1
|
Schemelev AN, Davydenko VS, Ostankova YV, Reingardt DE, Serikova EN, Zueva EB, Totolian AA. Involvement of Human Cellular Proteins and Structures in Realization of the HIV Life Cycle: A Comprehensive Review, 2024. Viruses 2024; 16:1682. [PMID: 39599797 PMCID: PMC11599013 DOI: 10.3390/v16111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Human immunodeficiency virus (HIV) continues to be a global health challenge, with over 38 million people infected by the end of 2022. HIV-1, the predominant strain, primarily targets and depletes CD4+ T cells, leading to immunodeficiency and subsequent vulnerability to opportunistic infections. Despite the progress made in antiretroviral therapy (ART), drug resistance and treatment-related toxicity necessitate novel therapeutic strategies. This review delves into the intricate interplay between HIV-1 and host cellular proteins throughout the viral life cycle, highlighting key host factors that facilitate viral entry, replication, integration, and immune evasion. A focus is placed on actual findings regarding the preintegration complex, nuclear import, and the role of cellular cofactors such as FEZ1, BICD2, and NPC components in viral transport and genome integration. Additionally, the mechanisms of immune evasion via HIV-1 proteins Nef and Vpu, and their interaction with host MHC molecules and interferon signaling pathways, are explored. By examining these host-virus interactions, this review underscores the importance of host-targeted therapies in complementing ART, with a particular emphasis on the potential of genetic research and host protein stability in developing innovative treatments for HIV/AIDS.
Collapse
Affiliation(s)
- Alexandr N. Schemelev
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; (V.S.D.); (Y.V.O.); (D.E.R.); (E.N.S.); (E.B.Z.); (A.A.T.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Li ZM, Qin XW, Zhang Q, He J, Liang MC, Li CR, Yu Y, Liu WH, Weng SP, He JG, Guo CJ. Mandarin fish von Hippel-Lindau protein regulates the NF-κB signaling pathway via interaction with IκB to promote fish ranavirus replication. Zool Res 2024; 45:990-1000. [PMID: 39147714 PMCID: PMC11491782 DOI: 10.24272/j.issn.2095-8137.2023.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 08/17/2024] Open
Abstract
The von Hippel-Lindau tumor suppressor protein (VHL), an E3 ubiquitin ligase, functions as a critical regulator of the oxygen-sensing pathway for targeting hypoxia-inducible factors. Recent evidence suggests that mammalian VHL may also be critical to the NF-κB signaling pathway, although the specific molecular mechanisms remain unclear. Herein, the roles of mandarin fish ( Siniperca chuatsi) VHL ( scVHL) in the NF-κB signaling pathway and mandarin fish ranavirus (MRV) replication were explored. The transcription of scVHL was induced by immune stimulation and MRV infection, indicating a potential role in innate immunity. Dual-luciferase reporter gene assays and reverse transcription quantitative PCR (RT-qPCR) results demonstrated that scVHL evoked and positively regulated the NF-κB signaling pathway. Treatment with NF-κB signaling pathway inhibitors indicated that the role of scVHL may be mediated through scIKKα, scIKKβ, scIκBα, or scp65. Co-immunoprecipitation (Co-IP) analysis identified scIκBα as a novel target protein of scVHL. Moreover, scVHL targeted scIκBα to catalyze the formation of K63-linked polyubiquitin chains to activate the NF-κB signaling pathway. Following MRV infection, NF-κB signaling remained activated, which, in turn, promoted MRV replication. These findings suggest that scVHL not only positively regulates NF-κB but also significantly enhances MRV replication. This study reveals a novel function of scVHL in NF-κB signaling and viral infection in fish.
Collapse
Affiliation(s)
- Zhi-Min Li
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiao-Wei Qin
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qi Zhang
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jian He
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Min-Cong Liang
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Chuan-Rui Li
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yang Yu
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Weng-Hui Liu
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shao-Ping Weng
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jian-Guo He
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China. E-mail:
| | - Chang-Jun Guo
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510640, China. E-mail:
| |
Collapse
|
3
|
Yang Y, Zhang G, Su M, Shi Q, Chen Q. Prefoldin Subunits and Its Associate Partners: Conservations and Specificities in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:556. [PMID: 38498526 PMCID: PMC10893143 DOI: 10.3390/plants13040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
Prefoldins (PFDs) are ubiquitous co-chaperone proteins that originated in archaea during evolution and are present in all eukaryotes, including yeast, mammals, and plants. Typically, prefoldin subunits form hexameric PFD complex (PFDc) that, together with class II chaperonins, mediate the folding of nascent proteins, such as actin and tubulin. In addition to functioning as a co-chaperone in cytoplasm, prefoldin subunits are also localized in the nucleus, which is essential for transcription and post-transcription regulation. However, the specific and critical roles of prefoldins in plants have not been well summarized. In this review, we present an overview of plant prefoldin and its related proteins, summarize the structure of prefoldin/prefoldin-like complex (PFD/PFDLc), and analyze the versatile landscape by prefoldin subunits, from cytoplasm to nucleus regulation. We also focus the specific role of prefoldin-mediated phytohormone response and global plant development. Finally, we overview the emerging prefoldin-like (PFDL) subunits in plants and the novel roles in related processes, and discuss the next direction in further studies.
Collapse
Affiliation(s)
- Yi Yang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| | - Gang Zhang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| | - Mengyu Su
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| | - Qingbiao Shi
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China;
| | - Qingshuai Chen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| |
Collapse
|
4
|
Renzi G, Carta F, Supuran CT. The Integrase: An Overview of a Key Player Enzyme in the Antiviral Scenario. Int J Mol Sci 2023; 24:12187. [PMID: 37569561 PMCID: PMC10419282 DOI: 10.3390/ijms241512187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Integration of a desossiribonucleic acid (DNA) copy of the viral ribonucleic acid (RNA) into host genomes is a fundamental step in the replication cycle of all retroviruses. The highly conserved virus-encoded Integrase enzyme (IN; EC 2.7.7.49) catalyzes such a process by means of two consecutive reactions named 3'-processing (3-P) and strand transfer (ST). The Authors report and discuss the major discoveries and advances which mainly contributed to the development of Human Immunodeficiency Virus (HIV) -IN targeted inhibitors for therapeutic applications. All the knowledge accumulated over the years continues to serve as a valuable resource for the design and development of effective antiretroviral drugs.
Collapse
Affiliation(s)
| | - Fabrizio Carta
- Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA) Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (G.R.); (C.T.S.)
| | | |
Collapse
|
5
|
Yue Y, Tang Y, Huang H, Zheng D, Liu C, Zhang H, Liu Y, Li Y, Sun X, Lu L. VBP1 negatively regulates CHIP and selectively inhibits the activity of hypoxia-inducible factor (HIF)-1α but not HIF-2α. J Biol Chem 2023:104829. [PMID: 37201586 DOI: 10.1016/j.jbc.2023.104829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a critical transcription factor that regulates expression of genes involved in cellular adaptation to low oxygen levels. Aberrant regulation of the HIF-1 signaling pathway is linked to various human diseases. Previous studies have established that HIF-1α is rapidly degraded in a von Hippel-Lindau protien (pVHL)-dependent manner under normoxic conditions. In this study, we find that pVHL binding protein 1 (VBP1) is a negative regulator of HIF-1α but not HIF-2α using zebrafish as an in vivo model and in vitro cell culture models. Deletion of vbp1 in zebrafish caused Hif-1α accumulation and upregulation of Hif target genes. Moreover, vbp1 was involved in induction of hematopoietic stem cells (HSCs) under hypoxic conditions. However, VBP1 interacted with and promoted the degradation of HIF-1α in a pVHL-independent manner. Mechanistically, we identify the ubiquitin ligase CHIP and HSP70 as new VBP1 binding partners, and demonstrate that VBP1 negatively regulated CHIP and facilitated CHIP-mediated degradation of HIF-1α. In patients with clear cell renal cell carcinoma (ccRCC), lower VBP1 expression was associated with worse survival outcomes. In conclusion, our results link VBP1 with CHIP stability and provide insights into underlying molecular mechanisms of HIF-1α-driven pathological processes.
Collapse
Affiliation(s)
- Yiming Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yanfei Tang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hao Huang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dongdong Zheng
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Cong Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Haifeng Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yun Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ling Lu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
6
|
Barkova A, Adhya I, Conesa C, Asif-Laidin A, Bonnet A, Rabut E, Chagneau C, Lesage P, Acker J. A proteomic screen of Ty1 integrase partners identifies the protein kinase CK2 as a regulator of Ty1 retrotransposition. Mob DNA 2022; 13:26. [PMCID: PMC9673352 DOI: 10.1186/s13100-022-00284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Transposable elements are ubiquitous and play a fundamental role in shaping genomes during evolution. Since excessive transposition can be mutagenic, mechanisms exist in the cells to keep these mobile elements under control. Although many cellular factors regulating the mobility of the retrovirus-like transposon Ty1 in Saccharomyces cerevisiae have been identified in genetic screens, only very few of them interact physically with Ty1 integrase (IN).
Results
Here, we perform a proteomic screen to establish Ty1 IN interactome. Among the 265 potential interacting partners, we focus our study on the conserved CK2 kinase. We confirm the interaction between IN and CK2, demonstrate that IN is a substrate of CK2 in vitro and identify the modified residues. We find that Ty1 IN is phosphorylated in vivo and that these modifications are dependent in part on CK2. No significant change in Ty1 retromobility could be observed when we introduce phospho-ablative mutations that prevent IN phosphorylation by CK2 in vitro. However, the absence of CK2 holoenzyme results in a strong stimulation of Ty1 retrotransposition, characterized by an increase in Ty1 mRNA and protein levels and a high accumulation of cDNA.
Conclusion
Our study shows that Ty1 IN is phosphorylated, as observed for retroviral INs and highlights an important role of CK2 in the regulation of Ty1 retrotransposition. In addition, the proteomic approach enabled the identification of many new Ty1 IN interacting partners, whose potential role in the control of Ty1 mobility will be interesting to study.
Collapse
|
7
|
Complex Relationships between HIV-1 Integrase and Its Cellular Partners. Int J Mol Sci 2022; 23:ijms232012341. [PMID: 36293197 PMCID: PMC9603942 DOI: 10.3390/ijms232012341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
RNA viruses, in pursuit of genome miniaturization, tend to employ cellular proteins to facilitate their replication. HIV-1, one of the most well-studied retroviruses, is not an exception. There is numerous evidence that the exploitation of cellular machinery relies on nucleic acid-protein and protein-protein interactions. Apart from Vpr, Vif, and Nef proteins that are known to regulate cellular functioning via interaction with cell components, another viral protein, integrase, appears to be crucial for proper virus-cell dialog at different stages of the viral life cycle. The goal of this review is to summarize and systematize existing data on known cellular partners of HIV-1 integrase and their role in the HIV-1 life cycle.
