1
|
Rawat SS, Laxmi A. Rooted in Communication: Exploring Auxin-Salicylic Acid Nexus in Root Growth and Development. PLANT, CELL & ENVIRONMENT 2025; 48:4140-4160. [PMID: 39910701 DOI: 10.1111/pce.15420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/11/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Plant hormones are pivotal in orchestrating diverse aspects of growth and developmental processes. Among various phytohormones, auxin and salicylic acid (SA) stand out as important regulators, often exerting opposing effects on overall plant growth. Essentially, research has indicated that auxin and SA-mediated pathways exhibit mutual antagonism during pathogen challenge. Additionally, in recent years, significant advancements have been made in uncovering the molecular intricacies that govern the action and interplay between these two phytohormones during various essential growth-related processes. In this discussion, we briefly delve into the genetic and molecular mechanisms involved in auxin and SA antagonism. We then analyse in detail how this dialogue impacts critical aspects of root development, with an emphasis on the transcriptional and protein regulatory networks. Finally, we propose the potential of exploring their interaction in various other aspects of below ground root growth processes. Understanding this relationship could provide valuable insights for optimizing and enhancing crop growth and yields.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Ashverya Laxmi
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, Delhi, India
| |
Collapse
|
2
|
Jia S, Dan Z, Li H, Guo Y, Jia L, Yu A, Zhan H, Liu X, Gao T, Shi Y, Wang ZY, Cong L. Transcriptome analysis reveals defense responses of alfalfa seedling roots to Sclerotium rolfsii. FRONTIERS IN PLANT SCIENCE 2025; 16:1561723. [PMID: 40303866 PMCID: PMC12038447 DOI: 10.3389/fpls.2025.1561723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025]
Abstract
Introduction Sclerotium rolfsii is a major pathogen responsible for root rot in various plants, including alfalfa (Medicago sativa). Additionally, this pathogen can also cause root diseases in alfalfa relatives, such as Medicago truncatula, soybean (Glycine max), and mung bean (Vigna radiata). This study aims to explore the interaction mechanisms between alfalfa and S. rolfsii, identify key regulatory factors involved in disease resistance, and provide insights for improving alfalfa's resistance to root rot. Methods In this study, the S. rolfsii strain CZL1 was isolated and identified as the primary pathogen responsible for root rot outbreaks in Qingdao, Shandong Province. M. sativa cv. WuDi was used as the experimental material. After inoculating the plants with strain CZL1, root samples were collected at 24 hours post-inoculation (hpi) and 4 days post-inoculation (dpi) for transcriptome sequencing. Results A total of 11,433 and 12,063 differentially expressed genes (DEGs) were identified at CK (Control, non-inoculated) versus T24 h (24 hpi) and CK versus T4 d (4 dpi), respectively. Plant hormone signal transduction pathways exhibited the highest number of DEGs at 24 hpi, while plant-pathogen interaction pathways were dominant at 4 dpi. Key genes in these pathways include PR-1 (Pathogenesis-Related protein 1), PPR (Pentatricopeptide Repeat protein), and F-box (F-box Kelch-repeat protein). Additionally, the phenylpropanoid biosynthesis pathway, which is involved in lignin and flavonoid synthesis, plays a crucial role in disease resistance. Important genes involved in this pathway, such as PAL, C4H, 4CL, CHS, and CHI, were found to be significantly enriched. Furthermore, the WRKY transcription factor family was identified as a key regulator of multiple metabolic pathways related to disease resistance. Conclusion The findings provide a comprehensive understanding of the key molecular factors involved in alfalfa's response to S. rolfsii infection, laying a theoretical foundation for future research on disease resistance mechanisms in alfalfa.
Collapse
Affiliation(s)
- Shizhen Jia
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in Yellow River Delta, Qingdao Agricultural University, Qingdao, China
| | - Zhencuo Dan
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in Yellow River Delta, Qingdao Agricultural University, Qingdao, China
| | - He Li
- Hinggan League Institute of Agricultural and Husbandry Sciences, Ulanhot, China
- Inner Mongolia Innovation Center of Biological Breeding Technology, Ulanhot, China
| | - Yuhan Guo
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in Yellow River Delta, Qingdao Agricultural University, Qingdao, China
| | - Lei Jia
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in Yellow River Delta, Qingdao Agricultural University, Qingdao, China
| | - Ailing Yu
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in Yellow River Delta, Qingdao Agricultural University, Qingdao, China
| | - Huitong Zhan
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in Yellow River Delta, Qingdao Agricultural University, Qingdao, China
| | - Xiangjun Liu
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in Yellow River Delta, Qingdao Agricultural University, Qingdao, China
| | - Teng Gao
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in Yellow River Delta, Qingdao Agricultural University, Qingdao, China
| | - Yun Shi
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in Yellow River Delta, Qingdao Agricultural University, Qingdao, China
| | - Zeng-Yu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in Yellow River Delta, Qingdao Agricultural University, Qingdao, China
| | - Lili Cong
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in Yellow River Delta, Qingdao Agricultural University, Qingdao, China
- Inner Mongolia Innovation Center of Biological Breeding Technology, Ulanhot, China
| |
Collapse
|
3
|
Guo Y, Gan Y, White JC, Zhang X, Wei D, Liang J, Wang Y, Song C. Fe 2O 3 nanoparticles enhance soybean resistance to root rot by modulating metabolic pathways and defense response. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106252. [PMID: 40015848 DOI: 10.1016/j.pestbp.2024.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 03/01/2025]
Abstract
Four doses of Fe2O3 NPs suspension (10, 50, 100, and 500 mg/L) and one dose of EDTA-FeNa2 solution (10 mg/L) were foliar applied to two soybean (Glycine max) varieties (ND12 and C103) with Fusarium oxysporum. Notably, soybean disease indices were significantly reduced following foliar application of Fe2O3 NPs. At 50 mg/L Fe2O3 NPs, disease indices were reduced by 60.29 % and 43.75 % in ND12 and C103, respectively; these values were significantly better than EDTA-FeNa2, which reduced disease indices by 22.02-28.10 % compared to infected control. Furthermore, root biomass increased by 54.28 % and 42.95 %; chlorophyll a increased by 31.03 % and 43.78 %; SOD activity increased by 40.82 % and 45.59 %; and GmPAL expression increased by 16.64 and 7.23-fold with 50 mg/L Fe2O3 NPs on ND12 and C103, respectively, compared to the infected control. Importantly, the control efficiency of Fe2O3 NPs was 3-6 times higher than that of EDTA-FeNa2. Metabolomic analysis indicated that 50 mg/L Fe2O3 NPs significantly increased the metabolite content of TCA biomolecules in both soybeans; for example, citric acid increased by 102.06 % and 29.88 % compared to the infected control. The results suggest that Fe2O3 NPs mitigate root rot through multiple mechanisms, including augmentation of antioxidant enzyme activity to mitigate disease-induced oxidative stress, activation of relevant defense genes to enhance resistance, and increased levels of TCA and amino acid metabolites to provide energy for soybean response. These findings underscore the significant potential of Fe2O3 NPs in disease suppression for an environmentally friendly sustainable agriculture.
Collapse
Affiliation(s)
- Yuantian Guo
- College of Environmental sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuefeng Gan
- College of Environmental sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Xingyuan Zhang
- College of Environmental sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Dengqin Wei
- College of Environmental sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinhong Liang
- College of Environmental sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Chun Song
- College of Environmental sciences, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Lee CY, Harper CP, Lee SG, Qi Y, Clay T, Aoi Y, Jez JM, Kasahara H, Blodgett JAV, Kunkel BN. Investigating the biosynthesis and roles of the auxin phenylacetic acid during Pseudomonas syringae- Arabidopsis thaliana pathogenesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1408833. [PMID: 39091312 PMCID: PMC11291249 DOI: 10.3389/fpls.2024.1408833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
Several plant-associated microbes synthesize the auxinic plant growth regulator phenylacetic acid (PAA) in culture; however, the role of PAA in plant-pathogen interactions is not well understood. In this study, we investigated the role of PAA during interactions between the phytopathogenic bacterium Pseudomonas syringae strain PtoDC3000 (PtoDC3000) and the model plant host, Arabidopsis thaliana. Previous work demonstrated that indole-3-acetaldehyde dehydrogenase A (AldA) of PtoDC3000 converts indole-3-acetaldehyde (IAAld) to the auxin indole-3-acetic acid (IAA). Here, we further demonstrated the biochemical versatility of AldA by conducting substrate screening and steady-state kinetic analyses, and showed that AldA can use both IAAld and phenylacetaldehyde as substrates to produce IAA and PAA, respectively. Quantification of auxin in infected plant tissue showed that AldA-dependent synthesis of either IAA or PAA by PtoDC3000 does not contribute significantly to the increase in auxin levels in infected A. thaliana leaves. Using available arogenate dehydratase (adt) mutant lines of A. thaliana compromised for PAA synthesis, we observed that a reduction in PAA-Asp and PAA-Glu is correlated with elevated levels of IAA and increased susceptibility. These results provide evidence that PAA/IAA homeostasis in A. thaliana influences the outcome of plant-microbial interactions.
Collapse
Affiliation(s)
- Chia-Yun Lee
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Christopher P. Harper
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Soon Goo Lee
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Yunci Qi
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
- United States Department of Agriculture-Agricultural Research Service, New Orleans, LA, United States
| | - Taylor Clay
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Yuki Aoi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Joseph M. Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Hiroyuki Kasahara
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Joshua A. V. Blodgett
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Barbara N. Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
5
|
Cai W, Tao Y, Cheng X, Wan M, Gan J, Yang S, Okita TW, He S, Tian L. CaIAA2-CaARF9 module mediates the trade-off between pepper growth and immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2054-2074. [PMID: 38450864 PMCID: PMC11182598 DOI: 10.1111/pbi.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
To challenge the invasion of various pathogens, plants re-direct their resources from plant growth to an innate immune defence system. However, the underlying mechanism that coordinates the induction of the host immune response and the suppression of plant growth remains unclear. Here we demonstrate that an auxin response factor, CaARF9, has dual roles in enhancing the immune resistance to Ralstonia solanacearum infection and in retarding plant growth by repressing the expression of its target genes as exemplified by Casmc4, CaLBD37, CaAPK1b and CaRROP1. The expression of these target genes not only stimulates plant growth but also negatively impacts pepper resistance to R. solanacearum. Under normal conditions, the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 is active when promoter-bound CaARF9 is complexed with CaIAA2. Under R. solanacearum infection, however, degradation of CaIAA2 is triggered by SA and JA-mediated signalling defence by the ubiquitin-proteasome system, which enables CaARF9 in the absence of CaIAA2 to repress the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 and, in turn, impeding plant growth while facilitating plant defence to R. solanacearum infection. Our findings uncover an exquisite mechanism underlying the trade-off between plant growth and immunity mediated by the transcriptional repressor CaARF9 and its deactivation when complexed with CaIAA2.
