1
|
Fuller MJ, Andrys NRR, Gupta SC, Ghobbeh A, Kreple CJ, Fan R, Taugher-Hebl RJ, Radley JJ, Lalumiere RT, Wemmie JA. The Role of Acid-Sensing Ion Channel 1A (ASIC1A) in the Behavioral and Synaptic Effects of Oxycodone and Other Opioids. Int J Mol Sci 2024; 25:11584. [PMID: 39519136 PMCID: PMC11545886 DOI: 10.3390/ijms252111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Opioid-seeking behaviors depend on glutamatergic plasticity in the nucleus accumbens core (NAcc). Here we investigated whether the behavioral and synaptic effects of opioids are influenced by acid-sensing ion channel 1A (ASIC1A). We tested the effects of ASIC1A on responses to several opioids and found that Asic1a-/- mice had elevated behavioral responses to acute opioid administration as well as opioid seeking behavior in conditioned place preference (CPP). Region-restricted restoration of ASIC1A in NAcc was sufficient to reduce opioid CPP, suggesting NAcc is an important site of action. We next tested the effects of oxycodone withdrawal on dendritic spines in NAcc. We found effects of oxycodone and ASIC1A that contrasted with changes previously described following cocaine withdrawal. Finally, we examined α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated and N-methyl-D-aspartic acid (NMDA) receptor-mediated synaptic currents in NAcc. Oxycodone withdrawal, like morphine withdrawal, increased the AMPAR/NMDAR ratio in Asic1a+/+ mice, whereas oxycodone withdrawal reduced the AMPAR/NMDAR ratio in Asic1a-/- mice. A single dose of oxycodone was sufficient to induce this paradoxical effect in Asic1a-/- mice, suggesting an increased sensitivity to oxycodone. We conclude that ASIC1A plays an important role in the behavioral and synaptic effects of opioids and may constitute a potential future target for developing novel therapies.
Collapse
Affiliation(s)
- Margaret J. Fuller
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
| | - Noah R. R. Andrys
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Subhash C. Gupta
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Ali Ghobbeh
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Collin J. Kreple
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Rebecca J. Taugher-Hebl
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Jason J. Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; (J.J.R.); (R.T.L.)
| | - Ryan T. Lalumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; (J.J.R.); (R.T.L.)
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Ivica J, Kejzar N, Ho H, Stockwell I, Kuchtiak V, Scrutton AM, Nakagawa T, Greger IH. Proton-triggered rearrangement of the AMPA receptor N-terminal domains impacts receptor kinetics and synaptic localization. Nat Struct Mol Biol 2024; 31:1601-1613. [PMID: 39138332 PMCID: PMC11479944 DOI: 10.1038/s41594-024-01369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024]
Abstract
AMPA glutamate receptors (AMPARs) are ion channel tetramers that mediate the majority of fast excitatory synaptic transmission. They are composed of four subunits (GluA1-GluA4); the GluA2 subunit dominates AMPAR function throughout the forebrain. Its extracellular N-terminal domain (NTD) determines receptor localization at the synapse, ensuring reliable synaptic transmission and plasticity. This synaptic anchoring function requires a compact NTD tier, stabilized by a GluA2-specific NTD interface. Here we show that low pH conditions, which accompany synaptic activity, rupture this interface. All-atom molecular dynamics simulations reveal that protonation of an interfacial histidine residue (H208) centrally contributes to NTD rearrangement. Moreover, in stark contrast to their canonical compact arrangement at neutral pH, GluA2 cryo-electron microscopy structures exhibit a wide spectrum of NTD conformations under acidic conditions. We show that the consequences of this pH-dependent conformational control are twofold: rupture of the NTD tier slows recovery from desensitized states and increases receptor mobility at mouse hippocampal synapses. Therefore, a proton-triggered NTD switch will shape both AMPAR location and kinetics, thereby impacting synaptic signal transmission.
Collapse
Affiliation(s)
- Josip Ivica
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Nejc Kejzar
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hinze Ho
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Imogen Stockwell
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Viktor Kuchtiak
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Alexander M Scrutton
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Ingo H Greger
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
3
|
Wu PY, Lien CC. Modulation of Neurotransmission by Acid-Sensing Ion Channels. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:242-248. [PMID: 39287486 DOI: 10.4103/ejpi.ejpi-d-24-00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/20/2024] [Indexed: 09/19/2024]
Abstract
ABSTRACT Interstitial pH fluctuations occur normally in the brain and significantly modulate neuronal functions. Acid-sensing ion channels (ASICs), which serve as neuronal acid chemosensors, play important roles in synaptic plasticity, learning, and memory. However, the specific mechanisms by which ASICs influence neurotransmission remain elusive. Here, we report that ASICs modulate transmitter release and axonal excitability at a glutamatergic synapse in the rat and mouse hippocampus. Blocking ASIC1a channels with the tarantula peptide psalmotoxin 1 down-regulates basal transmission and alters short-term plasticity. Notably, the effect of psalmotoxin 1 on ASIC-mediated modulation is age-dependent, occurring only during a limited postnatal period (postnatal weeks 2-6). This finding suggests that protons, through the activation of ASICs, may act as modulators in synapse formation and maturation during early development.
Collapse
Affiliation(s)
- Pu-Yeh Wu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Gründer S, Vanek J, Pissas KP. Acid-sensing ion channels and downstream signalling in cancer cells: is there a mechanistic link? Pflugers Arch 2024; 476:659-672. [PMID: 38175291 PMCID: PMC11006730 DOI: 10.1007/s00424-023-02902-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
It is increasingly appreciated that the acidic microenvironment of a tumour contributes to its evolution and clinical outcomes. However, our understanding of the mechanisms by which tumour cells detect acidosis and the signalling cascades that it induces is still limited. Acid-sensing ion channels (ASICs) are sensitive receptors for protons; therefore, they are also candidates for proton sensors in tumour cells. Although in non-transformed tissue, their expression is mainly restricted to neurons, an increasing number of studies have reported ectopic expression of ASICs not only in brain cancer but also in different carcinomas, such as breast and pancreatic cancer. However, because ASICs are best known as desensitizing ionotropic receptors that mediate rapid but transient signalling, how they trigger intracellular signalling cascades is not well understood. In this review, we introduce the acidic microenvironment of tumours and the functional properties of ASICs, point out some conceptual problems, summarize reported roles of ASICs in different cancers, and highlight open questions on the mechanisms of their action in cancer cells. Finally, we propose guidelines to keep ASIC research in cancer on solid ground.
Collapse
Affiliation(s)
- Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Jakob Vanek
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | | |
Collapse
|
5
|
Gupta SC, Taugher-Hebl RJ, Hardie JB, Fan R, LaLumiere RT, Wemmie JA. Effects of acid-sensing ion channel-1A (ASIC1A) on cocaine-induced synaptic adaptations. Front Physiol 2023; 14:1191275. [PMID: 37389125 PMCID: PMC10300415 DOI: 10.3389/fphys.2023.1191275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Chronic drug abuse is thought to induce synaptic changes in nucleus accumbens medium spiny neurons (MSNs) that promote subsequent craving and drug-seeking behavior. Accumulating data suggest acid-sensing ion channels (ASICs) may play a critical role. In drug naïve mice, disrupting the ASIC1A subunit produced a variety of synaptic changes reminiscent of wild-type mice following cocaine withdrawal, including increased AMPAR/NMDAR ratio, increased AMPAR rectification, and increased dendrite spine density. Importantly, these changes in Asic1a -/- mice were normalized by a single dose of cocaine. Here we sought to understand the temporal effects of cocaine exposure in Asic1a -/- mice and the cellular site of ASIC1A action. Six hours after cocaine exposure, there was no effect. However, 15 h, 24 h and 4 days after cocaine exposure there was a significant reduction in AMPAR/NMDAR ratio in Asic1a -/- mice. Within 7 days the AMPAR/NMDAR ratio had returned to baseline levels. Cocaine-evoked changes in AMPAR rectification and dendritic spine density followed a similar time course with significant reductions in rectification and dendritic spines 24 h after cocaine exposure in Asic1a -/- mice. To test the cellular site of ASIC1A action on these responses, we disrupted ASIC1A specifically in a subpopulation of MSNs. We found that effects of ASIC1A disruption were cell autonomous and restricted to neurons in which the channels are disrupted. We further tested whether ASIC1A disruption differentially affects MSNs subtypes and found AMPAR/NMDAR ratio was elevated in dopamine receptor 1-expressing MSNs, suggesting a preferential effect for these cells. Finally, we tested if protein synthesis was involved in synaptic adaptations that occurred after ASIC1A disruption, and found the protein synthesis inhibitor anisomycin normalized AMPAR-rectification and AMPAR/NMDAR ratio in drug-naïve Asic1a -/- mice to control levels, observed in wild-type mice. Together, these results provide valuable mechanistic insight into the effects of ASICs on synaptic plasticity and drug-induced effects and raise the possibility that ASIC1A might be therapeutically manipulated to oppose drug-induced synaptic changes and behavior.
Collapse
Affiliation(s)
- Subhash C. Gupta
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Rebecca J. Taugher-Hebl
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Jason B. Hardie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Ryan T. LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
6
|
Ge H, Zhou T, Zhang C, Cun Y, Chen W, Yang Y, Zhang Q, Li H, Zhong J, Zhang X, Feng H, Hu R. Targeting ASIC1a Promotes Neural Progenitor Cell Migration and Neurogenesis in Ischemic Stroke. RESEARCH (WASHINGTON, D.C.) 2023; 6:0105. [PMID: 37275123 PMCID: PMC10234266 DOI: 10.34133/research.0105] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/13/2023] [Indexed: 06/07/2023]
Abstract
Cell replacement therapy using neural progenitor cells (NPCs) has been shown to be an effective treatment for ischemic stroke. However, the therapeutic effect is unsatisfactory due to the imbalanced homeostasis of the local microenvironment after ischemia. Microenvironmental acidosis is a common imbalanced homeostasis in the penumbra and could activate acid-sensing ion channels 1a (ASIC1a), a subunit of proton-gated cation channels following ischemic stroke. However, the role of ASIC1a in NPCs post-ischemia remains elusive. Here, our results indicated that ASIC1a was expressed in NPCs with channel functionality, which could be activated by extracellular acidification. Further evidence revealed that ASIC1a activation inhibited NPC migration and neurogenesis through RhoA signaling-mediated reorganization of filopodia formation, which could be primarily reversed by pharmacological or genetic disruption of ASIC1a. In vivo data showed that the knockout of the ASIC1a gene facilitated NPC migration and neurogenesis in the penumbra to improve behavioral recovery after stroke. Subsequently, ASIC1a gain of function partially abrogated this effect. Moreover, the administration of ASIC1a antagonists (amiloride or Psalmotoxin 1) promoted functional recovery by enhancing NPC migration and neurogenesis. Together, these results demonstrate targeting ASIC1a is a novel strategy potentiating NPC migration toward penumbra to repair lesions following ischemic stroke and even for other neurological diseases with the presence of niche acidosis.
