1
|
Ray Chaudhuri N, Sinha N, Ghosh Dastidar S, Ghosh S. Nitration at tyrosine 61 residue of Macrophomina phaseolina secretory glucanase brings a conformational change through a lock-unlock mechanism. J Biomol Struct Dyn 2025:1-11. [PMID: 40265320 DOI: 10.1080/07391102.2025.2494845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/01/2024] [Indexed: 04/24/2025]
Abstract
Nitration of Tyrosine residue, is a footprint of its preceding nitrosative stress conditions that make nitric oxide-derived oxidants abundant. Such a post-translational chemical modification, as byproduct of a stressed condition, could be an onset of a functional pathway. Macrophomina phaseolina, which is a global devastating necrotrophic fungal pathogen, is hereby reported to have at least nine tyrosine nitrated proteins in its secretome; among them Glucanase is an important virulence secretory protein that gets nitrated at Y61. The immediate impact on the Glucanase is likely to be a perturbation on the protein itself, which would prepare the protein to function, i.e. structurally ready to recognize binding partners which could not get recognized otherwise. Y61 nitration stabilizes the enzyme's structure, particularly, its central channel within the enzyme's core. Its mechanical consequences operate at both local and global scales. The key driving factor is a positional switch of Y61 which is triggered by charge-charge repulsion between D63 and Y61 upon nitration. This switching is responsible for a critical 'lock-unlock' mechanism at the upper junction of the channel that regulates solvent exposure, underscoring Y61's pivotal role as a gating residue for the channel. While it's 'gating-in' at the junction unlocks and distorts the channel shape, its 'gating-out' locks the channel into a well-guarded conformation systematically regulating its overall exposure that can potentiate precise substrate routing towards the active site. The findings suggest that Y61 nitration-induced conformational changes have the potential to drive enzyme activation, representing a novel insight into the behavior of M. phaseolina glucanase.
Collapse
Affiliation(s)
| | - Nilanjan Sinha
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | | | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Logan IE, Nguyen KT, Chatterjee T, Manivannan B, Paul NP, Kim SR, Sixta EM, Bastian LP, Marean-Reardon C, Karajannis MA, Fernández-Valle C, Estevez AG, Franco MC. Selective nitration of Hsp90 acts as a metabolic switch promoting tumor cell proliferation. Redox Biol 2024; 75:103249. [PMID: 38945076 PMCID: PMC11261529 DOI: 10.1016/j.redox.2024.103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
Tumors develop in an oxidative environment characterized by peroxynitrite production and downstream protein tyrosine (Y) nitration. We showed that tyrosine nitration supports schwannoma cell proliferation and regulates cell metabolism in the inheritable tumor disorder NF2-related Schwannomatosis (NF2-SWN). Here, we identified the chaperone Heat shock protein 90 (Hsp90) as the first nitrated protein that acts as a metabolic switch to promote schwannoma cell proliferation. Doubling the endogenous levels of nitrated Hsp90 in schwannoma cells or supplementing nitrated Hsp90 into normal Schwann cells increased their proliferation. Metabolically, nitration on either Y33 or Y56 conferred Hsp90 distinct functions; nitration at Y33 (Hsp90NY33) down-regulated mitochondrial oxidative phosphorylation, while nitration at Y56 (Hsp90NY56) increased glycolysis by activating the purinergic receptor P2X7 in both schwannoma and normal Schwann cells. Hsp90NY33 and Hsp90NY56 showed differential subcellular and spatial distribution corresponding with their metabolic and proliferative functions in schwannoma three-dimensional cell culture models. Collectively, these results underscore the role of tyrosine nitration as a post-translational modification regulating critical cellular processes. Nitrated proteins, particularly nitrated Hsp90, emerge as a novel category of tumor-directed therapeutic targets.
Collapse
Affiliation(s)
- Isabelle E Logan
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA; Center for Translational Science, Florida International University, Florida, 34987, USA
| | - Kyle T Nguyen
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Tilottama Chatterjee
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | | | - Ngozi P Paul
- Center for Translational Science, Florida International University, Florida, 34987, USA
| | - Sharon R Kim
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Evelyn M Sixta
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Lydia P Bastian
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Carrie Marean-Reardon
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Cristina Fernández-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Alvaro G Estevez
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Florida, 33199, USA
| | - Maria Clara Franco
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA; Center for Translational Science, Florida International University, Florida, 34987, USA; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Florida, 33199, USA.