Collapse
Affiliation(s)
- Weiwei Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Yilin Tao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Xingge Cheng
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Meiyun Wan
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Jianghuang Gan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Sheng Yang
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Thomas W. Okita
- Institute of Biological ChemistryWashington State UniversityPullmanWashingtonUSA
| | - Shuilin He
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| |
Collapse
|
6
|
Marash I, Leibman-Markus M, Gupta R, Israeli A, Teboul N, Avni A, Ori N, Bar M. Abolishing ARF8A activity promotes disease resistance in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112064. [PMID: 38492890 DOI: 10.1016/j.plantsci.2024.112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/18/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Auxin response factors (ARFs) are a family of transcription factors that regulate auxin-dependent developmental processes. Class A ARFs function as activators of auxin-responsive gene expression in the presence of auxin, while acting as transcriptional repressors in its absence. Despite extensive research on the functions of ARF transcription factors in plant growth and development, the extent, and mechanisms of their involvement in plant resistance, remain unknown. We have previously reported that mutations in the tomato AUXIN RESPONSE FACTOR8 (ARF8) genes SlARF8A and SlARF8B result in the decoupling of fruit development from pollination and fertilization, leading to partial or full parthenocarpy and increased yield under extreme temperatures. Here, we report that fine-tuning of SlARF8 activity results in increased resistance to fungal and bacterial pathogens. This resistance is mostly preserved under fluctuating temperatures. Thus, fine-tuning SlARF8 activity may be a potent strategy for increasing overall growth and yield.
Collapse
Affiliation(s)
- Iftah Marash
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel; School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Alon Israeli
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Naama Teboul
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Avni
- School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Naomi Ori
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel.
| |
Collapse
|
7
|
Yang M, Wang Y, Chen C, Xin X, Dai S, Meng C, Ma N. Transcription factor WRKY75 maintains auxin homeostasis to promote tomato defense against Pseudomonas syringae. PLANT PHYSIOLOGY 2024; 195:1053-1068. [PMID: 38245840 DOI: 10.1093/plphys/kiae025] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
The hemibiotrophic bacterial pathogen Pseudomonas syringae infects a range of plant species and causes enormous economic losses. Auxin and WRKY transcription factors play crucial roles in plant responses to P. syringae, but their functional relationship in plant immunity remains unclear. Here, we characterized tomato (Solanum lycopersicum) SlWRKY75, which promotes defenses against P. syringae pv. tomato (Pst) DC3000 by regulating plant auxin homeostasis. Overexpressing SlWRKY75 resulted in low free indole-3-acetic acid (IAA) levels, leading to attenuated auxin signaling, decreased expansin transcript levels, upregulated expression of PATHOGENESIS-RELATED GENES (PRs) and NONEXPRESSOR OF PATHOGENESIS-RELATED GENE 1 (NPR1), and enhanced tomato defenses against Pst DC3000. RNA interference-mediated repression of SlWRKY75 increased tomato susceptibility to Pst DC3000. Yeast one-hybrid, electrophoretic mobility shift assays, and luciferase activity assays suggested that SlWRKY75 directly activates the expression of GRETCHEN HAGEN 3.3 (SlGH3.3), which encodes an IAA-amido synthetase. SlGH3.3 enhanced tomato defense against Pst DC3000 by converting free IAA to the aspartic acid (Asp)-conjugated form IAA-Asp. In addition, SlWRKY75 interacted with a tomato valine-glutamine (VQ) motif-containing protein 16 (SlVQ16) in vivo and in vitro. SlVQ16 enhanced SlWRKY75-mediated transcriptional activation of SlGH3.3 and promoted tomato defense responses to Pst DC3000. Our findings illuminate a mechanism in which the SlVQ16-SlWRKY75 complex participates in tomato pathogen defense by positively regulating SlGH3.3-mediated auxin homeostasis.
Collapse
Affiliation(s)
- Minmin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Yixuan Wang
- School of Landscape Architecture, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Xin Xin
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Shanshan Dai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Chen Meng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| |
Collapse
|
8
|
Agrofoglio YC, Iglesias MJ, Perez-Santángelo S, de Leone MJ, Koester T, Catalá R, Salinas J, Yanovsky MJ, Staiger D, Mateos JL. Arginine methylation of SM-LIKE PROTEIN 4 antagonistically affects alternative splicing during Arabidopsis stress responses. THE PLANT CELL 2024; 36:2219-2237. [PMID: 38518124 PMCID: PMC11132874 DOI: 10.1093/plcell/koae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/09/2024] [Indexed: 03/24/2024]
Abstract
Arabidopsis (Arabidopsis thaliana) PROTEIN ARGININE METHYLTRANSFERASE5 (PRMT5) post-translationally modifies RNA-binding proteins by arginine (R) methylation. However, the impact of this modification on the regulation of RNA processing is largely unknown. We used the spliceosome component, SM-LIKE PROTEIN 4 (LSM4), as a paradigm to study the role of R-methylation in RNA processing. We found that LSM4 regulates alternative splicing (AS) of a suite of its in vivo targets identified here. The lsm4 and prmt5 mutants show a considerable overlap of genes with altered AS raising the possibility that splicing of those genes could be regulated by PRMT5-dependent LSM4 methylation. Indeed, LSM4 methylation impacts AS, particularly of genes linked with stress response. Wild-type LSM4 and an unmethylable version complement the lsm4-1 mutant, suggesting that methylation is not critical for growth in normal environments. However, LSM4 methylation increases with abscisic acid and is necessary for plants to grow under abiotic stress. Conversely, bacterial infection reduces LSM4 methylation, and plants that express unmethylable-LSM4 are more resistant to Pseudomonas than those expressing wild-type LSM4. This tolerance correlates with decreased intron retention of immune-response genes upon infection. Taken together, this provides direct evidence that R-methylation adjusts LSM4 function on pre-mRNA splicing in an antagonistic manner in response to biotic and abiotic stress.
Collapse
Affiliation(s)
- Yamila Carla Agrofoglio
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María José Iglesias
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Soledad Perez-Santángelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - María José de Leone
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Tino Koester
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Rafael Catalá
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Julieta L Mateos
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
9
|
Bi Y, Yu Y, Mao S, Wu T, Wang T, Zhou Y, Xie K, Zhang H, Liu L, Chu Z. Comparative transcriptomic profiling of the two-stage response of rice to Xanthomonas oryzae pv. oryzicola interaction with two different pathogenic strains. BMC PLANT BIOLOGY 2024; 24:347. [PMID: 38684939 PMCID: PMC11057074 DOI: 10.1186/s12870-024-05060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Two-tiered plant immune responses involve cross-talk among defense-responsive (DR) genes involved in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered immunity (ETI) and effector-triggered susceptibility (ETS). Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an important bacterial disease that causes serious threats to rice yield and quality. Transcriptomic profiling provides an effective approach for the comprehensive and large-scale detection of DR genes that participate in the interactions between rice and Xoc. RESULTS In this study, we used RNA-seq to analyze the differentially expressed genes (DEGs) in susceptible rice after inoculation with two naturally pathogenic Xoc strains, a hypervirulent strain, HGA4, and a relatively hypovirulent strain, RS105. First, bacterial growth curve and biomass quantification revealed that differential growth occurred beginning at 1 day post inoculation (dpi) and became more significant at 3 dpi. Additionally, we analyzed the DEGs at 12 h and 3 days post inoculation with two strains, representing the DR genes involved in the PTI and ETI/ETS responses, respectively. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on the common DEGs, which included 4380 upregulated and 4019 downregulated genes and 930 upregulated and 1383 downregulated genes identified for the two strains at 12 h post inoculation (hpi) and 3 dpi, respectively. Compared to those at 12 hpi, at 3 dpi the number of common DEGs decreased, while the degree of differential expression was intensified. In addition, more disease-related GO pathways were enriched, and more transcription activator-like effector (TALE) putative target genes were upregulated in plants inoculated with HGA4 than in those inoculated with RS105 at 3 dpi. Then, four DRs were randomly selected for the BLS resistance assay. We found that CDP3.10, LOC_Os11g03820, and OsDSR2 positively regulated rice resistance to Xoc, while OsSPX3 negatively regulated rice resistance. CONCLUSIONS By using an enrichment method for RNA-seq, we identified a group of DEGs related to the two stages of response to the Xoc strain, which included four functionally identified DR genes.
Collapse
Affiliation(s)
- Yunya Bi
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yue Yu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Shuaige Mao
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Tao Wu
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Zhou
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430072, China
| | - Kabin Xie
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Zhang
- Tancheng Jinghua Seed Co., LTD, Linyi, Shandong, 276100, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
10
|
Zhang Y, Liu X, Sun Y, Liu Y, Zhang Y, Ding T, Chen J. Salivary Protein Cyclin-Dependent Kinase-like from Grain Aphid Sitobion avenae Suppresses Wheat Defense Response and Enhances Aphid Adaptation. Int J Mol Sci 2024; 25:4579. [PMID: 38731798 PMCID: PMC11083452 DOI: 10.3390/ijms25094579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the adaptation of S. avenae was investigated. Our results showed that the transient overexpression of SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase (FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response and improving its host adaptation, which lays the foundation to uncover the mechanism of the interaction of cereal aphids and host plants.
Collapse
Affiliation(s)
- Yumeng Zhang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Yu Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Yong Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Tianbo Ding
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| |
Collapse
|
11
|
Etesami H, Glick BR. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol Res 2024; 281:127602. [PMID: 38228017 DOI: 10.1016/j.micres.2024.127602] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Indole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated. The production of bacterial IAA affects root architecture, nutrient uptake, and resistance to various abiotic stresses such as drought, salinity, and heavy metal toxicity, enhancing plant resilience and thus offering promising routes to sustainable agriculture. Bacterial IAA synthesis is regulated through complex gene networks responsive to environmental cues, impacting plant hormonal balances and symbiotic relationships. Pathogenic bacteria have adapted mechanisms to manipulate the host's IAA dynamics, influencing disease outcomes. On the other hand, beneficial bacteria utilize IAA to promote plant growth and mitigate abiotic stresses, thereby enhancing nutrient use efficiency and reducing dependency on chemical fertilizers. Advancements in analytical methods, such as liquid chromatography-tandem mass spectrometry, have improved the quantification of bacterial IAA, enabling accurate measurement and analysis. Future research focusing on molecular interactions between IAA-producing bacteria and host plants could facilitate the development of biotechnological applications that integrate beneficial bacteria to improve crop performance, which is essential for addressing the challenges posed by climate change and ensuring global food security. This integration of bacterial IAA producers into agricultural practice promises to revolutionize crop management strategies by enhancing growth, fostering resilience, and reducing environmental impact.
