1
|
Gul M, Navid A, Rashid S. Structural basis of constitutive c-Src kinase activity due to R175L and W118A mutations. J Biomol Struct Dyn 2023; 41:634-645. [PMID: 34854354 DOI: 10.1080/07391102.2021.2010600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cellular Src (c-Src) belongs to a non-receptor membrane-associated tyrosine kinase family that plays essential roles in cellular processes. Growing evidence suggests that R175L and W118A mutations in SH2/SH3 domains of c-Src functionally inactivate these domains leading to constitutive activation of kinase domain (KD). Here we modeled c-SrcR175L, c-SrcW118A and c-SrcW118A+R175L structures by inducing phosphorylation at Y416 or Y527, respectively to characterize the comparative dynamics in the active versus inactive states through molecular dynamics simulation assay. We observed more conformational readjustments in c-Srcopen than its close variants. In particular, C-terminal tail residues of c-SrcW118A-open and c-SrcW118A+R175L-open demonstrate significantly higher transitions. The cross-correlation analysis revealed an anticorrelation behavior in the motion of KD with respect to SH2, SH3 and the linker region of SrcW118A+R175L-open, while in c-SrcWT-open, SH2 and SH3 domains were anticorrelated, while KD and C-terminal tail motions were correlated. Due to these conformational differences, c-Src open forms exhibited lower interaction between pY527 and SH2 domain. Through detailed structural analysis, we observed a uniform myristate binding cavity in c-SrcWT-open, while the myristoyl pockets of mutant forms were deformed. We propose that constitutive activation of mutant Src forms may presumably be achieved by the prolonged membrane binding due to unusual conformations of C-terminal and myristoyl switch residues that may result in a higher dephosphorylation rate at pY527 in the myristoylated c-Src. Thus, our study establishes novel clues to decipher the constitutive activation status of c-Src in response to known mutations that may help in devising novel therapeutic strategies for cancer metastasis treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehreen Gul
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ahmad Navid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
2
|
Huang L, Wright M, Yang S, Blachowicz L, Makowski L, Roux B. Glycine substitution in SH3-SH2 connector of Hck tyrosine kinase causes population shift from assembled to disassembled state. Biochim Biophys Acta Gen Subj 2020; 1864:129604. [PMID: 32224253 PMCID: PMC7366498 DOI: 10.1016/j.bbagen.2020.129604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 03/19/2020] [Indexed: 11/21/2022]
Abstract
A combination of small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations based on a coarse grained model is used to examine the effect of glycine substitutions in the short connector between the SH3 and SH2 domains of Hck, a member of the Src-family kinases. It has been shown previously that the activity of cSrc kinase is upregulated by substitution of 3 residues by glycine in the SH3-SH2 connector. Here, analysis of SAXS data indicates that the population of Hck in the disassembled state increases from 25% in the wild type kinase to 76% in the glycine mutant. This is consistent with the results of free energy perturbation calculations showing that the mutation in the connector shifts the equilibrium from the assembled to the disassembled state. This study supports the notion that the SH3-SH2 connector helps to regulate the activity of tyrosine kinases by shifting the population of the active state of the multidomain protein independent of C-terminal phosphorylation.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, United States of America
| | - Michelle Wright
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, United States of America
| | - Sichun Yang
- Center for Proteomics and Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Lydia Blachowicz
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, United States of America
| | - Lee Makowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States of America
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, United States of America; Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, United States of America.
| |
Collapse
|
3
|
Hao Y, England JP, Bellucci L, Paci E, Hodges HC, Taylor SS, Maillard RA. Activation of PKA via asymmetric allosteric coupling of structurally conserved cyclic nucleotide binding domains. Nat Commun 2019; 10:3984. [PMID: 31484930 PMCID: PMC6726620 DOI: 10.1038/s41467-019-11930-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
Cyclic nucleotide-binding (CNB) domains allosterically regulate the activity of proteins with diverse functions, but the mechanisms that enable the cyclic nucleotide-binding signal to regulate distant domains are not well understood. Here we use optical tweezers and molecular dynamics to dissect changes in folding energy landscape associated with cAMP-binding signals transduced between the two CNB domains of protein kinase A (PKA). We find that the response of the energy landscape upon cAMP binding is domain specific, resulting in unique but mutually coordinated tasks: one CNB domain initiates cAMP binding and cooperativity, whereas the other triggers inter-domain interactions that promote the active conformation. Inter-domain interactions occur in a stepwise manner, beginning in intermediate-liganded states between apo and cAMP-bound domains. Moreover, we identify a cAMP-responsive switch, the N3A motif, whose conformation and stability depend on cAMP occupancy. This switch serves as a signaling hub, amplifying cAMP-binding signals during PKA activation.
Collapse
Affiliation(s)
- Yuxin Hao
- Department of Chemistry, Georgetown University, Washington, DC, 20057, USA
| | - Jeneffer P England
- Department of Chemistry, Georgetown University, Washington, DC, 20057, USA
| | - Luca Bellucci
- NEST, Istituto Nanoscienze del CNR and Scuola Normale Superiore, Pisa, 56127, Italy
| | - Emanuele Paci
- Astbury Centre & School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - H Courtney Hodges
- Department of Molecular and Cellular Biology and Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Bioengineering, Rice University, Houston, Texas, 77005, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093, USA
| | - Rodrigo A Maillard
- Department of Chemistry, Georgetown University, Washington, DC, 20057, USA.
| |
Collapse
|
4
|
Pramanik D, Smith Z, Kells A, Tiwary P. Can One Trust Kinetic and Thermodynamic Observables from Biased Metadynamics Simulations?: Detailed Quantitative Benchmarks on Millimolar Drug Fragment Dissociation. J Phys Chem B 2019; 123:3672-3678. [DOI: 10.1021/acs.jpcb.9b01813] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Debabrata Pramanik
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Zachary Smith
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Adam Kells
- Department of Chemistry, King’s College London, SE1 1DB, London, U.K
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
5
|
Ribeiro JML, Tsai ST, Pramanik D, Wang Y, Tiwary P. Kinetics of Ligand-Protein Dissociation from All-Atom Simulations: Are We There Yet? Biochemistry 2018; 58:156-165. [PMID: 30547565 DOI: 10.1021/acs.biochem.8b00977] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Large parallel gains in the development of both computational resources and sampling methods have now made it possible to simulate dissociation events in ligand-protein complexes with all-atom resolution. Such encouraging progress, together with the inherent spatiotemporal resolution associated with molecular simulations, has left their use for investigating dissociation processes brimming with potential, both in rational drug design, where it can be an invaluable tool for determining the mechanistic driving forces behind dissociation rate constants, and in force-field development, where it can provide a catalog of transient molecular structures with which to refine force fields. Although much progress has been made in making force fields more accurate, reducing their error for transient structures along a transition path could yet prove to be a critical development helping to make kinetic predictions much more accurate. In what follows, we will provide a state-of-the-art compilation of the enhanced sampling methods based on molecular dynamics (MD) simulations used to investigate the kinetics and mechanisms of ligand-protein dissociation processes. Due to the time scales of such processes being slower than what is accessible using straightforward MD simulations, several ingenious schemes are being devised at a rapid rate to overcome this obstacle. Here we provide an up-to-date compendium of such methods and their achievements and shortcomings in extracting mechanistic insight into ligand-protein dissociation. We conclude with a critical and provocative appraisal attempting to answer the title of this Perspective.