Collapse
Affiliation(s)
- Hongfei Ge
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
- Medical Research Center, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Tengyuan Zhou
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
- Medical Research Center, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Chao Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
- Medical Research Center, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Yupeng Cun
- Pediatric Research Institute,
Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, 400014 Chongqing, China
| | - Weixiang Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Yang Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Qian Zhang
- Medical Research Center, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Huanhuan Li
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Jun Zhong
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Xuyang Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
- Medical Research Center, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| |
Collapse
|
7
|
Chafaï M, Delrocq A, Inquimbert P, Pidoux L, Delanoe K, Toft M, Brau F, Lingueglia E, Veltz R, Deval E. Dual contribution of ASIC1a channels in the spinal processing of pain information by deep projection neurons revealed by computational modeling. PLoS Comput Biol 2023; 19:e1010993. [PMID: 37068087 PMCID: PMC10109503 DOI: 10.1371/journal.pcbi.1010993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/03/2023] [Indexed: 04/18/2023] Open
Abstract
Dorsal horn of the spinal cord is an important crossroad of pain neuraxis, especially for the neuronal plasticity mechanisms that can lead to chronic pain states. Windup is a well-known spinal pain facilitation process initially described several decades ago, but its exact mechanism is still not fully understood. Here, we combine both ex vivo and in vivo electrophysiological recordings of rat spinal neurons with computational modeling to demonstrate a role for ASIC1a-containing channels in the windup process. Spinal application of the ASIC1a inhibitory venom peptides mambalgin-1 and psalmotoxin-1 (PcTx1) significantly reduces the ability of deep wide dynamic range (WDR) neurons to develop windup in vivo. All deep WDR-like neurons recorded from spinal slices exhibit an ASIC current with biophysical and pharmacological characteristics consistent with functional expression of ASIC1a homomeric channels. A computational model of WDR neuron supplemented with different ASIC1a channel parameters accurately reproduces the experimental data, further supporting a positive contribution of these channels to windup. It also predicts a calcium-dependent windup decrease for elevated ASIC conductances, a phenomenon that was experimentally validated using the Texas coral snake ASIC-activating toxin (MitTx) and calcium-activated potassium channel inhibitory peptides (apamin and iberiotoxin). This study supports a dual contribution to windup of calcium permeable ASIC1a channels in deep laminae projecting neurons, promoting it upon moderate channel activity, but ultimately leading to calcium-dependent windup inhibition associated to potassium channels when activity increases.
Collapse
Affiliation(s)
- Magda Chafaï
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France
| | - Ariane Delrocq
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France
- Inria Center of University Côte d'Azur, France, Valbonne, France
| | - Perrine Inquimbert
- Université de Strasbourg, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ludivine Pidoux
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France
| | - Kevin Delanoe
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France
| | - Maurizio Toft
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France
| | - Frederic Brau
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France
| | - Eric Lingueglia
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France
| | - Romain Veltz
- Inria Center of University Côte d'Azur, France, Valbonne, France
| | - Emmanuel Deval
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France
| |
Collapse
|
8
|
Chronic Ethanol Exposure Modulates Periaqueductal Gray to Extended Amygdala Dopamine Circuit. J Neurosci 2023; 43:709-721. [PMID: 36526372 PMCID: PMC9899080 DOI: 10.1523/jneurosci.1219-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a component of the extended amygdala that regulates motivated behavior and affective states and plays an integral role in the development of alcohol-use disorder (AUD). The dorsal subdivision of the BNST (dBNST) receives dense dopaminergic input from the ventrolateral periaqueductal gray (vlPAG)/dorsal raphe (DR). To date, no studies have examined the effects of chronic alcohol on this circuit. Here, we used chronic intermittent ethanol exposure (CIE), a well-established rodent model of AUD, to functionally interrogate the vlPAG/DR-BNST dopamine (DA) circuit during acute withdrawal. We selectively targeted vlPAG/DRDA neurons in tyrosine hydroxylase-expressing transgenic adult male mice. Using ex vivo electrophysiology, we found hyperexcitability of vlPAG/DRDA neurons in CIE-treated mice. Further, using optogenetic approaches to target vlPAG/DRDA terminals in the dBNST, we revealed a CIE-mediated shift in the vlPAG/DR-driven excitatory-inhibitory (E/I) ratio to a hyperexcitable state in dBNST. Additionally, to quantify the effect of CIE on endogenous DA signaling, we coupled optogenetics with fast-scan cyclic voltammetry to measure pathway-specific DA release in dBNST. CIE-treated mice had significantly reduced signal half-life, suggestive of faster clearance of DA signaling. CIE treatment also altered the ratio of vlPAG/DRDA-driven cellular inhibition and excitation of a subset of dBNST neurons. Overall, our findings suggest a dysregulation of vlPAG/DR to BNST dopamine circuit, which may contribute to pathophysiological phenotypes associated with AUD.SIGNIFICANCE STATEMENT The dorsal bed nucleus of the stria terminalis (dBNST) is highly implicated in the pathophysiology of alcohol-use disorder and receives dopaminergic inputs from ventrolateral periaqueductal gray/dorsal raphe regions (vlPAG/DR). The present study highlights the plasticity within the vlPAG/DR to dBNST dopamine (DA) circuit during acute withdrawal from chronic ethanol exposure. More specifically, our data reveal that chronic ethanol strengthens vlPAG/DR-dBNST glutamatergic transmission while altering both DA transmission and dopamine-mediated cellular inhibition of dBNST neurons. The net result is a shift toward a hyperexcitable state in dBNST activity. Together, our findings suggest chronic ethanol may promote withdrawal-related plasticity by dysregulating the vlPAG/DR-dBNST DA circuit.
Collapse
|
9
|
Fuller MJ, Gupta SC, Fan R, Taugher-Hebl RJ, Wang GZ, Andrys NRR, Bera AK, Radley JJ, Wemmie JA. Investigating role of ASIC2 in synaptic and behavioral responses to drugs of abuse. Front Mol Biosci 2023; 10:1118754. [PMID: 36793786 PMCID: PMC9923001 DOI: 10.3389/fmolb.2023.1118754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Drugs of abuse produce rearrangements at glutamatergic synapses thought to contribute to drug-reinforced behaviors. Acid-Sensing Ion Channels (ASICs) have been suggested to oppose these effects, largely due to observations in mice lacking the ASIC1A subunit. However, the ASIC2A and ASIC2B subunits are known to interact with ASIC1A, and their potential roles in drugs of abuse have not yet been investigated. Therefore, we tested the effects of disrupting ASIC2 subunits in mice exposed to drugs of abuse. We found conditioned place preference (CPP) to both cocaine and morphine were increased in Asic2 -/- mice, which is similar to what was observed in Asic1a -/- mice. Because nucleus accumbens core (NAcc) is an important site of ASIC1A action, we examined expression of ASIC2 subunits there. By western blot ASIC2A was readily detected in wild-type mice, while ASIC2B was not, suggesting ASIC2A is the predominant subunit in nucleus accumbens core. An adeno-associated virus vector (AAV) was used to drive recombinant ASIC2A expression in nucleus accumbens core of Asic2 -/- mice, resulting in near normal protein levels. Moreover, recombinant ASIC2A integrated with endogenous ASIC1A subunits to form functional channels in medium spiny neurons (MSNs). However, unlike ASIC1A, region-restricted restoration of ASIC2A in nucleus accumbens core was not sufficient to affect cocaine or morphine conditioned place preference, suggesting effects of ASIC2 differ from those of ASIC1A. Supporting this contrast, we found that AMPA receptor subunit composition and the ratio of AMPA receptor-mediated current to NMDA receptor-mediated current (AMPAR/NMDAR) were normal in Asic2 -/- mice and responded to cocaine withdrawal similarly to wild-type animals. However, disruption of ASIC2 significantly altered dendritic spine morphology, and these effects differed from those reported previously in mice lacking ASIC1A. We conclude that ASIC2 plays an important role in drug-reinforced behavior, and that its mechanisms of action may differ from ASIC1A.
Collapse
Affiliation(s)
- Margaret J. Fuller
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
| | - Subhash C. Gupta
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Rebecca J. Taugher-Hebl
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Grace Z. Wang
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Noah R. R. Andrys
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Amal K. Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Jason J. Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
10
|
Zhou RP, Liang HY, Hu WR, Ding J, Li SF, Chen Y, Zhao YJ, Lu C, Chen FH, Hu W. Modulators of ASIC1a and its potential as a therapeutic target for age-related diseases. Ageing Res Rev 2023; 83:101785. [PMID: 36371015 DOI: 10.1016/j.arr.2022.101785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Age-related diseases have become more common with the advancing age of the worldwide population. Such diseases involve multiple organs, with tissue degeneration and cellular apoptosis. To date, there is a general lack of effective drugs for treatment of most age-related diseases and there is therefore an urgent need to identify novel drug targets for improved treatment. Acid-sensing ion channel 1a (ASIC1a) is a degenerin/epithelial sodium channel family member, which is activated in an acidic environment to regulate pathophysiological processes such as acidosis, inflammation, hypoxia, and ischemia. A large body of evidence suggests that ASIC1a plays an important role in the development of age-related diseases (e.g., stroke, rheumatoid arthritis, Huntington's disease, and Parkinson's disease.). Herein we present: 1) a review of ASIC1a channel properties, distribution, and physiological function; 2) a summary of the pharmacological properties of ASIC1a; 3) and a consideration of ASIC1a as a potential therapeutic target for treatment of age-related disease.
Collapse
Affiliation(s)
- Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Hong-Yu Liang
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Wei-Rong Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan 232001, China
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
11
|
Hagihara H, Murano T, Miyakawa T. The gene expression patterns as surrogate indices of pH in the brain. Front Psychiatry 2023; 14:1151480. [PMID: 37200901 PMCID: PMC10185791 DOI: 10.3389/fpsyt.2023.1151480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023] Open
Abstract
Hydrogen ion (H+) is one of the most potent intrinsic neuromodulators in the brain in terms of concentration. Changes in H+ concentration, expressed as pH, are thought to be associated with various biological processes, such as gene expression, in the brain. Accumulating evidence suggests that decreased brain pH is a common feature of several neuropsychiatric disorders, including schizophrenia, bipolar disorder, autism spectrum disorder, and Alzheimer's disease. However, it remains unclear whether gene expression patterns can be used as surrogates for pH changes in the brain. In this study, we performed meta-analyses using publicly available gene expression datasets to profile the expression patterns of pH-associated genes, whose expression levels were correlated with brain pH, in human patients and mouse models of major central nervous system (CNS) diseases, as well as in mouse cell-type datasets. Comprehensive analysis of 281 human datasets from 11 CNS disorders revealed that gene expression associated with decreased pH was over-represented in disorders including schizophrenia, bipolar disorder, autism spectrum disorders, Alzheimer's disease, Huntington's disease, Parkinson's disease, and brain tumors. Expression patterns of pH-associated genes in mouse models of neurodegenerative disease showed a common time course trend toward lower pH over time. Furthermore, cell type analysis identified astrocytes as the cell type with the most acidity-related gene expression, consistent with previous experimental measurements showing a lower intracellular pH in astrocytes than in neurons. These results suggest that the expression pattern of pH-associated genes may be a surrogate for the state- and trait-related changes in pH in brain cells. Altered expression of pH-associated genes may serve as a novel molecular mechanism for a more complete understanding of the transdiagnostic pathophysiology of neuropsychiatric and neurodegenerative disorders.
