intellectual disability, is caused by epigenetic silencing of the FMR1 gene, through expansion and methylation of a CGG triplet repeat (methylated full mutation). An antisense transcript (FMR1-AS1), starting from both promoter and intron 2 of the FMR1 gene, was demonstrated in transcriptionally active alleles, but not in silent FXS alleles. Moreover, a DNA methylation boundary, which is lost in FXS, was recently identified upstream of the FMR1 gene. Several nuclear proteins bind to this region, like the insulator protein CTCF. Here we demonstrate for the first time that rare unmethylated full mutation (UFM) alleles present the same boundary described in wild type (WT) alleles and that CTCF binds to this region, as well as to the FMR1 gene promoter, exon 1 and intron 2 binding sites. Contrariwise, DNA methylation prevents CTCF binding to FXS alleles. Drug-induced CpGs demethylation does not restore this binding. CTCF knock-down experiments clearly established that CTCF does not act as insulator at the active FMR1 locus, despite the presence of a CGG expansion. CTCF depletion induces heterochromatinic histone configuration of the FMR1 locus and results in reduction of FMR1 transcription, which however is not accompanied by spreading of DNA methylation towards the FMR1 promoter. CTCF depletion is also associated with FMR1-AS1 mRNA reduction. Antisense RNA, like sense transcript, is upregulated in UFM and absent in FXS cells and its splicing is correlated to that of the FMR1-mRNA. We conclude that CTCF has a complex role in regulating FMR1 expression, probably through the organization of chromatin loops between sense/antisense transcriptional regulatory regions, as suggested by bioinformatics analysis.
Collapse
Affiliation(s)
- Stella Lanni
- Istituto di Genetica Medica, Università Cattolica del S. Cuore, Rome, Italy
| | - Martina Goracci
- Istituto di Genetica Medica, Università Cattolica del S. Cuore, Rome, Italy
| | - Loredana Borrelli
- Istituto di Genetica Medica, Università Cattolica del S. Cuore, Rome, Italy
| | - Giorgia Mancano
- Istituto di Genetica Medica, Università Cattolica del S. Cuore, Rome, Italy
| | - Pietro Chiurazzi
- Istituto di Genetica Medica, Università Cattolica del S. Cuore, Rome, Italy
| | - Umberto Moscato
- Istituto di Igiene, Università Cattolica del S. Cuore, Rome, Italy
| | - Fabrizio Ferrè
- Dipartimento di Biologia, Università di Roma “Tor Vergata”, Rome, Italy
| | | | | | - Giovanni Neri
- Istituto di Genetica Medica, Università Cattolica del S. Cuore, Rome, Italy
| |
Collapse
|
15
|
Bharadwaj R, Jiang Y, Mao W, Jakovcevski M, Dincer A, Krueger W, Garbett K, Whittle C, Tushir JS, Liu J, Sequeira A, Vawter MP, Gardner PD, Casaccia P, Rasmussen T, Bunney WE, Mirnics K, Futai K, Akbarian S. Conserved chromosome 2q31 conformations are associated with transcriptional regulation of GAD1 GABA synthesis enzyme and altered in prefrontal cortex of subjects with schizophrenia. J Neurosci 2013; 33:11839-51. [PMID: 23864674 PMCID: PMC3713726 DOI: 10.1523/jneurosci.1252-13.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/16/2013] [Accepted: 06/12/2013] [Indexed: 01/07/2023] Open
Abstract
Little is known about chromosomal loopings involving proximal promoter and distal enhancer elements regulating GABAergic gene expression, including changes in schizophrenia and other psychiatric conditions linked to altered inhibition. Here, we map in human chromosome 2q31 the 3D configuration of 200 kb of linear sequence encompassing the GAD1 GABA synthesis enzyme gene locus, and we describe a loop formation involving the GAD1 transcription start site and intergenic noncoding DNA elements facilitating reporter gene expression. The GAD1-TSS(-50kbLoop) was enriched with nucleosomes epigenetically decorated with the transcriptional mark, histone H3 trimethylated at lysine 4, and was weak or absent in skin fibroblasts and pluripotent stem cells compared with neuronal cultures differentiated from them. In the prefrontal cortex of subjects with schizophrenia, GAD1-TSS(-50kbLoop) was decreased compared with controls, in conjunction with downregulated GAD1 expression. We generated transgenic mice expressing Gad2 promoter-driven green fluorescent protein-conjugated histone H2B and confirmed that Gad1-TSS(-55kbLoop), the murine homolog to GAD1-TSS(-50kbLoop), is a chromosomal conformation specific for GABAergic neurons. In primary neuronal culture, Gad1-TSS(-55kbLoop) and Gad1 expression became upregulated when neuronal activity was increased. We conclude that 3D genome architectures, including chromosomal loopings for promoter-enhancer interactions involved in the regulation of GABAergic gene expression, are conserved between the rodent and primate brain, and subject to developmental and activity-dependent regulation, and disordered in some cases with schizophrenia. More broadly, the findings presented here draw a connection between noncoding DNA, spatial genome architecture, and neuronal plasticity in development and disease.
Collapse
Affiliation(s)
- Rahul Bharadwaj
- Graduate School of Biomedical Sciences and
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Yan Jiang
- Departments of Psychiatry and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Wenjie Mao
- Graduate School of Biomedical Sciences and
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | | | - Aslihan Dincer
- Departments of Psychiatry and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Winfried Krueger
- Center for Regenerative Biology and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Krassimira Garbett
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee 37232, and
| | - Catheryne Whittle
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Jogender Singh Tushir
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Jia Liu
- Departments of Psychiatry and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697
| | - Marquis P. Vawter
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697
| | - Paul D. Gardner
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Patrizia Casaccia
- Departments of Psychiatry and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Theodore Rasmussen
- Center for Regenerative Biology and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - William E. Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697
| | - Karoly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee 37232, and
| | - Kensuke Futai
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Schahram Akbarian
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01655
- Departments of Psychiatry and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
16
|
Variable requirements for DNA-binding proteins at polycomb-dependent repressive regions in human HOX clusters. Mol Cell Biol 2013; 33:3274-85. [PMID: 23775117 DOI: 10.1128/mcb.00275-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Polycomb group (PcG)-mediated repression is an evolutionarily conserved process critical for cell fate determination and maintenance of gene expression during embryonic development. However, the mechanisms underlying PcG recruitment in mammals remain unclear since few regulatory sites have been identified. We report two novel prospective PcG-dependent regulatory elements within the human HOXB and HOXC clusters and compare their repressive activities to a previously identified element in the HOXD cluster. These regions recruited the PcG proteins BMI1 and SUZ12 to a reporter construct in mesenchymal stem cells and conferred repression that was dependent upon PcG expression. Furthermore, we examined the potential of two DNA-binding proteins, JARID2 and YY1, to regulate PcG activity at these three elements. JARID2 has differential requirements, whereas YY1 appears to be required for repressive activity at all 3 sites. We conclude that distinct elements of the mammalian HOX clusters can recruit components of the PcG complexes and confer repression, similar to what has been seen in Drosophila. These elements, however, have diverse requirements for binding factors, which, combined with previous data on other loci, speaks to the complexity of PcG targeting in mammals.