Collapse
Affiliation(s)
- João Marcelo Lamim Ribeiro
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States.,Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States
| | - Sun-Ting Tsai
- Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States.,Department of Physics , University of Maryland , College Park , Maryland 20742 , United States
| | - Debabrata Pramanik
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States.,Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States
| | - Yihang Wang
- Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States.,Biophysics Program , University of Maryland , College Park , Maryland 20742 , United States
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States.,Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
6
|
Marzinek JK, Bag N, Huber RG, Holdbrook DA, Wohland T, Verma CS, Bond PJ. A Funneled Conformational Landscape Governs Flavivirus Fusion Peptide Interaction with Lipid Membranes. J Chem Theory Comput 2018; 14:3920-3932. [DOI: 10.1021/acs.jctc.8b00438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jan K. Marzinek
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | | | - Roland G. Huber
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Daniel A. Holdbrook
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | | | - Chandra S. Verma
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 63755
| | - Peter J. Bond
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| |
Collapse
|
7
|
Meng Y, Gao C, Clawson D, Atwell S, Russell M, Vieth M, Roux B. Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models. J Chem Theory Comput 2018; 14:2721-2732. [PMID: 29474075 PMCID: PMC6317529 DOI: 10.1021/acs.jctc.7b01170] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding protein conformational variability remains a challenge in drug discovery. The issue arises in protein kinases, whose multiple conformational states can affect the binding of small-molecule inhibitors. To overcome this challenge, we propose a comprehensive computational framework based on Markov state models (MSMs). Our framework integrates the information from explicit-solvent molecular dynamics simulations to accurately rank-order the accessible conformational variants of a target protein. We tested the methodology using Abl kinase with a reference and blind-test set. Only half of the Abl conformational variants discovered by our approach are present in the disclosed X-ray structures. The approach successfully identified a protein conformational state not previously observed in public structures but evident in a retrospective analysis of Lilly in-house structures: the X-ray structure of Abl with WHI-P154. Using a MSM-derived model, the free energy landscape and kinetic profile of Abl was analyzed in detail highlighting opportunities for targeting the unique metastable states.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Cen Gao
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - David Clawson
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Shane Atwell
- Applied Molecular Evolution, Eli Lilly and Company, Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, CA, 92121, USA
| | - Marijane Russell
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, CA, 92121, USA
| | - Michal Vieth
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, CA, 92121, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
8
|
Saleh T, Rossi P, Kalodimos CG. Atomic view of the energy landscape in the allosteric regulation of Abl kinase. Nat Struct Mol Biol 2017; 24:893-901. [PMID: 28945248 PMCID: PMC5745040 DOI: 10.1038/nsmb.3470] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022]
Abstract
The activity of protein kinases is often regulated in an intramolecular fashion by signaling domains, which feature several phosphorylation or protein-docking sites. How kinases integrate such distinct binding and signaling events to regulate their activities is unclear, especially in quantitative terms. We used NMR spectroscopy to show how structural elements within the Abl regulatory module (RM) synergistically generate a multilayered allosteric mechanism that enables Abl kinase to function as a finely tuned switch. We dissected the structure and energetics of the regulatory mechanism to precisely measure the effects of various activating or inhibiting stimuli on Abl kinase activity. The data provide a mechanistic basis explaining genetic observations and reveal a previously unknown activator region within Abl. Our findings show that drug-resistance mutations in the Abl RM exert their allosteric effect by promoting the activated state of Abl and not by decreasing the drug affinity for the kinase.
Collapse
Affiliation(s)
- Tamjeed Saleh
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paolo Rossi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Charalampos G Kalodimos
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Meng Y, Pond MP, Roux B. Tyrosine Kinase Activation and Conformational Flexibility: Lessons from Src-Family Tyrosine Kinases. Acc Chem Res 2017; 50:1193-1201. [PMID: 28426203 DOI: 10.1021/acs.accounts.7b00012] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein kinases are enzymes that catalyze the covalent transfer of the γ-phosphate of an adenosine triphosphate (ATP) molecule onto a tyrosine, serine, threonine, or histidine residue in the substrate and thus send a chemical signal to networks of downstream proteins. They are important cellular signaling enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Unregulated protein kinase activity is often associated with a wide range of diseases, therefore making protein kinases major therapeutic targets. A prototypical system of central interest to understand the regulation of kinase activity is provided by tyrosine kinase c-Src, which belongs to the family of Src-related non-receptor tyrosine kinases (SFKs). Although the broad picture of autoinhibition via the regulatory domains and via the phosphorylation of the C-terminal tail is well characterized from a structural point of view, a detailed mechanistic understanding at the atomic-level is lacking. Advanced computational methods based on all-atom molecular dynamics (MD) simulations are employed to advance our understanding of tyrosine kinase activation. The computational studies suggest that the isolated kinase domain (KD) is energetically most favorable in the inactive conformation when the activation loop (A-loop) of the KD is not phosphorylated. The KD makes transient visits to a catalytically competent active-like conformation. The process of bimolecular trans-autophosphorylation of the A-loop eventually locks the KD in the active state. Activating point mutations may act by slightly increasing the population of the active-like conformation, enhancing the availability of the A-loop to be phosphorylated. The Src-homology 2 (SH2) and Src-homology 3 (SH3) regulatory domains, depending upon their configuration, either promote the inactive or the active state of the kinase domain. In addition to the roles played by the SH3, SH2, and KD, the Src-homology 4-Unique domain (SH4-U) region also serves as a key moderator of substrate specificity and kinase function. Thus, a fundamental understanding of the conformational propensity of the SH4-U region and how this affects the association to the membrane surface are likely to lead to the discovery of new intermediate states and alternate strategies for inhibition of kinase activity for drug discovery. The existence of a multitude of KD conformations poses a great challenge aimed at the design of specific inhibitors. One promising computational strategy to explore the conformational flexibility of the KD is to construct Markov state models from aggregated MD data.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Biochemistry
and Molecular Biology, Gordon Center for Integrative Science, University of Chicago 929 E 57th Street, Chicago, Illinois 60637, United States
| | - Matthew P. Pond
- Department of Biochemistry
and Molecular Biology, Gordon Center for Integrative Science, University of Chicago 929 E 57th Street, Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry
and Molecular Biology, Gordon Center for Integrative Science, University of Chicago 929 E 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Fajer M, Meng Y, Roux B. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape. J Phys Chem B 2017; 121:3352-3363. [PMID: 27715044 PMCID: PMC5398919 DOI: 10.1021/acs.jpcb.6b08409] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.
