1
|
Klein EY, Smith DL, Cohen JM, Laxminarayan R. Bioeconomic analysis of child-targeted subsidies for artemisinin combination therapies: a cost-effectiveness analysis. J R Soc Interface 2016; 12:rsif.2014.1356. [PMID: 25994293 PMCID: PMC4590492 DOI: 10.1098/rsif.2014.1356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Affordable Medicines Facility for malaria (AMFm) was conceived as a global market-based mechanism to increase access to effective malaria treatment and prolong effectiveness of artemisinin. Although results from a pilot implementation suggested that the subsidy was effective in increasing access to high-quality artemisinin combination therapies (ACTs), the Global Fund has converted AMFm into a country-driven mechanism whereby individual countries could choose to fund the subsidy from within their country envelopes. Because the initial costs of the subsidy in the pilot countries was higher than expected, countries are also exploring alternatives to a universal subsidy, such as subsidizing only child doses. We examined the incremental cost-effectiveness of a child-targeted policy using an age-structured bioeconomic model of malaria from the provider perspective. Because the vast majority of malaria deaths occur in children, targeting children could potentially improve the cost-effectiveness of the subsidy, though it would avert significantly fewer deaths. However, the benefits of a child-targeted subsidy (i.e. deaths averted) are eroded as leakage (i.e. older individuals taking young child-targeted doses) increases, with few of the benefits of a universal subsidy gained (i.e. reductions in overall prevalence). Although potentially more cost-effective, a child-targeted subsidy must contain measures to reduce the possibility of leakage.
Collapse
Affiliation(s)
- Eili Y Klein
- Center for Disease Dynamics, Economics and Policy, Washington, DC, USA Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David L Smith
- Department of Zoology, University of Oxford, Oxford, UK Sanaria Institute for Global Health & Tropical Medicine, Rockville, MD, USA
| | | | - Ramanan Laxminarayan
- Center for Disease Dynamics, Economics and Policy, Washington, DC, USA Princeton Environmental Institute, Princeton University, Princeton, NJ, USA Public Health Foundation of India, New Delhi, India
| |
Collapse
|
2
|
Wu Y, Aandahl RZ, Tanaka MM. Dynamics of bacterial insertion sequences: can transposition bursts help the elements persist? BMC Evol Biol 2015; 15:288. [PMID: 26690348 PMCID: PMC4687120 DOI: 10.1186/s12862-015-0560-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/06/2015] [Indexed: 01/22/2023] Open
Abstract
Background Currently there is no satisfactory explanation for why bacterial insertion sequences (ISs) widely occur across prokaryotes despite being mostly harmful to their host genomes. Rates of horizontal gene transfer are likely to be too low to maintain ISs within a population. IS-induced beneficial mutations may be important for both prevalence of ISs and microbial adaptation to changing environments but may be too rare to sustain IS elements in the long run. Environmental stress can induce elevated rates of IS transposition activities; such episodes are known as ‘transposition bursts’. By examining how selective forces and transposition events interact to influence IS dynamics, this study asks whether transposition bursts can lead to IS persistence. Results We show through a simulation model that ISs are gradually eliminated from a population even if IS transpositions occasionally cause advantageous mutations. With beneficial mutations, transposition bursts create variation in IS copy numbers and improve cell fitness on average. However, these benefits are not usually sufficient to overcome the negative selection against the elements, and transposition bursts amplify the mean fitness effect which, if negative, simply accelerates the extinction of ISs. If down regulation of transposition occurs, IS extinctions are reduced while ISs still generate variation amongst bacterial genomes. Conclusions Transposition bursts do not help ISs persist in a bacterial population in the long run because most burst-induced mutations are deleterious and therefore not favoured by natural selection. However, bursts do create more genetic variation through which occasional advantageous mutations can help organisms adapt. Regulation of IS transposition bursts and stronger positive selection of the elements interact to slow down the burst-induced extinction of ISs. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0560-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Wu
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, 2052, NSW, Australia. .,Evolution & Ecology Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia. .,Present address: Telethon Kids Institute, University of Western Australia, Perth, 6008, WA, Australia.
| | - Richard Z Aandahl
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, 2052, NSW, Australia. .,Evolution & Ecology Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia.