Collapse
|
17
|
Meluzzi D, Arya G. Recovering ensembles of chromatin conformations from contact probabilities. Nucleic Acids Res 2012; 41:63-75. [PMID: 23143266 PMCID: PMC3592477 DOI: 10.1093/nar/gks1029] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The 3D higher order organization of chromatin within the nucleus of eukaryotic cells has so far remained elusive. A wealth of relevant information, however, is increasingly becoming available from chromosome conformation capture (3C) and related experimental techniques, which measure the probabilities of contact between large numbers of genomic sites in fixed cells. Such contact probabilities (CPs) can in principle be used to deduce the 3D spatial organization of chromatin. Here, we propose a computational method to recover an ensemble of chromatin conformations consistent with a set of given CPs. Compared with existing alternatives, this method does not require conversion of CPs to mean spatial distances. Instead, we estimate CPs by simulating a physically realistic, bead-chain polymer model of the 30-nm chromatin fiber. We then use an approach from adaptive filter theory to iteratively adjust the parameters of this polymer model until the estimated CPs match the given CPs. We have validated this method against reference data sets obtained from simulations of test systems with up to 45 beads and 4 loops. With additional testing against experiments and with further algorithmic refinements, our approach could become a valuable tool for researchers examining the higher order organization of chromatin.
Collapse
Affiliation(s)
- Dario Meluzzi
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
18
|
Sanyal A, Lajoie B, Jain G, Dekker J. The long-range interaction landscape of gene promoters. Nature 2012; 489:109-13. [PMID: 22955621 PMCID: PMC3555147 DOI: 10.1038/nature11279] [Citation(s) in RCA: 1106] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 06/01/2012] [Indexed: 12/03/2022]
Abstract
The vast non-coding portion of the human genome is full of functional elements and disease-causing regulatory variants. The principles defining the relationships between these elements and distal target genes remain unknown. Promoters and distal elements can engage in looping interactions that have been implicated in gene regulation. Here we have applied chromosome conformation capture carbon copy (5C) to interrogate comprehensively interactions between transcription start sites (TSSs) and distal elements in 1% of the human genome representing the ENCODE pilot project regions. 5C maps were generated for GM12878, K562 and HeLa-S3 cells and results were integrated with data from the ENCODE consortium. In each cell line we discovered >1,000 long-range interactions between promoters and distal sites that include elements resembling enhancers, promoters and CTCF-bound sites. We observed significant correlations between gene expression, promoter-enhancer interactions and the presence of enhancer RNAs. Long-range interactions show marked asymmetry with a bias for interactions with elements located ∼120 kilobases upstream of the TSS. Long-range interactions are often not blocked by sites bound by CTCF and cohesin, indicating that many of these sites do not demarcate physically insulated gene domains. Furthermore, only ∼7% of looping interactions are with the nearest gene, indicating that genomic proximity is not a simple predictor for long-range interactions. Finally, promoters and distal elements are engaged in multiple long-range interactions to form complex networks. Our results start to place genes and regulatory elements in three-dimensional context, revealing their functional relationships.
Collapse
Affiliation(s)
| | | | - Gaurav Jain
- Program in Systems Biology, Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605-0103, USA
| | - Job Dekker
- Program in Systems Biology, Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605-0103, USA
| |
Collapse
|
19
|
Naumova N, Smith EM, Zhan Y, Dekker J. Analysis of long-range chromatin interactions using Chromosome Conformation Capture. Methods 2012; 58:192-203. [PMID: 22903059 DOI: 10.1016/j.ymeth.2012.07.022] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022] Open
Abstract
Chromosome Conformation Capture, or 3C, is a pioneering method for investigating the three-dimensional structure of chromatin. 3C is used to analyze long-range looping interactions between any pair of selected genomic loci. Most 3C studies focus on defined genomic regions of interest that can be up to several hundred Kb in size. The method has become widely adopted and has been modified to increase throughput to allow unbiased genome-wide analysis. These large-scale adaptations are presented in other articles in this issue of Methods. Here we describe the 3C procedure in detail, including the appropriate use of the technology, the experimental set-up, an optimized protocol and troubleshooting guide, and considerations for data analysis. The protocol described here contains previously unpublished improvements, which save time and reduce labor. We pay special attention to primer design, appropriate controls and data analysis. We include notes and discussion based on our extensive experience to help researchers understand the principles of 3C-based techniques and to avoid common pitfalls and mistakes. This paper represents a complete resource and detailed guide for anyone who desires to perform 3C.
Collapse
Affiliation(s)
- Natalia Naumova
- Programs in Systems Biology and Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-0103, USA
| | | | | | | |
Collapse
|
20
|
Ethier SD, Miura H, Dostie J. Discovering genome regulation with 3C and 3C-related technologies. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:401-10. [DOI: 10.1016/j.bbagrm.2011.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
|
21
|
Gheldof N, Leleu M, Noordermeer D, Rougemont J, Reymond A. Detecting long-range chromatin interactions using the chromosome conformation capture sequencing (4C-seq) method. Methods Mol Biol 2012; 786:211-225. [PMID: 21938629 DOI: 10.1007/978-1-61779-292-2_13] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Eukaryotic transcription is tightly regulated by transcriptional regulatory elements, even though these elements may be located far away from their target genes. It is now widely recognized that these regulatory elements can be brought in close proximity through the formation of chromatin loops, and that these loops are crucial for transcriptional regulation of their target genes. The chromosome conformation capture (3C) technique presents a snapshot of long-range interactions, by fixing physically interacting elements with formaldehyde, digestion of the DNA, and ligation to obtain a library of unique ligation products. Recently, several large-scale modifications to the 3C technique have been presented. Here, we describe chromosome conformation capture sequencing (4C-seq), a high-throughput version of the 3C technique that combines the 3C-on-chip (4C) protocol with next-generation Illumina sequencing. The method is presented for use in mammalian cell lines, but can be adapted to use in mammalian tissues and any other eukaryotic genome.
