1
|
Omole AD, Czuppon P. Maintenance of long-term transposable element activity through regulation by nonautonomous elements. Genetics 2025; 229:iyae209. [PMID: 39810601 DOI: 10.1093/genetics/iyae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Transposable elements are DNA sequences that can move and replicate within genomes. Broadly, there are 2 types: autonomous elements, which encode the necessary enzymes for transposition, and nonautonomous elements, which rely on the enzymes produced by autonomous elements for their transposition. Nonautonomous elements have been proposed to regulate the numbers of transposable elements, which is a possible explanation for the persistence of transposition activity over long evolutionary times. However, previous modeling studies indicate that interactions between autonomous and nonautonomous elements usually result in the extinction of one type. Here, we study a stochastic model that allows for the stable coexistence of autonomous and nonautonomous retrotransposons. We determine the conditions for this coexistence and derive an analytical expression for the stationary distribution of their copy numbers, showing that nonautonomous elements regulate stochastic fluctuations and the number of autonomous elements in stationarity. We find that the stationary variances of each element can be expressed as a function of the average copy numbers and their covariance, enabling data comparison and model validation. These results suggest that continued transposition activity of transposable elements, regulated by nonautonomous elements, is a possible evolutionary outcome that could for example explain the long coevolutionary history of autonomous LINE1 and nonautonomous Alu element transposition in the human ancestry.
Collapse
Affiliation(s)
- Adekanmi Daniel Omole
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| |
Collapse
|
2
|
Ben Amara W, Djebbi S, Khemakhem MM. Evolutionary History of the DD41D Family of Tc1/Mariner Transposons in Two Mayetiola Species. Biochem Genet 2024:10.1007/s10528-024-10898-z. [PMID: 39117934 DOI: 10.1007/s10528-024-10898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Tc1/mariner elements are ubiquitous in eukaryotic genomes including insects. They are diverse and divided into families and sub-families. The DD34D family including mauritiana and irritans subfamilies have already been identified in two closely related species of Cecidomyiids M. destructor and M. hordei. In the current study the de novo and similarity-based methods allowed the identification for the first time of seven consensuses in M. destructor and two consensuses in M. hordei belonging to DD41D family whereas the in vitro method allowed the amplification of two and three elements in these two species respectively. Most of identified elements accumulated different mutations and long deletions spanning the N-terminal region of the transposase. Phylogenetic analyses showed that the DD41D elements were clustered in two groups belonging to rosa and Long-TIR subfamilies. The age estimation of the last transposition events of the identified Tc1/mariner elements in M. destructor showed different evolutionary histories. Indeed, irritans elements have oscillated between periods of silencing and reappearance while rosa and mauritiana elements have shown regular activity with large recent bursts. The study of insertion sites showed that they are mostly intronic and that some recently transposed elements occurred in genes linked to putative DNA-binding domains and enzymes involved in metabolic chains. Thus, this study gave evidence of the existence of DD41D family in two Mayetiola species and an insight on their evolutionary history.
Collapse
Affiliation(s)
- Wiem Ben Amara
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Salma Djebbi
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Maha Mezghani Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia.
| |
Collapse
|
3
|
Meca E, Díez CM, Gaut BS. Modeling transposable elements dynamics during polyploidization in plants. J Theor Biol 2024; 579:111701. [PMID: 38128754 DOI: 10.1016/j.jtbi.2023.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
In this work we study the proliferation of transposable elements (TEs) and the epigenetic response of plants during the process of polyploidization. Through a deterministic model, expanding on our previous work on TE proliferation under epigenetic regulation, we study the long-term TE distribution and TE stability in the subgenomes of both autopolyploids and allopolyploids. We also explore different small-interfering RNA (siRNA) action modes on the subgenomes, including a model where siRNAs are not directed to specific genomes and one where siRNAs are directed - i.e. more active - in subgenomes with higher TE loads. In the autopolyploid case, we find long-term stable equilbria that tend to equilibrate the number of active TEs between subgenomes. In the allopolyploid case, directed siRNA action is fundamental to avoid a "winner takes all" outcome of the competition between the TEs in the different subgenomes. We also show that decaying oscillations in the number of TEs occur naturally in all cases, perhaps explaining some of the observed features of 'genomic shock' after hybridization events, and that the balance in the dynamics of the different types of siRNA is determinant for the synchronization of these oscillations.
Collapse
Affiliation(s)
- Esteban Meca
- Departamento de Física Aplicada, Radiología y Medicina Física, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Albert Einstein (C2), 14014 Córdoba, Spain.
| | - Concepción M Díez
- Departamento de Agronomía, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Celestino Mutis (C4), 14014 Córdoba, Spain.
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-3875, United States of America.
| |
Collapse
|
4
|
Gao D, Fox-Fogle E. Identification of transcriptionally active transposons in Barley. BMC Genom Data 2023; 24:64. [PMID: 37925398 PMCID: PMC10625261 DOI: 10.1186/s12863-023-01170-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The genomes of many major crops including barley (Hordeum vulgare) consist of numerous transposons. Despite their important roles in crop genome evolution and morphological variations, most of these elements are silent or truncated and unable to be mobile in host genomes. Thus far, only a very limited number of active transposons were identified in plants. RESULTS We analyzed the barley full-length cDNA (FLcDNA) sequences and detected 71 unique FLcDNAs exhibiting significant sequence similarity to the extant transposase proteins. These FLcDNAs were then used to search against the genome of a malting barley cultivar 'Morex', seven new intact transposons were identified. Sequence alignments indicated that six intact transposons contained the entire FLcDNAs whereas another one served as 3' untranslated region (3' UTR) of a barley gene. Our reverse transcription-PCR (RT-PCR) experiment further confirmed the expression of these six transposons and revealed their differential expression. We conducted genome-wide transposon comparisons and detected polymorphisms of three transposon families between the genomes of 'Morex' and other three genotypes including the wild barley (Hordeum spontaneum, B1K-04-12) and two cultivated barley varieties, 'Golden Promise' and 'Lasa Goumang'. Lastly, we screened the transcripts of all annotated barley genes and found that some transposons may serve as the coding regions (CDSs) or UTRs of barley genes. CONCLUSION We identified six newly expressed transposons in the barley genome and revealed the recent mobility of three transposon families. Our efforts provide a valuable resource for understanding the effects of transposons on barley genome evolution and for developing novel molecular tools for barley genetic improvement and other research.