Collapse
|
8
|
Rocchi C, Gouet P, Parissi V, Fiorini F. The C-Terminal Domain of HIV-1 Integrase: A Swiss Army Knife for the Virus? Viruses 2022; 14:v14071397. [PMID: 35891378 PMCID: PMC9316232 DOI: 10.3390/v14071397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Retroviral integrase is a multimeric enzyme that catalyzes the integration of reverse-transcribed viral DNA into the cellular genome. Beyond integration, the Human immunodeficiency virus type 1 (HIV-1) integrase is also involved in many other steps of the viral life cycle, such as reverse transcription, nuclear import, virion morphogenesis and proviral transcription. All these additional functions seem to depend on the action of the integrase C-terminal domain (CTD) that works as a molecular hub, interacting with many different viral and cellular partners. In this review, we discuss structural issues concerning the CTD, with particular attention paid to its interaction with nucleic acids. We also provide a detailed map of post-translational modifications and interaction with molecular partners.
Collapse
Affiliation(s)
- Cecilia Rocchi
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Patrice Gouet
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Vincent Parissi
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Fundamental Microbiology and Pathogenicity (MFP), CNRS, University of Bordeaux, UMR5234, 33405 Bordeaux, France
| | - Francesca Fiorini
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Correspondence: ; Tel.: +33-4-72722624; Fax: +33-4-72722616
| |
Collapse
|
9
|
Engelman AN, Kvaratskhelia M. Multimodal Functionalities of HIV-1 Integrase. Viruses 2022; 14:926. [PMID: 35632668 PMCID: PMC9144474 DOI: 10.3390/v14050926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 01/11/2023] Open
Abstract
Integrase is the retroviral protein responsible for integrating reverse transcripts into cellular genomes. Co-packaged with viral RNA and reverse transcriptase into capsid-encased viral cores, human immunodeficiency virus 1 (HIV-1) integrase has long been implicated in reverse transcription and virion maturation. However, the underlying mechanisms of integrase in these non-catalytic-related viral replication steps have remained elusive. Recent results have shown that integrase binds genomic RNA in virions, and that mutational or pharmacological disruption of integrase-RNA binding yields eccentric virion particles with ribonucleoprotein complexes situated outside of the capsid shell. Such viruses are defective for reverse transcription due to preferential loss of integrase and viral RNA from infected target cells. Parallel research has revealed defective integrase-RNA binding and eccentric particle formation as common features of class II integrase mutant viruses, a phenotypic grouping of viruses that display defects at steps beyond integration. In light of these new findings, we propose three new subclasses of class II mutant viruses (a, b, and c), all of which are defective for integrase-RNA binding and particle morphogenesis, but differ based on distinct underlying mechanisms exhibited by the associated integrase mutant proteins. We also assess how these findings inform the role of integrase in HIV-1 particle maturation.
Collapse
Affiliation(s)
- Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Zhu Z, Zhang Y, Wang H, Jiang T, Zhang M, Zhang Y, Su B, Tian Y. Renal Cell Carcinoma Associated With HIV/AIDS: A Review of the Epidemiology, Risk Factors, Diagnosis, and Treatment. Front Oncol 2022; 12:872438. [PMID: 35433425 PMCID: PMC9010566 DOI: 10.3389/fonc.2022.872438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC), one of the most common genitourinary tumors, is induced by many factors, primarily smoking, obesity, and hypertension. As a non-acquired immunodeficiency syndrome (AIDS)-defining cancer, human immunodeficiency virus (HIV) may also play a critical role in the incidence and progression of RCC. It is evident that individuals who are infected with HIV are more likely than the general population to develop RCC. The age of RCC diagnosis among HIV-positive patients is younger than among HIV-negative individuals. However, many other characteristics remain unknown. With the increase in RCC incidence among HIV-infected patients, more research is being conducted to discover the relationship between RCC and HIV, especially with regard to HIV-induced immunodeficiency, diagnosis, and treatment. Unexpectedly, the majority of the literature suggests that there is no relationship between RCC and HIV-induced immunodeficiency. Nonetheless, differences in pathology, symptoms, or treatment in HIV-positive patients diagnosed with RCC are a focus. In this review, we summarize the association of RCC with HIV in terms of epidemiology, risk factors, diagnosis, and treatment.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Urology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yihang Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Taiyi Jiang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Mengmeng Zhang
- Department of Urology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Department of Urology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ye Tian, ; Bin Su,
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ye Tian, ; Bin Su,
| |
Collapse
|
11
|
Tahmaz I, Shahmoradi Ghahe S, Topf U. Prefoldin Function in Cellular Protein Homeostasis and Human Diseases. Front Cell Dev Biol 2022; 9:816214. [PMID: 35111762 PMCID: PMC8801880 DOI: 10.3389/fcell.2021.816214] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
Cellular functions are largely performed by proteins. Defects in the production, folding, or removal of proteins from the cell lead to perturbations in cellular functions that can result in pathological conditions for the organism. In cells, molecular chaperones are part of a network of surveillance mechanisms that maintains a functional proteome. Chaperones are involved in the folding of newly synthesized polypeptides and assist in refolding misfolded proteins and guiding proteins for degradation. The present review focuses on the molecular co-chaperone prefoldin. Its canonical function in eukaryotes involves the transfer of newly synthesized polypeptides of cytoskeletal proteins to the tailless complex polypeptide 1 ring complex (TRiC/CCT) chaperonin which assists folding of the polypeptide chain in an energy-dependent manner. The canonical function of prefoldin is well established, but recent research suggests its broader function in the maintenance of protein homeostasis under physiological and pathological conditions. Interestingly, non-canonical functions were identified for the prefoldin complex and also for its individual subunits. We discuss the latest findings on the prefoldin complex and its subunits in the regulation of transcription and proteasome-dependent protein degradation and its role in neurological diseases, cancer, viral infections and rare anomalies.
Collapse
Affiliation(s)
- Ismail Tahmaz
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Somayeh Shahmoradi Ghahe
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ulrike Topf
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
12
|
Zhang N, Shang Y, Wang F, Wang D, Hong J. Influence of prefoldin subunit 4 on the tolerance of Kluyveromyces marxianus to lignocellulosic biomass-derived inhibitors. Microb Cell Fact 2021; 20:224. [PMID: 34906148 PMCID: PMC8672639 DOI: 10.1186/s12934-021-01715-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Kluyveromyces marxianus is a potentially excellent host for microbial cell factories using lignocellulosic biomass, due to its thermotolerance, high growth rate, and wide substrate spectrum. However, its tolerance to inhibitors derived from lignocellulosic biomass pretreatment needs to be improved. The prefoldin complex assists the folding of cytoskeleton which relates to the stress tolerance, moreover, several subunits of prefoldin have been verified to be involved in gene expression regulation. With the presence of inhibitors, the expression of a gene coding the subunit 4 of prefoldin (KmPFD4), a possible transcription factor, was significantly changed. Therefore, KmPFD4 was selected to evaluate its functions in inhibitors tolerance. RESULTS In this study, the disruption of the prefoldin subunit 4 gene (KmPFD4) led to increased concentration of intracellular reactive oxygen species (ROS) and disturbed the assembly of actin and tubulin in the presence of inhibitors, resulting in reduced inhibitor tolerance. Nuclear localization of KmPFD4 indicated that it could regulate gene expression. Transcriptomic analysis showed that upregulated gene expression related to ROS elimination, ATP production, and NAD+ synthesis, which is a response to the presence of inhibitors, disappeared in KmPFD4-disrupted cells. Thus, KmPFD4 impacts inhibitor tolerance by maintaining integration of the cytoskeleton and directly or indirectly affecting the expression of genes in response to inhibitors. Finally, overexpression of KmPFD4 enhanced ethanol fermentation with a 46.27% improvement in productivity in presence of the inhibitors. CONCLUSION This study demonstrated that KmPFD4 plays a positive role in the inhibitor tolerance and can be applied for the development of inhibitor-tolerant platform strains.
Collapse
Affiliation(s)
- Nini Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Yingying Shang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Feier Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui, 230026, People's Republic of China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
| |
Collapse
|
13
|
Herranz-Montoya I, Park S, Djouder N. A comprehensive analysis of prefoldins and their implication in cancer. iScience 2021; 24:103273. [PMID: 34761191 PMCID: PMC8567396 DOI: 10.1016/j.isci.2021.103273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prefoldins (PFDNs) are evolutionary conserved co-chaperones, initially discovered in archaea but universally present in eukaryotes. PFDNs are prevalently organized into hetero-hexameric complexes. Although they have been overlooked since their discovery and their functions remain elusive, several reports indicate they act as co-chaperones escorting misfolded or non-native proteins to group II chaperonins. Unlike the eukaryotic PFDNs which interact with cytoskeletal components, the archaeal PFDNs can bind and stabilize a wide range of substrates, possibly due to their great structural diversity. The discovery of the unconventional RPB5 interactor (URI) PFDN-like complex (UPC) suggests that PFDNs have versatile functions and are required for different cellular processes, including an important role in cancer. Here, we summarize their functions across different species. Moreover, a comprehensive analysis of PFDNs genomic alterations across cancer types by using large-scale cancer genomic data indicates that PFDNs are a new class of non-mutated proteins significantly overexpressed in some cancer types.
Collapse
Affiliation(s)
- Irene Herranz-Montoya
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Solip Park
- Computational Cancer Genomics Group, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| |
Collapse
|
14
|
Cristinelli S, Angelino P, Janowczyk A, Delorenzi M, Ciuffi A. HIV Modifies the m6A and m5C Epitranscriptomic Landscape of the Host Cell. FRONTIERS IN VIROLOGY 2021. [DOI: 10.3389/fviro.2021.714475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The study of RNA modifications, today known as epitranscriptomics, is of growing interest. The N6-methyladenosine (m6A) and 5-methylcytosine (m5C) RNA modifications are abundantly present on mRNA molecules, and impact RNA interactions with other proteins or molecules, thereby affecting cellular processes, such as RNA splicing, export, stability, and translation. Recently m6A and m5C marks were found to be present on human immunodeficiency (HIV) transcripts as well and affect viral replication. Therefore, the discovery of RNA methylation provides a new layer of regulation of HIV expression and replication, and thus offers novel array of opportunities to inhibit replication. However, no study has been performed to date to investigate the impact of HIV replication on the transcript methylation level in the infected cell. We used a productive HIV infection model, consisting of the CD4+ SupT1 T cell line infected with a VSV-G pseudotyped HIVeGFP-based vector, to explore the temporal landscape of m6A and m5C epitranscriptomic marks upon HIV infection, and to compare it to mock-treated cells. Cells were collected at 12, 24, and 36 h post-infection for mRNA extraction and FACS analysis. M6A RNA modifications were investigated by methylated RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-Seq). M5C RNA modifications were investigated using a bisulfite conversion approach followed by high-throughput sequencing (BS-Seq). Our data suggest that HIV infection impacted the methylation landscape of HIV-infected cells, inducing mostly increased methylation of cellular transcripts upon infection. Indeed, differential methylation (DM) analysis identified 59 m6A hypermethylated and only 2 hypomethylated transcripts and 14 m5C hypermethylated transcripts and 7 hypomethylated ones. All data and analyses are also freely accessible on an interactive web resource (http://sib-pc17.unil.ch/HIVmain.html). Furthermore, both m6A and m5C methylations were detected on viral transcripts and viral particle RNA genomes, as previously described, but additional patterns were identified. This work used differential epitranscriptomic analysis to identify novel players involved in HIV life cycle, thereby providing innovative opportunities for HIV regulation.