Collapse
|
12
|
Gupta SC, Ghobbeh A, Taugher-Hebl RJ, Fan R, Hardie JB, LaLumiere RT, Wemmie JA. Carbonic anhydrase 4 disruption decreases synaptic and behavioral adaptations induced by cocaine withdrawal. SCIENCE ADVANCES 2022; 8:eabq5058. [PMID: 36383659 PMCID: PMC9668291 DOI: 10.1126/sciadv.abq5058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Cocaine use followed by withdrawal induces synaptic changes in nucleus accumbens (NAc), which are thought to underlie subsequent drug-seeking behaviors and relapse. Previous studies suggest that cocaine-induced synaptic changes depend on acid-sensing ion channels (ASICs). Here, we investigated potential involvement of carbonic anhydrase 4 (CA4), an extracellular pH-buffering enzyme. We examined effects of CA4 in mice on ASIC-mediated synaptic transmission in medium spiny neurons (MSNs) in NAc, as well as on cocaine-induced synaptic changes and behavior. We found that CA4 is expressed in the NAc and present in synaptosomes. Disrupting CA4 either globally, or locally, increased ASIC-mediated synaptic currents in NAc MSNs and protected against cocaine withdrawal-induced changes in synapses and cocaine-seeking behavior. These findings raise the possibility that CA4 might be a previously unidentified therapeutic target for addiction and relapse.
Collapse
Affiliation(s)
- Subhash C. Gupta
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Ali Ghobbeh
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Rebecca J. Taugher-Hebl
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Jason B. Hardie
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Ryan T. LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
Wang W, Xu M, Yue J, Zhang Q, Nie X, Jin Y, Zhang Z. Knockdown of Acid-sensing Ion Channel 1a in the PVN Promotes Metabolic Disturbances in Male Mice. Endocrinology 2022; 163:6650558. [PMID: 35894166 DOI: 10.1210/endocr/bqac115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 11/19/2022]
Abstract
Increasing incidence of metabolic disturbances has become a severe public healthcare problem. Ion channels and receptors in the paraventricular nucleus (PVN) of the hypothalamus serve vital roles in modulating neuronal activities and endocrine functions, which are linked to the regulation of energy balance and glucose metabolism. In this study, we found that acid-sensing ion channel 1a (ASIC1a), a Ca2+-permeable cationic ion channel was localized in the PVN. Knockdown of ASIC1a in this region led to significant body weight gain, glucose intolerance, and insulin resistance. Pharmacological inhibition of ASIC1a resulted in an increase in food intake and a decrease in energy expenditure. Our findings suggest ASIC1a in the PVN as a potential new target for the therapeutic intervention of metabolic disorders.
Collapse
Affiliation(s)
- Wei Wang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengyun Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiayin Yue
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qilun Zhang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaomin Nie
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Jin
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
14
|
Priel A, Dai XQ, Chen XZ, Scarinci N, Cantero MDR, Cantiello HF. Electrical recordings from dendritic spines of adult mouse hippocampus and effect of the actin cytoskeleton. Front Mol Neurosci 2022; 15:769725. [PMID: 36090255 PMCID: PMC9453158 DOI: 10.3389/fnmol.2022.769725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Dendritic spines (DS) are tiny protrusions implicated in excitatory postsynaptic responses in the CNS. To achieve their function, DS concentrate a high density of ion channels and dynamic actin networks in a tiny specialized compartment. However, to date there is no direct information on DS ionic conductances. Here, we used several experimental techniques to obtain direct electrical information from DS of the adult mouse hippocampus. First, we optimized a method to isolate DS from the dissected hippocampus. Second, we used the lipid bilayer membrane (BLM) reconstitution and patch clamping techniques and obtained heretofore unavailable electrical phenotypes on ion channels present in the DS membrane. Third, we also patch clamped DS directly in cultured adult mouse hippocampal neurons, to validate the electrical information observed with the isolated preparation. Electron microscopy and immunochemistry of PDS-95 and NMDA receptors and intrinsic actin networks confirmed the enrichment of the isolated DS preparation, showing open and closed DS, and multi-headed DS. The preparation was used to identify single channel activities and “whole-DS” electrical conductance. We identified NMDA and Ca2+-dependent intrinsic electrical activity in isolated DS and in situ DS of cultured adult mouse hippocampal neurons. In situ recordings in the presence of local NMDA, showed that individual DS intrinsic electrical activity often back-propagated to the dendrite from which it sprouted. The DS electrical oscillations were modulated by changes in actin cytoskeleton dynamics by addition of the F-actin disrupter agent, cytochalasin D, and exogenous actin-binding proteins. The data indicate that DS are elaborate excitable electrical devices, whose activity is a functional interplay between ion channels and the underlying actin networks. The data argue in favor of the active contribution of individual DS to the electrical activity of neurons at the level of both the membrane conductance and cytoskeletal signaling.
Collapse
Affiliation(s)
- Avner Priel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Xiao-Qing Dai
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Noelia Scarinci
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Horacio F. Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
- *Correspondence: Horacio F. Cantiello,
| |
Collapse
|
15
|
Wang Y, Hu X, Sun Y, Huang Y. The Role of ASIC1a in Inflammatory Immune Diseases: A Potential Therapeutic Target. Front Pharmacol 2022; 13:942209. [PMID: 35873582 PMCID: PMC9304623 DOI: 10.3389/fphar.2022.942209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
It is acknowledged that chronic inflammation is associated with a rise in extracellular proton concentrations. The acid-sensing ion channel 1a (ASIC1a) belongs to the extracellular H+-activated cation channel family. Recently, many studies have been conducted on ASIC1a and inflammatory immune diseases. Here, in this review, we will focus on the role of ASIC1a in several inflammatory immune diseases so as to provide new perspectives for clinical treatment.
Collapse
Affiliation(s)
- Yinghong Wang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaojie Hu
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yancai Sun
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Yancai Sun, ; Yan Huang,
| | - Yan Huang
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Yancai Sun, ; Yan Huang,
| |
Collapse
|
16
|
Zhu Y, Hu X, Wang L, Zhang J, Pan X, Li Y, Cao R, Li B, Lin H, Wang Y, Zuo L, Huang Y. Recent Advances in Acid-sensitive Ion Channels in Central Nervous System Diseases. Curr Pharm Des 2022; 28:1406-1411. [PMID: 35466865 DOI: 10.2174/1381612828666220422084159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Acid-sensitive ion channels (ASICs) are cationic channels activated by extracellular protons and widely distributed in the nervous system of mammals. It belongs to the ENaC/DEG family and has four coding genes: ASIC1, ASIC2, ASIC3, and ASIC4, which encode eight subunit proteins: ASIC1a, ASIC1b, ASIC1b2, ASIC2a, ASIC2b, ASIC3, ASIC4, and ASIC5. Different subtypes of ASICs have different distributions in the central nervous system, and they play an important role in various physiological and pathological processes of the central nervous system, including synaptic plasticity, anxiety disorders, fear conditioning, depression-related behavior, epilepsy, Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, malignant Glioma, pain, and others. This paper reviewed the recent studies of ASICs on the central nervous system to improve the understanding of ASICs' physiological functions and pathological effects. This article also provides a reference for studying the molecular mechanisms and therapeutic measures of nervous system-related diseases.
Collapse
Affiliation(s)
- Yueqin Zhu
- Department of Pharmacy, West Branch of The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei, 230031, China
| | - Xiaojie Hu
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Lili Wang
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Jin Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Xuesheng Pan
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Yangyang Li
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Rui Cao
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Bowen Li
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Huimin Lin
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Yanan Wang
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Longquan Zuo
- Department of Pharmacy, Hospital of Armed Police of Anhui Province, Hefei 230061, Anhui, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| |
Collapse
|
17
|
Alasmari F, Sari DB, Alhaddad H, Al-Rejaie SS, Sari Y. Interactive role of acid sensing ion channels and glutamatergic system in opioid dependence. Neurosci Biobehav Rev 2022; 135:104581. [PMID: 35181397 DOI: 10.1016/j.neubiorev.2022.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022]
Abstract
Dysregulation in glutamatergic receptors and transporters has been found to mediate drugs of abuse, including morphine. Among glutamate receptors, ionotropic glutamate receptors (iGluRs) are altered with exposure to drugs of abuse. Acid-sensing ion channels (ASICs) are ligand (H+)-gated channels, which are expressed at the excitatory synaptic clefts and play a role in drug dependence. Overexpression of a specific ASIC subtype, ASIC1a, attenuated reinstatement of cocaine. ASICs are revealed to be involved in cocaine and morphine seeking behaviors, and these effects are mediated through modulation of glutamatergic receptors. In this review, we discussed the interactive role of ASICs and glutamate receptors, mainly iGluRs, in opioid dependence. ASICs are also expressed in astrocytes and are suggested to be involved on regulating glutamate uptake. However, little is known about the coupling between ASICs and the astroglial glutamate transporters. In addition, this review discussed the role of nitric oxide in the modulation of ASIC function and potentially opioid dependence. We also discussed the role of ASICs in the modulation of the function of both glutamatergic receptors in post-synaptic neurons and glutamatergic transporters in astrocytes in animals exposed to drugs of abuse.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| | - Deen B Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
18
|
Retinoic Acid-Differentiated Neuroblastoma SH-SY5Y Is an Accessible In Vitro Model to Study Native Human Acid-Sensing Ion Channels 1a (ASIC1a). BIOLOGY 2022; 11:biology11020167. [PMID: 35205034 PMCID: PMC8868828 DOI: 10.3390/biology11020167] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Human neuroblastoma SH-SY5Y is used in neurobiology for studying various neuropathophysiological processes. In this study, we differentiated neuroblastoma cells into a neuronal-like phenotype with retinoic acid and studied if functional acid-sensing, transient receptor potential vanilloid-1 and ankyrin-1 ion channels were expressed in it. We found that homomeric acid-sensing ion channels 1a were expressed predominantly and yielded large ionic currents that can be modulated with different ligands. This channel plays important roles in synaptic plasticity, neurodegeneration, and pain perception. Thus, retinoic acid-treated neuroblastoma is a suitable model system for pharmacological testing on native human acid-sensing ion channels 1a. This approach can facilitate the development of new drugs for neuroprotection and pain management. Abstract Human neuroblastoma SH-SY5Y is a prominent neurobiological tool used for studying neuropathophysiological processes. We investigated acid-sensing (ASIC) and transient receptor potential vanilloid-1 (TRPV1) and ankyrin-1 (TRPA1) ion channels present in untreated and differentiated neuroblastoma SH-SY5Y to propose a new means for their study in neuronal-like cells. Using a quantitative real-time PCR and a whole-cell patch-clamp technique, ion channel expression profiles, functionality, and the pharmacological actions of their ligands were characterized. A low-level expression of ASIC1a and ASIC2 was detected in untreated cells. The treatment with 10 μM of retinoic acid (RA) for 6 days resulted in neuronal differentiation that was accompanied by a remarkable increase in ASIC1a expression, while ASIC2 expression remained almost unaltered. In response to acid stimuli, differentiated cells showed prominent ASIC-like currents. Detailed kinetic and pharmacological characterization suggests that homomeric ASIC1a is a dominant isoform among the present ASIC channels. RA-treatment also reduced the expression of TRPV1 and TRPA1, and minor electrophysiological responses to their agonists were found in untreated cells. Neuroblastoma SH-SY5Y treated with RA can serve as a model system to study the effects of different ligands on native human ASIC1a in neuronal-like cells. This approach can improve the characterization of modulators for the development of new neuroprotective and analgesic drugs.