Collapse
Affiliation(s)
- Hassan Etesami
- Soil Science Department, University of Tehran, Tehran, Iran.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
12
|
Johnson JMB, Kunkel BN. AefR, a TetR Family Transcriptional Repressor, Regulates Several Auxin Responses in Pseudomonas syringae Strain PtoDC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:155-165. [PMID: 38079389 DOI: 10.1094/mpmi-10-23-0170-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The plant hormone indole-3-acetic acid (IAA), also known as auxin, plays important roles in plant growth and development, as well as in several plant-microbe interactions. IAA also acts as a microbial signal and in many bacteria regulates metabolism, stress responses, and virulence. In the bacterial plant pathogen Pseudomonas syringae pv. tomato strain DC3000 (PtoDC3000), exposure to IAA results in large-scale transcriptional reprogramming, including the differential expression of several known virulence genes. However, how PtoDC3000 senses and responds to IAA and what aspects of its biology are regulated by IAA is not understood. To investigate the mechanisms involved in perceiving and responding to IAA, we carried out a genetic screen for mutants with altered responses to IAA. One group of mutants of particular interest carried disruptions in the aefR gene encoding a TetR family transcriptional regulator. Gene expression analysis confirmed that the aefR mutants have altered responses to IAA. Thus, AefR is the first demonstrated auxin response regulator in PtoDC3000. We also investigated several aspects of PtoDC3000 biology that are regulated by both AefR and IAA, including antibiotic resistance, motility, and virulence. The observation that the aefR mutant has altered virulence on Arabidopsis, suggests that the sector of the IAA response regulated by aefR is important during pathogenesis. Our findings also provide evidence that AefR plays a role in coordinating changes in gene expression during the transition from early to late stages of infection. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Joshua M B Johnson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, U.S.A
| | - Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, U.S.A
| |
Collapse
|
13
|
Li Y, Chen Y, Fu Y, Shao J, Liu Y, Xuan W, Xu G, Zhang R. Signal communication during microbial modulation of root system architecture. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:526-537. [PMID: 37419655 DOI: 10.1093/jxb/erad263] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023]
Abstract
Every living organism on Earth depends on its interactions with other organisms. In the rhizosphere, plants and microorganisms constantly exchange signals and influence each other's behavior. Recent studies have shown that many beneficial rhizosphere microbes can produce specific signaling molecules that affect plant root architecture and therefore could have substantial effects on above-ground growth. This review examines these chemical signals and summarizes their mechanisms of action, with the aim of enhancing our understanding of plant-microbe interactions and providing references for the comprehensive development and utilization of these active components in agricultural production. In addition, we highlight future research directions and challenges, such as searching for microbial signals to induce primary root development.
Collapse
Affiliation(s)
- Yucong Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansong Fu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Zhang H, Rong Z, Li Y, Yin Z, Lu C, Zhao H, Kong L, Meng L, Ding X. NIT24 and NIT29-mediated IAA synthesis of Xanthomonas oryzae pv. oryzicola suppresses immunity and boosts growth in rice. MOLECULAR PLANT PATHOLOGY 2024; 25:e13409. [PMID: 38069667 PMCID: PMC10788589 DOI: 10.1111/mpp.13409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024]
Abstract
Auxin plays a pivotal role in the co-evolution of plants and microorganisms. Xanthomonas oryzae pv. oryzicola (Xoc) stands as a significant factor that affects rice yield and quality. However, the current understanding of Xoc's capability for indole 3-acetic acid (IAA) synthesis and its mechanistic implications remains elusive. In this study, we performed a comprehensive genomic analysis of Xoc strain RS105, leading to the identification of two nitrilase enzyme family (NIT) genes, designated as AKO15524.1 and AKO15829.1, subsequently named NIT24 and NIT29, respectively. Our investigation unveiled that the deletion of NIT24 and NIT29 resulted in a notable reduction in IAA synthesis capacity within RS105, thereby impacting extracellular polysaccharide production. This deficiency was partially ameliorated through exogenous IAA supplementation. The study further substantiated that NIT24 and NIT29 have nitrilase activity and the ability to catalyse IAA production in vitro. The lesion length and bacterial population statistics experiments confirmed that NIT24 and NIT29 positively regulated the pathogenicity of RS105, suggesting that NIT24 and NIT29 may regulate Xoc invasion by affecting IAA synthesis. Furthermore, our analysis corroborated mutant strains, RS105_ΔNIT24 and RS105_ΔNIT29, which elicited the outbreak of reactive oxygen species, the deposition of callose and the upregulation of defence-related gene expression in rice. IAA exerted a significant dampening effect on the immune responses incited by these mutant strains in rice. In addition, the absence of NIT24 and NIT29 affected the growth-promoting effect of Xoc on rice. This implies that Xoc may promote rice growth by secreting IAA, thus providing a more suitable microenvironment for its own colonization. In summary, our study provides compelling evidence for the existence of a nitrilase-dependent IAA biosynthesis pathway in Xoc. IAA synthesis-related genes promote Xoc colonization by inhibiting rice immune defence response and affecting rice growth by increasing IAA content in Xoc.
Collapse
Affiliation(s)
- Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Zixuan Rong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Lingguang Kong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Lun Meng
- Shike Modern Agriculture Investment Co., LtdHezeChina
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| |
Collapse
|
15
|
Nagarajan N, Khan M, Djamei A. Manipulation of Auxin Signaling by Smut Fungi during Plant Colonization. J Fungi (Basel) 2023; 9:1184. [PMID: 38132785 PMCID: PMC10744876 DOI: 10.3390/jof9121184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
A common feature of many plant-colonizing organisms is the exploitation of plant signaling and developmental pathways to successfully establish and proliferate in their hosts. Auxins are central plant growth hormones, and their signaling is heavily interlinked with plant development and immunity responses. Smuts, as one of the largest groups in basidiomycetes, are biotrophic specialists that successfully manipulate their host plants and cause fascinating phenotypes in so far largely enigmatic ways. This review gives an overview of the growing understanding of how and why smut fungi target the central and conserved auxin growth signaling pathways in plants.
Collapse
Affiliation(s)
| | | | - Armin Djamei
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115 Bonn, Germany; (N.N.); (M.K.)
| |
Collapse
|
16
|
Malhotra B, Kumar P, Bisht NC. Defense versus growth trade-offs: Insights from glucosinolates and their catabolites. PLANT, CELL & ENVIRONMENT 2023; 46:2964-2984. [PMID: 36207995 DOI: 10.1111/pce.14462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Specialized metabolites are a structurally diverse group of naturally occurring compounds that facilitate plant-environment interactions. Their synthesis and maintenance in plants is overall a resource-demanding process that occurs at the expense of growth and reproduction and typically incurs several costs. Evidence emerging on different specialized compounds suggests that they serve multiple auxiliary functions to influence and moderate primary metabolism in plants. These new functionalities enable them to mediate trade-offs from defenses to growth and also to offset their production and maintenance costs in plants. Recent research on glucosinolates (GSLs), which are specialized metabolites of Brassicales, demonstrates their emerging multifunctionalities to fine-tune plant growth and development under variable environments. Herein, we present findings from the septennium on individual GSLs and their catabolites (GHPs) per se, that work as mobile signals within plants to mediate precise regulations of their primary physiological functions. Both GSLs and GHPs calibrate growth-defense trade-off interactions either synergistically or directly when they function as storage compounds, abiotic stress alleviators, and one-to-one regulators of growth pathways in plants. We finally summarize the overall lessons learned from GSLs and GHPs as a model and raise the most pressing questions to address the molecular-genetic intricacies of specialized metabolite-based trade-offs in plants.
Collapse
Affiliation(s)
- Bhanu Malhotra
- National Institute of Plant Genome Research, New Delhi, India
| | - Pawan Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
17
|
Anderson JC. Ill Communication: Host Metabolites as Virulence-Regulating Signals for Plant-Pathogenic Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:49-71. [PMID: 37253693 DOI: 10.1146/annurev-phyto-021621-114026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant bacterial pathogens rely on host-derived signals to coordinate the deployment of virulence factors required for infection. In this review, I describe how diverse plant-pathogenic bacteria detect and respond to plant-derived metabolic signals for the purpose of virulence gene regulation. I highlight examples of how pathogens perceive host metabolites through membrane-localized receptors as well as intracellular response mechanisms. Furthermore, I describe how individual strains may coordinate their virulence using multiple distinct host metabolic signals, and how plant signals may positively or negatively regulate virulence responses. I also describe how plant defenses may interfere with the perception of host metabolites as a means to dampen pathogen virulence. The emerging picture is that recognition of host metabolic signals for the purpose of virulence gene regulation represents an important primary layer of interaction between pathogenic bacteria and host plants that shapes infection outcomes.
Collapse
Affiliation(s)
- Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
18
|
Cui G, Bi X, Lu S, Jiang Z, Deng Y. A Genetically Engineered Escherichia coli for Potential Utilization in Fungal Smut Disease Control. Microorganisms 2023; 11:1564. [PMID: 37375066 DOI: 10.3390/microorganisms11061564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Sporisorium scitamineum, the basidiomycetous fungus that causes sugarcane smut and leads to severe losses in sugarcane quantity and quality, undergoes sexual mating to form dikaryotic hyphae capable of invading the host cane. Therefore, suppressing dikaryotic hyphae formation would potentially be an effective way to prevent host infection by the smut fungus, and the following disease symptom developments. The phytohormone methyl jasmonate (MeJA) has been shown to induce plant defenses against insects and microbial pathogens. In this study, we will verify that the exogenous addition of MeJA-suppressed dikaryotic hyphae formation in S. scitamineum and Ustilago maydis under in vitro culture conditions, and the maize smut symptom caused by U. maydis, could be effectively suppressed by MeJA in a pot experiment. We constructed an Escherichia coli-expressing plant JMT gene, encoding a jasmonic acid carboxyl methyl transferase that catalyzes conversion from jasmonic acid (JA) to MeJA. By GC-MS, we will confirm that the transformed E. coli, designated as the pJMT strain, was able to produce MeJA in the presence of JA and S-adenosyl-L-methionine (SAM as methyl donor). Furthermore, the pJMT strain was able to suppress S. scitamineum filamentous growth under in vitro culture conditions. It waits to further optimize JMT expression under field conditions in order to utilize the pJMT strain as a biocontrol agent (BCA) of sugarcane smut disease. Overall, our study provides a potentially novel method for controlling crop fungal diseases by boosting phytohormone biosynthesis.