| |
Collapse
|
3
|
Jia W, Gong X, Ye Z, Li N, Zhan X. Nitroproteomics is instrumental for stratification and targeted treatments of astrocytoma patients: expert recommendations for advanced 3PM approach with improved individual outcomes. EPMA J 2023; 14:673-696. [PMID: 38094577 PMCID: PMC10713973 DOI: 10.1007/s13167-023-00348-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2024]
Abstract
Protein tyrosine nitration is a selectively and reversible important post-translational modification, which is closely related to oxidative stress. Astrocytoma is the most common neuroepithelial tumor with heterogeneity and complexity. In the past, the diagnosis of astrocytoma was based on the histological and clinical features, and the treatment methods were nothing more than surgery-assisted radiotherapy and chemotherapy. Obviously, traditional methods short falls an effective treatment for astrocytoma. In late 2021, the World Health Organization (WHO) adopted molecular biomarkers in the comprehensive diagnosis of astrocytoma, such as IDH-mutant and DNA methylation, which enabled the risk stratification, classification, and clinical prognosis prediction of astrocytoma to be more correct. Protein tyrosine nitration is closely related to the pathogenesis of astrocytoma. We hypothesize that nitroproteome is significantly different in astrocytoma relative to controls, which leads to establishment of nitroprotein biomarkers for patient stratification, diagnostics, and prediction of disease stages and severity grade, targeted prevention in secondary care, treatment algorithms tailored to individualized patient profile in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Nitroproteomics based on gel electrophoresis and tandem mass spectrometry is an effective tool to identify the nitroproteins and effective biomarkers in human astrocytomas, clarifying the biological roles of oxidative/nitrative stress in the pathophysiology of astrocytomas, functional characteristics of nitroproteins in astrocytomas, nitration-mediated signal pathway network, and early diagnosis and treatment of astrocytomas. The results finds that these nitroproteins are enriched in mitotic cell components, which are related to transcription regulation, signal transduction, controlling subcellular organelle events, cell perception, maintaining cell homeostasis, and immune activity. Eleven statistically significant signal pathways are identified in astrocytoma, including remodeling of epithelial adherens junctions, germ cell-sertoli cell junction signaling, 14-3-3-mediated signaling, phagosome maturation, gap junction signaling, axonal guidance signaling, assembly of RNA polymerase III complex, and TREM1 signaling. Furthermore, protein tyrosine nitration is closely associated with the therapeutic effects of protein drugs, and molecular mechanism and drug targets of cancer. It provides valuable data for studying the protein nitration biomarkers, molecular mechanisms, and therapeutic targets of astrocytoma towards PPPM (3P medicine) practice. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00348-y.
Collapse
Affiliation(s)
- Wenshuang Jia
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xiaoxia Gong
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhen Ye
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
4
|
Xu S, Chuang CY, Hawkins CL, Hägglund P, Davies MJ. Identification and quantification of protein nitration sites in human coronary artery smooth muscle cells in the absence and presence of peroxynitrous acid/peroxynitrite. Redox Biol 2023; 64:102799. [PMID: 37413764 PMCID: PMC10363479 DOI: 10.1016/j.redox.2023.102799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/11/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
Peroxynitrous acid/peroxynitrite (ONOOH/ONOO-) is a powerful oxidizing/nitrating system formed at sites of inflammation, which can modify biological targets, and particularly proteins. Here, we show that multiple proteins from primary human coronary artery smooth muscle cells are nitrated, with LC-MS peptide mass mapping providing data on the sites and extents of changes on cellular and extracellular matrix (ECM) proteins. Evidence is presented for selective and specific nitrations at Tyr and Trp on 11 cellular proteins (out of 3668, including 205 ECM species) in the absence of added reagent ONOOH/ONOO-, with this being consistent with low-level endogenous nitration. A number of these have key roles in cell signaling/sensing and protein turnover. With added ONOOH/ONOO-, more proteins were modified (84 total; with 129 nitrated Tyr and 23 nitrated Trp, with multiple modifications on some proteins), with this occurring at the same and additional sites to endogenous modification. With low concentrations of ONOOH/ONOO- (50 μM) nitration occurs on specific proteins at particular sites, and is not driven by protein or Tyr/Trp abundance, with modifications detected on some low abundance proteins. However, with higher ONOOH/ONOO- concentrations (500 μM), modification is primarily driven by protein abundance. ECM species are major targets and over-represented in the pool of modified proteins, with fibronectin and thrombospondin-1 being particularly heavily modified (12 sites in each case). Both endogenous and exogenous nitration of cell- and ECM-derived species may have significant effects on cell and protein function, and potentially be involved in the development and exacerbation of diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Shuqi Xu
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