Collapse
Affiliation(s)
| | | | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637, USA
| |
Collapse
|
11
|
Noskov SY, Rostovtseva TK, Chamberlin AC, Teijido O, Jiang W, Bezrukov SM. Current state of theoretical and experimental studies of the voltage-dependent anion channel (VDAC). BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1778-90. [PMID: 26940625 PMCID: PMC4877207 DOI: 10.1016/j.bbamem.2016.02.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/04/2023]
Abstract
Voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane provides a controlled pathway for respiratory metabolites in and out of the mitochondria. In spite of the wealth of experimental data from structural, biochemical, and biophysical investigations, the exact mechanisms governing selective ion and metabolite transport, especially the role of titratable charged residues and interactions with soluble cytosolic proteins, remain hotly debated in the field. The computational advances hold a promise to provide a much sought-after solution to many of the scientific disputes around solute and ion transport through VDAC and hence, across the mitochondrial outer membrane. In this review, we examine how Molecular Dynamics, Free Energy, and Brownian Dynamics simulations of the large β-barrel channel, VDAC, advanced our understanding. We will provide a short overview of non-conventional techniques and also discuss examples of how the modeling excursions into VDAC biophysics prospectively aid experimental efforts. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Sergei Yu Noskov
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N1N4, Canada.
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | - Oscar Teijido
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; Department of Medical Epigenetics, Institute of Medical Sciences and Genomic Medicine, EuroEspes Sta. Marta de Babío S/N, 15165 Bergondo, A Coruña, Spain
| | - Wei Jiang
- Leadership Computing Facility, Argonne National Laboratory, 9700S Cass Avenue, Lemont, IL 60439, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Sun H, Chen P, Li D, Li Y, Hou T. Directly Binding Rather than Induced-Fit Dominated Binding Affinity Difference in (S)- and (R)-Crizotinib Bound MTH1. J Chem Theory Comput 2016; 12:851-60. [DOI: 10.1021/acs.jctc.5b00973] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | | |
Collapse
|
13
|
Abstract
For two-component assemblies, an inherent structure diagram (ISD) is the relationship between set inter-subunit energies and the types of kinetic traps (inherent structures) one may obtain from those energies. It has recently been shown that two-component ISDs are apportioned into regions or plateaux within which inherent structures display uniform features (e.g., stoichometries and morphologies). Interestingly, structures from one of the plateaux were also found to be robust outcomes of one type of non-equilibrium growth, which indicates the usefulness of the two-component ISD in predicting outcomes of some types of far-from-equilibrium growth. However, little is known as to how the ISD is apportioned into distinct plateaux. Also, while each plateau displays classes of structures that are morphologically distinct, little is known about the source of these distinct morphologies. This article outlines an analytic treatment of the two-component ISD and shows that the manner in which any ISD is apportioned arises from a single unitless order parameter. Additionally, the analytical framework allows for the characterization of local properties of the trapped structures within each ISD plateau. This work may prove to be useful in the design of novel classes of robust nonequilibrium assemblies.
Collapse
Affiliation(s)
- Ranjan V Mannige
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| |
Collapse
|
14
|
Alvarado JJ, Tarafdar S, Yeh JI, Smithgall TE. Interaction with the Src homology (SH3-SH2) region of the Src-family kinase Hck structures the HIV-1 Nef dimer for kinase activation and effector recruitment. J Biol Chem 2014; 289:28539-53. [PMID: 25122770 DOI: 10.1074/jbc.m114.600031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HIV-1 Nef supports high titer viral replication in vivo and is essential for AIDS progression. Nef function depends on interactions with multiple host cell effectors, including Hck and other Src-family kinases. Here we describe the x-ray crystal structure of Nef in complex with the Hck SH3-SH2 regulatory region to a resolution of 1.86 Å. The complex crystallized as a dimer of complexes, with the conserved Nef PXXPXR motif engaging the Hck SH3 domain. A new intercomplex contact was found between SH3 Glu-93, and Nef Arg-105. Mutagenesis of Hck SH3 Glu-93 interfered with Nef·Hck complex formation and kinase activation in cells. The Hck SH2 domains impinge on the N-terminal region of Nef to stabilize a dimer conformation that exposes Asp-123, a residue critical for Nef function. Our results suggest that in addition to serving as a kinase effector for Nef, Hck binding may reorganize the Nef dimer for functional interaction with other signaling partners.
Collapse
Affiliation(s)
- John Jeff Alvarado
- From the Departments of Microbiology and Molecular Genetics and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| | - Sreya Tarafdar
- From the Departments of Microbiology and Molecular Genetics and Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Joanne I Yeh
- Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| | | |
Collapse
|
15
|
Chauvot de Beauchêne I, Allain A, Panel N, Laine E, Trouvé A, Dubreuil P, Tchertanov L. Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity. PLoS Comput Biol 2014; 10:e1003749. [PMID: 25079768 PMCID: PMC4117417 DOI: 10.1371/journal.pcbi.1003749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/12/2014] [Indexed: 12/03/2022] Open
Abstract
Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D) localized in crucial regulatory segments, the juxtamembrane region (JMR) and the activation (A-) loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts. Receptor tyrosine kinase KIT plays a crucial role in the regulation of cell signaling. This allosterically controlled activity may be affected by gain-of-function mutations that promote the development of several cancers. Identification of the molecular basis of KIT constitutive activation and allosteric regulation has inspired computational study of KIT hotspot mutations. In the present contribution, we investigated the mutation-induced effects on KIT conformational dynamics and intra-protein communication conditionally on the mutation location and the nature of the substituting amino acid. Our data elucidate that all studied mutations stabilize an inactive non-autoinhibited state of KIT over the inactive auto-inhibited state prevalent for the native protein. This shift in the protein conformational landscape promotes KIT constitutive activation. Our in silico analysis established correlations between the structural and dynamical effects induced by oncogenic mutations and the mutants auto-activation rates and drug sensitivities measured in vitro and in vivo. Particularly, the A-loop mutations stabilize the drug-resistant forms, while the JMR mutations may facilitate inhibitors binding to the active site. Cross-correlations established between local and long-range structural and dynamical effects demonstrate the allosteric character of the gain-of-function mutations mode of action.