Collapse
Affiliation(s)
- Dongying Gao
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA.
| | - Emma Fox-Fogle
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
- National Agricultural Statistical Service, USDA, Olympia, WA, 98501, USA
| |
Collapse
|
5
|
Martelossi J, Nicolini F, Subacchi S, Pasquale D, Ghiselli F, Luchetti A. Multiple and diversified transposon lineages contribute to early and recent bivalve genome evolution. BMC Biol 2023; 21:145. [PMID: 37365567 DOI: 10.1186/s12915-023-01632-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Transposable elements (TEs) can represent one of the major sources of genomic variation across eukaryotes, providing novel raw materials for species diversification and innovation. While considerable effort has been made to study their evolutionary dynamics across multiple animal clades, molluscs represent a substantially understudied phylum. Here, we take advantage of the recent increase in mollusc genomic resources and adopt an automated TE annotation pipeline combined with a phylogenetic tree-based classification, as well as extensive manual curation efforts, to characterize TE repertories across 27 bivalve genomes with a particular emphasis on DDE/D class II elements, long interspersed nuclear elements (LINEs), and their evolutionary dynamics. RESULTS We found class I elements as highly dominant in bivalve genomes, with LINE elements, despite less represented in terms of copy number per genome, being the most common retroposon group covering up to 10% of their genome. We mined 86,488 reverse transcriptases (RVT) containing LINE coming from 12 clades distributed across all known superfamilies and 14,275 class II DDE/D-containing transposons coming from 16 distinct superfamilies. We uncovered a previously underestimated rich and diverse bivalve ancestral transposon complement that could be traced back to their most recent common ancestor that lived ~ 500 Mya. Moreover, we identified multiple instances of lineage-specific emergence and loss of different LINEs and DDE/D lineages with the interesting cases of CR1- Zenon, Proto2, RTE-X, and Academ elements that underwent a bivalve-specific amplification likely associated with their diversification. Finally, we found that this LINE diversity is maintained in extant species by an equally diverse set of long-living and potentially active elements, as suggested by their evolutionary history and transcription profiles in both male and female gonads. CONCLUSIONS We found that bivalves host an exceptional diversity of transposons compared to other molluscs. Their LINE complement could mainly follow a "stealth drivers" model of evolution where multiple and diversified families are able to survive and co-exist for a long period of time in the host genome, potentially shaping both recent and early phases of bivalve genome evolution and diversification. Overall, we provide not only the first comparative study of TE evolutionary dynamics in a large but understudied phylum such as Mollusca, but also a reference library for ORF-containing class II DDE/D and LINE elements, which represents an important genomic resource for their identification and characterization in novel genomes.
Collapse
Affiliation(s)
- Jacopo Martelossi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Filippo Nicolini
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
- Fano Marine Center, Department of Biological, Geological and Environmental Sciences, University of Bologna, Viale Adriatico 1/N, 61032, Fano, Italy
| | - Simone Subacchi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Daniela Pasquale
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| | - Andrea Luchetti
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
6
|
Insights into the differentiation and adaptation within Circaeasteraceae from Circaeaster agrestis genome sequencing and resequencing. iScience 2023; 26:106159. [PMID: 36895650 PMCID: PMC9988679 DOI: 10.1016/j.isci.2023.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Circaeaster agrestis and Kingdonia uniflora are sister species that reproduce sexually and mainly asexually respectively, providing a good system for comparative genome evolution between taxa with different reproductive models. Comparative genome analyses revealed the two species have similar genome size, but C. agrestis encodes many more genes. The gene families specific to C. agrestis show significant enrichment of genes associated with defense response, while those gene families specific to K. uniflora are enriched in genes regulating root system development. Collinearity analyses revealed C. agrestis experienced two rounds of whole-genome duplication. Fst outlier test across 25 C. agrestis populations uncovered a close inter-relationship between abiotic stress and genetic variability. Genetic feature comparisons showed K. uniflora presents much higher genome heterozygosity, transposable element load, linkage disequilibrium degree, and πN/πS ratio. This study provides new insights into understanding the genetic differentiation and adaptation within ancient lineages characterized by multiple reproductive models.
Collapse
|
7
|
Lyu J, Su Q, Liu J, Chen L, Sun J, Zhang W. Functional characterization of piggyBac-like elements from Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). J Zhejiang Univ Sci B 2022; 23:515-527. [PMID: 35686529 DOI: 10.1631/jzus.b2101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PiggyBac is a transposable DNA element originally discovered in the cabbage looper moth (Trichoplusia ni). The T. ni piggyBac transposon can introduce exogenous fragments into a genome, constructing a transgenic organism. Nevertheless, the comprehensive analysis of endogenous piggyBac-like elements (PLEs) is important before using piggyBac, because they may influence the genetic stability of transgenic lines. Herein, we conducted a genome-wide analysis of PLEs in the brown planthopper (BPH) Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), and identified a total of 28 PLE sequences. All N. lugens piggyBac-like elements (NlPLEs) were present as multiple copies in the genome of BPH. Among the identified NlPLEs, NlPLE25 had the highest copy number and it was distributed on five chromosomes. The full length of NlPLE25 consisted of terminal inverted repeats and sub-terminal inverted repeats at both terminals, as well as a single open reading frame transposase encoding 546 amino acids. Furthermore, NlPLE25 transposase caused precise excision and transposition in cultured insect cells and also restored the original TTAA target sequence after excision. A cross-recognition between the NlPLE25 transposon and the piggyBac transposon was also revealed in this study. These findings provide useful information for the construction of transgenic insect lines.