Collapse
Affiliation(s)
- Nele Gheldof
- Center for Integrative Genomics, University of Lausanne, Le Génopode, Quartier UNIL-Sorge, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
22
|
Umbarger MA, Toro E, Wright MA, Porreca GJ, Baù D, Hong SH, Fero MJ, Zhu LJ, Marti-Renom MA, McAdams HH, Shapiro L, Dekker J, Church GM. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol Cell 2011; 44:252-64. [PMID: 22017872 DOI: 10.1016/j.molcel.2011.09.010] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 08/01/2011] [Accepted: 09/15/2011] [Indexed: 02/07/2023]
Abstract
We have determined the three-dimensional (3D) architecture of the Caulobacter crescentus genome by combining genome-wide chromatin interaction detection, live-cell imaging, and computational modeling. Using chromosome conformation capture carbon copy (5C), we derive ~13 kb resolution 3D models of the Caulobacter genome. The resulting models illustrate that the genome is ellipsoidal with periodically arranged arms. The parS sites, a pair of short contiguous sequence elements known to be involved in chromosome segregation, are positioned at one pole, where they anchor the chromosome to the cell and contribute to the formation of a compact chromatin conformation. Repositioning these elements resulted in rotations of the chromosome that changed the subcellular positions of most genes. Such rotations did not lead to large-scale changes in gene expression, indicating that genome folding does not strongly affect gene regulation. Collectively, our data suggest that genome folding is globally dictated by the parS sites and chromosome segregation.
Collapse
Affiliation(s)
- Mark A Umbarger
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hernandez DG, Singleton AB. Using DNA methylation to understand biological consequences of genetic variability. NEURODEGENER DIS 2011; 9:53-9. [PMID: 22123027 DOI: 10.1159/000333097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/13/2011] [Indexed: 12/14/2022] Open
Abstract
The advent of high-content genomic mapping technologies has provided numerous clues about the genetic architecture of complex disease and the tools with which to understand the biological framework resulting from this architecture. We believe that understanding and mapping epigenetic marks, in particular DNA methylation, which is suited to such assays, offers a timely opportunity in this context. Here, we make an argument for this work, describing this opportunity, the likely path ahead, and the problems and pitfalls associated with such work.
Collapse
Affiliation(s)
- Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
24
|
Court F, Miro J, Braem C, Lelay-Taha MN, Brisebarre A, Atger F, Gostan T, Weber M, Cathala G, Forné T. Modulated contact frequencies at gene-rich loci support a statistical helix model for mammalian chromatin organization. Genome Biol 2011; 12:R42. [PMID: 21569291 PMCID: PMC3219965 DOI: 10.1186/gb-2011-12-5-r42] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/10/2011] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Despite its critical role for mammalian gene regulation, the basic structural landscape of chromatin in living cells remains largely unknown within chromosomal territories below the megabase scale. RESULTS Here, using the 3C-qPCR method, we investigate contact frequencies at high resolution within interphase chromatin at several mouse loci. We find that, at several gene-rich loci, contact frequencies undergo a periodical modulation (every 90 to 100 kb) that affects chromatin dynamics over large genomic distances (a few hundred kilobases). Interestingly, this modulation appears to be conserved in human cells, and bioinformatic analyses of locus-specific, long-range cis-interactions suggest that it may underlie the dynamics of a significant number of gene-rich domains in mammals, thus contributing to genome evolution. Finally, using an original model derived from polymer physics, we show that this modulation can be understood as a fundamental helix shape that chromatin tends to adopt in gene-rich domains when no significant locus-specific interaction takes place. CONCLUSIONS Altogether, our work unveils a fundamental aspect of chromatin dynamics in mammals and contributes to a better understanding of genome organization within chromosomal territories.
Collapse
Affiliation(s)
- Franck Court
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535 CNRS, Universités Montpellier 1 et Montpellier 2. 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Julie Miro
- Current address: INSERM U827, Laboratoire de Génétique des Maladies Rares, IURC, 64, avenue du Doyen G Giraud, 34093 Montpellier Cedex 5, France
| | - Caroline Braem
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535 CNRS, Universités Montpellier 1 et Montpellier 2. 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Marie-Noëlle Lelay-Taha
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535 CNRS, Universités Montpellier 1 et Montpellier 2. 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Audrey Brisebarre
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535 CNRS, Universités Montpellier 1 et Montpellier 2. 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Florian Atger
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535 CNRS, Universités Montpellier 1 et Montpellier 2. 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Thierry Gostan
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535 CNRS, Universités Montpellier 1 et Montpellier 2. 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Michaël Weber
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535 CNRS, Universités Montpellier 1 et Montpellier 2. 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Guy Cathala
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535 CNRS, Universités Montpellier 1 et Montpellier 2. 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Thierry Forné
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535 CNRS, Universités Montpellier 1 et Montpellier 2. 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|
25
|
Abstract
Epigenetics is one of the most rapidly expanding fields in biology. The recent characterization of a human DNA methylome at single nucleotide resolution, the discovery of the CpG island shores, the finding of new histone variants and modifications, and the unveiling of genome-wide nucleosome positioning maps highlight the accelerating speed of discovery over the past two years. Increasing interest in epigenetics has been accompanied by technological breakthroughs that now make it possible to undertake large-scale epigenomic studies. These allow the mapping of epigenetic marks, such as DNA methylation, histone modifications and nucleosome positioning, which are critical for regulating gene and noncoding RNA expression. In turn, we are learning how aberrant placement of these epigenetic marks and mutations in the epigenetic machinery is involved in disease. Thus, a comprehensive understanding of epigenetic mechanisms, their interactions and alterations in health and disease, has become a priority in biomedical research.