Nolasco S, Bellido J, Serna M, Carmona B, Soares H, Zabala JC. Colchicine Blocks Tubulin Heterodimer Recycling by Tubulin Cofactors TBCA, TBCB, and TBCE. Front Cell Dev Biol 2021; 9:656273. [PMID: 33968934 PMCID: PMC8100514 DOI: 10.3389/fcell.2021.656273] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Colchicine has been used to treat gout and, more recently, to effectively prevent autoinflammatory diseases and both primary and recurrent episodes of pericarditis. The anti-inflammatory action of colchicine seems to result from irreversible inhibition of tubulin polymerization and microtubule (MT) assembly by binding to the tubulin heterodimer, avoiding the signal transduction required to the activation of the entire NLRP3 inflammasome. Emerging results show that the MT network is a potential regulator of cardiac mechanics. Here, we investigated how colchicine impacts in tubulin folding cofactors TBCA, TBCB, and TBCE activities. We show that TBCA is abundant in mouse heart insoluble protein extracts. Also, a decrease of the TBCA/β-tubulin complex followed by an increase of free TBCA is observed in human cells treated with colchicine. The presence of free TBCA is not observed in cells treated with other anti-mitotic agents such as nocodazole or cold shock, neither after translation inhibition by cycloheximide. In vitro assays show that colchicine inhibits tubulin heterodimer dissociation by TBCE/TBCB, probably by interfering with interactions of TBCE with tubulin dimers, leading to free TBCA. Manipulation of TBCA levels, either by RNAi or overexpression results in decreased levels of tubulin heterodimers. Together, these data strongly suggest that TBCA is mainly receiving β-tubulin from the dissociation of pre-existing heterodimers instead of newly synthesized tubulins. The TBCE/TBCB+TBCA system is crucial for controlling the critical concentration of free tubulin heterodimers and MT dynamics in the cells by recycling the tubulin heterodimers. It is conceivable that colchicine affects tubulin heterodimer recycling through the TBCE/TBCB+TBCA system producing the known benefits in the treatment of pericardium inflammation.
Collapse
Affiliation(s)
- Sofia Nolasco
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Javier Bellido
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Marina Serna
- Spanish National Cancer Research Center, CNIO, Madrid, Spain
| | - Bruno Carmona
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Centro de Química Estrutural - Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Centro de Química Estrutural - Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Juan Carlos Zabala
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
6
|
HILI destabilizes microtubules by suppressing phosphorylation and Gigaxonin-mediated degradation of TBCB. Sci Rep 2017; 7:46376. [PMID: 28393858 PMCID: PMC5385498 DOI: 10.1038/srep46376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023] Open
Abstract
Human PIWIL2, aka HILI, is a member of PIWI protein family and overexpresses in various tumors. However, the underlying mechanisms of HILI in tumorigenesis remain largely unknown. TBCB has a critical role in regulating microtubule dynamics and is overexpressed in many cancers. Here we report that HILI inhibits Gigaxonin-mediated TBCB ubiquitination and degradation by interacting with TBCB, promoting the binding between HSP90 and TBCB, and suppressing the interaction between Gigaxonin and TBCB. Meanwhile, HILI can also reduce phosphorylation level of TBCB induced by PAK1. Our results showed that HILI suppresses microtubule polymerization and promotes cell proliferation, migration and invasion via TBCB for the first time, revealing a novel mechanism for HILI in tumorigenesis.
Collapse
|
7
|
Identification of TWIST-interacting genes in prostate cancer. SCIENCE CHINA-LIFE SCIENCES 2017; 60:386-396. [DOI: 10.1007/s11427-016-0262-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
|
8
|
Adav SS, Sze SK. Insight of brain degenerative protein modifications in the pathology of neurodegeneration and dementia by proteomic profiling. Mol Brain 2016; 9:92. [PMID: 27809929 PMCID: PMC5094070 DOI: 10.1186/s13041-016-0272-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/16/2016] [Indexed: 02/06/2023] Open
Abstract
Dementia is a syndrome associated with a wide range of clinical features including progressive cognitive decline and patient inability to self-care. Due to rapidly increasing prevalence in aging society, dementia now confers a major economic, social, and healthcare burden throughout the world, and has therefore been identified as a public health priority by the World Health Organization. Previous studies have established dementia as a 'proteinopathy' caused by detrimental changes in brain protein structure and function that promote misfolding, aggregation, and deposition as insoluble amyloid plaques. Despite clear evidence that pathological cognitive decline is associated with degenerative protein modifications (DPMs) arising from spontaneous chemical modifications to amino acid side chains, the molecular mechanisms that promote brain DPMs formation remain poorly understood. However, the technical challenges associated with DPM analysis have recently become tractable due to powerful new proteomic techniques that facilitate detailed analysis of brain tissue damage over time. Recent studies have identified that neurodegenerative diseases are associated with the dysregulation of critical repair enzymes, as well as the misfolding, aggregation and accumulation of modified brain proteins. Future studies will further elucidate the mechanisms underlying dementia pathogenesis via the quantitative profiling of the human brain proteome and associated DPMs in distinct phases and subtypes of disease. This review summarizes recent developments in quantitative proteomic technologies, describes how these techniques have been applied to the study of dementia-linked changes in brain protein structure and function, and briefly outlines how these findings might be translated into novel clinical applications for dementia patients. In this review, only spontaneous protein modifications such as deamidation, oxidation, nitration glycation and carbamylation are reviewed and discussed.