Collapse
Affiliation(s)
- Guobing Cui
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Henry Fork School of Biology and Agriculture, Shaoguan University, Shaoguan 512000, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xinping Bi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Ago-Bioresouces Ministry and Province Co-Sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Nanning 530004, China
| | - Zide Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yizhen Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
19
|
Wang S, Han S, Zhou X, Zhao C, Guo L, Zhang J, Liu F, Huo Q, Zhao W, Guo Z, Chen X. Phosphorylation and ubiquitination of OsWRKY31 are integral to OsMKK10-2-mediated defense responses in rice. THE PLANT CELL 2023; 35:2391-2412. [PMID: 36869655 DOI: 10.1093/plcell/koad064] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
Mitogen-activated protein kinase (MPK) cascades play vital roles in plant innate immunity, growth, and development. Here, we report that the rice (Oryza sativa) transcription factor gene OsWRKY31 is a key component in a MPK signaling pathway involved in plant disease resistance in rice. We found that the activation of OsMKK10-2 enhances resistance against the rice blast pathogen Magnaporthe oryzae and suppresses growth through an increase in jasmonic acid and salicylic acid accumulation and a decrease of indole-3-acetic acid levels. Knockout of OsWRKY31 compromises the defense responses mediated by OsMKK10-2. OsMKK10-2 and OsWRKY31 physically interact, and OsWRKY31 is phosphorylated by OsMPK3, OsMPK4, and OsMPK6. Phosphomimetic OsWRKY31 has elevated DNA-binding activity and confers enhanced resistance to M. oryzae. In addition, OsWRKY31 stability is regulated by phosphorylation and ubiquitination via RING-finger E3 ubiquitin ligases interacting with WRKY 1 (OsREIW1). Taken together, our findings indicate that modification of OsWRKY31 by phosphorylation and ubiquitination functions in the OsMKK10-2-mediated defense signaling pathway.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Shuying Han
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xiangui Zhou
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Changjiang Zhao
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Lina Guo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Junqi Zhang
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Fei Liu
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Qixin Huo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zejian Guo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xujun Chen
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
D’Errico C, Forgia M, Pisani M, Pavan S, Noris E, Matić S. Overexpression of the C4 protein of tomato yellow leaf curl Sardinia virus increases tomato resistance to powdery mildew. FRONTIERS IN PLANT SCIENCE 2023; 14:1163315. [PMID: 37063219 PMCID: PMC10102596 DOI: 10.3389/fpls.2023.1163315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Powdery mildew (PM) is one of the most important diseases of greenhouse and field-grown tomatoes. Viruses can intervene beneficially on plant performance in coping with biotic and abiotic stresses. Tomato yellow leaf curl Sardinia virus (TYLCSV) has been reported recently to induce tolerance against drought stress in tomato, and its C4 protein acts as the main causal factor of tolerance. However, its role in response to biotic stresses is still unknown. In this study, transgenic tomato plants carrying the TYLCSV C4 protein were exposed to biotic stress following the inoculation with Oidium neolycopersici, the causal agent of tomato PM. Phytopathological, anatomic, molecular, and physiological parameters were evaluated in this plant pathosystem. Heterologous TYLCSV C4 expression increased the tolerance of transgenic tomato plants to PM, not only reducing symptom occurrence, but also counteracting conidia adhesion and secondary hyphae elongation. Pathogenesis-related gene expression and salicylic acid production were found to be higher in tomato transgenic plants able to cope with PM compared to infected wild-type tomato plants. Our study contributes to unraveling the mechanism leading to PM tolerance in TYLCSV C4-expressing tomato plants. In a larger context, the findings of TYLCSV C4 as a novel PM defense inducer could have important implications in deepening the mechanisms regulating the management of this kind of protein to both biotic and abiotic stresses.
Collapse
Affiliation(s)
- Chiara D’Errico
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
| | - Marco Forgia
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| | - Marco Pisani
- Istituto Nazionale di Ricerca Metrologica, Applied Metrology and Engineering Division, Torino, Italy
| | - Stefano Pavan
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro, Bari, Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| |
Collapse
|
21
|
Vañó MS, Nourimand M, MacLean A, Pérez-López E. Getting to the root of a club - Understanding developmental manipulation by the clubroot pathogen. Semin Cell Dev Biol 2023; 148-149:22-32. [PMID: 36792438 DOI: 10.1016/j.semcdb.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Plasmodiophora brassicae Wor., the clubroot pathogen, is the perfect example of an "atypical" plant pathogen. This soil-borne protist and obligate biotrophic parasite infects the roots of cruciferous crops, inducing galls or clubs that lead to wilting, loss of productivity, and plant death. Unlike many other agriculturally relevant pathosystems, research into the molecular mechanisms that underlie clubroot disease and Plasmodiophora-host interactions is limited. After release of the first P. brassicae genome sequence and subsequent availability of transcriptomic data, the clubroot research community have implicated the involvement of phytohormones during the clubroot pathogen's manipulation of host development. Herein we review the main events leading to the formation of root galls and describe how modulation of select phytohormones may be key to modulating development of the plant host to the benefit of the pathogen. Effector-host interactions are at the base of different strategies employed by pathogens to hijack plant cellular processes. This is how we suspect the clubroot pathogen hijacks host plant metabolism and development to induce nutrient-sink roots galls, emphasizing a need to deepen our understanding of this master manipulator.
Collapse
Affiliation(s)
- Marina Silvestre Vañó
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Maryam Nourimand
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Allyson MacLean
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Edel Pérez-López
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
22
|
Perez VC, Zhao H, Lin M, Kim J. Occurrence, Function, and Biosynthesis of the Natural Auxin Phenylacetic Acid (PAA) in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:266. [PMID: 36678978 PMCID: PMC9867223 DOI: 10.3390/plants12020266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Auxins are a class of plant hormones playing crucial roles in a plant's growth, development, and stress responses. Phenylacetic acid (PAA) is a phenylalanine-derived natural auxin found widely in plants. Although the auxin activity of PAA in plants was identified several decades ago, PAA homeostasis and its function remain poorly understood, whereas indole-3-acetic acid (IAA), the most potent auxin, has been used for most auxin studies. Recent studies have revealed unique features of PAA distinctive from IAA, and the enzymes and intermediates of the PAA biosynthesis pathway have been identified. Here, we summarize the occurrence and function of PAA in plants and highlight the recent progress made in PAA homeostasis, emphasizing PAA biosynthesis and crosstalk between IAA and PAA homeostasis.
Collapse
Affiliation(s)
- Veronica C. Perez
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | - Haohao Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Makou Lin
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | - Jeongim Kim
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
- Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
23
|
Luján-Soto E, Aguirre de la Cruz PI, Juárez-González VT, Reyes JL, Sanchez MDLP, Dinkova TD. Transcriptional Regulation of zma- MIR528a by Action of Nitrate and Auxin in Maize. Int J Mol Sci 2022; 23:15718. [PMID: 36555358 PMCID: PMC9779399 DOI: 10.3390/ijms232415718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
In recent years, miR528, a monocot-specific miRNA, has been assigned multifaceted roles during development and stress response in several plant species. However, the transcription regulation and the molecular mechanisms controlling MIR528 expression in maize are still poorly explored. Here we analyzed the zma-MIR528a promoter region and found conserved transcription factor binding sites related to diverse signaling pathways, including the nitrate (TGA1/4) and auxin (AuxRE) response networks. Accumulation of both pre-miR528a and mature miR528 was up-regulated by exogenous nitrate and auxin treatments during imbibition, germination, and maize seedling establishment. Functional promoter analyses demonstrated that TGA1/4 and AuxRE sites are required for transcriptional induction by both stimuli. Overall, our findings of the nitrogen- and auxin-induced zma-MIR528a expression through cis-regulatory elements in its promoter contribute to the knowledge of miR528 regulome.
Collapse
Affiliation(s)
- Eduardo Luján-Soto
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Méxcio 04510, Mexico
| | - Paola I. Aguirre de la Cruz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Méxcio 04510, Mexico
| | - Vasti T. Juárez-González
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Méxcio 04510, Mexico
- Department of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - José L. Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Av. Universidad 2001, Cuernavaca 62210, Mexico
| | - María de la Paz Sanchez
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Tzvetanka D. Dinkova
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Méxcio 04510, Mexico
| |
Collapse
|
24
|
Chang X, Li X, Meng H, Li H, Wu X, Gong G, Chen H, Yang C, Zhang M, Liu T, Chen W, Yang W. Physiological and metabolic analyses provide insight into soybean seed resistance to fusarium fujikuroi causing seed decay. FRONTIERS IN PLANT SCIENCE 2022; 13:993519. [PMID: 36340362 PMCID: PMC9630849 DOI: 10.3389/fpls.2022.993519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Seed-borne pathogens cause diverse diseases at the growth, pre- and post-harvest stage of soybean resulting in a large reduction in yield and quality. The physiological and metabolic aspects of seeds are closely related to their defense against pathogens. Recently, Fusarium fujikuroi has been identified as the dominant seed-borne fungi of soybean seed decay, but little information on the responses of soybean seeds induced by F. fujikuroi is available. In this study, a time-course symptom development of seed decay was observed after F. fujikuroi inoculation through spore suspension soaking. The germination rate and the contents of soluble sugar and soluble protein were significantly altered over time. Both chitinase and β-1,3-glucanase as important fungal cell wall-degrading enzymes of soybean seeds were also rapidly and transiently activated upon the early infection of F. fujikuroi. Metabolic profile analysis showed that the metabolites in glycine, serine, and threonine metabolism and tryptophan metabolism were clearly induced by F. fujikuroi, but different metabolites were mostly enriched in isoflavone biosynthesis, flavone biosynthesis, and galactose pathways. Interestingly, glycitein and glycitin were dramatically upregulated while daidzein, genistein, genistin, and daidzin were largely downregulated. These results indicate a combination of physiological responses, cell wall-related defense, and the complicated metabolites of soybean seeds contributes to soybean seed resistance against F. fujikuroi, which are useful for soybean resistance breeding.
