1
|
Time-resolved infrared absorption spectroscopy applied to photoinduced reactions: how and why. Photochem Photobiol Sci 2022; 21:557-584. [DOI: 10.1007/s43630-022-00180-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
|
2
|
Ben Amor N, Heitz M. RASPT2 study of the valence excited states of an iron–porphyrin–carbonyl model complex. J Comput Chem 2019; 40:1614-1621. [DOI: 10.1002/jcc.25819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Nadia Ben Amor
- Laboratoire de Chimie et Physique QuantiquesUniversité de Toulouse et CNRS UT3 ‐ Paul Sabatier 118, Route de Narbonne, F‐31062, Toulouse Cedex France
| | - Marie‐Catherine Heitz
- Laboratoire de Chimie et Physique QuantiquesUniversité de Toulouse et CNRS UT3 ‐ Paul Sabatier 118, Route de Narbonne, F‐31062, Toulouse Cedex France
| |
Collapse
|
3
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
Ben Amor N, Soupart A, Heitz MC. Methodological CASPT2 study of the valence excited states of an iron-porphyrin complex. J Mol Model 2017; 23:53. [DOI: 10.1007/s00894-017-3226-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
5
|
Ross MR, White AM, Yu F, King JT, Pecoraro VL, Kubarych KJ. Histidine Orientation Modulates the Structure and Dynamics of a de Novo Metalloenzyme Active Site. J Am Chem Soc 2015; 137:10164-76. [PMID: 26247178 PMCID: PMC5250509 DOI: 10.1021/jacs.5b02840] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ultrafast dynamics of a de novo metalloenzyme active site is monitored using two-dimensional infrared spectroscopy. The homotrimer of parallel, coiled coil α-helices contains a His3-Cu(I) metal site where CO is bound and serves as a vibrational probe of the hydrophobic interior of the self-assembled complex. The ultrafast spectral dynamics of Cu-CO reveals unprecedented ultrafast (2 ps) nonequilibrium structural rearrangements launched by vibrational excitation of CO. This initial rapid phase is followed by much slower ∼40 ps vibrational relaxation typical of metal-CO vibrations in natural proteins. To identify the hidden coupled coordinate, small molecule analogues and the full peptide were studied by QM and QM/MM calculations, respectively. The calculations show that variation of the histidines' dihedral angles in coordinating Cu controls the coupling between the CO stretch and the Cu-C-O bending coordinates. Analysis of different optimized structures with significantly different electrostatic field magnitudes at the CO ligand site indicates that the origin of the stretch-bend coupling is not directly due to through-space electrostatics. Instead, the large, ∼3.6 D dipole moments of the histidine side chains effectively transduce the electrostatic environment to the local metal coordination orientation. The sensitivity of the first coordination sphere to the protein electrostatics and its role in altering the potential energy surface of the bound ligands suggests that long-range electrostatics can be leveraged to fine-tune function through enzyme design.
Collapse
Affiliation(s)
| | | | | | | | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kevin J. Kubarych
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Soloviov M, Meuwly M. CO-dynamics in the active site of cytochrome c oxidase. J Chem Phys 2015; 140:145101. [PMID: 24735320 DOI: 10.1063/1.4870264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transfer of CO from heme a3 to the Cu(B) site in Cytochrome c oxidase (CcO) after photolysis is studied using molecular dynamics simulations using an explicitly reactive, parametrized potential energy surface based on density functional theory calculations. After photodissociation from the heme-Fe, the CO ligand rebinds to the Cu(B) site on the sub-picosecond time scale. Depending on the simulation protocol the characteristic time ranges from 260 fs to 380 fs which compares with an estimated 450 fs from experiment based on the analysis of the spectral changes as a function of time delay after the photodissociating pulse. Following photoexcitation ≈90% of the ligands are found to rebind to either the Cu(B) (major component, 85%) or the heme-Fe (minor component, 2%) whereas about 10% remain in an unbound state. The infrared spectra of unbound CO in the active site is broad and featureless and no appreciable shift relative to gas-phase CO is found, which is in contrast to the situation in myoglobin. These observations explain why experimentally, unbound CO in the binuclear site of CcO has not been found as yet.