Collapse
|
15
|
Payán-Bravo L, Fontalva S, Peñate X, Cases I, Guerrero-Martínez J, Pareja-Sánchez Y, Odriozola-Gil Y, Lara E, Jimeno-González S, Suñé C, Muñoz-Centeno M, Reyes J, Chávez S. Human prefoldin modulates co-transcriptional pre-mRNA splicing. Nucleic Acids Res 2021; 49:6267-6280. [PMID: 34096575 PMCID: PMC8216451 DOI: 10.1093/nar/gkab446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 11/14/2022] Open
Abstract
Prefoldin is a heterohexameric complex conserved from archaea to humans that plays a cochaperone role during the co-translational folding of actin and tubulin monomers. Additional functions of prefoldin have been described, including a positive contribution to transcription elongation and chromatin dynamics in yeast. Here we show that prefoldin perturbations provoked transcriptional alterations across the human genome. Severe pre-mRNA splicing defects were also detected, particularly after serum stimulation. We found impairment of co-transcriptional splicing during transcription elongation, which explains why the induction of long genes with a high number of introns was affected the most. We detected genome-wide prefoldin binding to transcribed genes and found that it correlated with the negative impact of prefoldin depletion on gene expression. Lack of prefoldin caused global decrease in Ser2 and Ser5 phosphorylation of the RNA polymerase II carboxy-terminal domain. It also reduced the recruitment of the CTD kinase CDK9 to transcribed genes, and the association of splicing factors PRP19 and U2AF65 to chromatin, which is known to depend on CTD phosphorylation. Altogether the reported results indicate that human prefoldin is able to act locally on the genome to modulate gene expression by influencing phosphorylation of elongating RNA polymerase II, and thereby regulating co-transcriptional splicing.
Collapse
Affiliation(s)
- Laura Payán-Bravo
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sara Fontalva
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Xenia Peñate
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - José Antonio Guerrero-Martínez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Yerma Pareja-Sánchez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
| | - Yosu Odriozola-Gil
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
| | - Esther Lara
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
| | - Silvia Jimeno-González
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Carles Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine “López Neyra” IPBLN-CSIC, PTS, Granada, Spain
| | - Mari Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - José C Reyes
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
16
|
Diaz S, Li L, Wang K, Liu X. Expression and purification of functional recombinant CUL2•RBX1 from E. coli. Sci Rep 2021; 11:11224. [PMID: 34045610 PMCID: PMC8160325 DOI: 10.1038/s41598-021-90770-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 01/13/2023] Open
Abstract
Cullin-2 (CUL2) based cullin-RING ligases (CRL2s) comprise a family of ubiquitin E3 ligases that exist only in multi-cellular organisms and are crucial for cellular processes such as embryogenesis and viral pathogenesis. CUL2 is the scaffold protein that binds one of the interchangeable substrate receptor modules, which consists of adaptor proteins and the substrate receptor protein. The VHL protein is a substrate receptor known to target hypoxia-inducible factor α (HIF1α) for ubiquitination and degradation. Because of its critical role in the ubiquitination of important cellular factors such as HIF1α, CRL2s have been investigated for their biological functions and the development of novel therapeutics against diseases. Given the importance of CRL2s in biological and biomedical research, methods that efficiently produce functional CUL2 proteins will greatly facilitate studies on the mechanism and regulation of CRL2s. Here, we report two cost-effective systems for the expression and purification of recombinant human CUL2 from E. coli cells. The purified CUL2 proteins were ~ 95% pure, could bind their substrate receptor modules, and were enzymatically active in transferring ubiquitin or ubiquitin-like protein to the corresponding substrate in in vitro assays. The presented methodological advancements will help advance research in CRL2 function and regulation.
Collapse
Affiliation(s)
- Stephanie Diaz
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Lihong Li
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.,Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Kankan Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA. .,Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
17
|
Hu X, Ni Y, Wang F, Ni Z, Jin T, Li Y, Ni M. Identification of molecular mechanisms for achieving HIV-1 control in the absence of antiretroviral therapy. Life Sci 2020; 265:118857. [PMID: 33301809 DOI: 10.1016/j.lfs.2020.118857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/26/2022]
Abstract
AIMS Antiretroviral therapy (ART) controls viral replication but cannot eradicate an infected virus and restore the immune response of patients. MATERIALS AND METHODS The gene expression profiles of whole blood, PBMCs, CD4+ and CD8+ T cells were obtained from GSE108297. Coexpression analysis was carried out to evaluate differentially expressed genes (DEGs) between strong and weak responder HIV controllers (HICs). Enrichment analysis was used to explore the biological functions of DEGs. The key genes with common DEGs were screened using the Lasso Cox model. Then, the immune scores of HICs and HAART were calculated by ssGSEA. The content of CD4+ and CD8+ T cells, key genes were verified by flow cytometry, RT-PCR and Western blot analysis. KEY FINDINGS DEGs were clustered into 24 coexpression modules. DEGs related to general immune responses had the highest correlation with strong responding HICs, while DEGs mainly related to the apoptotic process had the highest correlation with weak responder HICs. The hub genes CD8A and CCT2, as well as the key genes TMEM132C and S100A9, were DEGs in HICs and HARRT. The immune score and flow cytometry showed that CD4+ and CD8+ T cells of HICs were lower than those of HARRT in whole blood. Experiments confirmed the expression of key genes in HICs and HARRT. SIGNIFICANCE The key genes identified in this study highlight the strong responder HICs features that to help the immune system control HIV-1 infection. These results will be useful for developing therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyuan Hu
- Xinjiang Uighur Autonomous Region Center for Disease Control and Prevention, No. 380 Jianquan 1 road, Tianshan District, Urumqi, Xinjiang 830001, China
| | - Yongkang Ni
- School of Public Health, Xinjiang Medical University, No.4 Liyushan Road, Xinshi District, Urumqi, Xinjiang 830000, China
| | - Fengying Wang
- Xinjiang Uighur Autonomous Region Center for Disease Control and Prevention, No. 380 Jianquan 1 road, Tianshan District, Urumqi, Xinjiang 830001, China
| | - Zhen Ni
- Xinjiang Uighur Autonomous Region Center for Disease Control and Prevention, No. 380 Jianquan 1 road, Tianshan District, Urumqi, Xinjiang 830001, China
| | - Tao Jin
- Xinjiang Uighur Autonomous Region Center for Disease Control and Prevention, No. 380 Jianquan 1 road, Tianshan District, Urumqi, Xinjiang 830001, China
| | - Yuefei Li
- School of Public Health, Xinjiang Medical University, No.4 Liyushan Road, Xinshi District, Urumqi, Xinjiang 830000, China
| | - Mingjian Ni
- Xinjiang Uighur Autonomous Region Center for Disease Control and Prevention, No. 380 Jianquan 1 road, Tianshan District, Urumqi, Xinjiang 830001, China.
| |
Collapse
|
18
|
Zhang Z, Yuan S, Xu S, Guo D, Chen L, Hou W, Wang M. Suppression of HIV-1 Integration by Targeting HIV-1 Integrase for Degradation with A Chimeric Ubiquitin Ligase. Virol Sin 2020; 36:424-437. [PMID: 33185863 DOI: 10.1007/s12250-020-00311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/14/2020] [Indexed: 11/26/2022] Open
Abstract
Human immunodeficiency virus (HIV) attacks human immune system and causes life-threatening acquired immune deficiency syndrome (AIDS). Treatment with combination antiretroviral therapy (cART) could inhibit virus growth and slow progression of the disease, however, at the same time posing various adverse effects. Host ubiquitin-proteasome pathway (UPP) plays important roles in host immunity against pathogens including viruses by inducing degradation of viral proteins. Previously a series of methods for retargeting substrates for ubiquitin-proteasome degradation have been successfully established. In this study, we attempted to design and construct artificial chimeric ubiquitin ligases (E3s) based on known human E3s in order to manually target HIV-1 integrase for ubiquitin proteasome pathway-mediated degradation. Herein, a series of prototypical chimeric E3s have been designed and constructed, and original substrate-binding domains of these E3s were replaced with host protein domains which interacted with viral proteins. After functional assessment screening, 146LI was identified as a functional chimeric E3 for HIV-1 NL4-3 integrase. 146LI was then further optimized to generate 146LIS (146LI short) which has been shown to induce Lys48-specific polyubiquitination and reduce protein level of HIV-1 NL4-3 integrase more effectively in cells. Lymphocyte cells with 146LIS knock-in generated by CRISPR/Cas-mediated homology-directed repair (HDR) showed remarkably decreased integration of HIV-1 NL4-3 viral DNAs and reduced viral replication without obvious cell cytotoxicity. Our study successfully obtained an artificial chimeric E3 which can induce Lys48-specific polyubiquitination and proteasome-mediated degradation of HIV-1 NL4-3 integrase, thus effectively inhibiting viral DNA integration and viral replication upon virus infection.
Collapse
Affiliation(s)
- Zuopeng Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Sen Yuan
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuting Xu
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Deyin Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Centre for Infection and Inmunity Study (CIIS), School of Medicine, Sun Yat-sen University, Guangzhou, 518107, China
| | - Lang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Min Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
19
|
Mo SJ, Zhao HC, Tian YZ, Zhao HL. The Role of Prefoldin and Its Subunits in Tumors and Their Application Prospects in Nanomedicine. Cancer Manag Res 2020; 12:8847-8856. [PMID: 33061580 PMCID: PMC7520118 DOI: 10.2147/cmar.s270237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Prefoldin (PFDN) is a hexameric chaperone complex that is widely found in eukaryotes and archaea and consists of six different subunits (PFDN1-6). Its main function is to transfer actin and tubulin monomers to the eukaryotic cell cytoplasmic chaperone protein (c-CPN) specific binding during the assembly of the cytoskeleton, to stabilize the newly synthesized peptides so that they can be folded correctly. The current study found that each subunit of PFDN has different functions, which are closely related to the occurrence, development and prognosis of tumors. However, the best characteristics of each subunit have not been fully affirmed. The connection between research and tumors can change the understanding of PFDN and further extend its potential prognostic role and structural function to cancer research and clinical practice. This article mainly reviews the role of canonical PFDN and its subunits in tumors and other diseases, and discusses the potential prospects of the unique structure and function of PFDN in nanomedicine.