Collapse
Affiliation(s)
- Sunil S. Adav
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Siu Kwan Sze
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| |
Collapse
|
9
|
Gonçalves J, Tavares A, Carvalhal S, Soares H. Revisiting the tubulin folding pathway: new roles in centrosomes and cilia. Biomol Concepts 2015; 1:423-34. [PMID: 25962015 DOI: 10.1515/bmc.2010.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Centrosomes and cilia are critical eukaryotic organelles which have been in the spotlight in recent years given their implication in a myriad of cellular and developmental processes. Despite their recognized importance and intense study, there are still many open questions about their biogenesis and function. In the present article, we review the existing data concerning members of the tubulin folding pathway and related proteins, which have been identified at centrosomes and cilia and were shown to have unexpected roles in these structures.
Collapse
|
10
|
Yeo WS, Kim YJ, Kabir MH, Kang JW, Ahsan-Ul-Bari M, Kim KP. Mass spectrometric analysis of protein tyrosine nitration in aging and neurodegenerative diseases. MASS SPECTROMETRY REVIEWS 2015; 34:166-183. [PMID: 24889964 DOI: 10.1002/mas.21429] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This review highlights the significance of protein tyrosine nitration (PTN) in signal transduction pathways, the progress achieved in analytical methods, and the implication of nitration in the cellular pathophysiology of aging and age-related neurodegenerative diseases. Although mass spectrometry of nitrated peptides has become a powerful tool for the characterization of nitrated peptides, the low stoichiometry of this modification clearly necessitates the use of affinity chromatography to enrich modified peptides. Analysis of nitropeptides involves identification of endogenous, intact modification as well as chemical conversion of the nitro group to a chemically reactive amine group and further modifications that enable affinity capture and enhance detectability by altering molecular properties. In this review, we focus on the recent progress in chemical derivatization of nitropeptides for enrichment and mass analysis, and for detection and quantification using various analytical tools. PTN participates in physiological processes, such as aging and neurodegenerative diseases. Accumulation of 3-nitrotyrosine has been found to occur during the aging process; this was identified through mass spectrometry. Further, there are several studies implicating the presence of nitrated tyrosine in age-related diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The spatial structure of the cell is highly organized at all levels: from small complexes and assemblies, to local nano- and microclusters, to global, micrometer scales across and between cells. We suggest that this multiscale spatial cell organization also organizes signaling and coordinates cellular behavior. We propose a new view of the spatial structure of cell signaling systems. This new view describes cell signaling in terms of dynamic allosteric interactions within and among distinct, spatially organized transient clusters. The clusters vary over time and space and are on length scales from nanometers to micrometers. When considered across these length scales, primary factors in the spatial organization are cell membrane domains and the actin cytoskeleton, both also highly dynamic. A key challenge is to understand the interplay across these multiple scales, link it to the physicochemical basis of the conformational behavior of single molecules and ultimately relate it to cellular function. Overall, our premise is that at these scales, cell signaling should be thought of not primarily as a sequence of diffusion-controlled molecular collisions, but instead transient, allostery-driven cluster re-forming interactions.
Collapse
Affiliation(s)
- Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
12
|
Proteomic analysis of endogenous nitrotryptophan-containing proteins in rat hippocampus and cerebellum. Biosci Rep 2013; 32:521-30. [PMID: 22697601 PMCID: PMC3475453 DOI: 10.1042/bsr20120032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nitration of tryptophan residues is a novel post-translational modification. In the present study, we examined whether NO2Trp (nitrotryptophan)-containing proteins are produced in the hippocampus and cerebellum of the adult rat under physiological conditions in vivo. Using Western blot analysis with anti-6-NO2Trp-specific antibody, we found many similar immunoreactive spots in the protein extracts from both regions. These spots were subsequently subjected to trypsin digestion and LC-ESI-MS/MS (LC-electrospray ionization-tandem MS) analysis. We identified several cytoskeletal proteins and glycolytic enzymes as NO2Trp-containing proteins and determined the position of nitrated tryptophan residues with significant ion score levels (P<0.05) in several proteins in both regions. We also observed that the total amount of NO2Trp-containing proteins in the cerebellum was significantly greater than that in the hippocampus (P<0.05). Moreover, IP (immunoprecipitation) assays using anti-aldolase C antibody showed that the relative intensity of immunostaining for NO2Trp over aldolase C was much higher in cerebellum than in hippocampus. The amounts of nNOS (neuronal nitric oxide synthase) and eNOS (endothelial nitric oxide synthase) were much greater in cerebellum than in hippocampus. This is the first evidence of several specific sites of nitrated tryptophan in proteins under physiological conditions in vivo.