Collapse
|
19
|
Taugher RJ, Wunsch AM, Wang GZ, Chan AC, Dlouhy BJ, Wemmie JA. Post-acquisition CO 2 Inhalation Enhances Fear Memory and Depends on ASIC1A. Front Behav Neurosci 2021; 15:767426. [PMID: 34776896 PMCID: PMC8585996 DOI: 10.3389/fnbeh.2021.767426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
A growing body of evidence suggests that memories of fearful events may be altered after initial acquisition or learning. Although much of this work has been done in rodents using Pavlovian fear conditioning, it may have important implications for fear memories in humans such as in post-traumatic stress disorder (PTSD). A recent study suggested that cued fear memories, made labile by memory retrieval, were made additionally labile and thus more vulnerable to subsequent modification when mice inhaled 10% carbon dioxide (CO2) during retrieval. In light of this finding, we hypothesized that 10% CO2 inhalation soon after fear acquisition might affect memory recall 24 h later. We found that both cue and context fear memory were increased by CO2 exposure after fear acquisition. The effect of CO2 was time-dependent, as CO2 inhalation administered 1 or 4 h after cued fear acquisition increased fear memory, whereas CO2 inhalation 4 h before or 24 h after cued fear acquisition did not increase fear memory. The ability of CO2 exposure following acquisition to enhance fear memory was not a general consequence of stress, as restraining mice after acquisition did not alter cued fear memory. The memory-enhancing action of CO2 may be relatively specific to fear conditioning as novel object recognition was impaired by post-training CO2 inhalation. To explore the molecular underpinnings of these effects, we tested if they depended on the acid-sensing ion channel-1a (ASIC1A), a proton-gated cation channel that mediates other effects of CO2, likely via its ability to sense acidosis induced during CO2 inhalation. We found that CO2 inhalation did not alter cued or context fear memory in Asic1a–/– mice, suggesting that this phenomenon critically depends on ASIC1A. These results suggest that brain acidosis around the time of a traumatic event may enhance memory of the trauma, and may thus constitute an important risk factor for developing PTSD. Moreover, preventing peritraumatic acidosis might reduce risk of PTSD.
Collapse
Affiliation(s)
- Rebecca J Taugher
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Amanda M Wunsch
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Grace Z Wang
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Aubrey C Chan
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Veterans Affairs Medical Center, Iowa City, IA, United States.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Brian J Dlouhy
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States.,Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - John A Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Veterans Affairs Medical Center, Iowa City, IA, United States.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States.,Department of Neurosurgery, University of Iowa, Iowa City, IA, United States.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Chair of Psychiatry and Neuroscience, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
20
|
Leisle L, Margreiter M, Ortega-Ramírez A, Cleuvers E, Bachmann M, Rossetti G, Gründer S. Dynorphin Neuropeptides Decrease Apparent Proton Affinity of ASIC1a by Occluding the Acidic Pocket. J Med Chem 2021; 64:13299-13311. [PMID: 34461722 DOI: 10.1021/acs.jmedchem.1c00447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prolonged acidosis, as it occurs during ischemic stroke, induces neuronal death via acid-sensing ion channel 1a (ASIC1a). Concomitantly, it desensitizes ASIC1a, highlighting the pathophysiological significance of modulators of ASIC1a acid sensitivity. One such modulator is the opioid neuropeptide big dynorphin (Big Dyn) which binds to ASIC1a and enhances its activity during prolonged acidosis. The molecular determinants and dynamics of this interaction remain unclear, however. Here, we present a molecular interaction model showing a dynorphin peptide inserting deep into the acidic pocket of ASIC1a. We confirmed experimentally that the interaction is predominantly driven by electrostatic forces, and using noncanonical amino acids as photo-cross-linkers, we identified 16 residues in ASIC1a contributing to Big Dyn binding. Covalently tethering Big Dyn to its ASIC1a binding site dramatically decreased the proton sensitivity of channel activation, suggesting that Big Dyn stabilizes a resting conformation of ASIC1a and dissociates from its binding site during channel opening.
Collapse
Affiliation(s)
- Lilia Leisle
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Margreiter
- Computational Biomedicine-Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | | | - Elinor Cleuvers
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Michèle Bachmann
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine-Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
21
|
Foster VS, Rash LD, King GF, Rank MM. Acid-Sensing Ion Channels: Expression and Function in Resident and Infiltrating Immune Cells in the Central Nervous System. Front Cell Neurosci 2021; 15:738043. [PMID: 34602982 PMCID: PMC8484650 DOI: 10.3389/fncel.2021.738043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 11/15/2022] Open
Abstract
Peripheral and central immune cells are critical for fighting disease, but they can also play a pivotal role in the onset and/or progression of a variety of neurological conditions that affect the central nervous system (CNS). Tissue acidosis is often present in CNS pathologies such as multiple sclerosis, epileptic seizures, and depression, and local pH is also reduced during periods of ischemia following stroke, traumatic brain injury, and spinal cord injury. These pathological increases in extracellular acidity can activate a class of proton-gated channels known as acid-sensing ion channels (ASICs). ASICs have been primarily studied due to their ubiquitous expression throughout the nervous system, but it is less well recognized that they are also found in various types of immune cells. In this review, we explore what is currently known about the expression of ASICs in both peripheral and CNS-resident immune cells, and how channel activation during pathological tissue acidosis may lead to altered immune cell function that in turn modulates inflammatory pathology in the CNS. We identify gaps in the literature where ASICs and immune cell function has not been characterized, such as neurotrauma. Knowledge of the contribution of ASICs to immune cell function in neuropathology will be critical for determining whether the therapeutic benefits of ASIC inhibition might be due in part to an effect on immune cells.
Collapse
Affiliation(s)
- Victoria S. Foster
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Lachlan D. Rash
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD, Australia
| | - Michelle M. Rank
- Anatomy and Physiology, Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Wang Y, Zhang J, Jiang P, Li K, Sun Y, Huang Y. ASIC1a promotes acidic microenvironment-induced HCC cells migration and invasion by inducing autophagy. Eur J Pharmacol 2021; 907:174252. [PMID: 34116040 DOI: 10.1016/j.ejphar.2021.174252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of liver cancer with high incidence and metastatic rate. Recent studies have shown that the high metastasis of HCC is closely related to the acidic microenvironment of HCC cells. Acid-sensing ion Channel 1a (ASIC1a) plays an important role in HCC development, which can mediate tumor cell migration and invasion. However, the underlying mechanism of how ASIC1a promotes HCC cell migration and invasion in acidic microenvironments remains unclear, while autophagy may act as a mechanism for tumor cells to adapt to acidic microenvironment. Therefore, this study aims to investigate whether ASIC1a mediates autophagy and its effects on the migration and invasion of HCC cells. Interestingly, our study has shown that ASIC1a and autophagy were increased in HepG2 cells in acidic microenvironment, and both of them can promote HCC cells migration and invasion. Moreover, inhibition of ASIC1a with PcTx1 or ASIC1a ShRNA reduced the autophagy flux. Collectively, ASIC1a can promote acidic microenvironment-induced HepG2 cells migration and invasion by inducing autophagy, which may be correlated with Ca2+ influx.
Collapse
Affiliation(s)
- Yinghong Wang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Jin Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Peng Jiang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Kai Li
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yancai Sun
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China.
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
23
|
Zhou G, Zha XM. GPR68 Contributes to Persistent Acidosis-Induced Activation of AGC Kinases and Tyrosine Phosphorylation in Organotypic Hippocampal Slices. Front Neurosci 2021; 15:692217. [PMID: 34113235 PMCID: PMC8185064 DOI: 10.3389/fnins.2021.692217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 12/28/2022] Open
Abstract
Persistent acidosis occurs in ischemia and multiple neurological diseases. In previous studies, acidic stimulation leads to rapid increase in intracellular calcium in neurons. However, it remains largely unclear how a prolonged acidosis alters neuronal signaling. In our previous study, we found that GPR68-mediated PKC activities are protective against acidosis-induced injury in cortical slices. Here, we first asked whether the same principle holds true in organotypic hippocampal slices. Our data showed that 1-h pH 6 induced PKC phosphorylation in a GPR68-dependent manner. Go6983, a PKC inhibitor worsened acidosis-induced neuronal injury in wild type (WT) but had no effect in GPR68−/− slices. Next, to gain greater insights into acid signaling in brain tissue, we treated organotypic hippocampal slices with pH 6 for 1-h and performed a kinome profiling analysis by Western blot. Acidosis had little effect on cyclin-dependent kinase (CDK) or casein kinase 2 activity, two members of the CMGC family, or Ataxia telangiectasia mutated (ATM)/ATM and RAD3-related (ATR) activity, but reduced the phosphorylation of MAPK/CDK substrates. In contrast, acidosis induced the activation of CaMKIIα, PKA, and Akt. Besides these serine/threonine kinases, acidosis also induced tyrosine phosphorylation. Since GPR68 is widely expressed in brain neurons, we asked whether GPR68 contributes to acidosis-induced signaling. Deleting GPR68 had no effect on acidosis-induced CaMKII phosphorylation, attenuated that of phospho-Akt and phospho-PKA substrates, while abolishing acidosis-induced tyrosine phosphorylation. These data demonstrate that prolonged acidosis activates a network of signaling cascades, mediated by AGC kinases, CaMKII, and tyrosine kinases. GPR68 is the primary mediator for acidosis-induced activation of PKC and tyrosine phosphorylation, while both GPR68-dependent and -independent mechanisms contribute to the activation of PKA and Akt.
Collapse
Affiliation(s)
- Guokun Zhou
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| |
Collapse
|
24
|
Osmakov DI, Korolkova YV, Lubova KI, Maleeva EE, Andreev YA, Kozlov SA. The Role of the C-terminal Intracellular
Domain in Acid-Sensing Ion Channel 3 Functioning. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Neuhof A, Tian Y, Reska A, Falkenburger BH, Gründer S. Large Acid-Evoked Currents, Mediated by ASIC1a, Accompany Differentiation in Human Dopaminergic Neurons. Front Cell Neurosci 2021; 15:668008. [PMID: 33986647 PMCID: PMC8110905 DOI: 10.3389/fncel.2021.668008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated Na+ channels. They contribute to synaptic transmission, neuronal differentiation and neurodegeneration. ASICs have been mainly characterized in neurons from mice or rats and our knowledge of their properties in human neurons is scarce. Here, we functionally characterized ASICs in differentiating LUHMES cells, a human mesencephalic cell line with characteristics of dopaminergic neurons. We find that LUHMES cells express functional ASICs, predominantly homomeric ASIC1a. Expression starts early during differentiation with a striking surge in current amplitude at days 4-6 of differentiation, a time point where-based on published data-LUHMES cells start expressing synaptic markers. Peak ASIC expression therefore coincides with a critical period of LUHMES cell differentiation. It was associated with increased excitability, but not paralleled by an increase in ASIC1 mRNA or protein. In differentiating as well as in terminally differentiated LUHMES cells, ASIC activation by slight acidification elicited large currents, action potentials and a rise in cytosolic Ca2+. Applying the ASIC pore blocker diminazene during differentiation reduced the length of neurites, consistent with the hypothesis that ASICs play a critical role in LUHMES cell differentiation. In summary, our study establishes LUHMES cells as a valuable model to study the role of ASICs for neuronal differentiation and potentially also cell death in a human cell line.
Collapse
Affiliation(s)
- Andreas Neuhof
- Department of Neurology, Institute of Physiology, RWTH Aachen University, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Yuemin Tian
- Department of Neurology, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Anna Reska
- Department of Neurology, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | | | - Stefan Gründer
- Department of Neurology, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
26
|
The Neuropeptide Nocistatin Is Not a Direct Agonist of Acid-Sensing Ion Channel 1a (ASIC1a). Biomolecules 2021; 11:biom11040571. [PMID: 33924681 PMCID: PMC8070164 DOI: 10.3390/biom11040571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/29/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are ionotropic receptors that are directly activated by protons. Although protons have been shown to act as a neurotransmitter and to activate ASICs during synaptic transmission, it remains a possibility that other ligands directly activate ASICs as well. Neuropeptides are attractive candidates for alternative agonists of ASICs, because related ionotropic receptors are directly activated by neuropeptides and because diverse neuropeptides modulate ASICs. Recently, it has been reported that the neuropeptide nocistatin directly activates ASICs, including ASIC1a. Here we show that nocistatin does not directly activate ASIC1a expressed in Xenopus oocytes or CHO cells. Moreover, we show that nocistatin acidifies the bath solution to an extent that can fully explain the previously reported activation by this highly acidic peptide. In summary, we conclude that nocistatin only indirectly activates ASIC1a via acidification of the bath solution.