| | - Mark M Tanaka
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, 2052, NSW, Australia. .,Evolution & Ecology Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia.
| |
Collapse
|
3
|
Witas HW, Donoghue HD, Kubiak D, Lewandowska M, Gładykowska-Rzeczycka JJ. Molecular studies on ancient M. tuberculosis and M. leprae: methods of pathogen and host DNA analysis. Eur J Clin Microbiol Infect Dis 2015. [PMID: 26210385 PMCID: PMC4545183 DOI: 10.1007/s10096-015-2427-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Humans have evolved alongside infectious diseases for millennia. Despite the efforts to reduce their incidence, infectious diseases still pose a tremendous threat to the world population. Fast development of molecular techniques and increasing risk of new epidemics have resulted in several studies that look to the past in order to investigate the origin and evolution of infectious diseases. Tuberculosis and leprosy have become frequent targets of such studies, owing to the persistence of their molecular biomarkers in ancient material and the characteristic skeletal lesions each disease may cause. This review examines the molecular methods used to screen for the presence of M. tuberculosis and M. leprae ancient DNA (aDNA) and their differentiation in ancient human remains. Examples of recent studies, mainly from Europe, that employ the newest techniques of molecular analysis are also described. Moreover, we present a specific approach based on assessing the likely immunological profile of historic populations, in order to further elucidate the influence of M. tuberculosis and M. leprae on historical human populations.
Collapse
Affiliation(s)
- H W Witas
- Department of Molecular Biology, Medical University of Łódź, Łódź, Poland,
| | | | | | | | | |
Collapse
|
4
|
McEvoy CRE, Falmer AA, Gey van Pittius NC, Victor TC, van Helden PD, Warren RM. The role of IS6110 in the evolution of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2007; 87:393-404. [PMID: 17627889 DOI: 10.1016/j.tube.2007.05.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 05/15/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
Members of the Mycobacterium tuberculosis complex contain the transposable element IS6110 which, due to its high numerical and positional polymorphism, has become a widely used marker in epidemiological studies. Here, we review the evidence that IS6110 is not simply a passive or 'junk' DNA sequence, but that, through its transposable activity, it is able to generate genotypic variation that translates into strain-specific phenotypic variation. We also speculate on the role that this variation has played in the evolution of M. tuberculosis and conclude that the presence of a moderate IS6110 copy number within the genome may provide the pathogen with a selective advantage that has aided its virulence.
Collapse
Affiliation(s)
- Christopher R E McEvoy
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | | | | | | | | | | |
Collapse
|
5
|
Kinzer-Ursem TL, Linderman JJ. Both ligand- and cell-specific parameters control ligand agonism in a kinetic model of g protein-coupled receptor signaling. PLoS Comput Biol 2007; 3:e6. [PMID: 17222056 PMCID: PMC1769407 DOI: 10.1371/journal.pcbi.0030006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 11/30/2006] [Indexed: 12/17/2022] Open
Abstract
G protein–coupled receptors (GPCRs) exist in multiple dynamic states (e.g., ligand-bound, inactive, G protein–coupled) that influence G protein activation and ultimately response generation. In quantitative models of GPCR signaling that incorporate these varied states, parameter values are often uncharacterized or varied over large ranges, making identification of important parameters and signaling outcomes difficult to intuit. Here we identify the ligand- and cell-specific parameters that are important determinants of cell-response behavior in a dynamic model of GPCR signaling using parameter variation and sensitivity analysis. The character of response (i.e., positive/neutral/inverse agonism) is, not surprisingly, significantly influenced by a ligand's ability to bias the receptor into an active conformation. We also find that several cell-specific parameters, including the ratio of active to inactive receptor species, the rate constant for G protein activation, and expression levels of receptors and G proteins also dramatically influence agonism. Expressing either receptor or G protein in numbers several fold above or below endogenous levels may result in system behavior inconsistent with that measured in endogenous systems. Finally, small variations in cell-specific parameters identified by sensitivity analysis as significant determinants of response behavior are found to change ligand-induced responses from positive to negative, a phenomenon termed protean agonism. Our findings offer an explanation for protean agonism reported in β2--adrenergic and α2A-adrenergic receptor systems. G protein–coupled receptors (GPCRs) are transmembrane proteins involved in physiological functions ranging from vasodilation and immune response to memory. The binding of both endogenous ligands (e.g., hormones, neurotransmitters) and exogenous ligands (e.g., pharmaceuticals) to these receptors initiates intracellular events that ultimately lead to cell responses. We describe a dynamic model for G protein activation, an immediate outcome of GPCR signaling, and use it together with efficient parameter variation and sensitivity analysis techniques to identify the key cell- and ligand-specific parameters that influence G protein activation. Our results show that although ligand-specific parameters do strongly influence cell response (either causing increases or decreases in G protein activation), cellular parameters may also dictate the magnitude and direction of G protein activation. We apply our findings to describe how protean agonism, a phenomenon in which the same ligand may induce both positive and negative responses, may result from changes in cell-specific parameters. These findings may be used to understand the molecular basis of different responses of cell types and tissues to pharmacological treatment. In addition, these methods may be applied generally to models of cellular signaling and will help guide experimental resources toward further characterization of the key parameters in these networks.