Collapse
Affiliation(s)
- Shao-Jian Mo
- Department of General Surgery, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Hai-Chao Zhao
- Department of General Surgery, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Yan-Zhang Tian
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, People's Republic of China
| | - Hao-Liang Zhao
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, People's Republic of China
| |
Collapse
|
20
|
Zhang H, Rong X, Wang C, Liu Y, Lu L, Li Y, Zhao C, Zhou J. VBP1 modulates Wnt/β-catenin signaling by mediating the stability of the transcription factors TCF/LEFs. J Biol Chem 2020; 295:16826-16839. [PMID: 32989053 PMCID: PMC7864075 DOI: 10.1074/jbc.ra120.015282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/23/2020] [Indexed: 12/29/2022] Open
Abstract
The Wnt/β-catenin pathway is one of the major pathways that regulates embryonic development, adult homeostasis, and stem cell self-renewal. In this pathway, transcription factors T-cell factor and lymphoid enhancer factor (TCF/LEF) serve as a key switch to repress or activate Wnt target gene transcription by recruiting repressor molecules or interacting with the β-catenin effector, respectively. It has become evident that the protein stability of the TCF/LEF family members may play a critical role in controlling the activity of the Wnt/β-catenin signaling pathway. However, factors that regulate the stability of TCF/LEFs remain largely unknown. Here, we report that pVHL binding protein 1 (VBP1) regulates the Wnt/β-catenin signaling pathway by controlling the stability of TCF/LEFs. Surprisingly, we found that either overexpression or knockdown of VBP1 decreased Wnt/β-catenin signaling activity in both cultured cells and zebrafish embryos. Mechanistically, VBP1 directly binds to all four TCF/LEF family members and von Hippel-Lindau tumor-suppressor protein (pVHL). Either overexpression or knockdown of VBP1 increases the association between TCF/LEFs and pVHL and then decreases the protein levels of TCF/LEFs via proteasomal degradation. Together, our results provide mechanistic insights into the roles of VBP1 in controlling TCF/LEFs protein stability and regulating Wnt/β-catenin signaling pathway activity.
Collapse
Affiliation(s)
- Haifeng Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Caixia Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ling Lu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yun Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chengtian Zhao
- Institute of Evolution and Marine Biodiversity and College of Marine Biology, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
21
|
Proulx J, Borgmann K, Park IW. Post-translational modifications inducing proteasomal degradation to counter HIV-1 infection. Virus Res 2020; 289:198142. [PMID: 32882242 DOI: 10.1016/j.virusres.2020.198142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
Post-translational modifications (PTMs) are integral to regulating a wide variety of cellular processes in eukaryotic cells, such as regulation of protein stability, alteration of celluar location, protein activity modulation, and regulation of protein interactions. HIV-1, like other eukaryotic viruses, and its infected host exploit the proteasomal degradation system for their respective proliferation and survival, using various PTMs, including but not limited to ubiquitination, SUMOylation, NEDDylation, interferon-stimulated gene (ISG)ylation. Essentially all viral proteins within the virions -- and in the HIV-1-infected cells -- interact with their cellular counterparts for this degradation, utilizing ubiquitin (Ub), and the Ub-like (Ubl) modifiers less frequently, to eliminate the involved proteins throughout the virus life cycle, from the entry step to release of the assembled virus particles. Such interplay is pivotal for, on the one hand, the cell to restrict proliferation of the infecting virus, and on the other, for molecular counteraction by the virus to overcome this cellular protein-imposed restriction. Recent reports indicate that not only viral/cellular proteins but also viral/viral protein interactions play vital roles in regulating viral protein stability. We hence give an overview of the molecular processes of PTMs involved in proteasomal degradation of the viral and cellular proteins, and the viral/viral and viral/cellular protein interplay in restriction and competition for HIV-1 vs. host cell survival. Insights in this realm could open new avenues for developing therapeutics against HIV-1 via targeting specific steps of the proteasome degradation pathway during the HIV-1 life cycle.
Collapse
Affiliation(s)
- Jessica Proulx
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - In-Woo Park
- Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States.
| |
Collapse
|
22
|
Zhang J, Xie M, Li M, Ding J, Pu Y, Bryan AC, Rottmann W, Winkeler KA, Collins CM, Singan V, Lindquist EA, Jawdy SS, Gunter LE, Engle NL, Yang X, Barry K, Tschaplinski TJ, Schmutz J, Tuskan GA, Muchero W, Chen J. Overexpression of a Prefoldin β subunit gene reduces biomass recalcitrance in the bioenergy crop Populus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:859-871. [PMID: 31498543 PMCID: PMC7004918 DOI: 10.1111/pbi.13254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 05/06/2023]
Abstract
Prefoldin (PFD) is a group II chaperonin that is ubiquitously present in the eukaryotic kingdom. Six subunits (PFD1-6) form a jellyfish-like heterohexameric PFD complex and function in protein folding and cytoskeleton organization. However, little is known about its function in plant cell wall-related processes. Here, we report the functional characterization of a PFD gene from Populus deltoides, designated as PdPFD2.2. There are two copies of PFD2 in Populus, and PdPFD2.2 was ubiquitously expressed with high transcript abundance in the cambial region. PdPFD2.2 can physically interact with DELLA protein RGA1_8g, and its subcellular localization is affected by the interaction. In P. deltoides transgenic plants overexpressing PdPFD2.2, the lignin syringyl/guaiacyl ratio was increased, but cellulose content and crystallinity index were unchanged. In addition, the total released sugar (glucose and xylose) amounts were increased by 7.6% and 6.1%, respectively, in two transgenic lines. Transcriptomic and metabolomic analyses revealed that secondary metabolic pathways, including lignin and flavonoid biosynthesis, were affected by overexpressing PdPFD2.2. A total of eight hub transcription factors (TFs) were identified based on TF binding sites of differentially expressed genes in Populus transgenic plants overexpressing PdPFD2.2. In addition, several known cell wall-related TFs, such as MYB3, MYB4, MYB7, TT8 and XND1, were affected by overexpression of PdPFD2.2. These results suggest that overexpression of PdPFD2.2 can reduce biomass recalcitrance and PdPFD2.2 is a promising target for genetic engineering to improve feedstock characteristics to enhance biofuel conversion and reduce the cost of lignocellulosic biofuel production.
Collapse
Affiliation(s)
- Jin Zhang
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Meng Xie
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Mi Li
- Chemical & Biomolecular EngineeringUniversity of TennesseeKnoxvilleTNUSA
| | - Jinhua Ding
- Chemical & Biomolecular EngineeringUniversity of TennesseeKnoxvilleTNUSA
- College of TextilesDonghua UniversityShanghaiChina
| | - Yunqiao Pu
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | | | | | | | | | - Vasanth Singan
- U.S. Department of Energy Joint Genome InstituteWalnut CreekCAUSA
| | | | - Sara S. Jawdy
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Lee E. Gunter
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Nancy L. Engle
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Xiaohan Yang
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome InstituteWalnut CreekCAUSA
| | - Timothy J. Tschaplinski
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome InstituteWalnut CreekCAUSA
- HudsonAlpha Institute for BiotechnologyHuntsvilleALUSA
| | - Gerald A. Tuskan
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Wellington Muchero
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jin‐Gui Chen
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
23
|
Knyazhanskaya E, Anisenko A, Shadrina O, Kalinina A, Zatsepin T, Zalevsky A, Mazurov D, Gottikh M. NHEJ pathway is involved in post-integrational DNA repair due to Ku70 binding to HIV-1 integrase. Retrovirology 2019; 16:30. [PMID: 31690330 PMCID: PMC6833283 DOI: 10.1186/s12977-019-0492-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Background HIV-1 integration results in genomic DNA gaps that are repaired by cellular DNA repair pathways. This step of the lentiviral life cycle remains poorly understood despite its crucial importance for successful replication. We and others reported that Ku70 protein of the non-homologous end joining pathway (NHEJ) directly binds HIV-1 integrase (IN). Here, we studied the importance of this interaction for post-integrational gap repair and the recruitment of NHEJ factors in this process. Results We engineered HIV-based pseudovirus with mutant IN defective in Ku70 binding and generated heterozygous Ku70, Ku80 and DNA-PKcs human knockout (KO) cells using CRISPR/Cas9. KO of either of these proteins or inhibition of DNA-PKcs catalytic activity substantially decreased the infectivity of HIV-1 with native IN but not with the mutant one. We used a recently developed qPCR assay for the measurement of gap repair efficiency to show that HIV-1 with mutant IN was defective in DNA post-integrational repair, whereas the wild type virus displayed such a defect only when NHEJ system was disrupted in any way. This effect was present in CRISPR/Cas9 modified 293T cells, in Jurkat and CEM lymphoid lines and in primary human PBMCs. Conclusions Our data provide evidence that IN recruits DNA-PK to the site of HIV-1 post-integrational repair due to Ku70 binding—a novel finding that explains the involvement of DNA-PK despite the absence of free double stranded DNA breaks. In addition, our data clearly indicate the importance of interactions between HIV-1 IN and Ku70 in HIV-1 replication at the post-integrational repair step.
Collapse
Affiliation(s)
- Ekaterina Knyazhanskaya
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199234, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Andrey Anisenko
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199234, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Olga Shadrina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia Kalinina
- Federal State Budgetary Institution « N.N. Blokhin National Medical Research Center of Oncology » of the Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Timofei Zatsepin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199234, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, 121205, Russia
| | - Arthur Zalevsky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitriy Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, RAS, Moscow, 119334, Russia.,NRC Institute of Immunology FMBA of Russia, Moscow, 115478, Russia
| | - Marina Gottikh
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
24
|
The Development and Application of Virtual Reality Animation Simulation Technology: Take Gastroscopy Simulation System as an Example. Pathol Oncol Res 2019; 26:765-769. [PMID: 30809768 DOI: 10.1007/s12253-019-00590-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
Abstract
Virtual reality (VR) technology has a great potential in the field of medical simulation due to its immersion, interactivity and autonomy. It provides a new direction for integration and application in various disciplines. Combination of VR technology and clinical practice brings great convenience for medical education and experiments. Modern VR simulators can create realistic environments that capture minute anatomical details with high accuracy and solves the problem of difficulty in mass productions with traditional devices. Taking gastroscopy simulation system as an example, this paper discusses the development and application of VR animation technology, together with its excellent performance and current research status in surgery, scientific research, training and education.