Collapse
Affiliation(s)
- Anna Portela
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Catalonia, Spain
| | | |
Collapse
|
26
|
A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber. Proc Natl Acad Sci U S A 2011; 108:2294-9. [PMID: 21262819 DOI: 10.1073/pnas.1002059108] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of gene expression involves long-distance communication between regulatory elements and target promoters, but how this is achieved remains unknown. Insulator elements have been proposed to modulate the communication between regulatory elements and promoters due to their ability to insulate genes from regulatory elements or to take part in long-distance interactions. Using a high-resolution chromatin conformation capture (H3C) method, we show that the Drosophila gypsy insulator behaves as a conformational chromatin border that is able to prohibit contacts between a Polycomb response element (PRE) and a distal promoter. On the other hand, two spaced gypsy elements form a chromatin loop that is able to bring an upstream PRE in contact with a downstream gene to mediate its repression. Chromatin immunoprecipitation (ChIP) profiles of the Polycomb protein and its associated H3K27me3 histone mark reflect this insulator-dependent chromatin conformation, suggesting that Polycomb action at a distance can be organized by local chromatin topology.
Collapse
|
27
|
The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nat Struct Mol Biol 2010; 18:107-14. [PMID: 21131981 DOI: 10.1038/nsmb.1936] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 09/20/2010] [Indexed: 12/11/2022]
Abstract
We developed a general approach that combines chromosome conformation capture carbon copy (5C) with the Integrated Modeling Platform (IMP) to generate high-resolution three-dimensional models of chromatin at the megabase scale. We applied this approach to the ENm008 domain on human chromosome 16, containing the α-globin locus, which is expressed in K562 cells and silenced in lymphoblastoid cells (GM12878). The models accurately reproduce the known looping interactions between the α-globin genes and their distal regulatory elements. Further, we find using our approach that the domain folds into a single globular conformation in GM12878 cells, whereas two globules are formed in K562 cells. The central cores of these globules are enriched for transcribed genes, whereas nontranscribed chromatin is more peripheral. We propose that globule formation represents a higher-order folding state related to clustering of transcribed genes around shared transcription machineries, as previously observed by microscopy.
Collapse
|
28
|
Kumari D, Usdin K. The distribution of repressive histone modifications on silenced FMR1 alleles provides clues to the mechanism of gene silencing in fragile X syndrome. Hum Mol Genet 2010; 19:4634-42. [PMID: 20843831 DOI: 10.1093/hmg/ddq394] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and the most common known cause of autism. Most cases of FXS result from the expansion of a CGG·CCG repeat in the 5' UTR of the FMR1 gene that leads to gene silencing. It has previously been shown that silenced alleles are associated with histone H3 dimethylated at lysine 9 (H3K9Me2) and H3 trimethylated at lysine 27 (H3K27Me3), modified histones typical of developmentally repressed genes. We show here that these alleles are also associated with elevated levels of histone H3 trimethylated at lysine 9 (H3K9Me3) and histone H4 trimethylated at lysine 20 (H4K20Me3). All four of these modified histones are present on exon 1 of silenced alleles at levels comparable to that seen on pericentric heterochromatin. The two groups of histone modifications show a different distribution on fragile X alleles: H3K9Me2 and H3K27Me3 have a broad distribution, whereas H3K9Me3 and H4K20Me3 have a more focal distribution with the highest level of these marks being present in the vicinity of the repeat. This suggests that the trigger for gene silencing may be local to the repeat itself and perhaps involves a mechanism similar to that involved in the formation of pericentric heterochromatin.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Disease/NIH, Bethesda, MD 20892-0830, USA.
| | | |
Collapse
|
29
|
Naumova N, Dekker J. Integrating one-dimensional and three-dimensional maps of genomes. J Cell Sci 2010; 123:1979-88. [PMID: 20519580 DOI: 10.1242/jcs.051631] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Genomes exist in vivo as complex physical structures, and their functional output (i.e. the gene expression profile of a cell) is related to their spatial organization inside the nucleus as well as to local chromatin status. Chromatin modifications and chromosome conformation are distinct in different tissues and cell types, which corresponds closely with the diversity in gene-expression patterns found in different tissues of the body. The biological processes and mechanisms driving these general correlations are currently the topic of intense study. An emerging theme is that genome compartmentalization - both along the linear length of chromosomes, and in three dimensions by the spatial colocalization of chromatin domains and genomic loci from across the genome - is a crucial parameter in regulating genome expression. In this Commentary, we propose that a full understanding of genome regulation requires integrating three different types of data: first, one-dimensional data regarding the state of local chromatin - such as patterns of protein binding along chromosomes; second, three-dimensional data that describe the population-averaged folding of chromatin inside cells and; third, single-cell observations of three-dimensional spatial colocalization of genetic loci and trans factors that reveal information about their dynamics and frequency of colocalization.
Collapse
Affiliation(s)
- Natalia Naumova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-0103, USA
| | | |
Collapse
|
30
|
Gheldof N, Smith EM, Tabuchi TM, Koch CM, Dunham I, Stamatoyannopoulos JA, Dekker J. Cell-type-specific long-range looping interactions identify distant regulatory elements of the CFTR gene. Nucleic Acids Res 2010; 38:4325-36. [PMID: 20360044 PMCID: PMC2910055 DOI: 10.1093/nar/gkq175] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 03/01/2010] [Accepted: 03/03/2010] [Indexed: 12/20/2022] Open
Abstract
Identification of regulatory elements and their target genes is complicated by the fact that regulatory elements can act over large genomic distances. Identification of long-range acting elements is particularly important in the case of disease genes as mutations in these elements can result in human disease. It is becoming increasingly clear that long-range control of gene expression is facilitated by chromatin looping interactions. These interactions can be detected by chromosome conformation capture (3C). Here, we employed 3C as a discovery tool for identification of long-range regulatory elements that control the cystic fibrosis transmembrane conductance regulator gene, CFTR. We identified four elements in a 460-kb region around the locus that loop specifically to the CFTR promoter exclusively in CFTR expressing cells. The elements are located 20 and 80 kb upstream; and 109 and 203 kb downstream of the CFTR promoter. These elements contain DNase I hypersensitive sites and histone modification patterns characteristic of enhancers. The elements also interact with each other and the latter two activate the CFTR promoter synergistically in reporter assays. Our results reveal novel long-range acting elements that control expression of CFTR and suggest that 3C-based approaches can be used for discovery of novel regulatory elements.