Collapse
Affiliation(s)
- Isaure Chauvot de Beauchêne
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Ariane Allain
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Nicolas Panel
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Elodie Laine
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Alain Trouvé
- Centre de Mathématiques et de Leurs Applications (CMLA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Patrice Dubreuil
- Inserm, U1068, Signaling, Hematopoiesis and Mechanism of Oncogenesis (CRCM); Institut Paoli-Calmettes; Aix-Marseille University; CNRS, UMR7258, Marseille, France
| | - Luba Tchertanov
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
- Centre de Mathématiques et de Leurs Applications (CMLA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
- * E-mail:
| |
Collapse
|
16
|
Sun H, Li Y, Tian S, Wang J, Hou T. P-loop conformation governed crizotinib resistance in G2032R-mutated ROS1 tyrosine kinase: clues from free energy landscape. PLoS Comput Biol 2014; 10:e1003729. [PMID: 25033171 PMCID: PMC4102447 DOI: 10.1371/journal.pcbi.1003729] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/02/2014] [Indexed: 01/04/2023] Open
Abstract
Tyrosine kinases are regarded as excellent targets for chemical drug therapy of carcinomas. However, under strong purifying selection, drug resistance usually occurs in the cancer cells within a short term. Many cases of drug resistance have been found to be associated with secondary mutations in drug target, which lead to the attenuated drug-target interactions. For example, recently, an acquired secondary mutation, G2032R, has been detected in the drug target, ROS1 tyrosine kinase, from a crizotinib-resistant patient, who responded poorly to crizotinib within a very short therapeutic term. It was supposed that the mutation was located at the solvent front and might hinder the drug binding. However, a different fact could be uncovered by the simulations reported in this study. Here, free energy surfaces were characterized by the drug-target distance and the phosphate-binding loop (P-loop) conformational change of the crizotinib-ROS1 complex through advanced molecular dynamics techniques, and it was revealed that the more rigid P-loop region in the G2032R-mutated ROS1 was primarily responsible for the crizotinib resistance, which on one hand, impaired the binding of crizotinib directly, and on the other hand, shortened the residence time induced by the flattened free energy surface. Therefore, both of the binding affinity and the drug residence time should be emphasized in rational drug design to overcome the kinase resistance. Cancers can eventually confer drug resistance to the continued medication. In most cases, mutations occurred in a drug target can attenuate the binding affinity of the drugs. Here, we studied the drug resistance mechanisms of the mutations G2032R in the ROS1 tyrosine kinase in fusion-type NSCLC. It is well known that the phosphate-binding loop (P-loop) plays a vital role in the binding of competitive inhibitors in tyrosine kinases, and numerous mutations have been found occurred around the P-loop, which may affect the binding/unbinding process of a drug. Free energy surfaces were constructed to characterize the impact of the mutation to the binding/unbinding process of a well-known NSCLC drug, crizotinib. Two advanced free energy calculation methods, namely funnel based well-tempered metadynamics and umbrella sampling based absolute binding free energy calculation achieved consistent results with the experimental data, suggesting that the rigid P-loop of the mutated target was mainly responsible for the crizotinib resistance to ROS1 tyrosine kinase.
Collapse
Affiliation(s)
- Huiyong Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Sheng Tian
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Junmei Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
17
|
Jeong JC, Jo S, Wu EL, Qi Y, Monje-Galvan V, Yeom MS, Gorenstein L, Chen F, Klauda JB, Im W. ST-analyzer: a web-based user interface for simulation trajectory analysis. J Comput Chem 2014; 35:957-63. [PMID: 24638223 DOI: 10.1002/jcc.23584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/07/2014] [Accepted: 02/15/2014] [Indexed: 01/09/2023]
Abstract
Molecular dynamics (MD) simulation has become one of the key tools to obtain deeper insights into biological systems using various levels of descriptions such as all-atom, united-atom, and coarse-grained models. Recent advances in computing resources and MD programs have significantly accelerated the simulation time and thus increased the amount of trajectory data. Although many laboratories routinely perform MD simulations, analyzing MD trajectories is still time consuming and often a difficult task. ST-analyzer, http://im.bioinformatics.ku.edu/st-analyzer, is a standalone graphical user interface (GUI) toolset to perform various trajectory analyses. ST-analyzer has several outstanding features compared to other existing analysis tools: (i) handling various formats of trajectory files from MD programs, such as CHARMM, NAMD, GROMACS, and Amber, (ii) intuitive web-based GUI environment--minimizing administrative load and reducing burdens on the user from adapting new software environments, (iii) platform independent design--working with any existing operating system, (iv) easy integration into job queuing systems--providing options of batch processing either on the cluster or in an interactive mode, and (v) providing independence between foreground GUI and background modules--making it easier to add personal modules or to recycle/integrate pre-existing scripts utilizing other analysis tools. The current ST-analyzer contains nine main analysis modules that together contain 18 options, including density profile, lipid deuterium order parameters, surface area per lipid, and membrane hydrophobic thickness. This article introduces ST-analyzer with its design, implementation, and features, and also illustrates practical analysis of lipid bilayer simulations.
Collapse
Affiliation(s)
- Jong Cheol Jeong
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, 66047
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fowler P, Abad E, Beckstein O, Sansom MSP. Energetics of Multi-Ion Conduction Pathways in Potassium Ion Channels. J Chem Theory Comput 2013; 9:5176-5189. [PMID: 24353479 PMCID: PMC3864263 DOI: 10.1021/ct4005933] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Indexed: 12/18/2022]
Abstract
Potassium ion channels form pores in cell membranes, allowing potassium ions through while preventing the passage of sodium ions. Despite numerous high-resolution structures, it is not yet possible to relate their structure to their single molecule function other than at a qualitative level. Over the past decade, there has been a concerted effort using molecular dynamics to capture the thermodynamics and kinetics of conduction by calculating potentials of mean force (PMF). These can be used, in conjunction with the electro-diffusion theory, to predict the conductance of a specific ion channel. Here, we calculate seven independent PMFs, thereby studying the differences between two potassium ion channels, the effect of the CHARMM CMAP forcefield correction, and the sensitivity and reproducibility of the method. Thermodynamically stable ion-water configurations of the selectivity filter can be identified from all the free energy landscapes, but the heights of the kinetic barriers for potassium ions to move through the selectivity filter are, in nearly all cases, too high to predict conductances in line with experiment. This implies it is not currently feasible to predict the conductance of potassium ion channels, but other simpler channels may be more tractable.