Collapse
|
27
|
Zhou G, Wang T, Zha XM. RNA-Seq analysis of knocking out the neuroprotective proton-sensitive GPR68 on basal and acute ischemia-induced transcriptome changes and signaling in mouse brain. FASEB J 2021; 35:e21461. [PMID: 33724568 PMCID: PMC7970445 DOI: 10.1096/fj.202002511r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
Brain acid signaling plays important roles in both physiological and disease conditions. One key neuronal metabotropic proton receptor in the brain is GPR68, which contributes to hippocampal long-term potentiation (LTP) and mediates neuroprotection in acidotic and ischemic conditions. Here, to gain greater understanding of GPR68 function in the brain, we performed mRNA-Seq analysis in mice. First, we studied sham-operated animals to determine baseline expression. Compared to wild type (WT), GPR68-/- (KO) brain downregulated genes that are enriched in Gene Ontology (GO) terms of misfolding protein binding, response to organic cyclic compounds, and endoplasmic reticulum chaperone complex. Next, we examined the expression profile following transient middle cerebral artery occlusion (tMCAO). tMCAO-upregulated genes cluster to cytokine/chemokine-related functions and immune responses, while tMCAO-downregulated genes cluster to channel activities and synaptic signaling. For proton-sensitive receptors, tMCAO downregulated ASIC1a and upregulated GPR4 and GPR65, but had no effect on ASIC2, PAC, or GPR68. GPR68 deletion did not alter the expression of these proton receptors, either at baseline or after ischemia. Lastly, we performed GeneVenn analysis of differential genes at baseline and post-tMCAO. Ischemia upregulated the expression of three hemoglobin genes, along with H2-Aa, Ppbp, Siglece, and Tagln, in WT but not in KO. Immunostaining showed that tMCAO-induced hemoglobin localized to neurons. Western blot analysis further showed that hemoglobin induction is GPR68-dependent. Together, these data suggest that GPR68 deletion at baseline disrupts chaperone functions and cellular signaling responses and imply a contribution of hemoglobin-mediated antioxidant mechanism to GPR68-dependent neuroprotection in ischemia.
Collapse
Affiliation(s)
- Guokun Zhou
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Tao Wang
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
28
|
Song XL, Liu DS, Qiang M, Li Q, Liu MG, Li WG, Qi X, Xu NJ, Yang G, Zhu MX, Xu TL. Postsynaptic Targeting and Mobility of Membrane Surface-Localized hASIC1a. Neurosci Bull 2021; 37:145-165. [PMID: 32996060 PMCID: PMC7870742 DOI: 10.1007/s12264-020-00581-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023] Open
Abstract
Acid-sensing ion channels (ASICs), the main H+ receptors in the central nervous system, sense extracellular pH fluctuations and mediate cation influx. ASIC1a, the major subunit responsible for acid-activated current, is widely expressed in brain neurons, where it plays pivotal roles in diverse functions including synaptic transmission and plasticity. However, the underlying molecular mechanisms for these functions remain mysterious. Using extracellular epitope tagging and a novel antibody recognizing the hASIC1a ectodomain, we examined the membrane targeting and dynamic trafficking of hASIC1a in cultured cortical neurons. Surface hASIC1a was distributed throughout somata and dendrites, clustered in spine heads, and co-localized with postsynaptic markers. By extracellular pHluorin tagging and fluorescence recovery after photobleaching, we detected movement of hASIC1a in synaptic spine heads. Single-particle tracking along with use of the anti-hASIC1a ectodomain antibody revealed long-distance migration and local movement of surface hASIC1a puncta on dendrites. Importantly, enhancing synaptic activity with brain-derived neurotrophic factor accelerated the trafficking and lateral mobility of hASIC1a. With this newly-developed toolbox, our data demonstrate the synaptic location and high dynamics of functionally-relevant hASIC1a on the surface of excitatory synapses, supporting its involvement in synaptic functions.
Collapse
Affiliation(s)
- Xing-Lei Song
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Di-Shi Liu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Qiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Qian Li
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China
| | - Ming-Gang Liu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China
| | - Wei-Guang Li
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China
| | - Xin Qi
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Nan-Jie Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Michael Xi Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Tian-Le Xu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| |
Collapse
|
29
|
Gobetto MN, González-Inchauspe C, Uchitel OD. Histamine and Corticosterone Modulate Acid Sensing Ion Channels (ASICs) Dependent Long-term Potentiation at the Mouse Anterior Cingulate Cortex. Neuroscience 2021; 460:145-160. [PMID: 33493620 DOI: 10.1016/j.neuroscience.2021.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022]
Abstract
Increase in proton concentration [H+] or decrease in local and global extracellular pH occurs in both physiological and pathological conditions. Acid-sensing ion channels (ASICs), belonging to the ENaC/Deg superfamily, play an important role in signal transduction as proton sensor. ASICs and in particular ASIC1a (one of the six ASICs subunits) which is permeable to Ca2+, are involved in many physiological processes including synaptic plasticity and neurodegenerative diseases. Activity-dependent long-term potentiation (LTP) is a major type of long-lasting synaptic plasticity in the CNS, associated with learning, memory, development, fear and persistent pain. Neurons in the anterior cingulate cortex (ACC) play critical roles in pain perception and chronic pain and express ASIC1a channels. During synaptic transmission, acidification of the synaptic cleft presumably due to the co-release of neurotransmitter and H+ from synaptic vesicles activates postsynaptic ASIC1a channels in ACC of mice. This generates ASIC1a synaptic currents that add to the glutamatergic excitatory postsynaptic currents (EPSCs). Here we report that modulators like histamine and corticosterone, acting through ASIC1a regulate synaptic plasticity, reducing the threshold for LTP induction of glutamatergic EPSCs. Our findings suggest a new role for ASIC1a mediating the neuromodulator action of histamine and corticosterone regulating specific forms of synaptic plasticity in the mouse ACC.
Collapse
Affiliation(s)
- María Natalia Gobetto
- Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlota González-Inchauspe
- Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Osvaldo D Uchitel
- Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
30
|
Liu X, Sambath K, Hutnik L, Du J, Belfield KD, Zhang Y. Activating Acid-Sensing Ion Channels with Photoacid Generators. CHEMPHOTOCHEM 2020; 4:5337-5340. [PMID: 36090950 PMCID: PMC9455902 DOI: 10.1002/cptc.202000154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 09/05/2024]
Abstract
Acid-sensing ion channels (ASICs), present in both central and peripheral neurons, respond to changes in extracellular protons. They play important roles in many symptoms and diseases, such as pain, ischemic stroke and neurodegenerative diseases. Herein, we report a novel approach to activate ASICs with the precision of light using organic photoacid generators (PAGs), which are molecules that release H+ upon light illumination, and have been recently used in biomedical studies. The PAGs showed low toxicity in dark conditions. Under LED light illumination, ASICs activation and consequent calcium ion influx was monitored and analysed by fluorescence microscopy, and showed a strong light-dependent response. This approach allows the activation of ASICs with the precision of light, and may be valuable to help better elucidate the molecular mechanism of ASICs and unveil their roles in physiology, pathophysiology, and behaviour.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr. Blvd. Newark NJ 07102 (USA)
| | - Karthik Sambath
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr. Blvd. Newark NJ 07102 (USA)
| | - Lauren Hutnik
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr. Blvd. Newark NJ 07102 (USA)
| | - Jianyang Du
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis TN 38163 (USA)
| | - Kevin D Belfield
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr. Blvd. Newark NJ 07102 (USA)
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr. Blvd. Newark NJ 07102 (USA)
| |
Collapse
|
31
|
Wang T, Zhou G, He M, Xu Y, Rusyniak WG, Xu Y, Ji Y, Simon RP, Xiong ZG, Zha XM. GPR68 Is a Neuroprotective Proton Receptor in Brain Ischemia. Stroke 2020; 51:3690-3700. [PMID: 33059544 PMCID: PMC7678672 DOI: 10.1161/strokeaha.120.031479] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supplemental Digital Content is available in the text. Brain acidosis is prevalent in stroke and other neurological diseases. Acidosis can have paradoxical injurious and protective effects. The purpose of this study is to determine whether a proton receptor exists in neurons to counteract acidosis-induced injury.
Collapse
Affiliation(s)
- Tao Wang
- Department of Physiology and Cell Biology (T.W., G.Z., M.H., Yuanyuan Xu, X.-m.Z.), University of South Alabama College of Medicine, Mobile
| | - Guokun Zhou
- Department of Physiology and Cell Biology (T.W., G.Z., M.H., Yuanyuan Xu, X.-m.Z.), University of South Alabama College of Medicine, Mobile.,Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, China (G.Z., Y.J.)
| | - Mindi He
- Department of Physiology and Cell Biology (T.W., G.Z., M.H., Yuanyuan Xu, X.-m.Z.), University of South Alabama College of Medicine, Mobile
| | - Yuanyuan Xu
- Department of Physiology and Cell Biology (T.W., G.Z., M.H., Yuanyuan Xu, X.-m.Z.), University of South Alabama College of Medicine, Mobile
| | - W G Rusyniak
- Department of Neurosurgery (W.G.R.), University of South Alabama College of Medicine, Mobile
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis (Yan Xu)
| | - Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, China (G.Z., Y.J.)
| | - Roger P Simon
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA (R.P.S., Z.-G.X.)
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA (R.P.S., Z.-G.X.)
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology (T.W., G.Z., M.H., Yuanyuan Xu, X.-m.Z.), University of South Alabama College of Medicine, Mobile
| |
Collapse
|
32
|
Liu X, Liu C, Ye J, Zhang S, Wang K, Su R. Distribution of Acid Sensing Ion Channels in Axonal Growth Cones and Presynaptic Membrane of Cultured Hippocampal Neurons. Front Cell Neurosci 2020; 14:205. [PMID: 32733209 PMCID: PMC7358772 DOI: 10.3389/fncel.2020.00205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Although acid-sensing ion channels (ASICs) are widely expressed in the central nervous system, their distribution and roles in axonal growth cones remain unclear. In this study, we examined ASIC localization and function in the axonal growth cones of cultured immature hippocampal neurons. Our immunocytochemical data showed that native and overexpressed ASIC1a and ASIC2a are both localized in growth cones of cultured young hippocampal neurons. Calcium imaging and electrophysiological assay results were utilized to validate their function. The calcium imaging test results indicated that the ASICs (primarily ASIC1a) present in growth cones mediate calcium influx despite the addition of voltage-gated Ca2+ channels antagonists and the depletion of intracellular calcium stores. The electrophysiological tests results suggested that a rapid decrease in extracellular pH at the growth cones of voltage-clamped neurons elicits inward currents that were blocked by bath application of the ASIC antagonist amiloride, showing that the ASICs expressed at growth cones are functional. The subsequent immuno-colocalization test results demonstrated that ASIC1a and ASIC2a are both colocalized with Neurofilament-H and Bassoon in mature hippocampal neurons. This finding demonstrated that after reaching maturity, ASIC1a and ASIC2a are both distributed in axons and the presynaptic membrane. Our data reveal the distribution of functional ASICs in growth cones of immature hippocampal neurons and the presence of ASICs in the axons and presynaptic membrane of mature hippocampal neurons, indicating a possible role for ASICs in axonal guidance, synapse formation and neurotransmitter release.