Collapse
Affiliation(s)
- Nele Gheldof
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-0103, USA, European Bioinformatics Institute (EBI), The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Emily M. Smith
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-0103, USA, European Bioinformatics Institute (EBI), The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Tomoko M. Tabuchi
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-0103, USA, European Bioinformatics Institute (EBI), The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christoph M. Koch
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-0103, USA, European Bioinformatics Institute (EBI), The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ian Dunham
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-0103, USA, European Bioinformatics Institute (EBI), The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - John A. Stamatoyannopoulos
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-0103, USA, European Bioinformatics Institute (EBI), The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-0103, USA, European Bioinformatics Institute (EBI), The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
31
|
Peprah E, He W, Allen E, Oliver T, Boyne A, Sherman SL. Examination of FMR1 transcript and protein levels among 74 premutation carriers. J Hum Genet 2009; 55:66-8. [PMID: 19927162 DOI: 10.1038/jhg.2009.121] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fragile X-associated disorders are caused by a CGG trinucleotide repeat expansion in the 5'-untranslated region of the FMR1 gene. Expansion of the CGG trinucleotide repeats to >200 copies (that is, a full mutation) induces methylation of the FMR1 gene, with transcriptional silencing being the eventual outcome. Previous data have shown that FMR1 premutation carriers (individuals with 55-199 repeats) have increased FMR1 mRNA levels with decreased protein (fragile X mental retardation protein (FMRP)) levels. However, the point at which this translational inefficiency occurs, given the increased transcription mechanism, has not yet been explored and remains to be elucidated. We examined the repeat length group, FMR1 transcript and FMRP levels in 74 males with a wide range of repeat lengths using analysis of covariance to better characterize this association. Results showed that the mean FMRP level among carriers with 80-89 repeats was significantly higher than the mean levels among lower (54-79) and higher (90-120) premutation carriers, in spite of the increasing transcript level with repeat length. Taken together, these results suggest that the 80-89-repeat group may lead to different properties that increase the efficiency of translation compared with other premutation repeat size groups.
Collapse
Affiliation(s)
- Emmanuel Peprah
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Galloway JN, Nelson DL. Evidence for RNA-mediated toxicity in the fragile X-associated tremor/ataxia syndrome. FUTURE NEUROLOGY 2009; 4:785. [PMID: 20161676 DOI: 10.2217/fnl.09.44] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fragile X premutation carriers are at risk for developing a late-onset, progressive neurodegenerative disorder termed fragile X-associated tremor/ataxia syndrome (FXTAS). A growing body of evidence suggests the characteristic excess CGG repeat containing FMR1 mRNA observed in premutation carriers is pathogenic and leads to clinical features of FXTAS. The current model suggests premutation mRNA transcripts can induce the formation of intranuclear inclusions by the sequestration of RNA-binding proteins and other proteins. The sequestered proteins are prevented from performing their normal functions, which is thought to lead to the neuropathology-observed FXTAS. This paper discusses the existing evidence that microsatellite expansions at the level of RNA play a role in the disease pathogenesis of FXTAS and some of the approaches that may uncover downstream effects of expanded riboCGG expression.
Collapse
Affiliation(s)
- Jocelyn N Galloway
- Baylor College of Medicine, Interdepartmental Program in Cell & Molecular Biology, One Baylor Plaza, Room 904E, Houston, TX 77030, USA, Tel.: +1 713 798 7898, Fax.: +1 713 798 1116
| | | |
Collapse
|
33
|
Miele A, Bystricky K, Dekker J. Yeast silent mating type loci form heterochromatic clusters through silencer protein-dependent long-range interactions. PLoS Genet 2009; 5:e1000478. [PMID: 19424429 PMCID: PMC2673037 DOI: 10.1371/journal.pgen.1000478] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 04/09/2009] [Indexed: 01/10/2023] Open
Abstract
The organization of eukaryotic genomes is characterized by the presence of distinct euchromatic and heterochromatic sub-nuclear compartments. In Saccharomyces cerevisiae heterochromatic loci, including telomeres and silent mating type loci, form clusters at the nuclear periphery. We have employed live cell 3-D imaging and chromosome conformation capture (3C) to determine the contribution of nuclear positioning and heterochromatic factors in mediating associations of the silent mating type loci. We identify specific long-range interactions between HML and HMR that are dependent upon silencing proteins Sir2p, Sir3p, and Sir4p as well as Sir1p and Esc2p, two proteins involved in establishment of silencing. Although clustering of these loci frequently occurs near the nuclear periphery, colocalization can occur equally at more internal positions and is not affected in strains deleted for membrane anchoring proteins yKu70p and Esc1p. In addition, appropriate nucleosome assembly plays a role, as deletion of ASF1 or combined disruption of the CAF-1 and HIR complexes abolishes the HML-HMR interaction. Further, silencer proteins are required for clustering, but complete loss of clustering in asf1 and esc2 mutants had only minor effects on silencing. Our results indicate that formation of heterochromatic clusters depends on correctly assembled heterochromatin at the silent loci and, in addition, identify an Asf1p-, Esc2p-, and Sir1p-dependent step in heterochromatin formation that is not essential for gene silencing but is required for long-range interactions.