Collapse
Affiliation(s)
- Jun Lyu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qin Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhui Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiawei Sun
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
8
|
Dazenière J, Bousios A, Eyre-Walker A. Patterns of selection in the evolution of a transposable element. G3 GENES|GENOMES|GENETICS 2022; 12:6545286. [PMID: 35262706 PMCID: PMC9073684 DOI: 10.1093/g3journal/jkac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022]
Abstract
Transposable elements are a major component of most eukaryotic genomes. Here, we present a new approach which allows us to study patterns of natural selection in the evolution of transposable elements over short time scales. The method uses the alignment of all elements with intact gag/pol genes of a transposable element family from a single genome. We predict that the ratio of nonsynonymous to synonymous variants in the alignment should decrease as a function of the frequency of the variants, because elements with nonsynonymous variants that reduce transposition will have fewer progeny. We apply our method to Sirevirus long-terminal repeat retrotransposons that are abundant in maize and other plant species and show that nonsynonymous to synonymous variants declines as variant frequency increases, indicating that negative selection is acting strongly on the Sirevirus genome. The asymptotic value of nonsynonymous to synonymous variants suggests that at least 85% of all nonsynonymous mutations in the transposable element reduce transposition. Crucially, these patterns in nonsynonymous to synonymous variants are only predicted to occur if the gene products from a particular transposable element insertion preferentially promote the transposition of the same insertion. Overall, by using large numbers of intact elements, this study sheds new light on the selective processes that act on transposable elements.
Collapse
Affiliation(s)
- Julie Dazenière
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - Alexandros Bousios
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| |
Collapse
|
9
|
Zhao Y, Li X, Xie J, Xu W, Chen S, Zhang X, Liu S, Wu J, El-Kassaby YA, Zhang D. Transposable Elements: Distribution, Polymorphism, and Climate Adaptation in Populus. FRONTIERS IN PLANT SCIENCE 2022; 13:814718. [PMID: 35178060 PMCID: PMC8843856 DOI: 10.3389/fpls.2022.814718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Transposable elements (TEs) are a class of mobile genetic elements that make effects on shaping rapid phenotypic traits of adaptive significance. TE insertions are usually related to transcription changes of nearby genes, and thus may be subjected to purifying selection. Based on the available genome resources of Populus, we found that the composition of Helitron DNA family were highly variable and could directly influence the transcription of nearby gene expression, which are involving in stress-responsive, programmed cell death, and apoptosis pathway. Next, we indicated TEs are highly enriched in Populus trichocarpa compared with three other congeneric poplar species, especially located at untranslated regions (3'UTRs and 5'UTRs) and Helitron transposons, particularly 24-nt siRNA-targeted, are significantly associated with reduced gene expression. Additionally, we scanned a representative resequenced Populus tomentosa population, and identified 9,680 polymorphic TEs loci. More importantly, we identified a Helitron transposon located at the 3'UTR, which could reduce WRKY18 expression level. Our results highlight the importance of TE insertion events, which could regulate gene expression and drive adaptive phenotypic variation in Populus.
Collapse
Affiliation(s)
- Yiyang Zhao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weijie Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Sisi Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Sijia Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiadong Wu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Forest Sciences Centre, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
10
|
Taming, Domestication and Exaptation: Trajectories of Transposable Elements in Genomes. Cells 2021; 10:cells10123590. [PMID: 34944100 PMCID: PMC8700633 DOI: 10.3390/cells10123590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
During evolution, several types of sequences pass through genomes. Along with mutations and internal genetic tinkering, they are a useful source of genetic variability for adaptation and evolution. Most of these sequences are acquired by horizontal transfers (HT), but some of them may come from the genomes themselves. If they are not lost or eliminated quickly, they can be tamed, domesticated, or even exapted. Each of these processes results from a series of events, depending on the interactions between these sequences and the host genomes, but also on environmental constraints, through their impact on individuals or population fitness. After a brief reminder of the characteristics of each of these states (taming, domestication, exaptation), the evolutionary trajectories of these new or acquired sequences will be presented and discussed, emphasizing that they are not totally independent insofar as the first can constitute a step towards the second, and the second is another step towards the third.
Collapse
|
11
|
Wehbi SS, Zu Dohna H. A comparative analysis of L1 retrotransposition activities in human genomes suggests an ongoing increase in L1 number despite an evolutionary trend towards lower activity. Mob DNA 2021; 12:26. [PMID: 34782009 PMCID: PMC8594186 DOI: 10.1186/s13100-021-00255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Background LINE-1 (Long Interspersed Nuclear Elements, L1) retrotransposons are the only autonomously active transposable elements in the human genome. The evolution of L1 retrotransposition rates and its implications for L1 dynamics are poorly understood. Retrotransposition rates are commonly measured in cell culture-based assays, but it is unclear how well these measurements provide insight into L1 population dynamics. This study applied comparative methods to estimate parameters for the evolution of retrotransposition rates, and infer L1 dynamics from these estimates. Results Our results show that the rates at which new L1s emerge in the human population correlate positively to cell-culture based retrotransposition activities, that there is an evolutionary trend towards lower retrotransposition activity, and that this evolutionary trend is not sufficient to counter-balance the increase in active L1s resulting from continuing retrotransposition. Conclusions Together, these findings support a model of the population-level L1 retrotransposition dynamics that is consistent with prior expectations and indicate the remaining gaps in the understanding of L1 dynamics in human genomes.
Collapse
Affiliation(s)
- Sawsan Sami Wehbi
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Heinrich Zu Dohna
- Department of Biology, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
12
|
Methylation patterns of Tf2 retrotransposons linked to rapid adaptive stress response in the brown planthopper (Nilaparvata lugens). Genomics 2021; 113:4214-4226. [PMID: 34774681 DOI: 10.1016/j.ygeno.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/12/2021] [Accepted: 11/07/2021] [Indexed: 11/23/2022]
Abstract
Transposable elements (TEs) exhibit vast diversity across insect orders and are one of the major factors driving insect evolution and speciation. Presence of TEs can be both beneficial and deleterious to their host. While it is well-established that TEs impact life-history traits, adaptations and survivability of insects under hostile environments, the influence of the ecological niche on TE-landscape remains unclear. Here, we analysed the dynamics of Tf2 retrotransposons in the brown planthopper (BPH), under environmental fluctuations. BPH, a major pest of rice, is found in almost all rice-growing ecosystems. We believe genome plasticity, attributed to TEs, has allowed BPH to adapt and colonise novel ecological niches. Our study revealed bimodal age-distribution for Tf2 elements in BPH, indicating the occurrence of two major transpositional events in its evolutionary history and their contribution in shaping BPH genome. While TEs can provide genome flexibility and facilitate adaptations, they impose massive load on the genome. Hence, we investigated the involvement of methylation in modulating transposition in BPH. We performed comparative analyses of the methylation patterns of Tf2 elements in BPH feeding on resistant- and susceptible-rice varieties, and also under pesticide stress, across different life-stages. Results confirmed that methylation, particularly in non-CG context, is involved in TE regulation and dynamics under stress. Furthermore, we observed differential methylation for BPH adults and nymphs, emphasising the importance of screening juvenile life-stages in understanding adaptive-stress-responses in insects. Collectively, this study enhances our understanding of the role of transposons in influencing the evolutionary trajectory and survival strategies of BPH across generations.