Collapse
|
13
|
Tubulin-binding cofactor B is a direct interaction partner of the dynactin subunit p150(Glued). Cell Tissue Res 2012; 350:13-26. [PMID: 22777741 DOI: 10.1007/s00441-012-1463-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
The dynactin p150(Glued) subunit, encoded by the gene DCTN1, is part of the dynein-dynactin motor protein complex responsible for retrograde axonal transport in motor neurons. The p150 subunit is a candidate gene for neurodegenerative diseases, in particular motor neuron and extrapyramidal diseases. Tubulin-binding cofactors are believed to be involved in tubulin biogenesis and degradation and therefore to contribute to microtubule functional diversity and regulation. A yeast-two-hybrid screen for putative interacting proteins of dynactin p150(Glued) has revealed tubulin-folding cofactor B (TBCB). We analyzed the interaction of these proteins and investigated the impact of this complex on the microtubule network in cell lines and primary hippocampal neurons in vitro. We especially concentrated on neuronal morphology and synaptogenesis. Overexpression of both proteins or depletion of TBCB alone does not alter the microtubule network and/or neuronal morphology. The demonstration of the interaction of the transport molecule dynactin and the tubulin-regulating factor TBCB is thought to have an impact on several cellular mechanisms. TBCB expression levels have been found to have only a subtle influence on the microtubule network and neuronal morphology. However, overexpression of TBCB leads to the decreased localization of p150 to the microtubule network that might result in a functional modulation of this protein complex.
Collapse
|
14
|
Protein nitration as footprint of oxidative stress-related nitric oxide signaling pathways in developing Ciona intestinalis. Nitric Oxide 2012; 27:18-24. [PMID: 22498777 DOI: 10.1016/j.niox.2012.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/16/2012] [Accepted: 03/27/2012] [Indexed: 02/08/2023]
Abstract
Developmental processes in the ascidian Ciona intestinalis depend on a complex interplay of events including, during metamorphosis, a caspase-dependent apoptosis which is regulated by the nitric oxide (NO)-cGMP signaling pathway. Herein we disclose an alternate NO-mediated signaling pathway during Ciona development which appears to be critically dependent on local redox control. Evidence in support of this conclusion includes: (a) inhibitors of NO synthase (NOS) and scavengers of NO-derived nitrating agents markedly decrease the rate of Ciona metamorphosis; (b) an NO donor or peroxynitrite caused an opposite effect; (c) increased protein nitration is observed at larva stage. Integrated proteomic and immunochemical methodologies identified nitrated tyrosine residues in ERK and snail. Overall, these results point to protein nitration as a hitherto overlooked NO-dependent regulatory mechanism in Ciona which is specifically triggered by elevated ROS production during developmental processes.
Collapse
|
15
|
Zhao TT, Lu X, Yang XH, Wang LM, Li X, Wang ZC, Gong HB, Zhu HL. Synthesis, biological evaluation, and molecular docking studies of 2,6-dinitro-4-(trifluoromethyl)phenoxysalicylaldoxime derivatives as novel antitubulin agents. Bioorg Med Chem 2012; 20:3233-41. [PMID: 22512906 DOI: 10.1016/j.bmc.2012.03.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 11/16/2022]
Abstract
A series of 2,6-dinitro-4-(trifluoromethyl)phenoxysalicylaldoxime derivatives (1h-20h) have been designed and synthesized, and their biological activities were also evaluated as potential antiproliferation and tubulin polymerization inhibitors. Among all the compounds, 2h showed the most potent activity in vitro, which inhibited the growth of MCF-7, Hep-G2 and A549 cell lines with IC(50) values of 0.70 ± 0.05, 0.68 ± 0.02 and 0.86 ± 0.05 μM, respectively. Compound 2h also exhibited significant tubulin polymerization inhibitory activity (IC(50)=3.06 ± 0.05 μM). The result of flow cytometry (FCM) demonstrated that compound 2h induced cell apoptosis. Docking simulation was performed to insert compound 2h into the crystal structure of tubulin at colchicine binding site to determine the probable binding model. Based on the preliminary results, compound 2h with potent inhibitory activity in tumor growth may be a potential anticancer agent.