Collapse
Affiliation(s)
- Maksym Soloviov
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Affiliation(s)
- Shinya Yoshikawa
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| |
Collapse
|
8
|
Time-resolved infrared spectroscopic studies of ligand dynamics in the active site from cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:79-85. [PMID: 25117435 DOI: 10.1016/j.bbabio.2014.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
The catalytic site of heme-copper oxidases encompasses two close-lying ligand binding sites: the heme, where oxygen is bound and reduced and the CuB atom, which acts as ligand entry and release port. Diatomic gaseous ligands with a dipole moment, such as the signaling molecules carbon monoxide (CO) and nitric oxide (NO), carry clear infrared spectroscopic signatures in the different states that allow characterization of the dynamics of ligand transfer within, into and out of the active site using time-resolved infrared spectroscopy. We review the nature and diversity of these processes that have in particular been characterized with CO as ligand and which take place on time scales ranging from femtoseconds to milliseconds. These studies have advanced our understanding of the functional ligand pathways and reactivity in enzymes and more globally represent intriguing model systems for mechanisms of ligand motion in a confined protein environment. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
|
9
|
Peran I, Oudenhoven T, Woys AM, Watson M, Zhang TO, Carrico I, Zanni MT, Raleigh DP. General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins. J Phys Chem B 2014; 118:7946-53. [PMID: 24749542 PMCID: PMC4317048 DOI: 10.1021/jp5008279] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/19/2014] [Indexed: 11/28/2022]
Abstract
A high-sensitivity metal-carbonyl-based IR probe is described that can be incorporated into proteins or other biomolecules in very high yield via Click chemistry. A two-step strategy is demonstrated. First, a methionine auxotroph is used to incorporate the unnatural amino acid azidohomoalanine at high levels. Second, a tricarbonyl (η(5)-cyclopentadienyl) rhenium(I) probe modified with an alkynyl linkage is coupled via the Click reaction. We demonstrate these steps using the C-terminal domain of the ribosomal protein L9 as a model system. An overall incorporation level of 92% was obtained at residue 109, which is a surface-exposed residue. Incorporation of the probe into a surface site is shown not to perturb the stability or structure of the target protein. Metal carbonyls are known to be sensitive to solvation and protein electrostatics through vibrational lifetimes and frequency shifts. We report that the frequencies and lifetimes of this probe also depend on the isotopic composition of the solvent. Comparison of the lifetimes measured in H2O versus D2O provides a probe of solvent accessibility. The metal carbonyl probe reported here provides an easy and robust method to label very large proteins with an amino-acid-specific tag that is both environmentally sensitive and a very strong absorber.
Collapse
Affiliation(s)
- Ivan Peran
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tracey Oudenhoven
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396, United States
| | - Ann Marie Woys
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396, United States
| | - Matthew
D. Watson
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tianqi O. Zhang
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396, United States
| | - Isaac Carrico
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396, United States
| | - Daniel P. Raleigh
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
10
|
Ultrafast infrared spectroscopy in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:2-11. [PMID: 24973600 DOI: 10.1016/j.bbabio.2014.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 11/22/2022]
Abstract
In recent years visible pump/mid-infrared (IR) probe spectroscopy has established itself as a key technology to unravel structure-function relationships underlying the photo-dynamics of complex molecular systems. In this contribution we review the most important applications of mid-infrared absorption difference spectroscopy with sub-picosecond time-resolution to photosynthetic complexes. Considering several examples, such as energy transfer in photosynthetic antennas and electron transfer in reaction centers and even more intact structures, we show that the acquisition of ultrafast time resolved mid-IR spectra has led to new insights into the photo-dynamics of the considered systems and allows establishing a direct link between dynamics and structure, further strengthened by the possibility of investigating the protein response signal to the energy or electron transfer processes. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
|
11
|
Knorr J, Rudolf P, Nuernberger P. A comparative study on chirped-pulse upconversion and direct multichannel MCT detection. OPTICS EXPRESS 2013; 21:30693-30706. [PMID: 24514645 DOI: 10.1364/oe.21.030693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A comparative study is carried out on two spectroscopic techniques employed to detect ultrafast absorption changes in the mid-infrared spectral range, namely direct multichannel detection via HgCdTe (MCT) photodiode arrays and the newly established technique of chirped-pulse up-conversion (CPU). Whereas both methods are meanwhile individually used in a routine manner, we directly juxtapose their applicability in femtosecond pump-probe experiments based on 1 kHz shot-to-shot data acquisition. Additionally, we examine different phase-matching conditions in the CPU scheme for a given mid-infrared spectrum, thereby simultaneously detecting signals which are separated by more than 200 cm(-1).