Collapse
|
13
|
Stochastic Effects in Retrotransposon Dynamics Revealed by Modeling under Competition for Cellular Resources. Life (Basel) 2021; 11:life11111209. [PMID: 34833085 PMCID: PMC8625273 DOI: 10.3390/life11111209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022] Open
Abstract
Transposons are genomic elements that can relocate within a host genome using a ‘cut’- or ‘copy-and-paste’ mechanism. They make up a significant part of many genomes, serve as a driving force for genome evolution, and are linked with Mendelian diseases and cancers. Interactions between two specific retrotransposon types, autonomous (e.g., LINE1/L1) and nonautonomous (e.g., Alu), may lead to fluctuations in the number of these transposons in the genome over multiple cell generations. We developed and examined a simple model of retrotransposon dynamics under conditions where transposon replication machinery competed for cellular resources: namely, free ribosomes and available energy (i.e., ATP molecules). Such competition is likely to occur in stress conditions that a malfunctioning cell may experience as a result of a malignant transformation. The modeling revealed that the number of actively replicating LINE1 and Alu elements in a cell decreases with the increasing competition for resources; however, stochastic effects interfere with this simple trend. We stochastically simulated the transposon dynamics in a cell population and showed that the population splits into pools with drastically different transposon behaviors. The early extinction of active Alu elements resulted in a larger number of LINE1 copies occurring in the first pool, as there was no competition between the two types of transposons in this pool. In the other pool, the competition process remained and the number of L1 copies was kept small. As the level of available resources reached a critical value, both types of dynamics demonstrated an increase in noise levels, and both the period and the amplitude of predator–prey oscillations rose in one of the cell pools. We hypothesized that the presented dynamical effects associated with the impact of the competition for cellular resources inflicted on the dynamics of retrotransposable elements could be used as a characteristic feature to assess a cell state, or to control the transposon activity.
Collapse
|
14
|
Muller H, Loiseau V, Guillier S, Cordaux R, Gilbert C. Assessing the Impact of a Viral Infection on the Expression of Transposable Elements in the Cabbage Looper Moth (Trichoplusia ni). Genome Biol Evol 2021; 13:evab231. [PMID: 34613390 PMCID: PMC8634313 DOI: 10.1093/gbe/evab231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Most studies of stress-induced transposable element (TE) expression have so far focused on abiotic sources of stress. Here, we analyzed the impact of an infection by the AcMNPV baculovirus on TE expression in a cell line (Tnms42) and midgut tissues of the cabbage looper moth (Trichoplusia ni). We find that a large fraction of TE families (576/636 in Tnms42 cells and 503/612 in midgut) is lowly expressed or not expressed at all [≤ 4 transcripts per million (TPM)] in the uninfected condition (median TPM of 0.37 in Tnms42 and 0.46 in midgut cells). In the infected condition, a total of 62 and 187 TE families were differentially expressed (DE) in midgut and Tnms42 cells, respectively, with more up- (46) than downregulated (16) TE families in the former and as many up- (91) as downregulated (96) TE families in the latter. Expression log2 fold changes of DE TE families varied from -4.95 to 9.11 in Tnms42 cells and from -4.28 to 7.66 in midgut. Large variations in expression profiles of DE TEs were observed depending on the type of cells and on time after infection. Overall, the impact of AcMNPV on TE expression in T. ni is moderate but potentially sufficient to affect TE activity and genome architecture. Interestingly, one host-derived TE integrated into AcMNPV genomes is highly expressed in infected Tnms42 cells. This result shows that virus-borne TEs can be expressed, further suggesting that they may be able to transpose and that viruses may act as vectors of horizontal transfer of TEs in insects.
Collapse
Affiliation(s)
- Héloïse Muller
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| | - Vincent Loiseau
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| | - Sandra Guillier
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Universite de Poitiers, CNRS, France
| | - Clément Gilbert
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| |
Collapse
|
15
|
Torres DE, Thomma BPHJ, Seidl MF. Transposable Elements Contribute to Genome Dynamics and Gene Expression Variation in the Fungal Plant Pathogen Verticillium dahliae. Genome Biol Evol 2021; 13:evab135. [PMID: 34100895 PMCID: PMC8290119 DOI: 10.1093/gbe/evab135] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are a major source of genetic and regulatory variation in their host genome and are consequently thought to play important roles in evolution. Many fungal and oomycete plant pathogens have evolved dynamic and TE-rich genomic regions containing genes that are implicated in host colonization and adaptation. TEs embedded in these regions have typically been thought to accelerate the evolution of these genomic compartments, but little is known about their dynamics in strains that harbor them. Here, we used whole-genome sequencing data of 42 strains of the fungal plant pathogen Verticillium dahliae to systematically identify polymorphic TEs that may be implicated in genomic as well as in gene expression variation. We identified 2,523 TE polymorphisms and characterize a subset of 8% of the TEs as polymorphic elements that are evolutionary younger, less methylated, and more highly expressed when compared with the remaining 92% of the total TE complement. As expected, the polyrmorphic TEs are enriched in the adaptive genomic regions. Besides, we observed an association of polymorphic TEs with pathogenicity-related genes that localize nearby and that display high expression levels. Collectively, our analyses demonstrate that TE dynamics in V. dahliae contributes to genomic variation, correlates with expression of pathogenicity-related genes, and potentially impacts the evolution of adaptive genomic regions.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research, The Netherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, The Netherlands
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, Germany
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, The Netherlands
| |
Collapse
|
16
|
Lu Z, Cui J, Wang L, Teng N, Zhang S, Lam HM, Zhu Y, Xiao S, Ke W, Lin J, Xu C, Jin B. Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures. Genome Biol 2021; 22:160. [PMID: 34034794 PMCID: PMC8145854 DOI: 10.1186/s13059-021-02381-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Elevated temperatures can cause physiological, biochemical, and molecular responses in plants that can greatly affect their growth and development. Mutations are the most fundamental force driving biological evolution. However, how long-term elevations in temperature influence the accumulation of mutations in plants remains unknown. RESULTS Multigenerational exposure of Arabidopsis MA (mutation accumulation) lines and MA populations to extreme heat and moderate warming results in significantly increased mutation rates in single-nucleotide variants (SNVs) and small indels. We observe distinctive mutational spectra under extreme and moderately elevated temperatures, with significant increases in transition and transversion frequencies. Mutation occurs more frequently in intergenic regions, coding regions, and transposable elements in plants grown under elevated temperatures. At elevated temperatures, more mutations accumulate in genes associated with defense responses, DNA repair, and signaling. Notably, the distribution patterns of mutations among all progeny differ between MA populations and MA lines, suggesting that stronger selection effects occurred in populations. Methylation is observed more frequently at mutation sites, indicating its contribution to the mutation process at elevated temperatures. Mutations occurring within the same genome under elevated temperatures are significantly biased toward low gene density regions, special trinucleotides, tandem repeats, and adjacent simple repeats. Additionally, mutations found in all progeny overlap significantly with genetic variations reported in 1001 Genomes, suggesting non-uniform distribution of de novo mutations through the genome. CONCLUSION Collectively, our results suggest that elevated temperatures can accelerate the accumulation, and alter the molecular profiles, of DNA mutations in plants, thus providing significant insight into how environmental temperatures fuel plant evolution.