Collapse
Affiliation(s)
- Philip
W. Fowler
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Enrique Abad
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Oliver Beckstein
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Mark S. P. Sansom
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
19
|
Meng Y, Roux B. Locking the active conformation of c-Src kinase through the phosphorylation of the activation loop. J Mol Biol 2013; 426:423-35. [PMID: 24103328 DOI: 10.1016/j.jmb.2013.10.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
Molecular dynamics umbrella sampling simulations are used to compare the relative stability of the active conformation of the catalytic domain of c-Src kinase while the tyrosine 416 in the activation loop (A-loop) is either unphosphorylated or phosphorylated. When the A-loop is unphosphorylated, there is considerable flexibility of the kinase. While the active conformation of the kinase is not forbidden and can be visited transiently, it is not the predominant state. This is consistent with the view that c-Src displays some catalytic activity even when the A-loop is unphosphorylated. In contrast, phosphorylation of the A-loop contributes to stabilize several structural features that are critical for catalysis, such as the hydrophobic regulatory spine, the HRD motif, and the electrostatic switch. In summary, the free-energy landscape calculations demonstrate that phosphorylation of tyrosine 416 in the A-loop essentially "locks" the kinase into its catalytically competent conformation.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
20
|
Corbi-Verge C, Marinelli F, Zafra-Ruano A, Ruiz-Sanz J, Luque I, Faraldo-Gómez JD. Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap. Proc Natl Acad Sci U S A 2013; 110:E3372-80. [PMID: 23959873 PMCID: PMC3767523 DOI: 10.1073/pnas.1303966110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3-SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3-SH2 connector, which involve a phosphorylation site. We also show that the SH3-SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3-SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization.
Collapse
Affiliation(s)
- Carles Corbi-Verge
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - Fabrizio Marinelli
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Ana Zafra-Ruano
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - Javier Ruiz-Sanz
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - Irene Luque
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
21
|
Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE. Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 2013; 41:429-52. [PMID: 22577825 DOI: 10.1146/annurev-biophys-042910-155245] [Citation(s) in RCA: 769] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular dynamics simulations capture the behavior of biological macromolecules in full atomic detail, but their computational demands, combined with the challenge of appropriately modeling the relevant physics, have historically restricted their length and accuracy. Dramatic recent improvements in achievable simulation speed and the underlying physical models have enabled atomic-level simulations on timescales as long as milliseconds that capture key biochemical processes such as protein folding, drug binding, membrane transport, and the conformational changes critical to protein function. Such simulation may serve as a computational microscope, revealing biomolecular mechanisms at spatial and temporal scales that are difficult to observe experimentally. We describe the rapidly evolving state of the art for atomic-level biomolecular simulation, illustrate the types of biological discoveries that can now be made through simulation, and discuss challenges motivating continued innovation in this field.
Collapse
Affiliation(s)
- Ron O Dror
- D. E. Shaw Research, New York, New York 10036, USA.
| | | | | | | | | |
Collapse
|
22
|
Li P, Martins IRS, Rosen MK. The feasibility of parameterizing four-state equilibria using relaxation dispersion measurements. JOURNAL OF BIOMOLECULAR NMR 2011; 51:57-70. [PMID: 21947915 PMCID: PMC3229927 DOI: 10.1007/s10858-011-9541-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/07/2011] [Indexed: 05/03/2023]
Abstract
Coupled equilibria play important roles in controlling information flow in biochemical systems, including allosteric molecules and multidomain proteins. In the simplest case, two equilibria are coupled to produce four interconverting states. In this study, we assessed the feasibility of determining the degree of coupling between two equilibria in a four-state system via relaxation dispersion measurements. A major bottleneck in this effort is the lack of efficient approaches to data analysis. To this end, we designed a strategy to efficiently evaluate the smoothness of the target function surface (TFS). Using this approach, we found that the TFS is very rough when fitting benchmark CPMG data to all adjustable variables of the four-state equilibria. After constraining a portion of the adjustable variables, which can often be achieved through independent biochemical manipulation of the system, the smoothness of TFS improves dramatically, although it is still insufficient to pinpoint the solution. The four-state equilibria can be finally solved with further incorporation of independent chemical shift information that is readily available. We also used Monte Carlo simulations to evaluate how well each adjustable parameter can be determined in a large kinetic and thermodynamic parameter space and how much improvement can be achieved in defining the parameters through additional measurements. The results show that in favorable conditions the combination of relaxation dispersion and biochemical manipulation allow the four-state equilibrium to be parameterized, and thus coupling strength between two processes to be determined.
Collapse
Affiliation(s)
- Pilong Li
- Department of Biochemistry and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA.
| | | | | |
Collapse
|
23
|
Bond PJ, Faraldo-Gómez JD. Molecular mechanism of selective recruitment of Syk kinases by the membrane antigen-receptor complex. J Biol Chem 2011; 286:25872-81. [PMID: 21602568 DOI: 10.1074/jbc.m111.223321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ZAP-70 and Syk are essential tyrosine kinases in intracellular immunological signaling. Both contain an inhibitory SH2 domain tandem, which assembles onto the catalytic domain. Upon binding to doubly phosphorylated ITAM motifs on activated antigen receptors, the arrangement of the SH2 domains changes. From available structures, this event is not obviously conducive to dissociation of the autoinhibited complex, yet it ultimately translates into kinase activation through a mechanism not yet understood. We present a comprehensive theoretical study of this molecular mechanism, using atomic resolution simulations and free-energy calculations, totaling >10 μs of simulation time. Through these, we dissect the microscopic mechanism coupling stepwise ITAM engagement and SH2 tandem structural change and reveal key differences between ZAP-70 and Syk. Importantly, we show that a subtle conformational bias in the inter-SH2 connector causes ITAM to bind preferentially to kinase-dissociated tandems. We thus propose that phosphorylated antigen receptors selectively recruit kinases that are uninhibited and that the resulting population shift in the membrane vicinity sustains signal transduction.
Collapse
Affiliation(s)
- Peter J Bond
- Max Planck Institute of Biophysics and the Cluster of Excellence Macromolecular Complexes, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
24
|
Schlick T, Collepardo-Guevara R, Halvorsen LA, Jung S, Xiao X. Biomolecularmodeling and simulation: a field coming of age. Q Rev Biophys 2011; 44:191-228. [PMID: 21226976 PMCID: PMC3700731 DOI: 10.1017/s0033583510000284] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We assess the progress in biomolecular modeling and simulation, focusing on structure prediction and dynamics, by presenting the field’s history, metrics for its rise in popularity, early expressed expectations, and current significant applications. The increases in computational power combined with improvements in algorithms and force fields have led to considerable success, especially in protein folding, specificity of ligand/biomolecule interactions, and interpretation of complex experimental phenomena (e.g. NMR relaxation, protein-folding kinetics and multiple conformational states) through the generation of structural hypotheses and pathway mechanisms. Although far from a general automated tool, structure prediction is notable for proteins and RNA that preceded the experiment, especially by knowledge-based approaches. Thus, despite early unrealistic expectations and the realization that computer technology alone will not quickly bridge the gap between experimental and theoretical time frames, ongoing improvements to enhance the accuracy and scope of modeling and simulation are propelling the field onto a productive trajectory to become full partner with experiment and a field on its own right.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA.
| | | | | | | | | |
Collapse
|
25
|
Lindfors HE, Venkata BS, Drijfhout JW, Ubbink M. Linker length dependent binding of a focal adhesion kinase derived peptide to the Src SH3-SH2 domains. FEBS Lett 2011; 585:601-5. [PMID: 21266176 DOI: 10.1016/j.febslet.2011.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 11/29/2022]
Abstract
The interaction between a peptide encompassing the SH3 and SH2 binding motifs of focal adhesion kinase (FAK) and the Src SH3-SH2 domains has been investigated with NMR spectroscopy and calorimetry. The binding to both motifs is anti-cooperative. Reduction of the long linker connecting the motifs does not lead to cooperativity. Short linkers that do not allow simultaneous intramolecular binding of the peptide to both motifs cause peptide-mediated dimerisation, even with a linker of only three amino acids. The role of the SH3 binding motif is discussed in view of the independent nature of the SH interactions.