Collapse
Affiliation(s)
- Xiaoyan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Can Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiamin Ye
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Shuzhuo Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Kai Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
33
|
Yoder N, Gouaux E. The His-Gly motif of acid-sensing ion channels resides in a reentrant 'loop' implicated in gating and ion selectivity. eLife 2020; 9:e56527. [PMID: 32496192 PMCID: PMC7308080 DOI: 10.7554/elife.56527] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated members of the epithelial sodium channel/degenerin (ENaC/DEG) superfamily of ion channels and are expressed throughout the central and peripheral nervous systems. The homotrimeric splice variant ASIC1a has been implicated in nociception, fear memory, mood disorders and ischemia. Here, we extract full-length chicken ASIC1 (cASIC1) from cell membranes using styrene maleic acid (SMA) copolymer, elucidating structures of ASIC1 channels in both high pH resting and low pH desensitized conformations by single-particle cryo-electron microscopy (cryo-EM). The structures of resting and desensitized channels reveal a reentrant loop at the amino terminus of ASIC1 that includes the highly conserved 'His-Gly' (HG) motif. The reentrant loop lines the lower ion permeation pathway and buttresses the 'Gly-Ala-Ser' (GAS) constriction, thus providing a structural explanation for the role of the His-Gly dipeptide in the structure and function of ASICs.
Collapse
Affiliation(s)
- Nate Yoder
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
- Howard Hughes Medical Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
34
|
Gutman AL, Cosme CV, Noterman MF, Worth WR, Wemmie JA, LaLumiere RT. Overexpression of ASIC1A in the nucleus accumbens of rats potentiates cocaine-seeking behavior. Addict Biol 2020; 25:e12690. [PMID: 30397978 PMCID: PMC9092352 DOI: 10.1111/adb.12690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022]
Abstract
Acid-sensing ion channels (ASICs) are abundantly expressed in the nucleus accumbens core (NAcore), a region of the mesolimbocortical system that has an established role in regulating drug-seeking behavior. Previous work shows that a single dose of cocaine reduced the AMPA-to-NMDA ratio in Asic1a-/- mice, an effect observed after withdrawal in wild-type mice, whereas ASIC1A overexpression in the NAcore of rats decreases cocaine self-administration. However, whether ASIC1A overexpression in the NAcore alters measures of drug-seeking behavior after the self-administration period is unknown. To examine this issue, the ASIC1A subunit was overexpressed in male Sprague-Dawley rats by injecting them with adeno-associated virus, targeted at the NAcore, after completion of 2 weeks of cocaine or food self-administration. After 21 days of homecage abstinence, rats underwent a cue-/context-driven drug/food-seeking test, followed by extinction training and then drug/food-primed, cued, and cued + drug/food-primed reinstatement tests. The results indicate that ASIC1A overexpression in the NAcore enhanced cue-/context-driven cocaine seeking, cocaine-primed reinstatement, and cued + cocaine-primed reinstatement but had no effect on food-seeking behavior, indicating a selective effect for ASIC1A in the processes underlying extinction and cocaine-seeking behavior.
Collapse
Affiliation(s)
- Andrea L. Gutman
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242
| | - Caitlin V. Cosme
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242
| | - Maria F. Noterman
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
| | - Wensday R. Worth
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242
| | - John A. Wemmie
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| | - Ryan T. LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
35
|
Takagaki N, Ohta A, Ohnishi K, Kawanabe A, Minakuchi Y, Toyoda A, Fujiwara Y, Kuhara A. The mechanoreceptor DEG-1 regulates cold tolerance in Caenorhabditis elegans. EMBO Rep 2020; 21:e48671. [PMID: 32009302 PMCID: PMC7054665 DOI: 10.15252/embr.201948671] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Caenorhabditis elegans mechanoreceptors located in ASG sensory neurons have been found to sense ambient temperature, which is a key trait for animal survival. Here, we show that experimental loss of xanthine dehydrogenase (XDH-1) function in AIN and AVJ interneurons results in reduced cold tolerance and atypical neuronal response to changes in temperature. These interneurons connect with upstream neurons such as the mechanoreceptor-expressing ASG. Ca2+ imaging revealed that ASG neurons respond to warm temperature via the mechanoreceptor DEG-1, a degenerin/epithelial Na+ channel (DEG/ENaC), which in turn affects downstream AIN and AVJ circuits. Ectopic expression of DEG-1 in the ASE gustatory neuron results in the acquisition of warm sensitivity, while electrophysiological analysis revealed that DEG-1 and human MDEG1 were involved in warm sensation. Taken together, these results suggest that cold tolerance is regulated by mechanoreceptor-mediated circuit calculation.
Collapse
Affiliation(s)
- Natsune Takagaki
- Graduate School of Natural Science, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Konan University, Kobe, Japan
| | - Akane Ohta
- Graduate School of Natural Science, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Konan University, Kobe, Japan.,Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Kohei Ohnishi
- Graduate School of Natural Science, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Konan University, Kobe, Japan
| | - Akira Kawanabe
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yohei Minakuchi
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan.,Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan.,Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yuichiro Fujiwara
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Konan University, Kobe, Japan.,Faculty of Science and Engineering, Konan University, Kobe, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
36
|
Mango D, Nisticò R. Role of ASIC1a in Normal and Pathological Synaptic Plasticity. Rev Physiol Biochem Pharmacol 2020; 177:83-100. [PMID: 32789788 DOI: 10.1007/112_2020_45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acid-sensing ion channels (ASICs), members of the degenerin/epithelial Na+ channel superfamily, are broadly distributed in the mammalian nervous system where they play important roles in a variety of physiological processes, including neurotransmission and memory-related behaviors. In the last few years, we and others have investigated the role of ASIC1a in different forms of synaptic plasticity especially in the CA1 area of the hippocampus. This review summarizes the latest research linking ASIC1a to synaptic function either in physiological or pathological conditions. A better understanding of how these channels are regulated in brain circuitries relevant to synaptic plasticity and memory may offer novel targets for pharmacological intervention in neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Dalila Mango
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.
| | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
- School of Pharmacy, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
37
|
Faraci FM, Taugher RJ, Lynch C, Fan R, Gupta S, Wemmie JA. Acid-Sensing Ion Channels: Novel Mediators of Cerebral Vascular Responses. Circ Res 2019; 125:907-920. [PMID: 31451088 PMCID: PMC6813889 DOI: 10.1161/circresaha.119.315024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RATIONALE Precise regulation of cerebral blood flow is critical for normal brain function. Insufficient cerebral blood flow contributes to brain dysfunction and neurodegeneration. Carbon dioxide (CO2), via effects on local acidosis, is one of the most potent regulators of cerebral blood flow. Although a role for nitric oxide in intermediate signaling has been implicated, mechanisms that initiate CO2-induced vasodilation remain unclear. OBJECTIVE Acid-sensing ion channel-1A (ASIC1A) is a proton-gated cation channel that is activated by extracellular acidosis. Based on work that implicated ASIC1A in the amygdala and bed nucleus of the stria terminalis in CO2-evoked and acid-evoked behaviors, we hypothesized that ASIC1A might also mediate microvascular responses to CO2. METHODS AND RESULTS To test this hypothesis, we genetically and pharmacologically manipulated ASIC1A and assessed effects on CO2-induced dilation of cerebral arterioles in vivo. Effects of inhalation of 5% or 10% CO2 on arteriolar diameter were greatly attenuated in mice with global deficiency in ASIC1A (Asic1a-/-) or by local treatment with the ASIC inhibitor, psalmotoxin. Vasodilator effects of acetylcholine, which acts via endothelial nitric oxide synthase were unaffected, suggesting a nonvascular source of nitric oxide may be key for CO2 responses. Thus, we tested whether neurons may be the cell type through which ASIC1A influences microvessels. Using mice in which Asic1a was specifically disrupted in neurons, we found effects of CO2 on arteriolar diameter were also attenuated. CONCLUSIONS Together, these data are consistent with a model wherein activation of ASIC1A, particularly in neurons, is critical for CO2-induced nitric oxide production and vasodilation. With these findings, ASIC1A emerges as major regulator of microvascular tone.
Collapse
Affiliation(s)
- Frank M. Faraci
- Department of Internal Medicine, Francois M. Abboud Cardiovascular Center, Papajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Department of Veterans Affairs Medical Center, Iowa City, IA 52242
- Department of Pharmacology, Francois M. Abboud Cardiovascular Center, Papajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Department of Veterans Affairs Medical Center, Iowa City, IA 52242
| | - Rebecca J. Taugher
- Department of Psychiatry, Francois M. Abboud Cardiovascular Center, Papajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Department of Veterans Affairs Medical Center, Iowa City, IA 52242
| | - Cynthia Lynch
- Department of Internal Medicine, Francois M. Abboud Cardiovascular Center, Papajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Department of Veterans Affairs Medical Center, Iowa City, IA 52242
| | - Rong Fan
- Department of Psychiatry, Francois M. Abboud Cardiovascular Center, Papajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Department of Veterans Affairs Medical Center, Iowa City, IA 52242
| | - Subhash Gupta
- Department of Psychiatry, Francois M. Abboud Cardiovascular Center, Papajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Department of Veterans Affairs Medical Center, Iowa City, IA 52242
| | - John A. Wemmie
- Department of Psychiatry, Francois M. Abboud Cardiovascular Center, Papajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Department of Veterans Affairs Medical Center, Iowa City, IA 52242
| |
Collapse
|
38
|
Ghobbeh A, Taugher RJ, Alam SM, Fan R, LaLumiere RT, Wemmie JA. A novel role for acid-sensing ion channels in Pavlovian reward conditioning. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12531. [PMID: 30375184 PMCID: PMC6818262 DOI: 10.1111/gbb.12531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/01/2022]
Abstract
Pavlovian fear conditioning has been shown to depend on acid-sensing ion channel-1A (ASIC1A); however, it is unknown whether conditioning to rewarding stimuli also depends on ASIC1A. Here, we tested the hypothesis that ASIC1A contributes to Pavlovian conditioning to a non-drug reward. We found effects of ASIC1A disruption depended on the relationship between the conditional stimulus (CS) and the unconditional stimulus (US), which was varied between five experiments. In experiment 1, when the CS preceded the US signaling an upcoming reward, Asic1a-/- mice exhibited a deficit in conditioning compared to Asic1a+/+ mice. Alternatively, in experiment 2, when the CS coinitiated with the US and signaled immediate reward availability, the Asic1a-/- mice exhibited an increase in conditioned responses compared to Asic1a+/+ mice, which contrasted with the deficits in the first experiment. Furthermore, in experiments 3 and 4, when the CS partially overlapped in time with the US, or the CS was shortened and coinitiated with the US, the Asic1a-/- mice did not differ from control mice. The contrasting outcomes were likely because of differences in conditioning because in experiment 5 neither the Asic1a-/- nor Asic1a+/+ mice acquired conditioned responses when the CS and US were explicitly unpaired. Taken together, these results suggest that the effects of ASIC1A disruption on reward conditioning depend on the temporal relationship between the CS and US. Furthermore, these results suggest that ASIC1A plays a critical, yet nuanced role in Pavlovian conditioning. More research will be needed to deconstruct the roles of ASIC1A in these fundamental forms of learning and memory.