Collapse
Affiliation(s)
- Zhaogeng Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China
| | - Jiawen Cui
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shoudong Zhang
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Yingfang Zhu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Siwei Xiao
- Wuhan Frasergen Bioinformatics Co, Wuhan, China
| | - Wensi Ke
- Wuhan Frasergen Bioinformatics Co, Wuhan, China
| | - Jinxing Lin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chenwu Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
Kremer SC, Linquist S, Saylor B, Elliott TA, Gregory TR, Cottenie K. Long-term TE persistence even without beneficial insertion. BMC Genomics 2021; 22:260. [PMID: 33845764 PMCID: PMC8042931 DOI: 10.1186/s12864-021-07568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/30/2021] [Indexed: 11/10/2022] Open
Abstract
This correspondence responds to the critique by Butler et al. (BMC Genomics 22:241, 2021) of our recent paper on transposable element (TE) persistence. We address the three main objections raised by Butler et al. After running a series of additional simulations that were inspired by the authors’ criticisms, we are able to present a more nuanced understanding of the conditions that generate long-term persistence.
Collapse
Affiliation(s)
- Stefan C Kremer
- School of Computer Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Stefan Linquist
- Department of Philosophy, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brent Saylor
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tyler A Elliott
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - T Ryan Gregory
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Karl Cottenie
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
18
|
Butler CL, Bell EA, Taylor MI. Removal of beneficial insertion effects prevent the long-term persistence of transposable elements within simulated asexual populations. BMC Genomics 2021; 22:241. [PMID: 33827443 PMCID: PMC8025564 DOI: 10.1186/s12864-021-07569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/30/2021] [Indexed: 01/20/2023] Open
Abstract
Background Transposable elements are significant components of most organism’s genomes, yet the reasons why their abundances vary significantly among species is poorly understood. A recent study has suggested that even in the absence of traditional molecular evolutionary explanations, transposon proliferation may occur through a process known as ‘transposon engineering’. However, their model used a fixed beneficial transposon insertion frequency of 20%, which we believe to be unrealistically high. Results Reducing this beneficial insertion frequency, while keeping all other parameters identical, prevented transposon proliferation. Conclusions We conclude that the author’s original findings are better explained through the action of positive selection rather than ‘transposon engineering’, with beneficial insertion effects remaining important during transposon proliferation events.
Collapse
Affiliation(s)
- Christopher L Butler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Ellen A Bell
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Martin I Taylor
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
19
|
Jaron KS, Bast J, Nowell RW, Ranallo-Benavidez TR, Robinson-Rechavi M, Schwander T. Genomic Features of Parthenogenetic Animals. J Hered 2021; 112:19-33. [PMID: 32985658 PMCID: PMC7953838 DOI: 10.1093/jhered/esaa031] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Evolution without sex is predicted to impact genomes in numerous ways. Case studies of individual parthenogenetic animals have reported peculiar genomic features that were suggested to be caused by their mode of reproduction, including high heterozygosity, a high abundance of horizontally acquired genes, a low transposable element load, or the presence of palindromes. We systematically characterized these genomic features in published genomes of 26 parthenogenetic animals representing at least 18 independent transitions to asexuality. Surprisingly, not a single feature was systematically replicated across a majority of these transitions, suggesting that previously reported patterns were lineage-specific rather than illustrating the general consequences of parthenogenesis. We found that only parthenogens of hybrid origin were characterized by high heterozygosity levels. Parthenogens that were not of hybrid origin appeared to be largely homozygous, independent of the cellular mechanism underlying parthenogenesis. Overall, despite the importance of recombination rate variation for the evolution of sexual animal genomes, the genome-wide absence of recombination does not appear to have had the dramatic effects which are expected from classical theoretical models. The reasons for this are probably a combination of lineage-specific patterns, the impact of the origin of parthenogenesis, and a survivorship bias of parthenogenetic lineages.