Collapse
|
25
|
Ali H, Mano M, Braga L, Naseem A, Marini B, Vu DM, Collesi C, Meroni G, Lusic M, Giacca M. Cellular TRIM33 restrains HIV-1 infection by targeting viral integrase for proteasomal degradation. Nat Commun 2019; 10:926. [PMID: 30804369 PMCID: PMC6389893 DOI: 10.1038/s41467-019-08810-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023] Open
Abstract
Productive HIV-1 replication requires viral integrase (IN), which catalyzes integration of the viral genome into the host cell DNA. IN, however, is short lived and is rapidly degraded by the host ubiquitin-proteasome system. To identify the cellular factors responsible for HIV-1 IN degradation, we performed a targeted RNAi screen using a library of siRNAs against all components of the ubiquitin-conjugation machinery using high-content microscopy. Here we report that the E3 RING ligase TRIM33 is a major determinant of HIV-1 IN stability. CD4-positive cells with TRIM33 knock down show increased HIV-1 replication and proviral DNA formation, while those overexpressing the factor display opposite effects. Knock down of TRIM33 reverts the phenotype of an HIV-1 molecular clone carrying substitution of IN serine 57 to alanine, a mutation known to impair viral DNA integration. Thus, TRIM33 acts as a cellular factor restricting HIV-1 infection by preventing provirus formation. HIV-1 integration into host DNA is mediated by the viral integrase (IN). Here, using siRNA screen and high-content microscopy, the authors identify the host E3 RING ligase TRIM33 to affect IN stability and show that TRIM33 prevents viral integration by triggering IN proteasome-mediated degradation.
Collapse
Affiliation(s)
- Hashim Ali
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,Department of Cardiovascular Medicine & Sciences, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9N, UK
| | - Miguel Mano
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, 3060-197, Portugal
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,Department of Cardiovascular Medicine & Sciences, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9N, UK
| | - Asma Naseem
- Cellular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy
| | - Bruna Marini
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,Ulisse BioMed S.r.l., AREA Science Park, Basovizza, 34149, Trieste, Italy
| | - Diem My Vu
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy
| | - Chiara Collesi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy
| | - Germana Meroni
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Marina Lusic
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.,University Hospital Heidelberg and German Center for Infection Research, 69120, Heidelberg, Germany
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy. .,Department of Cardiovascular Medicine & Sciences, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9N, UK. .,Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy.
| |
Collapse
|
26
|
Chen L, Keppler OT, Schölz C. Post-translational Modification-Based Regulation of HIV Replication. Front Microbiol 2018; 9:2131. [PMID: 30254620 PMCID: PMC6141784 DOI: 10.3389/fmicb.2018.02131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) relies heavily on the host cellular machinery for production of viral progeny. To exploit cellular proteins for replication and to overcome host factors with antiviral activity, HIV has evolved a set of regulatory and accessory proteins to shape an optimized environment for its replication and to facilitate evasion from the immune system. Several cellular pathways are hijacked by the virus to modulate critical steps during the viral life cycle. Thereby, post-translational modifications (PTMs) of viral and cellular proteins gain increasingly attention as modifying enzymes regulate virtually every step of the viral replication cycle. This review summarizes the current knowledge of HIV-host interactions influenced by PTMs with a special focus on acetylation, ubiquitination, and phosphorylation of proteins linked to cellular signaling and viral replication. Insights into these interactions are surmised to aid development of new intervention strategies.
Collapse
Affiliation(s)
- Lin Chen
- Max von Pettenkofer-Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer-Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Schölz
- Max von Pettenkofer-Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
27
|
Payán-Bravo L, Peñate X, Chávez S. Functional Contributions of Prefoldin to Gene Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:1-10. [PMID: 30484149 DOI: 10.1007/978-3-030-00737-9_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Prefoldin is a co-chaperone that evolutionarily originates in archaea, is universally present in all eukaryotes and acts as a co-chaperone by facilitating the supply of unfolded or partially folded substrates to class II chaperonins. Eukaryotic prefoldin is known mainly for its functional relevance in the cytoplasmic folding of actin and tubulin monomers during cytoskeleton assembly. However, the role of prefoldin in chaperonin-mediated folding is not restricted to cytoskeleton components, but extends to both the assembly of other cytoplasmic complexes and the maintenance of functional proteins by avoiding protein aggregation and facilitating proteolytic degradation. Evolution has favoured the diversification of prefoldin subunits, and has allowed the so-called prefoldin-like complex, with specialised functions, to appear. Subunits of both canonical and prefoldin-like complexes have also been found in the nucleus of yeast and metazoan cells, where they have been functionally connected with different gene expression steps. Plant prefoldin has also been detected in the nucleus and is physically associated with a gene regulator. Here we summarise information available on the functional involvement of prefoldin in gene expression, and discuss the implications of these results for the relationship between prefoldin structure and function.
Collapse
Affiliation(s)
- Laura Payán-Bravo
- Insitituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Xenia Peñate
- Insitituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Sebastián Chávez
- Insitituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain. .,Departamento de Genética, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
28
|
Arranz R, Martín-Benito J, Valpuesta JM. Structure and Function of the Cochaperone Prefoldin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:119-131. [PMID: 30484157 DOI: 10.1007/978-3-030-00737-9_9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Molecular chaperones are key players in proteostasis, the balance between protein synthesis, folding, assembly and degradation. They are helped by a plethora of cofactors termed cochaperones, which direct chaperones towards any of these different, sometime opposite pathways. One of these is prefoldin (PFD), present in eukaryotes and in archaea, a heterohexamer whose best known role is the assistance to group II chaperonins (the Hsp60 chaperones found in archaea and the eukaryotic cytosolic) in the folding of proteins in the cytosol, in particular cytoskeletal proteins. However, over the last years it has become evident a more complex role for this cochaperone, as it can adopt different oligomeric structures, form complexes with other proteins and be involved in many other processes, both in the cytosol and in the nucleus, different from folding. This review intends to describe the structure and the many functions of this interesting macromolecular complex.
Collapse
Affiliation(s)
- Rocío Arranz
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | | |
Collapse
|
29
|
Kim JA, Choi DK, Min JS, Kang I, Kim JC, Kim S, Ahn JK. VBP1 represses cancer metastasis by enhancing HIF-1α degradation induced by pVHL. FEBS J 2017; 285:115-126. [PMID: 29121446 DOI: 10.1111/febs.14322] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/13/2017] [Accepted: 11/06/2017] [Indexed: 01/06/2023]
Abstract
von Hippel-Lindau-binding protein 1 (VBP1) physically interacts with pVHL, an E3-ubiquitin ligase, which degrades HIF-1α in an oxygen-dependent manner. HIF-1 is a key regulator of adaptive responses to a lack of oxygen that controls glucose metabolism, angiogenesis, proliferation, invasion, and metastasis. However, the role of VBP1 in pVHL-mediated degradation of HIF-1α is not yet known. In this study, we show that VBP1 enhances the stability of pVHL and facilitates pVHL-mediated ubiquitination of HIF-1α. Furthermore, VBP1 suppresses HIF-1α-induced epithelial-mesenchymal transition in vitro and tumor metastasis in vivo. These findings suggest that VBP1 is a bona fide tumor suppressor protein associated with HIF-1α regulation.
Collapse
Affiliation(s)
- Ji Ae Kim
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Da Kyung Choi
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Jung Sun Min
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Inho Kang
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Jin Chul Kim
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Korea.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Semi Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Jeong Keun Ahn
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
30
|
Wang Z, Hou X, Wang Y, Xu A, Cao W, Liao M, Zhang R, Tang J. Ubiquitination of non-lysine residues in the retroviral integrase. Biochem Biophys Res Commun 2017; 494:57-62. [PMID: 29054407 DOI: 10.1016/j.bbrc.2017.10.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Retroviral integrase catalyzes the integration of retroviral genome into host chromosomal DNA, which is a prerequisite of effective viral replication and infection. The human immunodeficiency virus type 1 (HIV-1) integrase has previously been reported to be regulated by the ubiquitination, but the molecular characterization of integrase ubiquitination is still unclear. In this study, we analyzed the ubiquitination of avian leukosis virus (ALV) integrase in detail. The ubiquitination assay showed that, like HIV-1, ALV integrase could also be modified by ubiquitination when expressed in 293 T and DF-1 cells. Domain mapping analysis revealed that the ubiquitination of ALV integrase might mainly occurred in the catalytic core and the N-terminal zinc-binding domains. Both lysine and non-lysine residues within integrase of ALV and HIV-1 were responsible for the ubiquitin conjugation, and the N-terminal HHCC zinc-binding motif might play an important role in mediating integrase ubiquitination. Interestingly, mass spectrometry analysis identified the Thr10 and Cys37 residues in the HHCC zinc-binding motif as the ubiquitination sites, indicating that ubiquitin may be conjugated to ALV integrase through direct interaction with the non-lysine residues. These findings revealed the detailed features of retroviral integrase ubiquitination and found a novel mechanism of ubiquitination mediated by the non-lysine residues within the N-terminal zinc-binding domain of integrase.
Collapse
Affiliation(s)
- Zhanxin Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Xinhui Hou
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Yingchun Wang
- Center for Molecular Systems Biology and State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Aotian Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Weisheng Cao
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Liao
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Rui Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.
| | - Jun Tang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
31
|
Matysiak J, Lesbats P, Mauro E, Lapaillerie D, Dupuy JW, Lopez AP, Benleulmi MS, Calmels C, Andreola ML, Ruff M, Llano M, Delelis O, Lavigne M, Parissi V. Modulation of chromatin structure by the FACT histone chaperone complex regulates HIV-1 integration. Retrovirology 2017; 14:39. [PMID: 28754126 PMCID: PMC5534098 DOI: 10.1186/s12977-017-0363-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/24/2017] [Indexed: 01/23/2023] Open
Abstract
Background Insertion of retroviral genome DNA occurs in the chromatin of the host cell. This step is modulated by chromatin structure as nucleosomes compaction was shown to prevent HIV-1 integration and chromatin remodeling has been reported to affect integration efficiency. LEDGF/p75-mediated targeting of the integration complex toward RNA polymerase II (polII) transcribed regions ensures optimal access to dynamic regions that are suitable for integration. Consequently, we have investigated the involvement of polII-associated factors in the regulation of HIV-1 integration. Results Using a pull down approach coupled with mass spectrometry, we have selected the FACT (FAcilitates Chromatin Transcription) complex as a new potential cofactor of HIV-1 integration. FACT is a histone chaperone complex associated with the polII transcription machinery and recently shown to bind LEDGF/p75. We report here that a tripartite complex can be formed between HIV-1 integrase, LEDGF/p75 and FACT in vitro and in cells. Biochemical analyzes show that FACT-dependent nucleosome disassembly promotes HIV-1 integration into chromatinized templates, and generates highly favored nucleosomal structures in vitro. This effect was found to be amplified by LEDGF/p75. Promotion of this FACT-mediated chromatin remodeling in cells both increases chromatin accessibility and stimulates HIV-1 infectivity and integration. Conclusions Altogether, our data indicate that FACT regulates HIV-1 integration by inducing local nucleosomes dissociation that modulates the functional association between the incoming intasome and the targeted nucleosome. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0363-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julien Matysiak
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France
| | - Paul Lesbats
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France
| | - Eric Mauro
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France
| | - Delphine Lapaillerie
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Jean-William Dupuy
- Centre Génomique fonctionnelle Bordeaux, Plateforme Proteome, Université de Bordeaux, Bordeaux, France
| | - Angelica P Lopez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Mohamed Salah Benleulmi
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Christina Calmels
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Marie-Line Andreola
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Marc Ruff
- Département de Biologie Structurale Intégrative, UDS, U596 INSERM, UMR7104 CNRS, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch-Graffenstaden, France
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Olivier Delelis
- LBPA, UMR8113, CNRS, ENS-Cachan, Cachan, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Marc Lavigne
- Department of Virology, UMR 3569, CNRS, Institut Pasteur, Paris, France.,Institut Cochin-INSERM U1016-CNRS UMR8104, Université Paris Descartes, Paris, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Vincent Parissi
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France. .,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France. .,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France.