Collapse
Affiliation(s)
- Ali Ghobbeh
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Rebecca J. Taugher
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Syed M. Alam
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Ryan T. LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, USA
- Department of Neurosurgery, University of Iowa, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
39
|
Abstract
Degenerin/Epithelial Sodium Channels (DEG/ENaCs) are a large family of animal-specific non-voltage gated ion channels, with enriched expression in neuronal and epithelial tissues. While neuronal DEG/ENaCs were originally characterized as sensory receptor channels, recent studies indicate that several DEG/ENaC family members are also expressed throughout the central nervous system. Human genome-wide association studies have linked DEG/ENaC-coding genes with several neurologic and psychiatric disorders, including epilepsy and panic disorder. In addition, studies in rodent models further indicate that DEG/ENaC activity in the brain contributes to many behaviors, including those related to anxiety and long-term memory. Although the exact neurophysiological functions of DEG/ENaCs remain mostly unknown, several key studies now suggest that multiple family members might exert their neuronal function via the direct modulation of synaptic processes. Here, we review and discuss recent findings on the synaptic functions of DEG/ENaCs in both vertebrate and invertebrate species, and propose models for their possible roles in synaptic physiology.
Collapse
Affiliation(s)
- Alexis S Hill
- a Department of Biology , Washington University in St. Louis , St. Louis , USA
| | - Yehuda Ben-Shahar
- a Department of Biology , Washington University in St. Louis , St. Louis , USA
| |
Collapse
|
40
|
Uchitel OD, González Inchauspe C, Weissmann C. Synaptic signals mediated by protons and acid-sensing ion channels. Synapse 2019; 73:e22120. [PMID: 31180161 DOI: 10.1002/syn.22120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/04/2023]
Abstract
Extracellular pH changes may constitute significant signals for neuronal communication. During synaptic transmission, changes in pH in the synaptic cleft take place. Its role in the regulation of presynaptic Ca2+ currents through multivesicular release in ribbon-type synapses is a proven phenomenon. In recent years, protons have been recognized as neurotransmitters that participate in neuronal communication in synapses of several regions of the CNS such as amygdala, nucleus accumbens, and brainstem. Protons are released by nerve stimulation and activate postsynaptic acid-sensing ion channels (ASICs). Several types of ASIC channels are expressed in the peripheral and central nervous system. The influx of Ca2+ through some subtypes of ASICs, as a result of synaptic transmission, agrees with the participation of ASICs in synaptic plasticity. Pharmacological and genetical inhibition of ASIC1a results in alterations in learning, memory, and phenomena like fear and cocaine-seeking behavior. The recognition of endogenous molecules, such as arachidonic acid, cytokines, histamine, spermine, lactate, and neuropeptides, capable of inhibiting or potentiating ASICs suggests the existence of mechanisms of synaptic modulation that have not yet been fully identified and that could be tuned by new emerging pharmacological compounds with potential therapeutic benefits.
Collapse
Affiliation(s)
- Osvaldo D Uchitel
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlota González Inchauspe
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carina Weissmann
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
41
|
Mango D, Nisticò R. Acid-Sensing Ion Channel 1a Is Involved in N-Methyl D-Aspartate Receptor-Dependent Long-Term Depression in the Hippocampus. Front Pharmacol 2019; 10:555. [PMID: 31178731 PMCID: PMC6537656 DOI: 10.3389/fphar.2019.00555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/02/2019] [Indexed: 11/29/2022] Open
Abstract
Acid-sensing ion channels (ASICs), members of the degenerin/epithelial Na+ channel superfamily, are largely expressed in the mammalian nervous system. ASIC1a is highly permeable to Ca2+ and are involved in many physiological processes, including synaptic plasticity, learning, and memory. To clarify the role of ASIC1a in synaptic transmission and plasticity, we investigated N-methyl D-aspartate (NMDA) receptor-dependent long-term depression (LTD) in the CA1 region of the hippocampus. We found that: (1) ASIC1a mediates a component of ASIC1a excitatory postsynaptic currents (EPSCs); (2) ASIC1a plays a role in electrical LTD induced by LFS protocol both in P13-18 and P30-40 animals; (3) ASIC1a is involved in chemical LTD induced by brief bath application of NMDA both in P13-18 and P30-40 animals; and finally (4) a functional interaction between ASIC1a and NMDA receptors occurs during LTD. These findings suggest a new role for ASIC1a in specific forms of synaptic plasticity in the mouse hippocampus.
Collapse
Affiliation(s)
- D Mango
- Laboratory of Neuropharmacology, European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy
| | - R Nisticò
- Laboratory of Neuropharmacology, European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy.,Department of Biology, School of Pharmacy, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
42
|
Ma CL, Sun H, Yang L, Wang XT, Gao S, Chen XW, Ma ZY, Wang GH, Shi Z, Zheng QY. Acid-Sensing Ion Channel 1a Modulates NMDA Receptor Function Through Targeting NR1/NR2A/NR2B Triheteromeric Receptors. Neuroscience 2019; 406:389-404. [PMID: 30926548 DOI: 10.1016/j.neuroscience.2019.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/02/2023]
Abstract
The over-activation of N-methyl-D-aspartate receptors (NMDARs) is the main cause of neuronal death in brain ischemia. Both the NMDAR and the Acid-sensing ion channel 1a (ASIC1a) are present in the postsynaptic membrane of the central nervous system (CNS) and participate in physiological and pathological processes. However, the specific role played by ASIC1a in these processes remains elusive. We hypothesize that NMDARs are the primary mediators of normal synaptic transmission and excitatory neuronal death, while ASIC1a plays a modulatory role in facilitating NMDAR function. Using various experimental approaches including patch-clamp recordings on hippocampal slices and CHO cells, primary cultures of hippocampal neurons, calcium imaging, Western blot, cDNA transfection studies, and transient middle cerebral artery occlusion (tMCAO) mouse models, we demonstrate that stimulation of ASIC1a facilitates NMDAR function and inhibition of ASIC1a suppresses NMDAR over-activation. One of our key findings is that activation of ASIC1a selectively facilitates the NR1/NR2A/NR2B triheteromeric subtype of NMDAR currents. In accordance, inhibition of ASIC1a profoundly reduced the NMDAR-mediated EPSCs in older mouse brains, which are known to express much higher levels of triheteromeric NMDARs than younger brains. Furthermore, brain infarct sizes were reduced by a greater degree in older mice compared to younger ones when ASIC1a activity was suppressed. These data suggest that ASIC1a activity selectively enhances the function of triheteromeric NMDARs and exacerbates ischemic neuronal death especially in older animal brains. We propose ASIC1a as a novel therapeutic target for preventing and reducing the detrimental effect of brain ischemia in humans.
Collapse
Affiliation(s)
- Chun-Lei Ma
- Department of Physiology, Binzhou Medical University, Yantai Campus, 346 Guanhai Road, Laishan District, Yantai, Shandong, China.
| | - Hui Sun
- Department of Physiology, Binzhou Medical University, Yantai Campus, 346 Guanhai Road, Laishan District, Yantai, Shandong, China
| | - Liu Yang
- Department of Physiology, Binzhou Medical University, Yantai Campus, 346 Guanhai Road, Laishan District, Yantai, Shandong, China
| | - Xing-Tao Wang
- Department of Internal Neurology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Su Gao
- Department of Internal Neurology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Xiao-Wen Chen
- Department of Internal Neurology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Zhi-Yuan Ma
- School of Public Economics and Administration, Shanghai Finance and Economics University, Shanghai, China
| | - Gui-Hua Wang
- Department of Physiology, Binzhou Medical University, Yantai Campus, 346 Guanhai Road, Laishan District, Yantai, Shandong, China
| | - Zhen Shi
- Department of Physiology, Binzhou Medical University, Yantai Campus, 346 Guanhai Road, Laishan District, Yantai, Shandong, China
| | - Qing-Yin Zheng
- Department of Internal Neurology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| |
Collapse
|
43
|
Wu WL, Cheng SJ, Lin SH, Chuang YC, Huang EYK, Chen CC. The Effect of ASIC3 Knockout on Corticostriatal Circuit and Mouse Self-grooming Behavior. Front Cell Neurosci 2019; 13:86. [PMID: 30930747 PMCID: PMC6424217 DOI: 10.3389/fncel.2019.00086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/20/2019] [Indexed: 01/23/2023] Open
Abstract
Stereotypic and/or repetitive behavior is one of the major symptoms of autism spectrum disorder (ASD). Increase of self-grooming behavior is a behavioral phenotype commonly observed in the mouse models for ASD. Previously, we have shown that knockout of acid-sensing ion channel 3 (ASIC3) led to the increased self-grooming behavior in resident-intruder test. Given the facts that ASIC3 is mainly expressed in the peripheral dorsal root ganglion (DRG) and conditional knockout of ASIC3 in the proprioceptors induced proprioception deficits. We speculate a hypothesis that stereotypic phenotype related to ASD, pararalled with striatal dysfunction, might be caused by proprioception defect in the peripheral sensory neuron origin. Herein, we investigate in depth whether and how ASIC3 is involved in the regulation of self-grooming behavior. First, we observed that Asic3 null mutant mice exhibited increased self-grooming in social interaction during juvenile stage. Similarly, they displayed increased self-grooming behavior in a novel cage in the absence of cagemate. To further understand the mechanism by which ASIC3 affects grooming behavior, we analyzed neurochemical, neuropathological and electrophysiological features in the dorsal striatum of Asic3 null mutant mice. Knockout of Asic3 increased dopamine (DA) activity and phospho-ERK immunoreactivities in the dorsal striatum. Furthermore, we detected a lower paired-pulse ratio (PPR) and impaired long-term potentiation (LTP) in corticostriatal circuits in Asic3 null mutant mice as compared with wild-type (WT) littermates. Moreover, knockout of Asic3 altered the medial spiny neurons in the striatum with defects in presynaptic function and decrease of dendritic spines. Lastly, genetic ablation of Asic3 specifically in parvalbumin-positive (PV+) cells resulted in the increase of self-grooming behavior in mice. These findings suggest knockout of Asic3 in the PV+ neurons alters grooming behavior by co-opting corticostriatal circuits.
Collapse
Affiliation(s)
- Wei-Li Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sin-Jhong Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shing-Hong Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Dana Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Yu-Chia Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan Mouse Clinic—National Comprehensive Mouse Phenotyping and Drug Testing Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
44
|
Li MM, Zhou P, Chen XD, Xu HS, Wang J, Chen L, Zhang N, Liu N. NO in the dPAG modulates panic-like responses and ASIC1a expression in the prefrontal cortex and hippocampus in mice. Biochem Biophys Res Commun 2019; 511:274-279. [PMID: 30770101 DOI: 10.1016/j.bbrc.2019.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/04/2019] [Indexed: 01/20/2023]
Abstract
Panic disorder (PD) is a multifactorial neuropsychiatric disorder. Our previous study has demonstrated that the nitric oxide (NO) pathway and the acid-sensing ion channel 1a (ASIC1a) level in the dorsal midbrain periaqueductal gray (dPAG) are involved in the modulation of panic-like responses. In addition, the prefrontal cortex (PFC) and the hippocampus also play a role in panic-like responses. However, no studies have investigated the protein level of ASIC1a in the PFC and hippocampus in a mouse model of panic-like disorders after alteration of the NO pathway in the dPAG. We investigated the production of a panic attack with intra-dPAG injections of SNAP, an NO donor, and 7-NI, an nNOS inhibitor. Moreover, we measured ASIC1a protein levels in the PFC and hippocampus. The rat exposure test (RET) is frequently used as an animal model of panic. In our study, C57BL/6 mice received an intra-dPAG injection of SNAP or 7-NI before RET; neurobehavioral tests were then conducted, followed by mechanistic evaluation through western blot analysis in the PFC and hippocampus. An intra-dPAG infusion of SNAP significantly increased the panic-like effect, whereas treatment with 7-NI decreased fear behavior. Mice treated with SNAP/7-NI showed significantly increased/decreased ASIC1a expression in the PFC, and a decreasing/increasing trend in the hippocampus. The present study suggests that the NO pathway in the dPAG plays a key role in panic-like responses in mice confronted by a rat, further, NO intra-dPAG injection also modulates the ASIC1a expression levels in the PFC and hippocampus.