Collapse
Affiliation(s)
- Kamil S Jaron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK
- Reuben W. Nowell is now at the Department of Zoology, University of Oxford, Oxford, UK
| | | | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
McGurk MP, Dion-Côté AM, Barbash DA. Rapid evolution at the Drosophila telomere: transposable element dynamics at an intrinsically unstable locus. Genetics 2021; 217:iyaa027. [PMID: 33724410 PMCID: PMC8045721 DOI: 10.1093/genetics/iyaa027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Drosophila telomeres have been maintained by three families of active transposable elements (TEs), HeT-A, TAHRE, and TART, collectively referred to as HTTs, for tens of millions of years, which contrasts with an unusually high degree of HTT interspecific variation. While the impacts of conflict and domestication are often invoked to explain HTT variation, the telomeres are unstable structures such that neutral mutational processes and evolutionary tradeoffs may also drive HTT evolution. We leveraged population genomic data to analyze nearly 10,000 HTT insertions in 85 Drosophila melanogaster genomes and compared their variation to other more typical TE families. We observe that occasional large-scale copy number expansions of both HTTs and other TE families occur, highlighting that the HTTs are, like their feral cousins, typically repressed but primed to take over given the opportunity. However, large expansions of HTTs are not caused by the runaway activity of any particular HTT subfamilies or even associated with telomere-specific TE activity, as might be expected if HTTs are in strong genetic conflict with their hosts. Rather than conflict, we instead suggest that distinctive aspects of HTT copy number variation and sequence diversity largely reflect telomere instability, with HTT insertions being lost at much higher rates than other TEs elsewhere in the genome. We extend previous observations that telomere deletions occur at a high rate, and surprisingly discover that more than one-third do not appear to have been healed with an HTT insertion. We also report that some HTT families may be preferentially activated by the erosion of whole telomeres, implying the existence of HTT-specific host control mechanisms. We further suggest that the persistent telomere localization of HTTs may reflect a highly successful evolutionary strategy that trades away a stable insertion site in order to have reduced impact on the host genome. We propose that HTT evolution is driven by multiple processes, with niche specialization and telomere instability being previously underappreciated and likely predominant.
Collapse
Affiliation(s)
- Michael P McGurk
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Anne-Marie Dion-Côté
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
LeBien J, McCollam G, Atallah J. An in silico model of LINE-1-mediated neoplastic evolution. Bioinformatics 2020; 36:4144-4153. [PMID: 32365170 DOI: 10.1093/bioinformatics/btaa279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Recent research has uncovered roles for transposable elements (TEs) in multiple evolutionary processes, ranging from somatic evolution in cancer to putatively adaptive germline evolution across species. Most models of TE population dynamics, however, have not incorporated actual genome sequence data. The effect of site integration preferences of specific TEs on evolutionary outcomes and the effects of different selection regimes on TE dynamics in a specific genome are unknown. We present a stochastic model of LINE-1 (L1) transposition in human cancer. This system was chosen because the transposition of L1 elements is well understood, the population dynamics of cancer tumors has been modeled extensively, and the role of L1 elements in cancer progression has garnered interest in recent years. RESULTS Our model predicts that L1 retrotransposition (RT) can play either advantageous or deleterious roles in tumor progression, depending on the initial lesion size, L1 insertion rate and tumor driver genes. Small changes in the RT rate or set of driver tumor-suppressor genes (TSGs) were observed to alter the dynamics of tumorigenesis. We found high variation in the density of L1 target sites across human protein-coding genes. We also present an analysis, across three cancer types, of the frequency of homozygous TSG disruption in wild-type hosts compared to those with an inherited driver allele. AVAILABILITY AND IMPLEMENTATION Source code is available at https://github.com/atallah-lab/neoplastic-evolution. CONTACT jlebien@uno.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jack LeBien
- Department of Biological Sciences, The University of New, Orleans, New Orleans, LA 70148, USA
| | - Gerald McCollam
- Advanced Academic Programs, John Hopkins University, Baltimore, MD 21218, USA
| | - Joel Atallah
- Department of Biological Sciences, The University of New, Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
22
|
Kelleher ES, Barbash DA, Blumenstiel JP. Taming the Turmoil Within: New Insights on the Containment of Transposable Elements. Trends Genet 2020; 36:474-489. [PMID: 32473745 DOI: 10.1016/j.tig.2020.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/28/2022]
Abstract
Transposable elements (TEs) are mobile genetic parasites that can exponentially increase their genomic abundance through self-propagation. Classic theoretical papers highlighted the importance of two potentially escalating forces that oppose TE spread: regulated transposition and purifying selection. Here, we review new insights into mechanisms of TE regulation and purifying selection, which reveal the remarkable foresight of these theoretical models. We further highlight emergent connections between transcriptional control enacted by small RNAs and the contribution of TE insertions to structural mutation and host-gene regulation. Finally, we call for increased comparative analysis of TE dynamics and fitness effects, as well as host control mechanisms, to reveal how interconnected forces shape the differential prevalence and distribution of TEs across the tree of life.
Collapse
|
23
|
Drost HG, Sanchez DH. Becoming a Selfish Clan: Recombination Associated to Reverse-Transcription in LTR Retrotransposons. Genome Biol Evol 2020; 11:3382-3392. [PMID: 31755923 PMCID: PMC6894440 DOI: 10.1093/gbe/evz255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) are parasitic DNA bits capable of mobilization and mutagenesis, typically suppressed by host’s epigenetic silencing. Since the selfish DNA concept, it is appreciated that genomes are also molded by arms-races against natural TE inhabitants. However, our understanding of evolutionary processes shaping TEs adaptive populations is scarce. Here, we review the events of recombination associated to reverse-transcription in LTR retrotransposons, a process shuffling their genetic variants during replicative mobilization. Current evidence may suggest that recombinogenic retrotransposons could beneficially exploit host suppression, where clan behavior facilitates their speciation and diversification. Novel refinements to retrotransposons life-cycle and evolution models thus emerge.