Collapse
Affiliation(s)
- Ting-Ting Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Galetskiy D, Lohscheider JN, Kononikhin AS, Popov IA, Nikolaev EN, Adamska I. Phosphorylation and nitration levels of photosynthetic proteins are conversely regulated by light stress. PLANT MOLECULAR BIOLOGY 2011; 77:461-73. [PMID: 21901528 DOI: 10.1007/s11103-011-9824-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/24/2011] [Indexed: 05/21/2023]
Abstract
Using a label-free mass spectrometric approach, we investigated light-induced changes in the distribution of phosphorylated and nitrated proteins within subpopulations of native photosynthetic complexes in the thylakoid membrane of Arabidopsis thaliana leaves adapted to growth light (GL) and subsequently exposed to high light (HL). Eight protein phosphorylation sites were identified in photosystem II (PSII) and the phosphorylation level of seven was regulated by HL as determined based on peak areas from ion chromatograms of phosphorylated and non-phosphorylated peptides. Although the phosphorylation of PSII proteins was reported in the past, we demonstrated for the first time that two minor antenna LHCB4 isoforms are alternately phosphorylated under GL and HL conditions in PSII monomers, dimers and supercomplexes. A role of LHCB4 phosphorylation in state transition and monomerization of PSII under HL conditions is proposed. We determined changes in the nitration level of 23 tyrosine residues in five photosystem I (PSI) and nine PSII proteins and demonstrated for the majority of them a lower nitration level in PSI and PSII complexes and supercomplexes under HL conditions, as compared to GL. In contrast, the nitration level significantly increased in assembled/disassembled PSI and PSII subcomplexes under HL conditions. A possible role of nitration in (1) monomerization of LHCB1-3 trimers under HL conditions (2) binding properties of ferredoxin-NADP+ oxidoreductase to photosystem I, and (3) PSII photodamage and repair cycle, is discussed. Based on these data, we propose that the conversely regulated phosphorylation and nitration levels regulate the stability and turnover of photosynthetic complexes under HL conditions.
Collapse
Affiliation(s)
- Dmitry Galetskiy
- Department of Physiology and Plant Biochemistry, University of Konstanz, Constance, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, Gómez-Rodríguez MV, López-Jaramillo J, Begara-Morales JC, Sánchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB. High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitration. PLANT, CELL & ENVIRONMENT 2011; 34:1803-18. [PMID: 21676000 DOI: 10.1111/j.1365-3040.2011.02376.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
High temperature (HT) is considered a major abiotic stress that negatively affects both vegetative and reproductive growth. Whereas the metabolism of reactive oxygen species (ROS) is well established under HT, less is known about the metabolism of reactive nitrogen species (RNS). In sunflower (Helianthus annuus L.) seedlings exposed to HT, NO content as well as S-nitrosoglutathione reductase (GSNOR) activity and expression were down-regulated with the simultaneous accumulation of total S-nitrosothiols (SNOs) including S-nitrosoglutathione (GSNO). However, the content of tyrosine nitration (NO(2) -Tyr) studied by high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) and by confocal laser scanning microscope was induced. Nitroproteome analysis under HT showed that this stress induced the protein expression of 13 tyrosine-nitrated proteins. Among the induced proteins, ferredoxin-NADP reductase (FNR) was selected to evaluate the effect of nitration on its activity after heat stress and in vitro conditions using 3-morpholinosydnonimine (SIN-1) (peroxynitrite donor) as the nitrating agent, the FNR activity being inhibited. Taken together, these results suggest that HT augments SNOs, which appear to mediate protein tyrosine nitration, inhibiting FNR, which is involved in the photosynthesis process.
Collapse
Affiliation(s)
- Mounira Chaki
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC, Departamento de Bioquímica y Biología Molecular, Universidad de Jaén E-23071 Jaén, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Reyes JF, Fu Y, Vana L, Kanaan NM, Binder LI. Tyrosine nitration within the proline-rich region of Tau in Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2275-85. [PMID: 21514440 DOI: 10.1016/j.ajpath.2011.01.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/14/2010] [Accepted: 01/12/2011] [Indexed: 12/24/2022]
Abstract
A substantial body of evidence suggests that nitrative injury contributes to neurodegeneration in Alzheimer's disease (AD) and other neurodegenerative disorders. Previously, we showed in vitro that within the tau protein the N-terminal tyrosine residues (Y18 and Y29) are more susceptible to nitrative modifications than other tyrosine sites (Y197 and Y394). Using site-specific antibodies to nitrated tau at Y18 and Y29, we identified tau nitrated in both glial (Y18) and neuronal (Y29) tau pathologies. In this study, we report the characterization of two novel monoclonal antibodies, Tau-nY197 and Tau-nY394, recognizing tau nitrated at Y197 and Y394, respectively. By Western blot analysis, Tau-nY197 labeled soluble tau and insoluble paired helical filament proteins (PHF-tau) nitrated at Y197 from control and AD brain samples. Tau-nY394 failed to label soluble tau isolated from control or severe AD samples, but labeled insoluble PHF-tau to a limited extent. Immunohistochemical analysis using Tau-nY197 revealed the hallmark tau pathology associated with AD; Tau-nY394 did not detect any pathological lesions characteristic of the disorder. These data suggest that a subset of the hallmark pathological inclusions of AD contain tau nitrated at Y197. However, nitration at Y197 was also identified in soluble tau from all control samples, including those at Braak stage 0, suggesting that nitration at this site in the proline-rich region of tau may have normal biological functions in the human brain.