Collapse
Affiliation(s)
- Xiaoli Chang
- College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping system, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinyuan Li
- College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping system, Sichuan Agricultural University, Chengdu, China
| | - Hongbai Meng
- College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping system, Sichuan Agricultural University, Chengdu, China
| | - Hongju Li
- College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping system, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Wu
- College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping system, Sichuan Agricultural University, Chengdu, China
| | - Guoshu Gong
- College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping system, Sichuan Agricultural University, Chengdu, China
| | - Huabao Chen
- College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping system, Sichuan Agricultural University, Chengdu, China
| | - Chunping Yang
- College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping system, Sichuan Agricultural University, Chengdu, China
| | - Min Zhang
- College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping system, Sichuan Agricultural University, Chengdu, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyu Yang
- College of Agronomy & Sichuan Engineering Research Center for Crop Strip Intercropping system, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
25
|
Yang Y, Chen T, Dai X, Yang D, Wu Y, Chen H, Zheng Y, Zhi Q, Wan X, Tan X. Comparative transcriptome analysis revealed molecular mechanisms of peanut leaves responding to Ralstonia solanacearum and its type III secretion system mutant. Front Microbiol 2022; 13:998817. [PMID: 36090119 PMCID: PMC9453164 DOI: 10.3389/fmicb.2022.998817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a serious soil-borne disease that limits peanut production and quality, but the molecular mechanisms of the peanut response to R. solanacearum remain unclear. In this study, we reported the first work analyzing the transcriptomic changes of the resistant and susceptible peanut leaves infected with R. solanacearum HA4-1 and its type III secretion system mutant strains by the cutting leaf method at different timepoints (0, 24, 36, and 72 h post inoculation). A total of 125,978 differentially expressed genes (DEGs) were identified and subsequently classified into six groups to analyze, including resistance-response genes, susceptibility-response genes, PAMPs induced resistance-response genes, PAMPs induced susceptibility-response genes, T3Es induced resistance-response genes, and T3Es induced susceptibility-response genes. KEGG enrichment analyses of these DEGs showed that plant-pathogen interaction, plant hormone signal transduction, and MAPK signaling pathway were the outstanding pathways. Further analysis revealed that CMLs/CDPKs-WRKY module, MEKK1-MKK2-MPK3 cascade, and auxin signaling played important roles in the peanut response to R. solanacearum. Upon R. solanacearum infection (RSI), three early molecular events were possibly induced in peanuts, including Ca2+ activating CMLs/CDPKs-WRKY module to regulate the expression of resistance/susceptibility-related genes, auxin signaling was induced by AUX/IAA-ARF module to activate auxin-responsive genes that contribute to susceptibility, and MEKK1-MKK2-MPK3-WRKYs was activated by phosphorylation to induce the expression of resistance/susceptibility-related genes. Our research provides new ideas and abundant data resources to elucidate the molecular mechanism of the peanut response to R. solanacearum and to further improve the bacterial wilt resistance of peanuts.
Collapse
Affiliation(s)
- Yong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ting Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaoqiu Dai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yushuang Wu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Huilan Chen
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Yixiong Zheng
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qingqing Zhi
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- *Correspondence: Xiaorong Wan,
| | - Xiaodan Tan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Xiaodan Tan,
| |
Collapse
|
26
|
Transcriptional Analysis on Resistant and Susceptible Kiwifruit Genotypes Activating Different Plant-Immunity Processes against Pseudomonas syringae pv. actinidiae. Int J Mol Sci 2022; 23:ijms23147643. [PMID: 35886990 PMCID: PMC9322148 DOI: 10.3390/ijms23147643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa), a bacterial pathogen, is a severe threat to kiwifruit production. To elucidate the species-specific interaction between Psa and kiwifruit, transcriptomic-profiles analyses were conducted, under Psa-infected treatment and mock-inoculated control, on shoots of resistant Maohua (MH) and susceptible Hongyang (HY) kiwifruit varieties. The plant hormone-signal transduction and plant–pathogen interaction were significantly enriched in HY compared with MH. However, the starch and sucrose metabolism, antigen processing and presentation, phagosome, and galactose metabolism were significantly enriched in MH compared with HY. Interestingly, the MAP2 in the pathogen/microbe-associated molecular patterns (PAMPs)-triggered immunity (PTI) was significantly up-regulated in MH. The genes RAR1, SUGT1, and HSP90A in the effector-triggered immunity (ETI), and the NPR1 and TGA genes involved in the salicylic acid signaling pathway as regulatory roles of ETI, were significantly up-regulated in HY. Other important genes, such as the CCRs involved in phenylpropanoid biosynthesis, were highly expressed in MH, but some genes in the Ca2+ internal flow or involved in the reactive oxygen metabolism were obviously expressed in HY. These results suggested that the PTI and cell walls involved in defense mechanisms were significant in MH against Psa infection, while the ETI was notable in HY against Psa infection. This study will help to understand kiwifruit bacterial canker disease and provide important theoretical support in kiwifruit breeding.
Collapse
|
27
|
Dodueva IE, Lebedeva MA, Lutova LA. Phytopathogens and Molecular Mimicry. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Zhang S, Li C, Si J, Han Z, Chen D. Action Mechanisms of Effectors in Plant-Pathogen Interaction. Int J Mol Sci 2022; 23:6758. [PMID: 35743201 PMCID: PMC9224169 DOI: 10.3390/ijms23126758] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023] Open
Abstract
Plant pathogens are one of the main factors hindering the breeding of cash crops. Pathogens, including oomycetes, fungus, and bacteria, secrete effectors as invasion weapons to successfully invade and propagate in host plants. Here, we review recent advances made in the field of plant-pathogen interaction models and the action mechanisms of phytopathogenic effectors. The review illustrates how effectors from different species use similar and distinct strategies to infect host plants. We classify the main action mechanisms of effectors in plant-pathogen interactions according to the infestation process: targeting physical barriers for disruption, creating conditions conducive to infestation, protecting or masking themselves, interfering with host cell physiological activity, and manipulating plant downstream immune responses. The investigation of the functioning of plant pathogen effectors contributes to improved understanding of the molecular mechanisms of plant-pathogen interactions. This understanding has important theoretical value and is of practical significance in plant pathology and disease resistance genetics and breeding.
Collapse
Affiliation(s)
| | | | | | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| |
Collapse
|
29
|
Tomato zonate spot virus induced hypersensitive resistance via an auxin-related pathway in pepper. Gene 2022; 823:146320. [PMID: 35218893 DOI: 10.1016/j.gene.2022.146320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022]
Abstract
Tomato zonate spotvirus (TZSV) often incurs significant losses in many food and ornamental crops in Yunnan province, China, and the surrounding areas. The pepper (Capsicum chinensePI152225)can develop hypersensitive resistance following infection with TZSV, through an as yet unknown mechanism. The transcriptome dataset showed a total of 45.81 GB of clean data were obtained from six libraries, and the average percentage of the reads mapped to the pepper genome was over 90.00 %. A total of 1403 differentially expressed genes (DEGs) were obtained after TZSV infection, including 825significantly up-regulated genes and 578 down-regulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that most up-regulated DEGs were involved in basal defenses. RT-qPCR, and virus induced gene silencing (VIGS) were used preliminarily to identifyBBC_22506 and BBC_18917, among total of 71 differentially expressed genes (DEGs), that play a key role in mediating the auxin-induced signaling pathway that might take part in hypersensitive response (HR) conferred resistance to viral infection in pepper (PI152225) byTZSV. This is the first study on the mechanism of auxin resistance, involved in defense responses of pepper against viral diseases, which lay the foundation for further study on the pathogenic mechanism of TZSV, as well as the mechanism of resistance to TZSV, in peppers.
Collapse
|
30
|
Shi G, Wang S, Wang P, Zhan J, Tang Y, Zhao G, Li F, Ge X, Wu J. Cotton miR393-TIR1 Module Regulates Plant Defense Against Verticillium dahliae via Auxin Perception and Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:888703. [PMID: 35592575 PMCID: PMC9111529 DOI: 10.3389/fpls.2022.888703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Plant auxin is essential in plant growth and development. However, the molecular mechanisms of auxin involvement in plant immunity are unclear. Here, we addressed the function of the cotton (Gossypium hirsutum) miR393-TIR1 module in plant defense against Verticillium dahliae infection via auxin perception and signaling. GhTIR1 was directedly cleaved by ghr-miR393 according to mRNA degradome data, 5'-RACE analysis, and a GUS reporter assay. Ghr-miR393 knockdown significantly increased plant susceptibility to V. dahliae compared to the control, while ghr-miR393 overexpression and GhTIR1 knockdown significantly increased plant resistance. External indole-3-acetic acid (IAA) application significantly enhanced susceptibility to V. dahliae in ghr-miR393 knockdown and control plants compared to mock treatment, and only slightly increased susceptibility in overexpressing ghr-miR393 and GhTIR1-silenced plants. Application of external PEO-IAA (an auxin antagonist) had a contrary trend with IAA application. Based on yeast two-hybrid and bimolecular fluorescence complementation assays, GhTIR1 interacted with GhIAA14 in the nucleus, and GhIAA14 knockdown reduced plant resistance to V. dahliae infection. The results suggested that the ghr-miR393-GhTIR1 module regulates plant defense via auxin perception and signaling. Additionally, simultaneous knockdown of GhTIR1 and GhICS1 significantly increased plant susceptibility to V. dahliae compared to the control, indicating that salicylic acid (SA) accumulation is vital for the ghr-miR393-GhTIR1 module to regulates plant resistance. Transcriptome data also demonstrated that GhTIR1 knockdown significantly downregulated expression of auxin-related genes and upregulated expression of SA-related genes. Overall, the ghr-miR393-GhTIR1 module participates in plant response to V. dahliae infection via IAA perception and signaling partially depending on the SA defense pathway.
Collapse
Affiliation(s)
- Gege Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Saisai Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Peng Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingjing Zhan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ye Tang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ge Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyang Ge
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jiahe Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Saini R, Nandi AK. TOPLESS in the regulation of plant immunity. PLANT MOLECULAR BIOLOGY 2022; 109:1-12. [PMID: 35347548 DOI: 10.1007/s11103-022-01258-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
This review presents the multiple ways how topless and topless-related proteins regulate defense activation in plants and help in optimizing the defense-growth tradeoff. Eukaryotic gene expression is tightly regulated at various levels by hormones, transcription regulators, post-translational modifications, and transcriptional coregulators. TOPLESS (TPL)/TOPLESS-related (TPR) corepressors regulate gene expression by interacting with other transcription factors. TPRs regulate auxin, gibberellins, jasmonic acid, strigolactone, and brassinosteroid signaling in plants. In general, except for GA, TPLs suppress these signaling pathways to prevent unwanted activation of hormone signaling. The association of TPL/TPRs in these hormonal signaling reflects a wide role of this class of corepressors in plants' normal and stress physiology. The involvement of TPL in immune responses was first demonstrated a decade ago as a repressor of DND1 and DND2 that are negative regulators of plant immune response. Over the last decade, several research groups have established a larger role of TPL/TPRs in plant immunity during both pattern- and effector-triggered immunity. Very recent research unraveled the significant involvement of TPRs in balancing the growth and defense trade-off. TPRs, along with proteasomal degradation complex, miRNA, and phasiRNA, suppress the activation of autoimmunity in plants under normal conditions and promote defense under pathogen attack.