Collapse
|
12
|
Kubo M, Nakashima S, Yamaguchi S, Ogura T, Mochizuki M, Kang J, Tateno M, Shinzawa-Itoh K, Kato K, Yoshikawa S. Effective pumping proton collection facilitated by a copper site (CuB) of bovine heart cytochrome c oxidase, revealed by a newly developed time-resolved infrared system. J Biol Chem 2013; 288:30259-30269. [PMID: 23996000 DOI: 10.1074/jbc.m113.473983] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
X-ray structural and mutational analyses have shown that bovine heart cytochrome c oxidase (CcO) pumps protons electrostatically through a hydrogen bond network using net positive charges created upon oxidation of a heme iron (located near the hydrogen bond network) for O2 reduction. Pumping protons are transferred by mobile water molecules from the negative side of the mitochondrial inner membrane through a water channel into the hydrogen bond network. For blockage of spontaneous proton back-leak, the water channel is closed upon O2 binding to the second heme (heme a3) after complete collection of the pumping protons in the hydrogen bond network. For elucidation of the structural bases for the mechanism of the proton collection and timely closure of the water channel, conformational dynamics after photolysis of CO (an O2 analog)-bound CcO was examined using a newly developed time-resolved infrared system feasible for accurate detection of a single C=O stretch band of α-helices of CcO in H2O medium. The present results indicate that migration of CO from heme a3 to CuB in the O2 reduction site induces an intermediate state in which a bulge conformation at Ser-382 in a transmembrane helix is eliminated to open the water channel. The structural changes suggest that, using a conformational relay system, including CuB, O2, heme a3, and two helix turns extending to Ser-382, CuB induces the conformational changes of the water channel that stimulate the proton collection, and senses complete proton loading into the hydrogen bond network to trigger the timely channel closure by O2 transfer from CuB to heme a3.
Collapse
Affiliation(s)
| | | | - Satoru Yamaguchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Akoh, Hyogo 678-1297 and
| | - Takashi Ogura
- From the Picobiology Institute,; Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Akoh, Hyogo 678-1297 and; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | - Masaru Tateno
- From the Picobiology Institute,; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | - Shinya Yoshikawa
- From the Picobiology Institute,; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
13
|
Zhu J, Mathes T, Stahl AD, Kennis JT, Louise Groot* M. Lower frequency region mid-infrared spectroscopy by chirped pulse upconversion. EPJ WEB OF CONFERENCES 2013. [DOI: 10.1051/epjconf/20134109004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
Chen H, Bian H, Li J, Wen X, Zheng J. Ultrafast multiple-mode multiple-dimensional vibrational spectroscopy. INT REV PHYS CHEM 2012. [DOI: 10.1080/0144235x.2012.733116] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Zhu J, Mathes T, Stahl AD, Kennis JTM, Groot ML. Ultrafast mid-infrared spectroscopy by chirped pulse upconversion in 1800-1000cm(-1) region. OPTICS EXPRESS 2012; 20:10562-10571. [PMID: 22565682 DOI: 10.1364/oe.20.010562] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Broadband femtosecond mid-infrared pulses can be converted into the visible spectral region by chirped pulse upconversion. We report here the upconversion of pump probe transient signals in the frequency region below 1800cm(-1), using the nonlinear optical crystal AgGaGeS4, realizing an important expansion of the application range of this method. Experiments were demonstrated with a slab of GaAs, in which the upconverted signals cover a window of 120cm(-1), with 1.5cm(-1) resolution. In experiments on the BLUF photoreceptor Slr1694, signals below 1 milliOD were well resolved after baseline correction. Possibilities for further optimization of the method are discussed. We conclude that this method is an attractive alternative for the traditional MCT arrays used in most mid-infrared pump probe experiments.