Collapse
MESH Headings
- Chromosomes, Fungal/genetics
- Chromosomes, Fungal/metabolism
- Gene Silencing
- Genes, Fungal
- Genes, Mating Type, Fungal/genetics
- Heterochromatin/genetics
- Heterochromatin/metabolism
- Imaging, Three-Dimensional
- Models, Genetic
- Multigene Family
- Mutation
- Nucleosomes/genetics
- Nucleosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/ultrastructure
- Silencer Elements, Transcriptional
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Adriana Miele
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), University of Toulouse, Toulouse, France
- UMR5099, Centre National de la Recherche Scientifique, IFR109, Toulouse, France
| | - Job Dekker
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
34
|
Tiwari VK, McGarvey KM, Licchesi JD, Ohm JE, Herman JG, Schübeler D, Baylin SB. PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol 2009; 6:2911-27. [PMID: 19053175 PMCID: PMC2592355 DOI: 10.1371/journal.pbio.0060306] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/28/2008] [Indexed: 11/19/2022] Open
Abstract
Many DNA hypermethylated and epigenetically silenced genes in adult cancers are Polycomb group (PcG) marked in embryonic stem (ES) cells. We show that a large region upstream (∼30 kb) of and extending ∼60 kb around one such gene, GATA-4, is organized—in Tera-2 undifferentiated embryonic carcinoma (EC) cells—in a topologically complex multi-loop conformation that is formed by multiple internal long-range contact regions near areas enriched for EZH2, other PcG proteins, and the signature PcG histone mark, H3K27me3. Small interfering RNA (siRNA)–mediated depletion of EZH2 in undifferentiated Tera-2 cells leads to a significant reduction in the frequency of long-range associations at the GATA-4 locus, seemingly dependent on affecting the H3K27me3 enrichments around those chromatin regions, accompanied by a modest increase in GATA-4 transcription. The chromatin loops completely dissolve, accompanied by loss of PcG proteins and H3K27me3 marks, when Tera-2 cells receive differentiation signals which induce a ∼60-fold increase in GATA-4 expression. In colon cancer cells, however, the frequency of the long-range interactions are increased in a setting where GATA-4 has no basal transcription and the loops encompass multiple, abnormally DNA hypermethylated CpG islands, and the methyl-cytosine binding protein MBD2 is localized to these CpG islands, including ones near the gene promoter. Removing DNA methylation through genetic disruption of DNA methyltransferases (DKO cells) leads to loss of MBD2 occupancy and to a decrease in the frequency of long-range contacts, such that these now more resemble those in undifferentiated Tera-2 cells. Our findings reveal unexpected similarities in higher order chromatin conformation between stem/precursor cells and adult cancers. We also provide novel insight that PcG-occupied and H3K27me3-enriched regions can form chromatin loops and physically interact in cis around a single gene in mammalian cells. The loops associate with a poised, low transcription state in EC cells and, with the addition of DNA methylation, completely repressed transcription in adult cancer cells. Polycomb group (PcG) proteins and DNA methylation are fundamental epigenetic regulators of gene expression. The mechanisms underlying such regulation, the crosstalk between these mechanisms, and the role of higher order chromatin folding in mediating transcriptional control of involved genes remains unclear. Abnormal DNA methylation at gene promoters in cancer has been linked to PcG promoter occupancy and PcG-mediated maintenance of genes in a poised, low expression state in embryonic cells. We now strengthen these links and show that PcG occupancy around an entire gene, GATA-4, represses transcription by maintaining a series of long-range chromatin interactions. In embryonic cells, where DNA methylation is largely absent, GATA-4 is in a low, poised transcription state, and the loops can be virtually eliminated by retinoid-induced cellular differentiation, with attendant robust transcriptional up-regulation. When GATA-4 is DNA hypermethylated in colon cancer cells, the intensity of the long-range interactions is increased and associates with complete lack of transcription. Removal of DNA methylation in the cancer cells only slightly loosens the loops and restores expression to a low, poised state. Together, these findings suggest that both repressive pathways operate in part by the formation of chromatin higher order structures and provide important translational ramifications for targeting re-expression of epigenetically silenced genes for cancer therapy. Chromatin regions enriched for Polycomb group proteins physically interact in a series of loops around a single gene in mammalian cells. This higher order structure maintains a poised, low transcription state in embryonic cancer cells and, with addition of DNA methylation, a completely repressed transcription in adult cancer cells.
Collapse
Affiliation(s)
- Vijay K Tiwari
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Kelly M McGarvey
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
- Program in Cellular and Molecular Medicine, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
| | - Julien D.F Licchesi
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
| | - Joyce E Ohm
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
| | - James G Herman
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
- Program in Cellular and Molecular Medicine, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Stephen B Baylin
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
- Program in Cellular and Molecular Medicine, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Dekker J. Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction. J Biol Chem 2008; 283:34532-40. [PMID: 18930918 PMCID: PMC2596406 DOI: 10.1074/jbc.m806479200] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/29/2008] [Indexed: 11/06/2022] Open
Abstract
The higher order arrangement of nucleosomes and the level of compaction of the chromatin fiber play important roles in the control of gene expression and other genomic activities. Analysis of chromatin in vitro has suggested that under near physiological conditions chromatin fibers can become highly compact and that the level of compaction can be modulated by histone modifications. However, less is known about the organization of chromatin fibers in living cells. Here, we combine chromosome conformation capture (3C) data with distance measurements and polymer modeling to determine the in vivo mass density of a transcriptionally active 95-kb GC-rich domain on chromosome III of the yeast Saccharomyces cerevisiae. In contrast to previous reports, we find that yeast does not form a compact fiber but that chromatin is extended with a mass per unit length that is consistent with a rather loose arrangement of nucleosomes. Analysis of 3C data from a neighboring AT-rich chromosomal domain indicates that chromatin in this domain is more compact, but that mass density is still well below that of a canonical 30 nm fiber. Our approach should be widely applicable to scale 3C data to real spatial dimensions, which will facilitate the quantification of the effects of chromatin modifications and transcription on chromatin fiber organization.
Collapse
Affiliation(s)
- Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-0103, USA.
| |
Collapse
|
36
|
Miele A, Dekker J. Long-range chromosomal interactions and gene regulation. MOLECULAR BIOSYSTEMS 2008; 4:1046-57. [PMID: 18931780 PMCID: PMC2653627 DOI: 10.1039/b803580f] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the last few years important new insights into the process of long-range gene regulation have been obtained. Gene regulatory elements are found to engage in direct physical interactions with distant target genes and with loci on other chromosomes to modulate transcription. An overview of recently discovered long-range chromosomal interactions is presented, and a network approach is proposed to unravel gene-element relationships. Gene expression is controlled by regulatory elements that can be located far away along the chromosome or in some cases even on other chromosomes. Genes and regulatory elements physically associate with each other resulting in complex genome-wide networks of chromosomal interactions. Here we describe several well-characterized cases of long-range interactions involved in the activation and repression of transcription. We speculate on how these interactions may affect gene expression and outline possible mechanisms that may facilitate encounters between distant elements. Finally, we propose that a genome-wide network analysis may provide new insights into the logic of long-range gene regulation.