Collapse
Affiliation(s)
- Reena Saini
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
32
|
Wang Y, Pruitt RN, Nürnberger T, Wang Y. Evasion of plant immunity by microbial pathogens. Nat Rev Microbiol 2022; 20:449-464. [PMID: 35296800 DOI: 10.1038/s41579-022-00710-3] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/21/2022]
Abstract
Plant pathogenic viruses, bacteria, fungi and oomycetes cause destructive diseases in natural habitats and agricultural settings, thereby threatening plant biodiversity and global food security. The capability of plants to sense and respond to microbial infection determines the outcome of plant-microorganism interactions. Host-adapted microbial pathogens exploit various infection strategies to evade or counter plant immunity and eventually establish a replicative niche. Evasion of plant immunity through dampening host recognition or the subsequent immune signalling and defence execution is a crucial infection strategy used by different microbial pathogens to cause diseases, underpinning a substantial obstacle for efficient deployment of host genetic resistance genes for sustainable disease control. In this Review, we discuss current knowledge of the varied strategies microbial pathogens use to evade the complicated network of plant immunity for successful infection. In addition, we discuss how to exploit this knowledge to engineer crop resistance.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Rory N Pruitt
- Centre for Molecular Biology of Plants (ZMBP), University of Tübingen, Tübingen, Germany
| | - Thorsten Nürnberger
- Centre for Molecular Biology of Plants (ZMBP), University of Tübingen, Tübingen, Germany.,Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China. .,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
33
|
Navarrete F, Gallei M, Kornienko AE, Saado I, Khan M, Chia KS, Darino MA, Bindics J, Djamei A. TOPLESS promotes plant immunity by repressing auxin signaling and is targeted by the fungal effector Naked1. PLANT COMMUNICATIONS 2022; 3:100269. [PMID: 35529945 PMCID: PMC9073326 DOI: 10.1016/j.xplc.2021.100269] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/21/2021] [Accepted: 11/21/2021] [Indexed: 05/05/2023]
Abstract
In plants, the antagonism between growth and defense is hardwired by hormonal signaling. The perception of pathogen-associated molecular patterns (PAMPs) from invading microorganisms inhibits auxin signaling and plant growth. Conversely, pathogens manipulate auxin signaling to promote disease, but how this hormone inhibits immunity is not fully understood. Ustilago maydis is a maize pathogen that induces auxin signaling in its host. We characterized a U. maydis effector protein, Naked1 (Nkd1), that is translocated into the host nucleus. Through its native ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif, Nkd1 binds to the transcriptional co-repressors TOPLESS/TOPLESS-related (TPL/TPRs) and prevents the recruitment of a transcriptional repressor involved in hormonal signaling, leading to the de-repression of auxin and jasmonate signaling and thereby promoting susceptibility to (hemi)biotrophic pathogens. A moderate upregulation of auxin signaling inhibits the PAMP-triggered reactive oxygen species (ROS) burst, an early defense response. Thus, our findings establish a clear mechanism for auxin-induced pathogen susceptibility. Engineered Nkd1 variants with increased expression or increased EAR-mediated TPL/TPR binding trigger typical salicylic-acid-mediated defense reactions, leading to pathogen resistance. This implies that moderate binding of Nkd1 to TPL is a result of a balancing evolutionary selection process to enable TPL manipulation while avoiding host recognition.
Collapse
Affiliation(s)
- Fernando Navarrete
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Michelle Gallei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Aleksandra E Kornienko
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Indira Saado
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Mamoona Khan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Khong-Sam Chia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Martin A Darino
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Janos Bindics
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Armin Djamei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| |
Collapse
|
34
|
Gilbert S, Poulev A, Chrisler W, Acosta K, Orr G, Lebeis S, Lam E. Auxin-Producing Bacteria from Duckweeds Have Different Colonization Patterns and Effects on Plant Morphology. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060721. [PMID: 35336603 PMCID: PMC8950272 DOI: 10.3390/plants11060721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/30/2022] [Accepted: 02/20/2022] [Indexed: 05/30/2023]
Abstract
The role of auxin in plant-microbe interaction has primarily been studied using indole-3-acetic acid (IAA)-producing pathogenic or plant-growth-promoting bacteria. However, the IAA biosynthesis pathway in bacteria involves indole-related compounds (IRCs) and intermediates with less known functions. Here, we seek to understand changes in plant response to multiple plant-associated bacteria taxa and strains that differ in their ability to produce IRCs. We had previously studied 47 bacterial strains isolated from several duckweed species and determined that 79% of these strains produced IRCs in culture, such as IAA, indole lactic acid (ILA), and indole. Using Arabidopsis thaliana as our model plant with excellent genetic tools, we performed binary association assays on a subset of these strains to evaluate morphological responses in the plant host and the mode of bacterial colonization. Of the 21 tested strains, only four high-quantity IAA-producing Microbacterium strains caused an auxin root phenotype. Compared to the commonly used colorimetric Salkowski assay, auxin concentration determined by LC-MS was a superior indicator of a bacteria's ability to cause an auxin root phenotype. Studies with the auxin response mutant axr1-3 provided further genetic support for the role of auxin signaling in mediating the root morphology response to IAA-producing bacteria strains. Interestingly, our microscopy results also revealed new evidence for the role of the conserved AXR1 gene in endophytic colonization of IAA-producing Azospirillum baldaniorum Sp245 via the guard cells.
Collapse
Affiliation(s)
- Sarah Gilbert
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| | - Alexander Poulev
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| | - William Chrisler
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (W.C.); (G.O.)
| | - Kenneth Acosta
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (W.C.); (G.O.)
| | - Sarah Lebeis
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
| | - Eric Lam
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| |
Collapse
|
35
|
Rebolledo-Prudencio OG, Estrada-Rivera M, Dautt-Castro M, Arteaga-Vazquez MA, Arenas-Huertero C, Rosendo-Vargas MM, Jin H, Casas-Flores S. The small RNA-mediated gene silencing machinery is required in Arabidopsis for stimulation of growth, systemic disease resistance, and suppression of the nitrile-specifier gene NSP4 by Trichoderma atroviride. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:873-890. [PMID: 34807478 DOI: 10.1111/tpj.15599] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Trichoderma atroviride is a root-colonizing fungus that confers multiple benefits to plants. In plants, small RNA (sRNA)-mediated gene silencing (sRNA-MGS) plays pivotal roles in growth, development, and pathogen attack. Here, we explored the role of core components of Arabidopsis thaliana sRNA-MGS pathways during its interaction with Trichoderma. Upon interaction with Trichoderma, sRNA-MGS-related genes paralleled the expression of Arabidopsis defense-related genes, linked to salicylic acid (SA) and jasmonic acid (JA) pathways. SA- and JA-related genes were primed by Trichoderma in leaves after the application of the well-known pathogen-associated molecular patterns flg22 and chitin, respectively. Defense-related genes were primed in roots as well, but to different extents and behaviors. Phenotypical characterization of mutants in AGO genes and components of the RNA-dependent DNA methylation (RdDM) pathway revealed that different sets of sRNA-MGS-related genes are essential for (i) the induction of systemic acquired resistance against Botrytis cinerea, (ii) the activation of the expression of plant defense-related genes, and (iii) root colonization by Trichoderma. Additionally, plant growth induced by Trichoderma depends on functional RdDM. Profiling of DNA methylation and histone N-tail modification patterns at the Arabidopsis Nitrile-Specifier Protein-4 (NSP4) locus, which is responsive to Trichoderma, showed altered epigenetic modifications in RdDM mutants. Furthermore, NSP4 is required for the induction of systemic acquired resistance against Botrytis and avoidance of enhanced root colonization by Trichoderma. Together, our results indicate that RdDM is essential in Arabidopsis to establish a beneficial relationship with Trichoderma. We propose that DNA methylation and histone modifications are required for plant priming by the beneficial fungus against B. cinerea.