Collapse
Affiliation(s)
- Hajk-Georg Drost
- The Sainsbury Laboratory, University of Cambridge, United Kingdom.,Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Diego H Sanchez
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| |
Collapse
|
24
|
Complex Evolutionary History of Mboumar, a Mariner Element Widely Represented in Ant Genomes. Sci Rep 2020; 10:2610. [PMID: 32054918 PMCID: PMC7018970 DOI: 10.1038/s41598-020-59422-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Mboumar-9 is an active mariner-transposable element previously isolated in the ant Messor bouvieri. In this work, a mariner-like element, Mboumar, isolated from 22 species of ants, is analyzed. These species belong to nine different subfamilies, including Leptanillinae, the most primitive ant subfamily, and Myrmicinae and Formicidae, the most derived ones. Consequently, Mboumar-like elements seem to be well-represented in ant genomes. The phylogenetic tree drawn for mariner elements is highly inconsistent with the phylogeny of host ants, with almost identical elements found in clearly distant species and, on the contrary, more variable elements in closely related species. The inconsistency between the two phylogenetic trees indicates that these transposable elements have evolved independently from the speciation events of the ants that host them. Besides, we found closer genetic relationships among elements than among their host ants. We also found potential coding copies with an uninterrupted open reading frame of 345 aa in 11 species. The putative transposase codified by them showed a high sequence identity with the active Mboumar-9 transposase. The results of selection tests suggest the intervention of purifying selection in the evolution of these elements. Overall, our study suggests a complex evolutionary history of the Mboumar-like mariner in ants, with important participation of horizontal transfer events. We also suggest that the evolutionary dynamics of Mboumar-like elements can be influenced by the genetic system of their host ants, which are eusocial insects with a haplodiploid genetic system.
Collapse
|
25
|
Abstract
Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of how genomes are folded is still only rarely integrated in experimental studies or accounted for in modelling. Whilst polymer physics is recognised as an important tool to understand the mechanisms of genome folding, in this commentary we discuss its potential applicability to aspects of TE biology. Based on recent works on the relationship between genome organisation and TE integration, we argue that existing polymer models may be extended to create a predictive framework for the study of TE integration patterns. We suggest that these models may offer orthogonal and generic insights into the integration profiles (or "topography") of TEs across organisms. In addition, we provide simple polymer physics arguments and preliminary molecular dynamics simulations of TEs inserting into heterogeneously flexible polymers. By considering this simple model, we show how polymer folding and local flexibility may generically affect TE integration patterns. The preliminary discussion reported in this commentary is aimed to lay the foundations for a large-scale analysis of TE integration dynamics and topography as a function of the three-dimensional host genome.
Collapse
|
26
|
Iwasaki WM, Kijima TE, Innan H. Population Genetics and Molecular Evolution of DNA Sequences in Transposable Elements. II. Accumulation of Variation and Evolution of a New Subfamily. Mol Biol Evol 2020; 37:355-364. [PMID: 31580443 DOI: 10.1093/molbev/msz220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In order to understand how DNA sequences of transposable elements (TEs) evolve, extensive simulations were carried out. We first used our previous model, in which the copy number of TEs is mainly controlled by selection against ectopic recombination. It was found that along a simulation run, the shape of phylogeny changes quite much, from monophyletic trees to dimorphic trees with two clusters. Our results demonstrated that the change of the phase is usually slow from a monomorphic phase to a dimorphic phase, accompanied with a growth of an internal branch by accumulation of variation between two types. Then, the phase immediately changes back to a monomorphic phase when one group gets extinct. Under this condition, monomorphic and dimorphic phases arise repeatedly, and it is very difficult to maintain two or more different types of TEs for a long time. Then, how a new subfamily can evolve? To solve this, we developed a new model, in which ectopic recombination is restricted between two types under some condition, for example, accumulation of mutations between them. Under this model, because selection works on the copy number of each types separately, two types can be maintained for a long time. As expected, our simulations demonstrated that a new type arises and persists quite stably, and that it will be recognized as a new subfamily followed by further accumulation of mutations. It is indicated that how ectopic recombination is regulated in a genome is an important factor for the evolution of a new subfamily.
Collapse
Affiliation(s)
- Watal M Iwasaki
- SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| | - T E Kijima
- SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| | - Hideki Innan
- SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| |
Collapse
|
27
|
Abstract
In mammals and invertebrates, the proliferation of an invading transposable element (TE) is thought to be stopped by an insertion into a piRNA cluster. Here, we explore the dynamics of TE invasions under this trap model using computer simulations. We found that piRNA clusters confer a substantial benefit, effectively preventing extinction of host populations from a proliferation of deleterious TEs. TE invasions consist of three distinct phases: first, the TE amplifies within the population, next TE proliferation is stopped by segregating cluster insertions, and finally the TE is inactivated by fixation of a cluster insertion. Suppression by segregating cluster insertions is unstable and bursts of TE activity may yet occur. The transposition rate and the population size mostly influence the length of the phases but not the amount of TEs accumulating during an invasion. Solely, the size of piRNA clusters was identified as a major factor influencing TE abundance. We found that a single nonrecombining cluster is more efficient in stopping invasions than clusters distributed over several chromosomes. Recombination among cluster sites makes it necessary that each diploid carries, on the average, four cluster insertions to stop an invasion. Surprisingly, negative selection in a model with piRNA clusters can lead to a novel equilibrium state, where TE copy numbers remain stable despite only some individuals in a population carrying a cluster insertion. In Drosophila melanogaster, the trap model accounts for the abundance of TEs produced in the germline but fails to predict the abundance of TEs produced in the soma.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| |
Collapse
|
28
|
Massey SE, Mishra B. Origin of biomolecular games: deception and molecular evolution. J R Soc Interface 2019; 15:rsif.2018.0429. [PMID: 30185543 DOI: 10.1098/rsif.2018.0429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Biological macromolecules encode information: some of it to endow the molecule with structural flexibility, some of it to enable molecular actions as a catalyst or a substrate, but a residual part can be used to communicate with other macromolecules. Thus, macromolecules do not need to possess information only to survive in an environment, but also to strategically interact with others by sending signals to a receiving macromolecule that can properly interpret the signal and act suitably. These sender-receiver signalling games are sustained by the information asymmetry that exists among the macromolecules. In both biochemistry and molecular evolution, the important role of information asymmetry remains largely unaddressed. Here, we provide a new unifying perspective on the impact of information symmetry between macromolecules on molecular evolutionary processes, while focusing on molecular deception. Biomolecular games arise from the ability of biological macromolecules to exert precise recognition, and their role as units of selection, meaning that they are subject to competition and cooperation with other macromolecules. Thus, signalling game theory can be used to better understand fundamental features of living systems such as molecular recognition, molecular mimicry, selfish elements and 'junk' DNA. We show how deceptive behaviour at the molecular level indicates a conflict of interest, and so provides evidence of genetic conflict. This model proposes that molecular deception is diagnostic of selfish behaviour, helping to explain the evasive behaviour of transposable elements in 'junk' DNA, for example. Additionally, in this broad review, a range of major evolutionary transitions are shown to be associated with the establishment of signalling conventions, many of which are susceptible to molecular deception. These perspectives allow us to assign rudimentary behaviour to macromolecules, and show how participation in signalling games differentiates biochemistry from abiotic chemistry.