Collapse
Affiliation(s)
- Adriana Miele
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester MA 01605-0103
| | - Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester MA 01605-0103
| |
Collapse
|
37
|
Affiliation(s)
- Stephen T Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
38
|
Dostie J, Zhan Y, Dekker J. Chromosome conformation capture carbon copy technology. ACTA ACUST UNITED AC 2008; Chapter 21:Unit 21.14. [PMID: 18265398 DOI: 10.1002/0471142727.mb2114s80] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chromosome conformation capture (3C) is used to quantify physical DNA contacts in vivo at high resolution. 3C was first used in yeast to map the spatial chromatin organization of chromosome III, and in higher eukaryotes to demonstrate that genomic DNA elements regulate target genes by physically interacting with them. 3C has been widely adopted for small-scale analysis of functional chromatin interactions along (cis) or between (trans) chromosomes. For larger-scale applications, chromosome conformation capture carbon copy (5C) combines 3C with ligation-mediated amplification (LMA) to simultaneously quantify hundreds of thousands of physical DNA contacts by microarray or ultra-high-throughput DNA sequencing. 5C allows the mapping of extensive networks of physical interactions among large sets of genomic elements throughout the genome. Such networks can provide important biological insights, e.g., by identifying relationships between regulatory elements and their target genes. This unit describes 5C for large-scale analysis of cis- and trans-chromatin interactions in mammalian cells.
Collapse
Affiliation(s)
- Josée Dostie
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
39
|
Ennis S, Murray A, Brightwell G, Morton NE, Jacobs PA. Closely linked cis-acting modifier of expansion of the CGG repeat in high risk FMR1 haplotypes. Hum Mutat 2008; 28:1216-24. [PMID: 17674408 PMCID: PMC2683060 DOI: 10.1002/humu.20600] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In its expanded form, the fragile X triplet repeat at Xq27.3 gives rise to the most common form of inherited mental retardation, fragile X syndrome. This high population frequency persists despite strong selective pressure against mutation-bearing chromosomes. Males carrying the full mutation rarely reproduce and females heterozygous for the premutation allele are at risk of premature ovarian failure. Our diagnostic facility and previous research have provided a large databank of X chromosomes that have been tested for the FRAXA allele. Using this resource, we have conducted a detailed genetic association study of the FRAXA region to determine any cis-acting factors that predispose to expansion of the CGG triplet repeat. We have genotyped SNP variants across a 650-kb tract centered on FRAXA in a sample of 877 expanded and normal X chromosomes. These chromosomes were selected to be representative of the haplotypic diversity encountered in our population. We found expansion status to be strongly associated with a ∼50-kb region proximal to the fragile site. Subsequent detailed analyses of this region revealed no specific genetic determinants for the whole population. However, stratification of chromosomes by risk subgroups enabled us to identify a common SNP variant which cosegregates with the subset of D group haplotypes at highest risk of expansion (, p=0.00002). We have verified that this SNP acts as a marker of repeat expansion in three independent samples. Hum Mutat 28(12), 1216–1224, 2007. © 2007 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- S Ennis
- Genetic Epidemiology Group, Human Genetics (MP808), Southampton General Hospital, Southampton, United Kingdom.
| | | | | | | | | |
Collapse
|
40
|
Komili S, Silver PA. Coupling and coordination in gene expression processes: a systems biology view. Nat Rev Genet 2008; 9:38-48. [PMID: 18071322 DOI: 10.1038/nrg2223] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome-scale analyses have allowed us to progress beyond studying gene expression at the level of individual components of a given process by providing global information about functional connections between genes, mRNAs and their regulatory proteins. Such analyses have greatly increased our understanding of the interplay between different events in gene regulation and have highlighted previously unappreciated functional connections, including coupling between nuclear and cytoplasmic processes. Genome-wide approaches have also revealed extensive coordination within regulatory levels, such as the organization of transcription factors into regulatory motifs. Overall, these studies enhance our understanding of how the many components of the eukaryotic cell function as a system to allow both coordination and versatility in gene expression.
Collapse
Affiliation(s)
- Suzanne Komili
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02119, USA
| | | |
Collapse
|
41
|
Miele A, Dekker J. Mapping cis- and trans- chromatin interaction networks using chromosome conformation capture (3C). Methods Mol Biol 2008; 464:105-21. [PMID: 18951182 DOI: 10.1007/978-1-60327-461-6_7] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Expression of genes can be controlled by regulatory elements that are located at large genomic distances from their target genes (in cis), or even on different chromosomes (in trans). Regulatory elements can act at large genomic distances by engaging in direct physical interactions with their target genes resulting in the formation of chromatin loops. Thus, genes and their regulatory elements come in close spatial proximity irrespective of their relative genomic positions. Analysis of interactions between genes and elements will reveal which elements regulate each gene, and will provide fundamental insights into the spatial organization of chromosomes in general. Long-range cis- and trans- interactions can be studied at high resolution using chromosome conformation capture (3C) technology. 3C employs formaldehyde crosslinking to trap physical interactions between loci located throughout the genome. Crosslinked cells are solubilized and chromatin is digested with a restriction enzyme. Chromatin is subsequently ligated under conditions that favor intramolecular ligation. After reversal of the crosslinks, the DNA is purified and interaction frequencies between specific chromosomal loci are determined by quantifying the amounts of corresponding ligation products using polymerase chain reaction (PCR). This chapter describes detailed protocols for 3C analysis of chromatin interactions in the yeast Saccharomyces cerevisiae and in mammalian cells.
Collapse
Affiliation(s)
- Adriana Miele
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
42
|
Abstract
Fragile X syndrome is the most common form of inherited mental retardation. The disorder is mainly caused by the expansion of the trinucleotide sequence CGG located in the 5' UTR of the FMR1 gene on the X chromosome. The abnormal expansion of this triplet leads to hypermethylation and consequent silencing of the FMR1 gene. Thus, the absence of the encoded protein (FMRP) is the basis for the phenotype. FMRP is a selective RNA-binding protein that associates with polyribosomes and acts as a negative regulator of translation. FMRP appears to play an important role in synaptic plasticity by regulating the synthesis of proteins encoded by certain mRNAs localized in the dendrite. An advancing understanding of the pathophysiology of this disorder has led to promising strategies for pharmacologic interventions.