Collapse
Affiliation(s)
- Oscar Guillermo Rebolledo-Prudencio
- División de Biología Molecular, IPICYT, Camino a la presa San José No. 2055, Colonia Lomas 4ª Sección, San Luis Potosí, S.L.P., C.P. 78216, Mexico
| | - Magnolia Estrada-Rivera
- División de Biología Molecular, IPICYT, Camino a la presa San José No. 2055, Colonia Lomas 4ª Sección, San Luis Potosí, S.L.P., C.P. 78216, Mexico
| | - Mitzuko Dautt-Castro
- División de Biología Molecular, IPICYT, Camino a la presa San José No. 2055, Colonia Lomas 4ª Sección, San Luis Potosí, S.L.P., C.P. 78216, Mexico
| | - Mario A Arteaga-Vazquez
- Universidad Veracruzana, INBIOTECA-Instituto de Biotecnología y Ecología Aplicada, Av. de las Culturas Veracruzanas No. 101, Colonia Emiliano Zapata, Xalapa, Veracruz, C.P. 91090, Mexico
| | - Catalina Arenas-Huertero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec #1570, Priv del Pedregal., San Luis Potosí, S.L.P., C.P. 78295, Mexico
| | - Maria Montserrat Rosendo-Vargas
- División de Biología Molecular, IPICYT, Camino a la presa San José No. 2055, Colonia Lomas 4ª Sección, San Luis Potosí, S.L.P., C.P. 78216, Mexico
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Sergio Casas-Flores
- División de Biología Molecular, IPICYT, Camino a la presa San José No. 2055, Colonia Lomas 4ª Sección, San Luis Potosí, S.L.P., C.P. 78216, Mexico
| |
Collapse
|
36
|
Wei X, Zhang Y, Zhao Y, Xie Z, Hossain MR, Yang S, Shi G, Lv Y, Wang Z, Tian B, Su H, Wei F, Zhang X, Yuan Y. Root Transcriptome and Metabolome Profiling Reveal Key Phytohormone-Related Genes and Pathways Involved Clubroot Resistance in Brassica rapa L. FRONTIERS IN PLANT SCIENCE 2021; 12:759623. [PMID: 34975941 PMCID: PMC8715091 DOI: 10.3389/fpls.2021.759623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 05/14/2023]
Abstract
Plasmodiophora brassicae, an obligate biotrophic pathogen-causing clubroot disease, can seriously affect Brassica crops worldwide, especially Chinese cabbage. Understanding the transcriptome and metabolome profiling changes during the infection of P. brassicae will provide key insights in understanding the defense mechanism in Brassica crops. In this study, we estimated the phytohormones using targeted metabolome assays and transcriptomic changes using RNA sequencing (RNA-seq) in the roots of resistant (BrT24) and susceptible (Y510-9) plants at 0, 3, 9, and 20 days after inoculation (DAI) with P. brassicae. Differentially expressed genes (DEGs) in resistant vs. susceptible lines across different time points were identified. The weighted gene co-expression network analysis of the DEGs revealed six pathways including "Plant-pathogen interaction" and "Plant hormone signal transduction" and 15 hub genes including pathogenic type III effector avirulence factor gene (RIN4) and auxin-responsive protein (IAA16) to be involved in plants immune response. Inhibition of Indoleacetic acid, cytokinin, jasmonate acid, and salicylic acid contents and changes in related gene expression in R-line may play important roles in regulation of clubroot resistance (CR). Based on the combined metabolome profiling and hormone-related transcriptomic responses, we propose a general model of hormone-mediated defense mechanism. This study definitely enhances our current understanding and paves the way for improving CR in Brassica rapa.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingying Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Mohammad Rashed Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Gongyao Shi
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyan Lv
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Fang Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Salamon S, Żok J, Gromadzka K, Błaszczyk L. Expression Patterns of miR398, miR167, and miR159 in the Interaction between Bread Wheat ( Triticum aestivum L.) and Pathogenic Fusarium culmorum and Beneficial Trichoderma Fungi. Pathogens 2021; 10:1461. [PMID: 34832616 PMCID: PMC8624912 DOI: 10.3390/pathogens10111461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Bread wheat (Triticum aestivum L.) is an agronomically significant cereal cultivated worldwide. Wheat breeding is limited by numerous abiotic and biotic stresses. One of the most deleterious factors is biotic stress provoked by the Fusarium culmorum fungus. This pathogen is a causative agent of Fusarium root rot and Fusarium head blight. Beneficial fungi Trichoderma atroviride and T. cremeum are strong antagonists of mycotoxigenic Fusarium spp. These fungi promote plant growth and enhance their tolerance of negative environmental conditions. The aim of the study was to determine and compare the spatial (in above- and underground organs) and temporal (early: 6 and 22 hpi; and late: 5 and 7 dpi reactions) expression profiles of three mature miRNAs (miR398, miR167, and miR159) in wheat plants inoculated with two strains of F. culmorum (KF846 and EW49). Moreover, the spatial expression patterns in wheat response between plants inoculated with beneficial T. atroviride (AN35) and T. cremeum (AN392) were assessed. Understanding the sophisticated role of miRNAs in wheat-fungal interactions may initiate a discussion concerning the use of this knowledge to protect wheat plants from the harmful effects of fungal pathogens. With the use of droplet digital PCR (ddPCR), the absolute quantification of the selected miRNAs in the tested material was carried out. The differential accumulation of miR398, miR167, and miR159 in the studied groups was observed. The abundance of all analyzed miRNAs in the roots demonstrated an increase in the early and reduction in late wheat response to F. culmorum inoculation, suggesting the role of these particles in the initial wheat reaction to the studied fungal pathogen. The diverse expression patterns of the studied miRNAs between Trichoderma-inoculated or F. culmorum-inoculated plants and control wheat, as well as between Trichoderma-inoculated and F. culmorum-inoculated plants, were noticed, indicating the need for further analysis.
Collapse
Affiliation(s)
- Sylwia Salamon
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (S.S.); (J.Ż.)
| | - Julia Żok
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (S.S.); (J.Ż.)
| | - Karolina Gromadzka
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznan, Poland;
| | - Lidia Błaszczyk
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (S.S.); (J.Ż.)
| |
Collapse
|
38
|
Bauters L, Stojilković B, Gheysen G. Pathogens pulling the strings: Effectors manipulating salicylic acid and phenylpropanoid biosynthesis in plants. MOLECULAR PLANT PATHOLOGY 2021; 22:1436-1448. [PMID: 34414650 PMCID: PMC8518561 DOI: 10.1111/mpp.13123] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/01/2023]
Abstract
During evolution, plants have developed sophisticated ways to cope with different biotic and abiotic stresses. Phytohormones and secondary metabolites are known to play pivotal roles in defence responses against invading pathogens. One of the key hormones involved in plant immunity is salicylic acid (SA), of which the role in plant defence is well established and documented. Plants produce an array of secondary metabolites categorized in different classes, with the phenylpropanoids as major players in plant immunity. Both SA and phenylpropanoids are needed for an effective immune response by the plant. To successfully infect the host, pathogens secrete proteins, called effectors, into the plant tissue to lower defence. Secreted effectors can interfere with several metabolic or signalling pathways in the host to facilitate infection. In this review, we will focus on the different strategies pathogens have developed to affect the levels of SA and phenylpropanoids to increase plant susceptibility.
Collapse
Affiliation(s)
- Lander Bauters
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Boris Stojilković
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Godelieve Gheysen
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
39
|
Biosynthesis and Roles of Salicylic Acid in Balancing Stress Response and Growth in Plants. Int J Mol Sci 2021; 22:ijms222111672. [PMID: 34769103 PMCID: PMC8584137 DOI: 10.3390/ijms222111672] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Salicylic acid (SA) is an important plant hormone with a critical role in plant defense against pathogen infection. Despite extensive research over the past 30 year or so, SA biosynthesis and its complex roles in plant defense are still not fully understood. Even though earlier biochemical studies suggested that plants synthesize SA from cinnamate produced by phenylalanine ammonia lyase (PAL), genetic analysis has indicated that in Arabidopsis, the bulk of SA is synthesized from isochorismate (IC) produced by IC synthase (ICS). Recent studies have further established the enzymes responsible for the conversion of IC to SA in Arabidopsis. However, it remains unclear whether other plants also rely on the ICS pathway for SA biosynthesis. SA induces defense genes against biotrophic pathogens, but represses genes involved in growth for balancing defense and growth to a great extent through crosstalk with the growth-promoting plant hormone auxin. Important progress has been made recently in understanding how SA attenuates plant growth by regulating the biosynthesis, transport, and signaling of auxin. In this review, we summarize recent progress in the biosynthesis and the broad roles of SA in regulating plant growth during defense responses. Further understanding of SA production and its regulation of both defense and growth will be critical for developing better knowledge to improve the disease resistance and fitness of crops.
Collapse
|
40
|
Identification of IAA-regulated genes in Pseudomonas syringae pv. tomato strain DC3000. J Bacteriol 2021; 204:e0038021. [PMID: 34662236 DOI: 10.1128/jb.00380-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The auxin indole-3-acetic acid (IAA) is a plant hormone that not only regulates plant growth and development but also plays important roles in plant-microbe interactions. We previously reported that IAA alters expression of several virulence-related genes in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000 (PtoDC3000). To learn more about the impact of IAA on regulation of PtoDC3000 gene expression we performed a global transcriptomic analysis of bacteria grown in culture, in the presence or absence of exogenous IAA. We observed that IAA repressed expression of genes involved in the Type III secretion (T3S) system and motility and promoted expression of several known and putative transcriptional regulators. Several of these regulators are orthologs of factors known to regulate stress responses and accordingly expression of several stress response-related genes was also upregulated by IAA. Similar trends in expression for several genes were also observed by RT-qPCR. Using an Arabidopsis thaliana auxin receptor mutant that accumulates elevated auxin, we found that many of the P. syringae genes regulated by IAA in vitro were also regulated by auxin in planta. Collectively the data indicate that IAA modulates many aspects of PtoDC3000 biology, presumably to promote both virulence and survival under stressful conditions, including those encountered in or on plant leaves. IMPORTANCE Indole-3-acetic acid (IAA), a form of the plant hormone auxin, is used by many plant-associated bacteria as a cue to sense the plant environment. Previously, we showed that IAA can promote disease in interactions between the plant pathogen Pseudomonas syringae strain PtoDC000 and one of its hosts, Arabidopsis thaliana. However, the mechanisms by which IAA impacts the biology of PtoDC3000 and promotes disease are not well understood. Here we demonstrate that IAA is a signal molecule that regulates gene expression in PtoDC3000. The presence of exogenous IAA affects expression of over 700 genes in the bacteria, including genes involved in Type III secretion and genes involved in stress response. This work offers insight into the roles of auxin promoting pathogenesis.
Collapse
|
41
|
Mazzoni-Putman SM, Brumos J, Zhao C, Alonso JM, Stepanova AN. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harb Perspect Biol 2021; 13:a039990. [PMID: 33903155 PMCID: PMC8485746 DOI: 10.1101/cshperspect.a039990] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin is a crucial growth regulator that governs plant development and responses to environmental perturbations. It functions at the heart of many developmental processes, from embryogenesis to organ senescence, and is key to plant interactions with the environment, including responses to biotic and abiotic stimuli. As remarkable as auxin is, it does not act alone, but rather solicits the help of, or is solicited by, other endogenous signals, including the plant hormones abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellic acid, jasmonates, salicylic acid, and strigolactones. The interactions between auxin and other hormones occur at multiple levels: hormones regulate one another's synthesis, transport, and/or response; hormone-specific transcriptional regulators for different pathways physically interact and/or converge on common target genes; etc. However, our understanding of this crosstalk is still fragmentary, with only a few pieces of the gigantic puzzle firmly established. In this review, we provide a glimpse into the complexity of hormone interactions that involve auxin, underscoring how patchy our current understanding is.
Collapse
Affiliation(s)
- Serina M Mazzoni-Putman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Javier Brumos
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
42
|
Kunkel BN, Johnson JMB. Auxin Plays Multiple Roles during Plant-Pathogen Interactions. Cold Spring Harb Perspect Biol 2021; 13:a040022. [PMID: 33782029 PMCID: PMC8411954 DOI: 10.1101/cshperspect.a040022] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The plant hormone auxin governs many aspects of normal plant growth and development. Auxin also plays an important role in plant-microbe interactions, including interactions between plant hosts and pathogenic microorganisms that cause disease. It is now well established that indole-3-acetic acid (IAA), the most well-studied form of auxin, promotes disease in many plant-pathogen interactions. Recent studies have shown that IAA can act both as a plant hormone that modulates host signaling and physiology to increase host susceptibility and as a microbial signal that directly impacts the pathogen to promote virulence, but large gaps in our understanding remain. In this article, we review recent studies on the roles that auxin plays during plant-pathogen interactions and discuss the virulence mechanisms that many plant pathogens have evolved to manipulate host auxin signaling and promote pathogenesis.