Collapse
Affiliation(s)
- Tamara L Kinzer-Ursem
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
6
|
Rosenberg NA, Tsolaki AG, Tanaka MM. Estimating change rates of genetic markers using serial samples: applications to the transposon IS6110 in Mycobacterium tuberculosis. Theor Popul Biol 2003; 63:347-63. [PMID: 12742178 DOI: 10.1016/s0040-5809(03)00010-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In infectious disease epidemiology, it is useful to know how quickly genetic markers of pathogenic agents evolve while inside hosts. We propose a modular framework with which these genotype change rates can be estimated. The estimation scheme requires a model of the underlying process of genetic change, a detection scheme that filters this process into observable quantities, and a monitoring scheme that describes the timing of observations. We study a linear "birth-shift-death" model for change in transposable element genotypes, obtaining maximum-likelihood estimators for various detection and monitoring schemes. The method is applied to serial genotypes of the transposon IS6110 in Mycobacterium tuberculosis. The estimated birth rate of 0.0161 (events per copy of the transposon per year) and death rate of 0.0108 are both significantly larger than the estimated shift rate of 0.0018. The sum of these estimates, which corresponds to a "half-life" of 2.4 years for a typical strain that has 10 copies of the element, substantially exceeds a previous estimate of 0.0135 total changes per copy per year. We consider experimental design issues that enable the precision of estimates to be improved. We also discuss extensions to other markers and implications for molecular epidemiology.
Collapse
Affiliation(s)
- Noah A Rosenberg
- Department of Biological Sciences, University of Southern California, 1042 W 36th Place-DRB 289, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
7
|
Dale JW, Al-Ghusein H, Al-Hashmi S, Butcher P, Dickens AL, Drobniewski F, Forbes KJ, Gillespie SH, Lamprecht D, McHugh TD, Pitman R, Rastogi N, Smith AT, Sola C, Yesilkaya H. Evolutionary relationships among strains of Mycobacterium tuberculosis with few copies of IS6110. J Bacteriol 2003; 185:2555-62. [PMID: 12670980 PMCID: PMC152614 DOI: 10.1128/jb.185.8.2555-2562.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular typing of Mycobacterium tuberculosis by using IS6110 shows low discrimination when there are fewer than five copies of the insertion sequence. Using a collection of such isolates from a study of the epidemiology of tuberculosis in London, we have shown a substantial degree of congruence between IS6110 patterns and both spoligotype and PGRS type. This indicates that the IS6110 types mainly represent distinct families of strains rather than arising through the convergent insertion of IS6110 into favored positions. This is supported by identification of the genomic sites of the insertion of IS6110 in these strains. The combined data enable identification of the putative evolutionary relationships of these strains, comprising three lineages broadly associated with patients born in South Asia (India and Pakistan), Africa, and Europe, respectively. These lineages appear to be quite distinct from M. tuberculosis isolates with multiple copies of IS6110.