Collapse
Affiliation(s)
- Hanna E Lindfors
- Leiden University, Leiden Institute of Chemistry, Leiden, The Netherlands
| | | | | | | |
Collapse
|
26
|
Abstract
An approach combining small-angle X-ray solution scattering (SAXS) data with coarse-grained (CG) simulations is developed to characterize the assembly states of Hck, a member of the Src-family kinases, under various conditions in solution. First, a basis set comprising a small number of assembly states is generated from extensive CG simulations. Second, a theoretical SAXS profile for each state in the basis set is computed by using the Fast-SAXS method. Finally, the relative population of the different assembly states is determined via a Bayesian-based Monte Carlo procedure seeking to optimize the theoretical scattering profiles against experimental SAXS data. The study establishes the concept of basis-set supported SAXS (BSS-SAXS) reconstruction combining computational and experimental techniques. Here, BSS-SAXS reconstruction is used to reveal the structural organization of Hck in solution and the different shifts in the equilibrium population of assembly states upon the binding of different signaling peptides.
Collapse
|
27
|
Popov AV, Vorob’ev YN. GUI-BioPASED: A program for molecular dynamics simulations of biopolymers with a graphical user interface. Mol Biol 2010. [DOI: 10.1134/s0026893310040217] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Daily MD, Phillips GN, Cui Q. Many local motions cooperate to produce the adenylate kinase conformational transition. J Mol Biol 2010; 400:618-31. [PMID: 20471396 DOI: 10.1016/j.jmb.2010.05.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 04/24/2010] [Accepted: 05/07/2010] [Indexed: 12/17/2022]
Abstract
Conformational transitions are functionally important in many proteins. In the enzyme adenylate kinase (AK), two small domains (LID and NMP) close over the larger CORE domain; the reverse (opening) motion limits the rate of catalytic turnover. Here, using double-well Gō simulations of Escherichia coli AK, we elaborate on previous investigations of the AK transition mechanism by characterizing the contributions of rigid-body (Cartesian), backbone dihedral, and contact motions to transition-state (TS) properties. In addition, we compare an apo simulation to a pseudo-ligand-bound simulation to reveal insights into allostery. In Cartesian space, LID closure precedes NMP closure in the bound simulation, consistent with prior coarse-grained models of the AK transition. However, NMP-first closure is preferred in the apo simulation. In backbone dihedral space, we find that, as expected, backbone fluctuations are reduced in the O/C transition in parts of all three domains. Among these "quenching" residues, most in the CORE, especially residues 11-13, are rigidified in the TS of the bound simulation, while residues 42-44 in the NMP are flexible in the TS. In contact space, in both apo and bound simulations, one nucleus of closed-state contacts includes parts of the NMP and CORE; CORE-LID contacts are absent in the TS of the apo simulation but formed in the TS of the bound simulation. From these results, we predict mutations that will perturb the opening and/or closing transition rates by changing the entropy of dihedrals and/or the enthalpy of contacts. Furthermore, regarding allostery, the fully closed structure is populated in the apo simulation, but our contact results imply that ligand binding shifts the preferred O/C transition pathway, thus precluding a simple conformational selection mechanism. Finally, the analytical approach and the insights derived from this work may inform the rational design of flexibility and allostery in proteins.
Collapse
Affiliation(s)
- Michael D Daily
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
29
|
Yu B, Martins IRS, Li P, Amarasinghe GK, Umetani J, Fernandez-Zapico ME, Billadeau DD, Machius M, Tomchick DR, Rosen MK. Structural and energetic mechanisms of cooperative autoinhibition and activation of Vav1. Cell 2010; 140:246-56. [PMID: 20141838 PMCID: PMC2825156 DOI: 10.1016/j.cell.2009.12.033] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 10/09/2009] [Accepted: 12/17/2009] [Indexed: 12/24/2022]
Abstract
Vav proteins are guanine nucleotide exchange factors (GEFs) for Rho family GTPases. They control processes including T cell activation, phagocytosis, and migration of normal and transformed cells. We report the structure and biophysical and cellular analyses of the five-domain autoinhibitory element of Vav1. The catalytic Dbl homology (DH) domain of Vav1 is controlled by two energetically coupled processes. The DH active site is directly, but weakly, inhibited by a helix from the adjacent Acidic domain. This core interaction is strengthened 10-fold by contacts of the calponin homology (CH) domain with the Acidic, pleckstrin homology, and DH domains. This construction enables efficient, stepwise relief of autoinhibition: initial phosphorylation events disrupt the modulatory CH contacts, facilitating phosphorylation of the inhibitory helix and consequent GEF activation. Our findings illustrate how the opposing requirements of strong suppression of activity and rapid kinetics of activation can be achieved in multidomain systems.
Collapse
Affiliation(s)
- Bingke Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Ilídio R. S. Martins
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
- Departamento de Bioquímica, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Coimbra 3001-401, Portugal
| | - Pilong Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Gaya K. Amarasinghe
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Junko Umetani
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Martin E. Fernandez-Zapico
- Department of Immunology and Division of Oncology Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Daniel D. Billadeau
- Department of Immunology and Division of Oncology Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Mischa Machius
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Diana R. Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Michael K. Rosen
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
- Corresponding author:
| |
Collapse
|
30
|
Woo HJ, Jiang J, Lafer EM, Sousa R. ATP-induced conformational changes in Hsp70: molecular dynamics and experimental validation of an in silico predicted conformation. Biochemistry 2009; 48:11470-7. [PMID: 19883127 DOI: 10.1021/bi901256y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 70 kDa heat shock proteins (Hsp70s) play important roles in preventing the misfolding of proteins and repairing damage under stress by coupling ATP binding and hydrolysis to protein substrate release and binding, respectively. ATP binding is believed to induce closing of the Hsp70 nucleotide binding domain (NBD) around the nucleotide. We report here a combined computational-experimental study of this open-closed transition. All-atom molecular dynamics simulations were performed for isolated open state NBDs with and without bound ATP. The nucleotide-free NBD samples a wide range of open configurations exhibiting flexible rearrangements of its four subdomains (IA-IIB). In contrast, the ATP-bound Hsp70 NBD closes to a range of configurations that is substantially more closed than the conformation observed in crystals of ATP-complexed NBDs. The close approach of subdomains IB and IIB observed in the simulations results in a strong coordination of the fluorescence probe Trp90 of IB with Arg261 of IIB, a feature not seen in the crystal structures. To determine if this computationally observed conformation occurs in solution, we constructed an R261A mutant. The mutation was found to increase the K(m) and k(cat) for ATP and to significantly reduce the extent of the fluorescence quench observed upon ATP binding. Our results thus account for the previously unexplained ATP-driven change in Trp90 fluorescence seen in the isolated NBD.