Collapse
Affiliation(s)
- Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Joshua M B Johnson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
43
|
Yuan X, Hulin MT, Sundin GW. Effectors, chaperones, and harpins of the Type III secretion system in the fire blight pathogen Erwinia amylovora: a review. JOURNAL OF PLANT PATHOLOGY 2021; 103:25-39. [PMID: 0 DOI: 10.1007/s42161-020-00623-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 05/20/2023]
|
44
|
O’Malley MR, Anderson JC. Regulation of the Pseudomonas syringae Type III Secretion System by Host Environment Signals. Microorganisms 2021; 9:microorganisms9061227. [PMID: 34198761 PMCID: PMC8228185 DOI: 10.3390/microorganisms9061227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas syringae are Gram-negative, plant pathogenic bacteria that use a type III secretion system (T3SS) to disarm host immune responses and promote bacterial growth within plant tissues. Despite the critical role for type III secretion in promoting virulence, T3SS-encoding genes are not constitutively expressed by P. syringae and must instead be induced during infection. While it has been known for many years that culturing P. syringae in synthetic minimal media can induce the T3SS, relatively little is known about host signals that regulate the deployment of the T3SS during infection. The recent identification of specific plant-derived amino acids and organic acids that induce T3SS-inducing genes in P. syringae has provided new insights into host sensing mechanisms. This review summarizes current knowledge of the regulatory machinery governing T3SS deployment in P. syringae, including master regulators HrpRS and HrpL encoded within the T3SS pathogenicity island, and the environmental factors that modulate the abundance and/or activity of these key regulators. We highlight putative receptors and regulatory networks involved in linking the perception of host signals to the regulation of the core HrpRS–HrpL pathway. Positive and negative regulation of T3SS deployment is also discussed within the context of P. syringae infection, where contributions from distinct host signals and regulatory networks likely enable the fine-tuning of T3SS deployment within host tissues. Last, we propose future research directions necessary to construct a comprehensive model that (a) links the perception of host metabolite signals to T3SS deployment and (b) places these host–pathogen signaling events in the overall context of P. syringae infection.
Collapse
|
45
|
Kong X, Zhang C, Zheng H, Sun M, Zhang F, Zhang M, Cui F, Lv D, Liu L, Guo S, Zhang Y, Yuan X, Zhao S, Tian H, Ding Z. Antagonistic Interaction between Auxin and SA Signaling Pathways Regulates Bacterial Infection through Lateral Root in Arabidopsis. Cell Rep 2021; 32:108060. [PMID: 32846118 DOI: 10.1016/j.celrep.2020.108060] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/24/2020] [Accepted: 07/31/2020] [Indexed: 01/05/2023] Open
Abstract
Pathogen entry into host tissues is a critical and first step in infections. In plants, the lateral roots (LRs) are a potential entry and colonization site for pathogens. Here, using a GFP-labeled pathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), we observe that virulent Pto DC3000 invades plants through emerged LRs in Arabidopsis. Pto DC3000 strongly induced LR formation, a process that was dependent on the AUXIN RESPONSE FACTOR7 (ARF7)/ARF19-LATERAL ORGAN BOUNDARIES-DOMAIN (LBD) regulatory module. We show that salicylic acid (SA) represses LR formation, and several mutants defective in SA signaling are also involved in Pto DC3000-induced LR development. Significantly, ARF7, a well-documented positive regulator of LR development, directly represses the transcription of PR1 and PR2 to promote LR development. This study indicates that ARF7-mediated auxin signaling antagonizes with SA signaling to control bacterial infection through the regulation of LR development.
Collapse
Affiliation(s)
- Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China.
| | - Chunlei Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Huihui Zheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Min Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Feng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Mengyue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Fuhao Cui
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Dongping Lv
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Siyi Guo
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China.
| |
Collapse
|
46
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|
47
|
A Breach in Plant Defences: Pseudomonas syringae pv. actinidiae Targets Ethylene Signalling to Overcome Actinidia chinensis Pathogen Responses. Int J Mol Sci 2021; 22:ijms22094375. [PMID: 33922148 PMCID: PMC8122719 DOI: 10.3390/ijms22094375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/12/2023] Open
Abstract
Ethylene interacts with other plant hormones to modulate many aspects of plant metabolism, including defence and stomata regulation. Therefore, its manipulation may allow plant pathogens to overcome the host’s immune responses. This work investigates the role of ethylene as a virulence factor for Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of the bacterial canker of kiwifruit. The pandemic, highly virulent biovar of this pathogen produces ethylene, whereas the biovars isolated in Japan and Korea do not. Ethylene production is modulated in planta by light/dark cycle. Exogenous ethylene application stimulates bacterial virulence, and restricts or increases host colonisation if performed before or after inoculation, respectively. The deletion of a gene, unrelated to known bacterial biosynthetic pathways and putatively encoding for an oxidoreductase, abolishes ethylene production and reduces the pathogen growth rate in planta. Ethylene production by Psa may be a recently and independently evolved virulence trait in the arms race against the host. Plant- and pathogen-derived ethylene may concur in the activation/suppression of immune responses, in the chemotaxis toward a suitable entry point, or in the endophytic colonisation.
Collapse
|
48
|
El-Shetehy M, Moradi A, Maceroni M, Reinhardt D, Petri-Fink A, Rothen-Rutishauser B, Mauch F, Schwab F. Silica nanoparticles enhance disease resistance in Arabidopsis plants. NATURE NANOTECHNOLOGY 2021; 16:344-353. [PMID: 33318639 PMCID: PMC7610738 DOI: 10.1038/s41565-020-00812-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/30/2020] [Indexed: 05/18/2023]
Abstract
In plants, pathogen attack can induce an immune response known as systemic acquired resistance that protects against a broad spectrum of pathogens. In the search for safer agrochemicals, silica nanoparticles (SiO2 NPs; food additive E551) have recently been proposed as a new tool. However, initial results are controversial, and the molecular mechanisms of SiO2 NP-induced disease resistance are unknown. Here we show that SiO2 NPs, as well as soluble Si(OH)4, can induce systemic acquired resistance in a dose-dependent manner, which involves the defence hormone salicylic acid. Nanoparticle uptake and action occurred exclusively through the stomata (leaf pores facilitating gas exchange) and involved extracellular adsorption in the air spaces in the spongy mesophyll of the leaf. In contrast to the treatment with SiO2 NPs, the induction of systemic acquired resistance by Si(OH)4 was problematic since high Si(OH)4 concentrations caused stress. We conclude that SiO2 NPs have the potential to serve as an inexpensive, highly efficient, safe and sustainable alternative for plant disease protection.
Collapse
Affiliation(s)
- Mohamed El-Shetehy
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Aboubakr Moradi
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mattia Maceroni
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | | | - Felix Mauch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Fabienne Schwab
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
49
|
Su P, Zhao L, Li W, Zhao J, Yan J, Ma X, Li A, Wang H, Kong L. Integrated metabolo-transcriptomics and functional characterization reveals that the wheat auxin receptor TIR1 negatively regulates defense against Fusarium graminearum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:340-352. [PMID: 32678930 DOI: 10.1111/jipb.12992] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/16/2020] [Indexed: 05/20/2023]
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schw.) Perch) results in large yield losses in annual global wheat production. Although studies have identified a number of wheat FHB resistance genes, a deeper understanding of the mechanisms underlying host plant resistance to F. graminearum is required for the control of FHB. Here, an integrated metabolomics and transcriptomics analysis of infected wheat plants (Triticum aestivum L.) enabled identification of 789 differentially accumulated metabolites, including flavonoids, phenolamides, tryptamine derivatives, and phytohormones, and revealed altered expression of more than 100 genes that function in the biosynthesis or regulation of these pathways. Our data regarding the effects of F. graminearum infection on flavonoids and auxin signaling led to follow-up experiments that showed that exogenous kaempferide and apigenin application on spikes increased wheat resistance to FHB, while exogenous auxin treatment increased FHB susceptibility. RNAi-mediated knockdown of the gene encoding the auxin receptor, TaTIR1, increased FHB resistance. Our data supported the use of TaTIR1 knockdown in controlling FHB. Our study provides insights on the wheat response to F. graminearum infection and its FHB resistance mechanisms while illustrating the potential of TaTIR1 knockdown in increasing FHB resistance during crop improvement programs.
Collapse
Affiliation(s)
- Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Lanfei Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Wen Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jinxiao Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jun Yan
- College of Information Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Anfei Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
50
|
Hsu SH, Shen MW, Chen JC, Lur HS, Liu CT. The Photosynthetic Bacterium Rhodopseudomonas palustris Strain PS3 Exerts Plant Growth-Promoting Effects by Stimulating Nitrogen Uptake and Elevating Auxin Levels in Expanding Leaves. FRONTIERS IN PLANT SCIENCE 2021; 12:573634. [PMID: 33613595 PMCID: PMC7889516 DOI: 10.3389/fpls.2021.573634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/13/2021] [Indexed: 05/11/2023]
Abstract
Rhodopseudomonas palustris strain PS3, a phototrophic bacterium, was originally isolated from a paddy field located in Taipei city, Taiwan, and showed positive effects on the growth of leafy vegetables. The aim of this study was to clarify the mechanism of the beneficial effects exerted by PS3 on plants. An ineffective R. palustris strain, YSC3, isolated from a paddy field located in Yilan County, was used as the negative control for comparative analyses. We cultivated non-heading Chinese cabbage (Brassica rapa var. chinensis) in 1/2 strength Hoagland hydroponic solution, in which nitrate is the main nitrogen source. We evaluated various plant physiological responses to inoculation with different bacterial inoculants. The N use efficiency (NUE) of PS3-inoculated plants was dramatically higher than that of YSC3-inoculated plants. The nitrate uptake efficiency (NUpE) was significantly elevated in plants treated with PS3; however, no excess nitrate accumulation was observed in leaves. We also noticed that the endogenous indole-3-acetic acid (IAA) levels as well as the cell division rate in the leaves of PS3-inoculated plants were significantly higher than those in the leaves of YSC3-inoculated plants. We examined the bacterial transcription of some genes during root colonization, and found that the expression level of IAA synthesis related gene MAO was almost the same between these two strains. It suggests that the elevated endogenous IAA in the PS3-inoculated plants was not directly derived from the exogenous IAA produced by this bacterium. Taken together, we deduced that PS3 inoculation could promote plant growth by enhancing nitrate uptake and stimulating the accumulation of endogenous auxin in young expanding leaves to increase the proliferation of leaf cells during leaf development.
Collapse
Affiliation(s)
- Shu-Hua Hsu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Meng-Wei Shen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Jen-Chih Chen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Huu-Sheng Lur
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
- *Correspondence: Huu-Sheng Lur,
| | - Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- *Correspondence: Huu-Sheng Lur,
| |
Collapse
|