| |
Collapse
|
32
|
Perea-Resa C, Rodríguez-Milla MA, Iniesto E, Rubio V, Salinas J. Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation. MOLECULAR PLANT 2017; 10:791-804. [PMID: 28412546 DOI: 10.1016/j.molp.2017.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 05/25/2023]
Abstract
The process of cold acclimation is an important adaptive response whereby many plants from temperate regions increase their freezing tolerance after being exposed to low non-freezing temperatures. The correct development of this response relies on proper accumulation of a number of transcription factors that regulate expression patterns of cold-responsive genes. Multiple studies have revealed a variety of molecular mechanisms involved in promoting the accumulation of these transcription factors. Interestingly, however, the mechanisms implicated in controlling such accumulation to ensure their adequate levels remain largely unknown. In this work, we demonstrate that prefoldins (PFDs) control the levels of HY5, an Arabidopsis transcription factor with a key role in cold acclimation by activating anthocyanin biosynthesis, in response to low temperature. Our results show that, under cold conditions, PFDs accumulate into the nucleus through a DELLA-dependent mechanism, where they interact with HY5, triggering its ubiquitination and subsequent degradation. The degradation of HY5 would result, in turn, in anthocyanin biosynthesis attenuation, ensuring the accurate development of cold acclimation. These findings uncover an unanticipated nuclear function for PFDs in plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Carlos Perea-Resa
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Miguel A Rodríguez-Milla
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Elisa Iniesto
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Vicente Rubio
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Julio Salinas
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain.
| |
Collapse
|
33
|
Bray S, Turnbull M, Hebert S, Douville RN. Insight into the ERVK Integrase - Propensity for DNA Damage. Front Microbiol 2016; 7:1941. [PMID: 27990140 PMCID: PMC5131560 DOI: 10.3389/fmicb.2016.01941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022] Open
Abstract
Retroviruses create permanently integrated proviruses that exist in the host genome. Retroviral genomes encode for functionally conserved gag, pro, pol, and env regions, as well as integrase (IN), which is required for retroviral integration. IN mediates viral genome insertion through 3′ end processing of the viral DNA and the strand transfer reaction. This process requires the formation of a pre-integration complex, comprised of IN, viral DNA, and cellular proteins. Viral insertion causes DNA damage, leading to the requirement of host DNA repair mechanisms. Therefore, a failure of DNA repair pathways may result in genomic instability and potentially cause host cell death. Considering the numerous human diseases associated with genomic instability, the endogenous retrovirus-K (ERVK) IN should be considered as a putative contributor to DNA damage in human cells. Future research and drug discovery should focus on ERVK IN activity and its role in human conditions, such as neurological disease and cancers.
Collapse
Affiliation(s)
- Samantha Bray
- Douville Lab, Department of Biology, University of Winnipeg, Winnipeg MB, Canada
| | - Matthew Turnbull
- Douville Lab, Department of Biology, University of Winnipeg, Winnipeg MB, Canada
| | - Sherry Hebert
- Douville Lab, Department of Biology, University of Winnipeg, Winnipeg MB, Canada
| | - Renée N Douville
- Douville Lab, Department of Biology, University of Winnipeg, WinnipegMB, Canada; Department of Immunology, University of Manitoba, WinnipegMB, Canada
| |
Collapse
|
34
|
Abstract
The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3'-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications.
Collapse
Affiliation(s)
- Paul Lesbats
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School , 450 Brookline Avenue, Boston, Massachusetts 02215 United States
| | - Peter Cherepanov
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K.,Imperial College London , St-Mary's Campus, Norfolk Place, London, W2 1PG, U.K
| |
Collapse
|
35
|
Identification of Host Micro RNAs That Differentiate HIV-1 and HIV-2 Infection Using Genome Expression Profiling Techniques. Viruses 2016; 8:v8050121. [PMID: 27144577 PMCID: PMC4885076 DOI: 10.3390/v8050121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 01/02/2023] Open
Abstract
While human immunodeficiency virus type 1 and 2 (HIV-1 and HIV-2) share many similar traits, major differences in pathogenesis and clinical outcomes exist between the two viruses. The differential expression of host factors like microRNAs (miRNAs) in response to HIV-1 and HIV-2 infections are thought to influence the clinical outcomes presented by the two viruses. MicroRNAs are small non-coding RNA molecules which function in transcriptional and post-transcriptional regulation of gene expression. MiRNAs play a critical role in many key biological processes and could serve as putative biomarker(s) for infection. Identification of miRNAs that modulate viral life cycle, disease progression, and cellular responses to infection with HIV-1 and HIV-2 could reveal important insights into viral pathogenesis and provide new tools that could serve as prognostic markers and targets for therapeutic intervention. The aim of this study was to elucidate the differential expression profiles of host miRNAs in cells infected with HIV-1 and HIV-2 in order to identify potential differences in virus-host interactions between HIV-1 and HIV-2. Differential expression of host miRNA expression profiles was analyzed using the miRNA profiling polymerase chain reaction (PCR) arrays. Differentially expressed miRNAs were identified and their putative functional targets identified. The results indicate that hsa-miR 541-3p, hsa-miR 518f-3p, and hsa-miR 195-3p were consistently up-regulated only in HIV-1 infected cells. The expression of hsa-miR 1225-5p, hsa-miR 18a* and hsa-miR 335 were down modulated in HIV-1 and HIV-2 infected cells. Putative functional targets of these miRNAs include genes involved in signal transduction, metabolism, development and cell death.
Collapse
|
36
|
Abstract
The retroviral integrases are virally encoded, specialized recombinases that catalyze the insertion of viral DNA into the host cell's DNA, a process that is essential for virus propagation. We have learned a great deal since the existence of an integrated form of retroviral DNA (the provirus) was first proposed by Howard Temin in 1964. Initial studies focused on the genetics and biochemistry of avian and murine virus DNA integration, but the pace of discovery increased substantially with advances in technology, and an influx of investigators focused on the human immunodeficiency virus. We begin with a brief account of the scientific landscape in which some of the earliest discoveries were made, and summarize research that led to our current understanding of the biochemistry of integration. A more detailed account of recent analyses of integrase structure follows, as they have provided valuable insights into enzyme function and raised important new questions.
Collapse
Affiliation(s)
- Mark D Andrake
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111; ,
| | - Anna Marie Skalka
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111; ,
| |
Collapse
|
37
|
Yamane T, Shimizu T, Takahashi-Niki K, Takekoshi Y, Iguchi-Ariga SMM, Ariga H. Deficiency of spermatogenesis and reduced expression of spermatogenesis-related genes in prefoldin 5-mutant mice. Biochem Biophys Rep 2015; 1:52-61. [PMID: 29124133 PMCID: PMC5668561 DOI: 10.1016/j.bbrep.2015.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 10/25/2022] Open
Abstract
MM-1α is a c-Myc-binding protein and acts as a transcriptional co-repressor in the nucleus. MM-1α is also PDF5, a subunit of prefoldin that is chaperon comprised of six subunits and prevents misfolding of newly synthesized nascent polypeptides. Prefoldin also plays a role in quality control against protein aggregation. It has been reported that mice harboring the missense mutation L110R of MM-1α/PFD5 exhibit neurodegeneration in the cerebellum and also male infertility, but the phenotype of infertility has not been fully characterized. In this study, we first analyzed morphology of the testis and epididymis of L110R of MM-1α mice. During differentiation of spermatogenesis, spermatogonia, spermatocytes and round spermatids were formed, but formation of elongated spermatids was compromised in L110R MM-1α mice. Furthermore, reduced number/concentration of sperm in the epididymis was observed. MM-1α was strongly expressed in the round spermatids and sperms with round spermatids, suggesting that MM-1α affects the differentiation and maturation of germ cells. Changes in expression levels of spermatogenesis-related genes in mice testes were then examined. The fatty-acid-binding protein (fabp4) gene was up-regulated and three genes, including sperm-associated glutamate (E)-rich protein 4d (speer-4d), phospholipase A2-Group 3 (pla2g3) and phospholipase A2-Group 10 (pla2g10), were down-regulated in L110R MM-1α mice. L110R MM-1α and wild-type MM-1α bound to regions of up-regulated and down-regulated genes, respectively. Since these gene products are known to play a role in maturation and motility of sperm, a defect of at least MM-1α transcriptional activity is thought to induce expressional changes of these genes, resulting in male infertility.
Collapse
Affiliation(s)
- Takuya Yamane
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Shimizu
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Kazuko Takahashi-Niki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Yuka Takekoshi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | | | - Hiroyoshi Ariga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
38
|
Yu X, Chen S, Hou P, Wang M, Chen Y, Guo D. VHL negatively regulates SARS coronavirus replication by modulating nsp16 ubiquitination and stability. Biochem Biophys Res Commun 2015; 459:270-276. [PMID: 25732088 PMCID: PMC7092858 DOI: 10.1016/j.bbrc.2015.02.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/18/2015] [Indexed: 11/04/2022]
Abstract
Eukaryotic cellular and most viral RNAs carry a 5′-terminal cap structure, a 5′-5′ triphosphate linkage between the 5′ end of the RNA and a guanosine nucleotide (cap-0). SARS coronavirus (SARS-CoV) nonstructural protein nsp16 functions as a methyltransferase, to methylate mRNA cap-0 structure at the ribose 2′-O position of the first nucleotide to form cap-1 structures. However, whether there is interplay between nsp16 and host proteins was not yet clear. In this report, we identified several potential cellular nsp16-interacting proteins from a human thymus cDNA library by yeast two-hybrid screening. VHL, one of these proteins, was proven to interact with nsp16 both in vitro and in vivo. Further studies showed that VHL can inhibit SARS-CoV replication by regulating nsp16 ubiquitination and promoting its degradation. Our results have revealed the role of cellular VHL in the regulation of SARS-CoV replication. Several host proteins were identified to interact with SARS-CoV nsp16 by yeast two-hybrid screening. VHL was found to interact with SARS-CoV nsp16 and promotes nsp16 degradation. VHL involves in regulating nsp16 ubiquination and stability, and modulating SARS-CoV replication.