Collapse
Affiliation(s)
- Hyung-June Woo
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, USA.
| | | | | | | |
Collapse
|
31
|
Azia A, Levy Y. Nonnative Electrostatic Interactions Can Modulate Protein Folding: Molecular Dynamics with a Grain of Salt. J Mol Biol 2009; 393:527-42. [DOI: 10.1016/j.jmb.2009.08.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/01/2009] [Accepted: 08/06/2009] [Indexed: 11/28/2022]
|
32
|
Abstract
Proteins mediate transmission of signals along intercellular and intracellular pathways and between the exterior and the interior of a cell. The dynamic properties of signaling proteins are crucial to their functions. We discuss emerging paradigms for the role of protein dynamics in signaling. A central tenet is that proteins fluctuate among many states on evolutionarily selected energy landscapes. Upstream signals remodel this landscape, causing signaling proteins to transmit information to downstream partners. New methods provide insight into the dynamic properties of signaling proteins at the atomic scale. The next stages in the signaling hierarchy-how multiple signals are integrated and how cellular signaling pathways are organized in space and time-present exciting challenges for the future, requiring bold multidisciplinary approaches.
Collapse
Affiliation(s)
- Robert G. Smock
- Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Lila M. Gierasch
- Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
33
|
Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 2009; 19:120-7. [DOI: 10.1016/j.sbi.2009.03.004] [Citation(s) in RCA: 569] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/05/2009] [Accepted: 03/11/2009] [Indexed: 11/20/2022]
|
34
|
Allosteric communication occurs via networks of tertiary and quaternary motions in proteins. PLoS Comput Biol 2009; 5:e1000293. [PMID: 19229311 PMCID: PMC2634971 DOI: 10.1371/journal.pcbi.1000293] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 01/09/2009] [Indexed: 11/19/2022] Open
Abstract
Allosteric proteins bind an effector molecule at one site resulting in a functional change at a second site. We hypothesize that allosteric communication in proteins relies upon networks of quaternary (collective, rigid-body) and tertiary (residue-residue contact) motions. We argue that cyclic topology of these networks is necessary for allosteric communication. An automated algorithm identifies rigid bodies from the displacement between the inactive and the active structures and constructs "quaternary networks" from these rigid bodies and the substrate and effector ligands. We then integrate quaternary networks with a coarse-grained representation of contact rearrangements to form "global communication networks" (GCNs). The GCN reveals allosteric communication among all substrate and effector sites in 15 of 18 multidomain and multimeric proteins, while tertiary and quaternary networks exhibit such communication in only 4 and 3 of these proteins, respectively. Furthermore, in 7 of the 15 proteins connected by the GCN, 50% or more of the substrate-effector paths via the GCN are "interdependent" paths that do not exist via either the tertiary or the quaternary network. Substrate-effector "pathways" typically are not linear but rather consist of polycyclic networks of rigid bodies and clusters of rearranging residue contacts. These results argue for broad applicability of allosteric communication based on structural changes and demonstrate the utility of the GCN. Global communication networks may inform a variety of experiments on allosteric proteins as well as the design of allostery into non-allosteric proteins.
Collapse
|
35
|
Ligand-induced global transitions in the catalytic domain of protein kinase A. Proc Natl Acad Sci U S A 2009; 106:3023-8. [PMID: 19204278 DOI: 10.1073/pnas.0813266106] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conformational transitions play a central role in the phosphorylation mechanisms of protein kinase. To understand the nature of these transitions, we investigated the dynamics of nucleotide binding to the catalytic domain of PKA, a prototype for the protein kinase enzyme family. The open-to-closed transition in PKA was constructed as a function of ATP association by using available X-ray data and Brownian dynamics. Analyzing the multiple kinetic trajectories at the residue level, we find that the spatial rearrangement of the residues around the nucleotide-binding pocket, along with suppressed local fluctuations, controls the compaction of the entire molecule. In addition, to accommodate the stresses induced by ATP binding at the early transition stage, partial unfoldings (cracking) and reformations of several native contacts occur at the interfaces between the secondary structure motifs enveloping the binding pocket. This suggests that the enzyme experiences local structural deformations while reaching its functional, ATP-bound state. Our dynamical view of the ligand-induced transitions in PKA suggests that the kinetic hierarchy of local and global dynamics, the variable fluctuation of residues and the necessity of partial local unfolding may be fundamental components in other large scale allosteric transitions.
Collapse
|
36
|
Banavali NK, Roux B. Flexibility and charge asymmetry in the activation loop of Src tyrosine kinases. Proteins 2009; 74:378-89. [PMID: 18623061 DOI: 10.1002/prot.22153] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Regulated activity of Src kinases is critical for cell growth. Src kinases can be activated by trans-phosphorylation of a tyrosine located in the central activation loop of the catalytic domain. However, because the required exposure of this tyrosine is not observed in the down-regulated X-ray structures of Src kinases, transient partial opening of the activation loop appears to be necessary for such processes. Umbrella sampling molecular dynamics simulations are used to characterize the free energy landscape of opening of the hydrophilic part of the activation loop in the Src kinase Hck. The loop prefers a partially open conformation where Tyr416 has increased accessibility, but remains partly shielded. An asymmetric distribution of the charged residues in the sequence near Tyr416, which contributes to shielding, is found to be conserved in Src family members. A conformational equilibrium involving exchange of electrostatic interactions between the conserved residues Glu310 and Arg385 or Arg409 affects activation loop opening. A mechanism for access of unphosphorylated Tyr416 into an external catalytic site is suggested based on these observations.
Collapse
Affiliation(s)
- Nilesh K Banavali
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
37
|
A conserved protonation-dependent switch controls drug binding in the Abl kinase. Proc Natl Acad Sci U S A 2008; 106:139-44. [PMID: 19109437 DOI: 10.1073/pnas.0811223106] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many protein kinases, a characteristic conformational change (the "DFG flip") connects catalytically active and inactive conformations. Many kinase inhibitors--including the cancer drug imatinib--selectively target a specific DFG conformation, but the function and mechanism of the flip remain unclear. Using long molecular dynamics simulations of the Abl kinase, we visualized the DFG flip in atomic-level detail and formulated an energetic model predicting that protonation of the DFG aspartate controls the flip. Consistent with our model's predictions, we demonstrated experimentally that the kinetics of imatinib binding to Abl kinase have a pH dependence that disappears when the DFG aspartate is mutated. Our model suggests a possible explanation for the high degree of conservation of the DFG motif: that the flip, modulated by electrostatic changes inherent to the catalytic cycle, allows the kinase to access flexible conformations facilitating nucleotide binding and release.