Collapse
Affiliation(s)
- Jingyi Zhu
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Porrini M, Daskalakis V, Farantos SC. Exploring the topography of free energy surfaces and kinetics of cytochrome c oxidases interacting with small ligands. RSC Adv 2012. [DOI: 10.1039/c2ra20625k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Benabbas A, Ye X, Kubo M, Zhang Z, Maes EM, Montfort WR, Champion PM. Ultrafast dynamics of diatomic ligand binding to nitrophorin 4. J Am Chem Soc 2010; 132:2811-20. [PMID: 20121274 DOI: 10.1021/ja910005b] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nitrophorin 4 (NP4) is a heme protein that stores and delivers nitric oxide (NO) through pH-sensitive conformational change. This protein uses the ferric state of a highly ruffled heme to bind NO tightly at low pH and release it at high pH. In this work, the rebinding kinetics of NO and CO to NP4 are investigated as a function of iron oxidation state and the acidity of the environment. The geminate recombination process of NO to ferrous NP4 at both pH 5 and pH 7 is dominated by a single approximately 7 ps kinetic phase that we attribute to the rebinding of NO directly from the distal pocket. The lack of pH dependence explains in part why NP4 cannot use the ferrous state to fulfill its function. The kinetic response of ferric NP4NO shows two distinct phases. The relative geminate amplitude of the slower phase increases dramatically as the pH is raised from 5 to 8. We assign the fast phase of NO rebinding to a conformation of the ferric protein with a closed hydrophobic pocket. The slow phase is assigned to the protein in an open conformation with a more hydrophilic heme pocket environment. Analysis of the ultrafast kinetics finds the equilibrium off-rate of NO to be proportional to the open state population as well as the pH-dependent amplitude of escape from the open pocket. When both factors are considered, the off-rate increases by more than an order of magnitude as the pH changes from 5 to 8. The recombination of CO to ferrous NP4 is observed to have a large nonexponential geminate amplitude with rebinding time scales of approximately 10(-11)-10(-9) s at pH 5 and approximately 10(-10)-10(-8) s at pH 7. The nonexponential CO rebinding kinetics at both pH 5 and pH 7 are accounted for using a simple model that has proven effective for understanding CO binding in a variety of other heme systems (Ye, X.; et al. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 14682).
Collapse
Affiliation(s)
- Abdelkrim Benabbas
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Lucas HR, Meyer GJ, Karlin KD. Carbon monoxide and nitrogen monoxide ligand dynamics in synthetic heme and heme-copper complex systems. J Am Chem Soc 2009; 131:13924-5. [PMID: 19736941 DOI: 10.1021/ja906172c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intermolecular nitrogen monoxide (*NO) and carbon monoxide (CO) transfer from iron to copper and back, a phenomenon not previously observed, has been accomplished by employing transient-absorbance laser flash photolysis methods. A 1:1 heme/copper component system consisting of a six-coordinate ferrous species, F(8)Fe(II)(CO)(DCIM) or F(8)Fe(II)(NO)(thf) [F(8) = tetrakis(2,6-difluorophenyl)porphyrinate(2-); DCIM = 1,5-dicyclohexylimidazole; thf = tetrahydrofuran], and two ligand-copper(I) complexes, one with tridentate [(Bz)L = (benzyl)bis(2-pyridylmethyl)amine] and one with tetradentate coordination [(Py)L = tris(2-pyridylmethyl)amine], was utilized. The results suggest a lower affinity for NO versus CO binding to copper(I) and a higher rate for NO versus CO binding to heme. In fact, the latter event has been observed in cytochrome c oxidase aa(3).