Collapse
Affiliation(s)
- Xiao Yu
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Shuliang Chen
- School of Basic Medical Sciences, Wuhan University Wuhan, 430072, PR China
| | - Panpan Hou
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Min Wang
- School of Basic Medical Sciences, Wuhan University Wuhan, 430072, PR China
| | - Yu Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Deyin Guo
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China; School of Basic Medical Sciences, Wuhan University Wuhan, 430072, PR China.
| |
Collapse
|
39
|
Abstract
Prefoldin is a cochaperone, present in all eukaryotes, that cooperates with the chaperonin CCT. It is known mainly for its functional relevance in the cytoplasmic folding of actin and tubulin monomers during cytoskeleton assembly. However, both canonical and prefoldin-like subunits of this heterohexameric complex have also been found in the nucleus, and are functionally connected with nuclear processes in yeast and metazoa. Plant prefoldin has also been detected in the nucleus and physically associated with a gene regulator. In this review, we summarize the information available on the involvement of prefoldin in nuclear phenomena, place special emphasis on gene transcription, and discuss the possibility of a global coordination between gene regulation and cytoplasmic dynamics mediated by prefoldin.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
40
|
Abstract
Retroviruses and LTR retrotransposons are transposable elements that encapsidate the RNAs that are intermediates in the transposition of DNA copies of their genomes (proviruses), from one cell (or one locus) to another. Mechanistic similarities in DNA transposase enzymes and retroviral/retrotransposon integrases underscore the close evolutionary relationship among these elements. The retroviruses are very ancient infectious agents, presumed to have evolved from Ty3/Gypsy LTR retrotransposons (1), and DNA copies of their sequences can be found embedded in the genomes of most, if not all, members of the tree of life. All retroviruses share a specific gene arrangement and similar replication strategies. However, given their ancestries and occupation of diverse evolutionary niches, it should not be surprising that unique sequences have been acquired in some retroviral genomes and that the details of the mechanism by which their transposition is accomplished can vary. While every step in the retrovirus lifecycle is, in some sense, relevant to transposition, this Chapter focuses mainly on the early phase of retroviral replication, during which viral DNA is synthesized and integrated into its host genome. Some of the initial studies that set the stage for current understanding are highlighted, as well as more recent findings obtained through use of an ever-expanding technological toolbox including genomics, proteomics, and siRNA screening. Persistence in the area of structural biology has provided new insight into conserved mechanisms as well as variations in detail among retroviruses, which can also be instructive.
Collapse
Affiliation(s)
- Anna Marie Skalka
- Fox Chase Cancer Center 333 Cottman Avenue Philadelphia, PA 19111 United States 2157282192 2157282778 (fax)
| |
Collapse
|
41
|
Tan BH, Suzuki Y, Takahashi H, Ying PHR, Takahashi C, Han Q, Chin WX, Chao SH, Sawasaki T, Yamamoto N, Suzuki Y. Identification of RFPL3 protein as a novel E3 ubiquitin ligase modulating the integration activity of human immunodeficiency virus, type 1 preintegration complex using a microtiter plate-based assay. J Biol Chem 2014; 289:26368-26382. [PMID: 25107902 DOI: 10.1074/jbc.m114.561662] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integration, one of the hallmarks of retrovirus replication, is mediated by a nucleoprotein complex called the preintegration complex (PIC), in which viral DNA is associated with many protein components that are required for completion of the early phase of infection. A striking feature of the PIC is its powerful integration activity in vitro. The PICs from a freshly isolated cytoplasmic extract of infected cells are able to insert viral DNA into exogenously added target DNA in vitro. Therefore, a PIC-based in vitro assay is a reliable system for assessing protein factors influencing retroviral integration. In this study, we applied a microtiter plate-based in vitro assay to a screening study using a protein library that was produced by the wheat germ cell-free protein synthesis system. Using a library of human E3 ubiquitin ligases, we identified RFPL3 as a potential stimulator of human immunodeficiency virus, type 1 (HIV-1) PIC integration activity in vitro. This enhancement of PIC activity by RFPL3 was likely to be attributed to its N-terminal RING domain. To further understand the functional role of RFPL3 in HIV infection, we created a human cell line overexpressing RFPL3. Immunoprecipitation analysis revealed that RFPL3 was associated with the human immunodeficiency virus, type 1 PICs in infected cells. More importantly, single-round HIV-1 infection was enhanced significantly by RFPL3 expression. Our proteomic approach displays an advantage in the identification of new cellular proteins affecting the integration activity of the PIC and, therefore, contributes to the understanding of functional interaction between retroviral integration complexes and host factors.
Collapse
Affiliation(s)
- Beng Hui Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Yasutsugu Suzuki
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Hirotaka Takahashi
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Pamela Ho Rui Ying
- Veterinary Bioscience, Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore
| | - Chikako Takahashi
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Qi'En Han
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Wei Xin Chin
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Sheng-Hao Chao
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan, and
| | - Naoki Yamamoto
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore,.
| | - Youichi Suzuki
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore,; Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
42
|
Bire S, Ley D, Casteret S, Mermod N, Bigot Y, Rouleux-Bonnin F. Optimization of the piggyBac transposon using mRNA and insulators: toward a more reliable gene delivery system. PLoS One 2013; 8:e82559. [PMID: 24312663 PMCID: PMC3849487 DOI: 10.1371/journal.pone.0082559] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/23/2013] [Indexed: 12/23/2022] Open
Abstract
Integrating and expressing stably a transgene into the cellular genome remain major challenges for gene-based therapies and for bioproduction purposes. While transposon vectors mediate efficient transgene integration, expression may be limited by epigenetic silencing, and persistent transposase expression may mediate multiple transposition cycles. Here, we evaluated the delivery of the piggyBac transposase messenger RNA combined with genetically insulated transposons to isolate the transgene from neighboring regulatory elements and stabilize expression. A comparison of piggyBac transposase expression from messenger RNA and DNA vectors was carried out in terms of expression levels, transposition efficiency, transgene expression and genotoxic effects, in order to calibrate and secure the transposition-based delivery system. Messenger RNA reduced the persistence of the transposase to a narrow window, thus decreasing side effects such as superfluous genomic DNA cleavage. Both the CTF/NF1 and the D4Z4 insulators were found to mediate more efficient expression from a few transposition events. We conclude that the use of engineered piggyBac transposase mRNA and insulated transposons offer promising ways of improving the quality of the integration process and sustaining the expression of transposon vectors.
Collapse
Affiliation(s)
- Solenne Bire
- GICC, UMR CNRS 7292, Université François Rabelais, Tours, France
- Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
- PRC, UMR INRA-CNRS 7247, Centre INRA Val de Loire, Nouzilly, France
| | - Déborah Ley
- Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | - Sophie Casteret
- PRC, UMR INRA-CNRS 7247, Centre INRA Val de Loire, Nouzilly, France
| | - Nicolas Mermod
- Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | - Yves Bigot
- PRC, UMR INRA-CNRS 7247, Centre INRA Val de Loire, Nouzilly, France
| | | |
Collapse
|
43
|
Millán-Zambrano G, Rodríguez-Gil A, Peñate X, de Miguel-Jiménez L, Morillo-Huesca M, Krogan N, Chávez S. The prefoldin complex regulates chromatin dynamics during transcription elongation. PLoS Genet 2013; 9:e1003776. [PMID: 24068951 PMCID: PMC3777993 DOI: 10.1371/journal.pgen.1003776] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/23/2013] [Indexed: 12/13/2022] Open
Abstract
Transcriptional elongation requires the concerted action of several factors that allow RNA polymerase II to advance through chromatin in a highly processive manner. In order to identify novel elongation factors, we performed systematic yeast genetic screening based on the GLAM (Gene Length-dependent Accumulation of mRNA) assay, which is used to detect defects in the expression of long transcription units. Apart from well-known transcription elongation factors, we identified mutants in the prefoldin complex subunits, which were among those that caused the most dramatic phenotype. We found that prefoldin, so far involved in the cytoplasmic co-translational assembly of protein complexes, is also present in the nucleus and that a subset of its subunits are recruited to chromatin in a transcription-dependent manner. Prefoldin influences RNA polymerase II the elongation rate in vivo and plays an especially important role in the transcription elongation of long genes and those whose promoter regions contain a canonical TATA box. Finally, we found a specific functional link between prefoldin and histone dynamics after nucleosome remodeling, which is consistent with the extensive network of genetic interactions between this factor and the machinery regulating chromatin function. This study establishes the involvement of prefoldin in transcription elongation, and supports a role for this complex in cotranscriptional histone eviction. Transcription is the biological process that allows genes to be copied into RNA; the molecule that can be read by the cell in order to fabricate its structural components, proteins. Transcription is carried out by RNA polymerases, but these molecular machines need auxiliary factors to guide them through the genome and to help them during the RNA synthesis process. We searched for novel auxiliary factors using a genetic procedure and found a set of potential novel transcriptional players. Among them, we encountered a highly unexpected result: a factor, called prefoldin, so far exclusively involved in the folding of proteins during their fabrication. We confirmed that prefoldin binds transcribed genes and plays an important role during gene transcription. We also further investigated this transcriptional role and found that prefoldin is important for unpacking genes, thus facilitating the advance of the RNA polymerases along them.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Departmento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Departmento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Xenia Peñate
- Departmento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lola de Miguel-Jiménez
- Departmento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Macarena Morillo-Huesca
- Departmento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Sebastián Chávez
- Departmento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- * E-mail:
| |
Collapse
|
44
|
Xu Y, Her C. VBP1 facilitates proteasome and autophagy-mediated degradation of MutS homologue hMSH4. FASEB J 2013; 27:4799-810. [PMID: 23964080 DOI: 10.1096/fj.13-235127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ubiquitination is an important mechanism for the regulation of diverse cellular functions, including proteolysis and DNA repair. The human MutS family protein hMSH4 functions in meiotic recombinational DNA double-strand break (DSB) repair. It was previously observed that hMSH4 interacts with the von Hippel-Lindau binding protein 1 (VBP1), a partner of the VHL ubiquitin E3 ligase as well as a subunit of the prefoldin complex. In this study we address how ubiquitination regulates the homeostasis of hMSH4 in the human embryonic kidney cell line HEK293T. We demonstrate that VBP1 targets hMSH4 for degradation and identify a new VBP1 binding partner, p97, an AAA(+) ATPase involved in protein degradation and DNA damage response. VBP1, VHL, and p97 coexist in the hMSH4 immunocomplex and regulate the polyubiquitination of hMSH4. Furthermore, the results of this study demonstrate that VBP1 acts together with p97 to regulate hMSH4 degradation. Overall, this study has revealed a molecular mechanism by which VBP1 controls the levels of hMSH4 by ubiquitination in mitotic cells. Such a mechanism may be important for controlling the role of hMSH4 in regulating homologous recombination and nonhomologous DNA end joining-mediated DSB repair in human cells.