Collapse
Affiliation(s)
- Meng-Meng Li
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Ping Zhou
- Department of Medical Psychology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Xiao-Dong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, 210029, China
| | - Huai-Sha Xu
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Jun Wang
- Department of Toxicology, The Key Lab of Modern Toxicology (NJMU), Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ning Zhang
- Department of Medical Psychology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Na Liu
- Department of Medical Psychology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, 210029, China.
| |
Collapse
|
45
|
ASIC1a promotes high glucose and PDGF-induced hepatic stellate cell activation by inducing autophagy through CaMKKβ/ERK signaling pathway. Toxicol Lett 2019; 300:1-9. [DOI: 10.1016/j.toxlet.2018.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/18/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
|
46
|
Yu Z, Wu YJ, Wang YZ, Liu DS, Song XL, Jiang Q, Li Y, Zhang S, Xu NJ, Zhu MX, Li WG, Xu TL. The acid-sensing ion channel ASIC1a mediates striatal synapse remodeling and procedural motor learning. Sci Signal 2018; 11:eaar4481. [PMID: 30087178 PMCID: PMC6324561 DOI: 10.1126/scisignal.aar4481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acid-sensing ion channel 1a (ASIC1a) is abundant in multiple brain regions, including the striatum, which serves as the input nucleus of the basal ganglia and is critically involved in procedural learning and motor memory. We investigated the functional role of ASIC1a in striatal neurons. We found that ASIC1a was critical for striatum-dependent motor coordination and procedural learning by regulating the synaptic plasticity of striatal medium spiny neurons. Global deletion of Asic1a in mice led to increased dendritic spine density but impaired spine morphology and postsynaptic architecture, which were accompanied by the decreased function of N-methyl-d-aspartate (NMDA) receptors at excitatory synapses. These structural and functional changes caused by the loss of ASIC1a were largely mediated by reduced activation (phosphorylation) of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated protein kinases (ERKs). Consequently, Asic1a null mice exhibited poor performance on multiple motor tasks, which was rescued by striatal-specific expression of either ASIC1a or CaMKII. Together, our data reveal a previously unknown mechanism mediated by ASIC1a that promotes the excitatory synaptic function underlying striatum-related procedural learning and memory.
Collapse
Affiliation(s)
- Zhe Yu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan-Jiao Wu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Zhi Wang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Di-Shi Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xing-Lei Song
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qin Jiang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Siyu Zhang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Nan-Jie Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Michael Xi Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Wei-Guang Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
47
|
Zhou P, Xu HS, Li MM, Chen XD, Wang J, Zhou HB, Chen L, Zhang N, Liu N. Mechanism of nitric oxide and acid-sensing ion channel 1a modulation of panic-like behaviour in the dorsal periaqueductal grey of the mouse. Behav Brain Res 2018; 353:32-39. [PMID: 29953907 DOI: 10.1016/j.bbr.2018.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 01/28/2023]
Abstract
Predators induce defensive responses and fear behaviours in prey. The rat exposure test (RET) is frequently used as an animal model of panic. Nitric oxide (NO) which has been reported to be activated by the NMDA receptor, in turn mediates calcium/calmodulin-dependent protein kinase II (CaMKII) signalling pathways in defensive responses. ACCN2, the orthologous human gene of acid-sensing ion channel 1a (ASIC1a), is also associated with panic disorder; however, few studies have focused on the role of ASIC1a in the modulation of panic and calcium/CaMKII signalling by NO. In the present study, NG-nitro-L-arginine-methyl-ester (L-NAME; non-selective NOS inhibitor), S-nitroso-N-acetyl-D,L-penicillamine (SNAP; NO donor), and psalmotoxin (PcTx-1; selective ASIC1a blocker) were administered to the dorsal periaqueductal grey (dPAG) before the predator stimulus, and the roles of NO in the expression of ASIC1a, phosphorylation of CaMKIIα (p-CaMKIIα) and expression of calmodulin (CaM) were investigated. The effects of ASIC1a, p-CaMKIIα and CaM regulation were also examined. Our results showed that intra-dPAG infusion of L-NAME weakened panic-like behaviour and decreased ASIC1a, p-CaMKIIα and CaM expression levels, whereas intra-dPAG infusion of SNAP enhanced panic-like behaviour and increased ASIC1a, p-CaMKIIα and CaM levels. Intra-dPAG infusion of PcTx-1 also weakened panic-like behaviour and decreased p-CaMKIIα expression level. Taken together, these results indicate that NO and ASIC1a are involved in the modulation of RET-induced panic-like behaviour in the dPAG. NO regulates the calcium/CaMKII signalling pathways, and ASIC1a participates in this regulation.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Medical Psychology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Huai-Sha Xu
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Meng-Meng Li
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Xiao-Dong Chen
- Department of Anesthesiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jun Wang
- Department of Toxicology, the Key Lab of Modern Toxicology (NJMU), Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hua-Bin Zhou
- School of Psychology, Nanjing Normal University, Nanjing, 210029, China
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ning Zhang
- Department of Medical Psychology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Na Liu
- Department of Medical Psychology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
48
|
Krauson AJ, Rooney JG, Carattino MD. Molecular basis of inhibition of acid sensing ion channel 1A by diminazene. PLoS One 2018; 13:e0196894. [PMID: 29782492 PMCID: PMC5962070 DOI: 10.1371/journal.pone.0196894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/20/2018] [Indexed: 11/18/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric proton-gated cation permeable ion channels expressed primarily in neurons. Here we employed site-directed mutagenesis and electrophysiology to investigate the mechanism of inhibition of ASIC1a by diminazene. This compound inhibits mouse ASIC1a with a half-maximal inhibitory concentration (IC50) of 2.4 μM. At first, we examined whether neutralizing mutations of Glu79 and Glu416 alter diminazene block. These residues form a hexagonal array in the lower palm domain that was previously shown to contribute to pore opening in response to extracellular acidification. Significantly, single Gln substitutions at positions 79 and 416 in ASIC1a reduced diminazene apparent affinity by 6-7 fold. This result suggests that diminazene inhibits ASIC1a in part by limiting conformational rearrangement in the lower palm domain. Because diminazene is charged at physiological pHs, we assessed whether it inhibits ASIC1a by blocking the ion channel pore. Consistent with the notion that diminazene binds to a site within the membrane electric field, diminazene block showed a strong dependence with the membrane potential. Moreover, a Gly to Ala mutation at position 438, in the ion conduction pathway of ASIC1a, increased diminazene IC50 by one order of magnitude and eliminated the voltage dependence of block. Taken together, our results indicate that the inhibition of ASIC1a by diminazene involves both allosteric modulation and blocking of ion flow through the conduction pathway. Our findings provide a foundation for the development of more selective and potent ASIC pore blockers.
Collapse
Affiliation(s)
- Aram J Krauson
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James G Rooney
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
49
|
Lehmke L, Coburn M, Möller M, Blaumeiser-Debarry R, Lenzig P, Wiemuth D, Gründer S. Inhalational anesthetics accelerate desensitization of acid-sensing ion channels. Neuropharmacology 2018; 135:496-505. [PMID: 29627444 DOI: 10.1016/j.neuropharm.2018.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
Acid-sensing ion channels (ASICs) are neuronal Na+ channels that are activated by extracellular acidification. Inhibiting ASICs is neuroprotective in mouse models of ischemic stroke. As inhalational anesthetics interact with many ion channels and as some of them have neuroprotective effects, we hypothesized that inhalational anesthetics modulate ASICs. We expressed different homo- and heteromeric ASICs heterologously in Xenopus oocytes. We co-applied with acidic pH the halogenated inhalational anesthetics sevoflurane, desflurane, and isoflurane and the noble gases xenon and argon at concentrations that are roughly equivalent to their minimal alveolar concentrations and analyzed their effect on current kinetics and amplitude. Sevoflurane, desflurane, and isoflurane as well as xenon and argon accelerated by a factor of ∼1.5 channel desensitization of the main ASICs of the central nervous system: homomeric ASIC1a and heteromeric ASIC1a/2a and ASIC1a/2b. Moreover, they decreased current amplitudes by ∼25%. For example, isoflurane accelerated desensitization of homomeric ASIC1a from 1.0 ± 0.4 s (mean ± SD) to 0.6 ± 0.2 s (n = 12; p = 0.0003) and decreased current amplitudes from 12.1 ± 7.5 μA to 9.3 ± 5.6 μA (n = 12; p = 0.0009). While inhalational anesthetics had similar effects on homomeric ASIC3, desensitization of ASIC1b was only accelerated by halogenated anesthetics but not noble gases; desensitization of homomeric ASIC2a was not modulated. In summary, we found a significant modulation of ASICs by different inhalational anesthetics. We conclude that ASICs should be considered as relevant targets of inhalation anesthetics.
Collapse
Affiliation(s)
- Linda Lehmke
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, RWTH Aachen University, Aachen, Germany
| | - Manfred Möller
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | | | - Pia Lenzig
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Dominik Wiemuth
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
50
|
Reznikov LR, Meyerholz DK, Abou Alaiwa M, Kuan SP, Liao YSJ, Bormann NL, Bair TB, Price M, Stoltz DA, Welsh MJ. The vagal ganglia transcriptome identifies candidate therapeutics for airway hyperreactivity. Am J Physiol Lung Cell Mol Physiol 2018; 315:L133-L148. [PMID: 29631359 PMCID: PMC6139658 DOI: 10.1152/ajplung.00557.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mainstay therapeutics are ineffective in some people with asthma, suggesting a need for additional agents. In the current study, we used vagal ganglia transcriptome profiling and connectivity mapping to identify compounds beneficial for alleviating airway hyperreactivity (AHR). As a comparison, we also used previously published transcriptome data from sensitized mouse lungs and human asthmatic endobronchial biopsies. All transcriptomes revealed agents beneficial for mitigating AHR; however, only the vagal ganglia transcriptome identified agents used clinically to treat asthma (flunisolide, isoetarine). We also tested one compound identified by vagal ganglia transcriptome profiling that had not previously been linked to asthma and found that it had bronchodilator effects in both mouse and pig airways. These data suggest that transcriptome profiling of the vagal ganglia might be a novel strategy to identify potential asthma therapeutics.
Collapse
Affiliation(s)
- Leah R Reznikov
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | | | - Mahmoud Abou Alaiwa
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Shin-Ping Kuan
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Yan-Shin J Liao
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | | | - Thomas B Bair
- Iowa Institute of Human Genetics, University of Iowa , Iowa City, Iowa
| | - Margaret Price
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - David A Stoltz
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Molecular Physiology and Biophysics, University of Iowa , Iowa City, Iowa.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Department of Biomedical Engineering, College of Engineering, University of Iowa , Iowa City, Iowa
| | - Michael J Welsh
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Molecular Physiology and Biophysics, University of Iowa , Iowa City, Iowa.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Howard Hughes Medical Institute, University of Iowa , Iowa City, Iowa
| |
Collapse
|