Collapse
Affiliation(s)
- Heather R Lucas
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
19
|
Nuernberger P, Lee KF, Bonvalet A, Polack T, Vos MH, Alexandrou A, Joffre M. Suppression of perturbed free-induction decay and noise in experimental ultrafast pump-probe data. OPTICS LETTERS 2009; 34:3226-3228. [PMID: 19838281 DOI: 10.1364/ol.34.003226] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We apply a Fourier filtering technique for the global removal of coherent contributions, like perturbed free-induction decay, and noise, to experimental pump-probe spectra. A further filtering scheme gains access to spectra otherwise only recordable by scanning the probe's center frequency with adjustable spectral resolution. These methods cleanse pump-probe data and allow improved visualization and simpler analysis of the contained dynamics. We demonstrate these filters using visible pump/mid-infrared probe spectroscopy of ligand dissociation in carboxyhemoglobin.
Collapse
|
20
|
Lee KF, Nuernberger P, Bonvalet A, Joffre M. Removing cross-phase modulation from midinfrared chirped-pulse upconversion spectra. OPTICS EXPRESS 2009; 17:18738-18744. [PMID: 20372606 DOI: 10.1364/oe.17.018738] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We observe that narrow spectral features in mid-infrared spectra obtained by chirped-pulse up-conversion are strongly distorted by cross-phase modulation between the mid-infrared field and the chirped pulse. We discuss the consequences of this effect on spectral resolution, and introduce a correction method that recovers masked lines. This simple correction can be applied either when the upconverted field is fully characterized, such as in multidimensional spectroscopy, or when causality can be used, such as in absorption spectroscopy, which we demonstrate experimentally.
Collapse
Affiliation(s)
- Kevin F Lee
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique Centre National de la Recherche Scientifique, 91128 Palaiseau, France
| | | | | | | |
Collapse
|
21
|
Bian H, Zhao W, Zheng J. Intermolecular vibrational energy exchange directly probed with ultrafast two dimensional infrared spectroscopy. J Chem Phys 2009; 131:124501. [DOI: 10.1063/1.3212618] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Porrini M, Daskalakis V, Farantos SC, Varotsis C. Heme Cavity Dynamics of Photodissociated CO from ba3-Cytochrome c Oxidase: The Role of Ring-D Propionate. J Phys Chem B 2009; 113:12129-35. [DOI: 10.1021/jp904466n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Massimiliano Porrini
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1527, Vasilika Vouton, Heraklion 71110, Crete, Greece, and Department of Chemistry, University of Crete, P.O. Box 2208, Vasilika Vouton, Heraklion 71305, Crete, Greece
| | - Vangelis Daskalakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1527, Vasilika Vouton, Heraklion 71110, Crete, Greece, and Department of Chemistry, University of Crete, P.O. Box 2208, Vasilika Vouton, Heraklion 71305, Crete, Greece
| | - Stavros C. Farantos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1527, Vasilika Vouton, Heraklion 71110, Crete, Greece, and Department of Chemistry, University of Crete, P.O. Box 2208, Vasilika Vouton, Heraklion 71305, Crete, Greece
| | - Constantinos Varotsis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1527, Vasilika Vouton, Heraklion 71110, Crete, Greece, and Department of Chemistry, University of Crete, P.O. Box 2208, Vasilika Vouton, Heraklion 71305, Crete, Greece
| |
Collapse
|
23
|
Farantos SC, Schinke R, Guo H, Joyeux M. Energy Localization in Molecules, Bifurcation Phenomena, and Their Spectroscopic Signatures: The Global View. Chem Rev 2009; 109:4248-71. [DOI: 10.1021/cr900069m] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stavros C. Farantos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, and Department of Chemistry, University of Crete, Iraklion 711 10, Crete, Greece, Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany, Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, and Laboratoire de Spectrométrie Physique, Université Joseph Fourier—Grenoble I, BP 87, F-38402, St. Martin d’Heres Cedex, France
| | - Reinhard Schinke
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, and Department of Chemistry, University of Crete, Iraklion 711 10, Crete, Greece, Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany, Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, and Laboratoire de Spectrométrie Physique, Université Joseph Fourier—Grenoble I, BP 87, F-38402, St. Martin d’Heres Cedex, France
| | - Hua Guo
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, and Department of Chemistry, University of Crete, Iraklion 711 10, Crete, Greece, Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany, Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, and Laboratoire de Spectrométrie Physique, Université Joseph Fourier—Grenoble I, BP 87, F-38402, St. Martin d’Heres Cedex, France