Collapse
Affiliation(s)
- Olga Penagarikano
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
43
|
Dostie J, Dekker J. Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc 2007; 2:988-1002. [PMID: 17446898 DOI: 10.1038/nprot.2007.116] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genomic elements separated by large genomic distances can physically interact to mediate long-range gene regulation and other chromosomal processes. Interactions between genomic elements can be detected using the chromosome conformation capture (3C) technology. We recently developed a high-throughput adaptation of 3C, 3C-carbon copy (5C), that is used to measure networks of millions of chromatin interactions in parallel. As in 3C, cells are treated with formaldehyde to cross-link chromatin interactions. The chromatin is solubilized, digested with a restriction enzyme and ligated at low DNA concentration to promote intra-molecular ligation of cross-linked DNA fragments. Ligation products are subsequently purified to generate a 3C library. The 5C technology then employs highly multiplexed ligation-mediated amplification (LMA) to detect and amplify 3C ligation junctions. The resulting 5C library of ligated primers is analyzed using either microarray detection or ultra-high-throughput DNA sequencing. The 5C protocol described here can be completed in 13 d.
Collapse
Affiliation(s)
- Josée Dostie
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Lazare Research Building, 364 Plantation Street, Room 519, Worcester, Massachusetts 01605-4321, USA
| | | |
Collapse
|
44
|
Dekker J. GC- and AT-rich chromatin domains differ in conformation and histone modification status and are differentially modulated by Rpd3p. Genome Biol 2007; 8:R116. [PMID: 17577398 PMCID: PMC2394764 DOI: 10.1186/gb-2007-8-6-r116] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 06/18/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Base-composition varies throughout the genome and is related to organization of chromosomes in distinct domains (isochores). Isochore domains differ in gene expression levels, replication timing, levels of meiotic recombination and chromatin structure. The molecular basis for these differences is poorly understood. RESULTS We have compared GC- and AT-rich isochores of yeast with respect to chromatin conformation, histone modification status and transcription. Using 3C analysis we show that, along chromosome III, GC-rich isochores have a chromatin structure that is characterized by lower chromatin interaction frequencies compared to AT-rich isochores, which may point to a more extended chromatin conformation. In addition, we find that throughout the genome, GC-rich and AT-rich genes display distinct levels of histone modifications. Interestingly, elimination of the histone deacetylase Rpd3p differentially affects conformation of GC- and AT-rich domains. Further, deletion of RPD3 activates expression of GC-rich genes more strongly than AT-rich genes. Analyses of effects of the histone deacetylase inhibitor trichostatin A, global patterns of Rpd3p binding and effects of deletion of RPD3 on histone H4 acetylation confirmed that conformation and activity of GC-rich chromatin are more sensitive to Rpd3p-mediated deacetylation than AT-rich chromatin. CONCLUSION We find that GC-rich and AT-rich chromatin domains display distinct chromatin conformations and are marked by distinct patterns of histone modifications. We identified the histone deacetylase Rpd3p as an attenuator of these base composition-dependent differences in chromatin status. We propose that GC-rich chromatin domains tend to occur in a more active conformation and that Rpd3p activity represses this propensity throughout the genome.
Collapse
Affiliation(s)
- Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Plantation Street, Worcester, MA 01605-4321, USA.
| |
Collapse
|
45
|
Froyen G, Bauters M, Voet T, Marynen P. X-linked mental retardation and epigenetics. J Cell Mol Med 2006; 10:808-25. [PMID: 17125586 PMCID: PMC3933076 DOI: 10.1111/j.1582-4934.2006.tb00526.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/23/2006] [Indexed: 01/08/2023] Open
Abstract
The search for the genetic defects in constitutional diseases has so far been restricted to direct methods for the identification of genetic mutations in the patients' genome. Traditional methods such as karyotyping, FISH, mutation screening, positional cloning and CGH, have been complemented with newer methods including array-CGH and PCR-based approaches (MLPA, qPCR). These methods have revealed a high number of genetic or genomic aberrations that result in an altered expression or reduced functional activity of key proteins. For a significant percentage of patients with congenital disease however, the underlying cause has not been resolved strongly suggesting that yet other mechanisms could play important roles in their etiology. Alterations of the 'native' epigenetic imprint might constitute such a novel mechanism. Epigenetics, heritable changes that do not rely on the nucleotide sequence, has already been shown to play a determining role in embryonic development, X-inactivation, and cell differentiation in mammals. Recent progress in the development of techniques to study these processes on full genome scale has stimulated researchers to investigate the role of epigenetic modifications in cancer as well as in constitutional diseases. We will focus on mental impairment because of the growing evidence for the contribution of epigenetics in memory formation and cognition. Disturbance of the epigenetic profile due to direct alterations at genomic regions, or failure of the epigenetic machinery due to genetic mutations in one of its components, has been demonstrated in cognitive derangements in a number of neurological disorders now. It is therefore tempting to speculate that the cognitive deficit in a significant percentage of patients with unexplained mental retardation results from epigenetic modifications.
Collapse
Affiliation(s)
- Guy Froyen
- Human Genome Laboratory, VIB, Department Molecular and Developmental Genetics, University of Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
46
|
Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C, Green RD, Dekker J. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genes Dev 2006; 16:1299-309. [PMID: 16954542 PMCID: PMC1581439 DOI: 10.1101/gr.5571506] [Citation(s) in RCA: 848] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 07/25/2006] [Indexed: 01/12/2023]
Abstract
Physical interactions between genetic elements located throughout the genome play important roles in gene regulation and can be identified with the Chromosome Conformation Capture (3C) methodology. 3C converts physical chromatin interactions into specific ligation products, which are quantified individually by PCR. Here we present a high-throughput 3C approach, 3C-Carbon Copy (5C), that employs microarrays or quantitative DNA sequencing using 454-technology as detection methods. We applied 5C to analyze a 400-kb region containing the human beta-globin locus and a 100-kb conserved gene desert region. We validated 5C by detection of several previously identified looping interactions in the beta-globin locus. We also identified a new looping interaction in K562 cells between the beta-globin Locus Control Region and the gamma-beta-globin intergenic region. Interestingly, this region has been implicated in the control of developmental globin gene switching. 5C should be widely applicable for large-scale mapping of cis- and trans- interaction networks of genomic elements and for the study of higher-order chromosome structure.
Collapse
Affiliation(s)
- Josée Dostie
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-0103, USA
| | | | - Ramy A. Arnaout
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141-2023, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115-6110, USA
- Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts 02138-3758, USA
| | | | - William L. Lee
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141-2023, USA
| | - Tracey A. Honan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141-2023, USA
| | - Eric D. Rubio
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington 98104, USA
| | - Anton Krumm
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington 98104, USA
| | - Justin Lamb
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141-2023, USA
| | - Chad Nusbaum
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141-2023, USA
| | | | - Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-0103, USA
| |
Collapse
|