Collapse
Affiliation(s)
- Yang Xu
- 1School of Molecular Biosciences, Mail Drop 64-7520, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7520, USA.
| | | |
Collapse
|
45
|
Abe A, Takahashi-Niki K, Takekoshi Y, Shimizu T, Kitaura H, Maita H, Iguchi-Ariga SMM, Ariga H. Prefoldin plays a role as a clearance factor in preventing proteasome inhibitor-induced protein aggregation. J Biol Chem 2013; 288:27764-76. [PMID: 23946485 DOI: 10.1074/jbc.m113.476358] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prefoldin is a molecular chaperone composed of six subunits, PFD1-6, and prevents misfolding of newly synthesized nascent polypeptides. Although it is predicted that prefoldin, like other chaperones, modulates protein aggregation, the precise function of prefoldin against protein aggregation under physiological conditions has never been elucidated. In this study, we first established an anti-prefoldin monoclonal antibody that recognizes the prefoldin complex but not its subunits. Using this antibody, it was found that prefoldin was localized in the cytoplasm with dots in co-localization with polyubiquitinated proteins and that the number and strength of dots were increased in cells that had been treated with lactacystin, a proteasome inhibitor, and thapsigargin, an inducer of endoplasmic reticulum stress. Knockdown of prefoldin increased the level of SDS-insoluble ubiquitinated protein and reduced cell viability in lactacystin and thapsigargin-treated cells. Opposite results were obtained in prefoldin-overexpressed cells. It has been reported that mice harboring a missense mutation L110R of MM-1α/PFD5 exhibit neurodegeneration in the cerebellum. Although the prefoldin complex containing L110R MM-1α was properly formed in vitro and in cells derived from L110R MM-1α mice, the levels of ubiquitinated proteins and cytotoxicity were higher in L110R MM-1α cells than in wild-type cells under normal conditions and were increased by lactacystin and thapsigargin treatment, and growth of L110R MM-1α cells was attenuated. Furthermore, the polyubiquitinated protein aggregation level was increased in the brains of L110R MM-1α mice. These results suggest that prefoldin plays a role in quality control against protein aggregation and that dysfunction of prefoldin is one of the causes of neurodegenerative diseases.
Collapse
Affiliation(s)
- Akira Abe
- From the Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812 and
| | | | | | | | | | | | | | | |
Collapse
|
46
|
De Coster S, van Leeuwen DM, Jennen DGJ, Koppen G, Den Hond E, Nelen V, Schoeters G, Baeyens W, van Delft JHM, Kleinjans JCS, van Larebeke N. Gender-specific transcriptomic response to environmental exposure in Flemish adults. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:574-588. [PMID: 23653218 DOI: 10.1002/em.21774] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/01/2013] [Accepted: 02/21/2013] [Indexed: 06/02/2023]
Abstract
Flanders, Belgium, is one of the most densely populated areas in Europe. The Flemish Environment and Health Survey (2002-2006) aimed at determining exposure to pollutants of neonates, adolescents, and older adults and to assess associated biological and health effects. This study investigated genome wide gene expression changes associated with a range of environmental pollutants, including cadmium, lead, PCBs, dioxin, hexachlorobenzene, p,p'-DDE, benzene, and PAHs. Gene expression levels were measured in peripheral blood cells of 20 adults with relatively high and 20 adults with relatively low combined internal exposure levels, all non-smokers aged 50-65. Pearson correlation was used to analyze associations between pollutants and gene expression levels, separately for both genders. Pollutant- and gender-specific correlation analysis results were obtained. For organochlorine pollutants, analysis within genders revealed that genes were predominantly regulated in opposite directions in males and females. Significantly modulated pathways were found to be associated with each of the exposure biomarkers measured. Pathways and/or genes related to estrogen and STAT5 signaling were correlated to organochlorine exposures in both genders. Our work demonstrates that gene expression in peripheral blood is influenced by environmental pollutants. In particular, gender-specific changes are associated with organochlorine pollutants, including gender-specific modulation of endocrine related pathways and genes. These pathways and genes have previously been linked to endocrine disruption related disorders, which in turn have been associated with organochlorine exposure. Based on our results, we recommend that males and females be considered separately when analyzing gene expression changes associated with exposures that may include chemicals with endocrine disrupting properties.
Collapse
Affiliation(s)
- Sam De Coster
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent, 9000, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Posttranslational modifications of HIV-1 integrase by various cellular proteins during viral replication. Viruses 2013; 5:1787-801. [PMID: 23863879 PMCID: PMC3738961 DOI: 10.3390/v5071787] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022] Open
Abstract
HIV-1 integrase (IN) is a key viral enzyme during HIV-1 replication that catalyzes the insertion of viral DNA into the host genome. Recent studies have provided important insights into the multiple posttranslational modifications (PTMs) of IN (e.g., ubiquitination, SUMOylation, acetylation and phosphorylation), which regulate its multifaceted functions. A number of host cellular proteins, including Lens Epithelium‑derived Growth factor (LEDGF/p75), p300 and Ku70 have been shown to interact with IN and be involved in the PTM process of IN, either facilitating or counteracting the IN PTMs. Although previous studies have revealed much about the important roles of IN PTMs, how IN functions are fine-tuned by these PTMs under the physiological setting still needs to be determined. Here, we review the advances in the understanding of the mechanisms and roles of multiple IN PTMs.
Collapse
|
48
|
Tashiro E, Zako T, Muto H, Itoo Y, Sörgjerd K, Terada N, Abe A, Miyazawa M, Kitamura A, Kitaura H, Kubota H, Maeda M, Momoi T, Iguchi-Ariga SMM, Kinjo M, Ariga H. Prefoldin protects neuronal cells from polyglutamine toxicity by preventing aggregation formation. J Biol Chem 2013; 288:19958-72. [PMID: 23720755 DOI: 10.1074/jbc.m113.477984] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Huntington disease is caused by cell death after the expansion of polyglutamine (polyQ) tracts longer than ∼40 repeats encoded by exon 1 of the huntingtin (HTT) gene. Prefoldin is a molecular chaperone composed of six subunits, PFD1-6, and prevents misfolding of newly synthesized nascent polypeptides. In this study, we found that knockdown of PFD2 and PFD5 disrupted prefoldin formation in HTT-expressing cells, resulting in accumulation of aggregates of a pathogenic form of HTT and in induction of cell death. Dead cells, however, did not contain inclusions of HTT, and analysis by a fluorescence correlation spectroscopy indicated that knockdown of PFD2 and PFD5 also increased the size of soluble oligomers of pathogenic HTT in cells. In vitro single molecule observation demonstrated that prefoldin suppressed HTT aggregation at the small oligomer (dimer to tetramer) stage. These results indicate that prefoldin inhibits elongation of large oligomers of pathogenic Htt, thereby inhibiting subsequent inclusion formation, and suggest that soluble oligomers of polyQ-expanded HTT are more toxic than are inclusion to cells.
Collapse
Affiliation(s)
- Erika Tashiro
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gérard A, Soler N, Ségéral E, Belshan M, Emiliani S. Identification of low molecular weight nuclear complexes containing integrase during the early stages of HIV-1 infection. Retrovirology 2013; 10:13. [PMID: 23369367 PMCID: PMC3571920 DOI: 10.1186/1742-4690-10-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 01/03/2013] [Indexed: 12/18/2022] Open
Abstract
Background HIV-1 replication requires integration of its reverse transcribed viral cDNA into a host cell chromosome. The DNA cutting and joining reactions associated to this key step are catalyzed by the viral protein integrase (IN). In infected cells, IN binds the viral cDNA, together with viral and cellular proteins, to form large nucleoprotein complexes. However, the dynamics of IN complexes formation is still poorly understood. Results Here, we characterized IN complexes during the early stages of T-lymphocyte infection. We found that following viral entry into the host cell, IN was rapidly targeted to proteasome-mediated degradation. Interactions between IN and cellular cofactors LEDGF/p75 and TNPO3 were detected as early as 6 h post-infection. Size exclusion chromatography of infected cell extracts revealed distinct IN complexes in vivo. While at 2 h post-infection the majority of IN eluted within a high molecular weight complex competent for integration (IN complex I), IN was also detected in a low molecular weight complex devoid of full-length viral cDNA (IN complex II, ~440 KDa). At 6 h post-infection the relative proportion of IN complex II increased. Inhibition of reverse transcription or integration did not alter the elution profile of IN complex II in infected cells. However, in cells depleted for LEDGF/p75 IN complex II shifted to a lower molecular weight complex (IN complex III, ~150 KDa) containing multimers of IN. Notably, cell fractionation experiments indicated that both IN complex II and III were exclusively nuclear. Finally, IN complex II was not detected in cells infected with a virus harboring a mutated IN defective for LEDGF/p75 interaction and tetramerization. Conclusions Our findings indicate that, shortly after viral entry, a significant portion of DNA–free IN that is distinct from active pre-integration complexes accumulates in the nucleus.
Collapse
|
50
|
Narita R, Kitaura H, Torii A, Tashiro E, Miyazawa M, Ariga H, Iguchi-Ariga SMM. Rabring7 degrades c-Myc through complex formation with MM-1. PLoS One 2012; 7:e41891. [PMID: 22844532 PMCID: PMC3402419 DOI: 10.1371/journal.pone.0041891] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/29/2012] [Indexed: 11/18/2022] Open
Abstract
We have reported that a novel c-Myc-binding protein, MM-1, repressed E-box-dependent transcription and transforming activities of c-Myc and that a mutation of A157R in MM-1, which is often observed in patients with leukemia or lymphoma, abrogated all of the repressive activities of MM-1 toward c-Myc, indicating that MM-1 is a novel tumor suppressor. MM-1 also binds to the ubiquitin-proteasome system, leading to degradation of c-Myc. In this study, we identified Rabring7, a Rab7-binding and RING finger-containing protein, as an MM-1-binding protein, and we found that Rabring7 mono-ubiquitinated MM-1 in the cytoplasm without degradation of MM-1. Rabring7 was also found to bind to c-Myc and to ubiquitinate c-Myc in a threonine 58-dependent manner. When c-Myc was co-transfected with MM-1 and Rabring7, c-Myc was degraded. Furthermore, it was found that c-Myc was stabilized in MM-1-knockdown cells even when Rabring7 was transfected and that Rabring7 was bound to and co-localized with MM-1 and c-Myc after MM-1 and Rabring7 had been translocated from the cytoplasm to the nucleus. These results suggest that Rabring7 stimulates c-Myc degradation via mono-ubiquitination of MM-1.
Collapse
Affiliation(s)
- Rina Narita
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hirotake Kitaura
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Ayako Torii
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Erika Tashiro
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Makoto Miyazawa
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroyoshi Ariga
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- * E-mail: (HA); (SMMIA)
| | | |
Collapse
|