| | - Marc Joyeux
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, and Department of Chemistry, University of Crete, Iraklion 711 10, Crete, Greece, Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany, Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, and Laboratoire de Spectrométrie Physique, Université Joseph Fourier—Grenoble I, BP 87, F-38402, St. Martin d’Heres Cedex, France
| |
Collapse
|
24
|
Lucas HR, Karlin KD. Copper-Carbon Bonds in Mechanistic and Structural Probing of Proteins as well as in Situations where Copper is a Catalytic or Receptor Site. METAL-CARBON BONDS IN ENZYMES AND COFACTORS 2009. [DOI: 10.1039/9781847559333-00295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
While copper-carbon bonds are well appreciated in organometallic synthetic chemistry, such occurrences are less known in biological settings. By far, the greatest incidence of copper-carbon moieties is in bioinorganic research aimed at probing copper protein active site structure and mechanism; for example, carbon monoxide (CO) binding as a surrogate for O2. Using infrared (IR) spectroscopy, CO coordination to cuprous sites has proven to be an extremely useful tool for determining active site copper ligation (e.g., donor atom number and type). The coupled (hemocyanin, tyrosinase, catechol oxidase) and non-coupled (peptidylglycine α-hydroxylating monooxygenase, dopamine β-monooxygenase) binuclear copper proteins as well as the heme-copper oxidases (HCOs) have been studied extensively via this method. In addition, environmental changes within the vicinity of the active site have been determined based on shifts in the CO stretching frequencies, such as for copper amine oxidases, nitrite reductases and again in the binuclear proteins and HCOs. In many situations, spectroscopic monitoring has provided kinetic and thermodynamic data on CuI-CO formation and CO dissociation from copper(I); recently, processes occurring on a femtosecond timescale have been reported. Copper-cyano moieties have also been useful for obtaining insights into the active site structure and mechanisms of copper-zinc superoxide dismutase, azurin, nitrous oxide reductase, and multi-copper oxidases. Cyanide is a good ligand for both copper(I) and copper(II), therefore multiple physical-spectroscopic techniques can be applied. A more obvious occurrence of a “Cu-C” moiety was recently described for a CO dehydrogenase which contains a novel molybdenum-copper catalytic site. A bacterial copper chaperone (CusF) was recently established to have a novel d-π interaction comprised of copper(I) with the arene containing side-chain of a tryptophan amino acid residue. Meanwhile, good evidence exists that a plant receptor site (ETR1) utilizes copper(I) to sense ethylene, a growth hormone. A copper olfactory receptor has also been suggested. All of the above mentioned occurrences or uses of carbon-containing substrates and/or probes are reviewed and discussed within the framework of copper proteins and other relevant systems.
Collapse
Affiliation(s)
- Heather R. Lucas
- Department of Chemistry, The Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| | - Kenneth D. Karlin
- Department of Chemistry, The Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| |
Collapse
|
25
|
Ultrafast ligand binding dynamics in the active site of native bacterial nitric oxide reductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:919-24. [DOI: 10.1016/j.bbabio.2008.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/03/2008] [Accepted: 03/19/2008] [Indexed: 11/18/2022]
|
26
|
Ultrafast dynamics of ligands within heme proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:15-31. [PMID: 17996720 DOI: 10.1016/j.bbabio.2007.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 10/10/2007] [Accepted: 10/15/2007] [Indexed: 11/21/2022]
Abstract
Physiological bond formation and bond breaking events between proteins and ligands and their immediate consequences are difficult to synchronize and study in general. However, diatomic ligands can be photodissociated from heme, and thus in heme proteins ligand release and rebinding dynamics and trajectories have been studied on timescales of the internal vibrations of the protein that drive many biochemical reactions, and longer. The rapidly expanding number of characterized heme proteins involved in a large variety of functions allows comparative dynamics-structure-function studies. In this review, an overview is given of recent progress in this field, and in particular on initial sensing processes in signaling proteins, and on ligand and electron transfer dynamics in oxidases and cytochromes.
Collapse
|