Collapse
Affiliation(s)
- Juan F Reyes
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | | | | |
Collapse
|
19
|
Szolajska E, Chroboczek J. Faithful chaperones. Cell Mol Life Sci 2011; 68:3307-22. [PMID: 21655914 PMCID: PMC3181412 DOI: 10.1007/s00018-011-0740-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 12/01/2022]
Abstract
This review describes the properties of some rare eukaryotic chaperones that each assist in the folding of only one target protein. In particular, we describe (1) the tubulin cofactors, (2) p47, which assists in the folding of collagen, (3) α-hemoglobin stabilizing protein (AHSP), (4) the adenovirus L4-100 K protein, which is a chaperone of the major structural viral protein, hexon, and (5) HYPK, the huntingtin-interacting protein. These various-sized proteins (102–1,190 amino acids long) are all involved in the folding of oligomeric polypeptides but are otherwise functionally unique, as they each assist only one particular client. This raises a question regarding the biosynthetic cost of the high-level production of such chaperones. As the clients of faithful chaperones are all abundant proteins that are essential cellular or viral components, it is conceivable that this necessary metabolic expenditure withstood evolutionary pressure to minimize biosynthetic costs. Nevertheless, the complexity of the folding pathways in which these chaperones are involved results in error-prone processes. Several human disorders associated with these chaperones are discussed.
Collapse
Affiliation(s)
- Ewa Szolajska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02106 Warsaw, Poland
| | | |
Collapse
|
20
|
Larsen TR, Bache N, Gramsbergen JB, Roepstorff P. Identification of nitrotyrosine containing peptides using combined fractional diagonal chromatography (COFRADIC) and off-line nano-LC-MALDI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:989-996. [PMID: 21953040 DOI: 10.1007/s13361-011-0095-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 05/31/2023]
Abstract
Protein nitration take place on tyrosine residues under oxidative stress conditions and may influence a number of processes including enzyme activity, protein-protein interactions and phospho-tyrosine signalling pathways. Nitrated proteins have been identified in a number of diseases, however, the study of these proteins has been compromised by the lack of good methods for identifying nitrated proteins, their nitration sites and the level of nitration. Here, we present a method for identification of nitrated peptides that allows the site specific assignment of nitration, is easy to use and reproducible, and opens up for the possibility to quantify the level of nitration of specific peptides as function of different oxidative conditions, namely combined fractional diagonal chromatography (COFRADIC) in combination with off-line nano-LC-MALDI. We identify six nitrated peptides from in vitro nitrated bovine serum albumin and propose that automated COFRADIC using nano-LC and off-line MALDI-MS might be a possibility for identification of tyrosine nitrated proteins and the nitration sites in complex samples.
Collapse
Affiliation(s)
- Trine R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | | | | |
Collapse
|
21
|
Vana L, Kanaan NM, Hakala K, Weintraub ST, Binder LI. Peroxynitrite-induced nitrative and oxidative modifications alter tau filament formation. Biochemistry 2011; 50:1203-12. [PMID: 21210655 PMCID: PMC3040256 DOI: 10.1021/bi101735m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tau undergoes numerous posttranslational modifications during the progression of Alzheimer's disease (AD). Some of these changes accelerate tau aggregation, while others are inhibitory. AD-associated inflammation is thought to create oxygen and nitrogen radicals such as peroxynitrite (PN). In vitro, PN can nitrate many proteins, including tau. We have previously demonstrated that tau's ability to form filaments is profoundly affected by treatment with PN and have attributed this inhibition to tyrosine nitration. However, PN is highly reactive and unstable leading to oxidative amino acid modifications through its free radical byproducts. To test whether PN can modify other amino acids in tau via oxidative modifications, a mutant form of the tau protein lacking all tyrosines (5XY → F) was constructed. 5XY → F tau readily forms filaments; however, like wild-type tau the extent of polymerization was greatly reduced following PN treatment. Since 5XY → F tau cannot be nitrated, it was clear that nonnitrative modifications are generated by PN treatment and that these modifications change tau filament formation. Mass spectrometry was used to identify these oxidative alterations in wild-type tau and 5XY → F tau. PN-treated wild-type tau and 5XY → F tau consistently displayed lysine formylation throughout tau in a nonsequence-specific distribution. Lysine formylation likely results from reactive free radical exposure caused by PN treatment. Therefore, our results indicate that PN treatment of proteins in vitro cannot be used to study protein nitration as it likely induces numerous other random oxidative modifications clouding the interpretations of any functional consequences of tyrosine nitration.