Collapse
|
38
|
Ozkirimli E, Yadav SS, Miller WT, Post CB. An electrostatic network and long-range regulation of Src kinases. Protein Sci 2008; 17:1871-80. [PMID: 18687871 DOI: 10.1110/ps.037457.108] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The regulatory mechanism of Src tyrosine kinases includes conformational activation by a change in the catalytic domain tertiary structure and in domain-domain contacts between the catalytic domain and the SH2/SH3 regulatory domains. The kinase is activated when tyrosine phosphorylation occurs on the activation loop, but without phosphorylation of the C-terminal tail. Activation also occurs by allostery when contacts between the catalytic domain (CD) and the regulatory SH3 and SH2 domains are released as a result of exogenous protein binding. The aim of this work is to examine the proposed role of an electrostatic network in the conformational transition and to elucidate the molecular mechanism for long-range, allosteric conformational activation by using a combination of experimental enzyme kinetics and nonequilibrium molecular dynamics simulations. Salt dependence of the induction phase is observed in kinetic assays and supports the role of an electrostatic network in the transition. In addition, simulations provide evidence that allosteric activation involves a concerted motion coupling highly conserved residues, and spanning several nanometers from the catalytic site to the regulatory domain interface to communicate between the CD and the regulatory domains.
Collapse
Affiliation(s)
- Elif Ozkirimli
- 1Medicinal Chemistry and Molecular Pharmacology Department, Markey Center for Structural Biology and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907-2091, USA
| | | | | | | |
Collapse
|
39
|
Maragliano L, Vanden-Eijnden E. Single-sweep methods for free energy calculations. J Chem Phys 2008; 128:184110. [PMID: 18532802 DOI: 10.1063/1.2907241] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A simple, efficient, and accurate method is proposed to map multidimensional free energy landscapes. The method combines the temperature-accelerated molecular dynamics (TAMD) proposed in [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006)] with a variational reconstruction method using radial-basis functions for the representation of the free energy. TAMD is used to rapidly sweep through the important regions of the free energy landscape and to compute the gradient of the free energy locally at points in these regions. The variational method is then used to reconstruct the free energy globally from the mean force at these points. The algorithmic aspects of the single-sweep method are explained in detail, and the method is tested on simple examples and used to compute the free energy of the solvated alanine dipeptide in two and four dihedral angles.
Collapse
Affiliation(s)
- Luca Maragliano
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA.
| | | |
Collapse
|
40
|
Levinson NM, Seeliger MA, Cole PA, Kuriyan J. Structural basis for the recognition of c-Src by its inactivator Csk. Cell 2008; 134:124-34. [PMID: 18614016 PMCID: PMC2494536 DOI: 10.1016/j.cell.2008.05.051] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/27/2008] [Accepted: 05/21/2008] [Indexed: 11/16/2022]
Abstract
The catalytic activity of the Src family of tyrosine kinases is suppressed by phosphorylation on a tyrosine residue located near the C terminus (Tyr 527 in c-Src), which is catalyzed by C-terminal Src Kinase (Csk). Given the promiscuity of most tyrosine kinases, it is remarkable that the C-terminal tails of the Src family kinases are the only known targets of Csk. We have determined the crystal structure of a complex between the kinase domains of Csk and c-Src at 2.9 A resolution, revealing that interactions between these kinases position the C-terminal tail of c-Src at the edge of the active site of Csk. Csk cannot phosphorylate substrates that lack this docking mechanism because the conventional substrate binding site used by most tyrosine kinases to recognize substrates is destabilized in Csk by a deletion in the activation loop.
Collapse
Affiliation(s)
- Nicholas M Levinson
- Department of Molecular and Cell Biology, Department of Chemistry, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
41
|
Gsponer J, Christodoulou J, Cavalli A, Bui JM, Richter B, Dobson CM, Vendruscolo M. A coupled equilibrium shift mechanism in calmodulin-mediated signal transduction. Structure 2008; 16:736-46. [PMID: 18462678 PMCID: PMC2428103 DOI: 10.1016/j.str.2008.02.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Revised: 02/15/2008] [Accepted: 02/18/2008] [Indexed: 11/25/2022]
Abstract
We used nuclear magnetic resonance data to determine ensembles of conformations representing the structure and dynamics of calmodulin (CaM) in the calcium-bound state (Ca(2+)-CaM) and in the state bound to myosin light chain kinase (CaM-MLCK). These ensembles reveal that the Ca(2+)-CaM state includes a range of structures similar to those present when CaM is bound to MLCK. Detailed analysis of the ensembles demonstrates that correlated motions within the Ca(2+)-CaM state direct the structural fluctuations toward complex-like substates. This phenomenon enables initial ligation of MLCK at the C-terminal domain of CaM and induces a population shift among the substates accessible to the N-terminal domain, thus giving rise to the cooperativity associated with binding. Based on these results and the combination of modern free energy landscape theory with classical allostery models, we suggest that a coupled equilibrium shift mechanism controls the efficient binding of CaM to a wide range of ligands.
Collapse
Affiliation(s)
- Jörg Gsponer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
42
|
Harris MJ, Woo HJ. Energetics of subdomain movements and fluorescence probe solvation environment change in ATP-bound myosin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:1-12. [PMID: 18568345 DOI: 10.1007/s00249-008-0347-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/16/2008] [Accepted: 05/22/2008] [Indexed: 10/21/2022]
Abstract
Energetics of conformational changes experienced by an ATP-bound myosin head detached from actin was studied by all-atom explicit water umbrella sampling simulations. The statistics of coupling between large scale domain movements and smaller scale structural features were examined, including the closing of the ATP binding pocket, and a number of key hydrogen bond formations shown to play roles in structural and biochemical studies. The statistics for the ATP binding pocket open/close transition show an evolution of the relative stability from the open state in the early stages of the recovery stroke to the stable closed state after the stroke. The change in solvation environment of the fluorescence probe Trp507 (scallop numbering; 501 in Dictyostelium discoideum) indicates that the probe faithfully reflects the closing of the binding pocket as previously shown in experimental studies, while being directly coupled to roughly the early half of the overall large scale conformational change of the converter domain rotation. The free energy change of this solvation environment change, in particular, is -1.3 kcal/mol, in close agreement with experimental estimates. In addition, our results provide direct molecular level data allowing for interpretations of the fluorescence experiments of myosin conformational change in terms of the de-solvation of Trp side chain.
Collapse
Affiliation(s)
- Michael J Harris
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|