Collapse
Affiliation(s)
- Jeremy W Dale
- School of Biomedical and Life Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Driscoll JR, Bifani PJ, Mathema B, McGarry MA, Zickas GM, Kreiswirth BN, Taber HW. Spoligologos: a bioinformatic approach to displaying and analyzing Mycobacterium tuberculosis data. Emerg Infect Dis 2002; 8:1306-9. [PMID: 12453361 PMCID: PMC2738554 DOI: 10.3201/eid0811.020174] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Spacer oligonucleotide (spoligotyping) analysis is a rapid polymerase chain reaction-based method of DNA fingerprinting the Mycobacterium tuberculosis complex. We examined spoligotype data using a bioinformatic tool (sequence logo analysis) to elucidate undisclosed phylogenetic relationships and gain insights into the global dissemination of strains of tuberculosis. Logo analysis of spoligotyping data provides a simple way to describe a fingerprint signature and may be useful in categorizing unique spoligotypes patterns as they are discovered. Large databases of DNA fingerprint information, such as those from the U.S. National Tuberculosis Genotyping and Surveillance Network and the European Concerted Action on Tuberculosis, contain information on thousands of strains from diverse regions. The description of related spoligotypes has depended on exhaustive listings of the individual spoligotyping patterns. Logo analysis may become another useful graphic method of visualizing and presenting spoligotyping clusters from these databases.
Collapse
|
9
|
Abstract
The standard method for the typing of Mycobacterium tuberculosis is still IS6110 restriction fragment length polymorphism (RFLP). This method has been widely used and has provided information on the variety and distribution of tuberculosis strain types across the globe. Recently, IS6110 RFLP has been used to investigate the question of reinfection versus reactivation, examine the existence of multiple infection, and track the spread of multidrug-resistant tuberculosis. There have also been efforts to increase our understanding of the biologic characteristics of IS6110. These studies have resulted in a clearer understanding of fingerprinting data and increased our understanding of the evolution and pathogenicity of this organism.
Collapse
Affiliation(s)
- H A Fletcher
- University College London, Center for Infectious Diseases, Royal Free and University College Medical School, Windeyer Institute of Medical Sciences, London, UK.
| |
Collapse
|
10
|
Sola C, Filliol I, Gutierrez MC, Mokrousov I, Vincent V, Rastogi N. Spoligotype Database ofMycobacterium tuberculosis: Biogeographic Distribution of Shared Types and Epidemiologic and Phylogenetic Perspectives. Emerg Infect Dis 2001. [DOI: 10.3201/10.3201/eid0703.0107304] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - Ingrid Filliol
- Institut Pasteur de Guadeloupe, Pointe à Pitre, Guadeloupe
| | | | - Igor Mokrousov
- Institut Pasteur de Guadeloupe, Pointe à Pitre, Guadeloupe
| | - Véronique Vincent
- Centre National de Référence des Mycobactéries, Institut Pasteur, Paris, France
| | - Nalin Rastogi
- Institut Pasteur de Guadeloupe, Pointe à Pitre, Guadeloupe
| |
Collapse
|
11
|
Sola C, Filliol I, Gutierrez MC, Mokrousov I, Vincent V, Rastogi N. Spoligotype database of Mycobacterium tuberculosis: biogeographic distribution of shared types and epidemiologic and phylogenetic perspectives. Emerg Infect Dis 2001; 7:390-6. [PMID: 11384514 PMCID: PMC2631784 DOI: 10.3201/eid0703.010304] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We give an update on the worldwide spoligotype database, which now contains 3,319 spoligotype patterns of Mycobacterium tuberculosis in 47 countries, with 259 shared types, i.e., identical spoligotypes shared by two or more patient isolates. The 259 shared types contained a total of 2,779 (84%) of all the isolates. Seven major genetic groups represented 37% of all clustered isolates. Two types (119 and 137) were found almost exclusively in the USA and accounted for 9% of clustered isolates. The remaining 1,517 isolates were scattered into 252 different spoligotypes. This database constitutes a tool for pattern comparison of M. tuberculosis clinical isolates for global epidemiologic studies and phylogenetic purposes.
Collapse
Affiliation(s)
- C Sola
- Institut Pasteur de Guadeloupe, Pointe poundà Pitre, Guadeloupe.
| | | | | | | | | | | |
Collapse
|