Collapse
Affiliation(s)
- Laurel Vana
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States.
| | | | | | | | | |
Collapse
|
22
|
Corpas FJ, Chaki M, Leterrier M, Barroso JB. Protein tyrosine nitration: a new challenge in plants. PLANT SIGNALING & BEHAVIOR 2009; 4:920-3. [PMID: 19826215 PMCID: PMC2801353 DOI: 10.4161/psb.4.10.9466] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 06/24/2009] [Indexed: 05/19/2023]
Abstract
Nitric oxide metabolism in plant cells has a relative short history. Nitration is a chemical process which consists of introducing a nitro group (-NO(2)) into a chemical compound. In biological systems, this process has been found in different molecules such as proteins, lipids and nucleic acids that can affect its function. This mini-review offers an overview of this process with special emphasis on protein tyrosine nitration in plants and its involvement in the process of nitrosative stress.
Collapse
Affiliation(s)
- Francisco J Corpas
- Departamento de Bioquímica; Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain.
| | | | | | | |
Collapse
|
23
|
Fanarraga ML, Villegas JC, Carranza G, Castaño R, Zabala JC. Tubulin cofactor B regulates microtubule densities during microglia transition to the reactive states. Exp Cell Res 2008; 315:535-41. [PMID: 19038251 DOI: 10.1016/j.yexcr.2008.10.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/21/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
Abstract
Microglia are highly dynamic cells of the CNS that continuously survey the welfare of the neural parenchyma and play key roles modulating neurogenesis and neuronal cell death. In response to injury or pathogen invasion parenchymal microglia transforms into a more active cell that proliferates, migrates and behaves as a macrophage. The acquisition of these extra skills implicates enormous modifications of the microtubule and actin cytoskeletons. Here we show that tubulin cofactor B (TBCB), which has been found to contribute to various aspects of microtubule dynamics in vivo, is also implicated in microglial cytoskeletal changes. We find that TBCB is upregulated in post-lesion reactive parenchymal microglia/macrophages, in interferon treated BV-2 microglial cells, and in neonate amoeboid microglia where the microtubule densities are remarkably low. Our data demonstrate that upon TBCB downregulation both, after microglia differentiation to the ramified phenotype in vivo and in vitro, or after TBCB gene silencing, microtubule densities are restored in these cells. Taken together these observations support the view that TBCB functions as a microtubule density regulator in microglia during activation, and provide an insight into the understanding of the complex mechanisms controlling microtubule reorganization during microglial transition between the amoeboid, ramified, and reactive phenotypes.
Collapse
Affiliation(s)
- M L Fanarraga
- Departamentos de Biología Molecular, Universidad de Cantabria, IFIMAV. Herrera Oria s/n. 39011, Santander, Spain.
| | | | | | | | | |
Collapse
|
24
|
Murad F. Nitric oxide and cyclic guanosine monophosphate signaling in the eye. Can J Ophthalmol 2008; 43:291-4. [PMID: 18443613 DOI: 10.3129/i08-044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This brief review describes the components and pathways utilized in nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) signaling. Since the discovery of the effects of NO and cGMP on smooth muscle relaxation about 30 years ago, the field has expanded in many directions such that many, but not all, biochemical and biological effects seem to be regulated by these unique signaling molecules. While many of the effects of NO are due to activation of soluble guanylyl cyclase (sGC) that can be considered the receptor for NO, cGMP, in turn, can activate a cGMP-dependent protein kinase (PKG) to phosphorylate an array of proteins. Some of the effects of cGMP can be independent of PKG and are due to effects on ion channels or cyclic nucleotide phosphodiesterases. Also, some of the effects of NO can be independent of sGC activation. The isoenzymes and macromolecules that participate in these signaling pathways can serve as molecular targets to identify compounds that increase or decrease their activation and thus serve as chemical leads for discovering novel drugs for a variety of diseases. Some examples are given. However, with about 90,000 publications in the field since our first reports in 1977, this brief review can only give the readers a sample of the excitement and opportunities we have found in this cell signaling system.
Collapse
Affiliation(s)
- Ferid Murad
- Cell Signaling Center, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX 77030, USA.
| |
Collapse
|