Collapse
Affiliation(s)
- Steven E Massey
- Department of Biology, University of Puerto Rico, San Juan, PR, USA
| | - Bud Mishra
- Courant Institute, New York University, NY, USA
| |
Collapse
|
29
|
Transposable Elements Adaptive Role in Genome Plasticity, Pathogenicity and Evolution in Fungal Phytopathogens. Int J Mol Sci 2019; 20:ijms20143597. [PMID: 31340492 PMCID: PMC6679389 DOI: 10.3390/ijms20143597] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023] Open
Abstract
Transposable elements (TEs) are agents of genetic variability in phytopathogens as they are a source of adaptive evolution through genome diversification. Although many studies have uncovered information on TEs, the exact mechanism behind TE-induced changes within the genome remains poorly understood. Furthermore, convergent trends towards bigger genomes, emergence of novel genes and gain or loss of genes implicate a TE-regulated genome plasticity of fungal phytopathogens. TEs are able to alter gene expression by revamping the cis-regulatory elements or recruiting epigenetic control. Recent findings show that TEs recruit epigenetic control on the expression of effector genes as part of the coordinated infection strategy. In addition to genome plasticity and diversity, fungal pathogenicity is an area of economic concern. A survey of TE distribution suggests that their proximity to pathogenicity genes TEs may act as sites for emergence of novel pathogenicity factors via nucleotide changes and expansion or reduction of the gene family. Through a systematic survey of literature, we were able to conclude that the role of TEs in fungi is wide: ranging from genome plasticity, pathogenicity to adaptive behavior in evolution. This review also identifies the gaps in knowledge that requires further elucidation for a better understanding of TEs' contribution to genome architecture and versatility.
Collapse
|
30
|
Bourgeois Y, Boissinot S. On the Population Dynamics of Junk: A Review on the Population Genomics of Transposable Elements. Genes (Basel) 2019; 10:genes10060419. [PMID: 31151307 PMCID: PMC6627506 DOI: 10.3390/genes10060419] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/05/2019] [Accepted: 05/21/2019] [Indexed: 01/18/2023] Open
Abstract
Transposable elements (TEs) play an important role in shaping genomic organization and structure, and may cause dramatic changes in phenotypes. Despite the genetic load they may impose on their host and their importance in microevolutionary processes such as adaptation and speciation, the number of population genetics studies focused on TEs has been rather limited so far compared to single nucleotide polymorphisms (SNPs). Here, we review the current knowledge about the dynamics of transposable elements at recent evolutionary time scales, and discuss the mechanisms that condition their abundance and frequency. We first discuss non-adaptive mechanisms such as purifying selection and the variable rates of transposition and elimination, and then focus on positive and balancing selection, to finally conclude on the potential role of TEs in causing genomic incompatibilities and eventually speciation. We also suggest possible ways to better model TEs dynamics in a population genomics context by incorporating recent advances in TEs into the rich information provided by SNPs about the demography, selection, and intrinsic properties of genomes.
Collapse
Affiliation(s)
- Yann Bourgeois
- New York University Abu Dhabi, P.O. 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| | - Stéphane Boissinot
- New York University Abu Dhabi, P.O. 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
31
|
Abed M, Verschueren E, Budayeva H, Liu P, Kirkpatrick DS, Reja R, Kummerfeld SK, Webster JD, Gierke S, Reichelt M, Anderson KR, Newman RJ, Roose-Girma M, Modrusan Z, Pektas H, Maltepe E, Newton K, Dixit VM. The Gag protein PEG10 binds to RNA and regulates trophoblast stem cell lineage specification. PLoS One 2019; 14:e0214110. [PMID: 30951545 PMCID: PMC6450627 DOI: 10.1371/journal.pone.0214110] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 01/03/2023] Open
Abstract
Peg10 (paternally expressed gene 10) is an imprinted gene that is essential for placental development. It is thought to derive from a Ty3-gyspy LTR (long terminal repeat) retrotransposon and retains Gag and Pol-like domains. Here we show that the Gag domain of PEG10 can promote vesicle budding similar to the HIV p24 Gag protein. Expressed in a subset of mouse endocrine organs in addition to the placenta, PEG10 was identified as a substrate of the deubiquitinating enzyme USP9X. Consistent with PEG10 having a critical role in placental development, PEG10-deficient trophoblast stem cells (TSCs) exhibited impaired differentiation into placental lineages. PEG10 expressed in wild-type, differentiating TSCs was bound to many cellular RNAs including Hbegf (Heparin-binding EGF-like growth factor), which is known to play an important role in placentation. Expression of Hbegf was reduced in PEG10-deficient TSCs suggesting that PEG10 might bind to and stabilize RNAs that are critical for normal placental development.
Collapse
Affiliation(s)
- Mona Abed
- Physiological Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Erik Verschueren
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Hanna Budayeva
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Peter Liu
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Donald S. Kirkpatrick
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Rohit Reja
- Bioinformatics and Computational Biology Department, Genentech, South San Francisco, California, United States of America
| | - Sarah K. Kummerfeld
- Bioinformatics and Computational Biology Department, Genentech, South San Francisco, California, United States of America
| | - Joshua D. Webster
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Sarah Gierke
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Mike Reichelt
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Keith R. Anderson
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Robert J. Newman
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Merone Roose-Girma
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Zora Modrusan
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Hazal Pektas
- The Center for Reproductive Sciences, Division of Neonatology, University of California, San Francisco, California, United States of America
| | - Emin Maltepe
- The Center for Reproductive Sciences, Division of Neonatology, University of California, San Francisco, California, United States of America
| | - Kim Newton
- Physiological Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Vishva M. Dixit
- Physiological Chemistry Department, Genentech, South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Pirogov SA, Maksimenko OG, Georgiev PG. Transposable Elements in the Evolution of Gene Regulatory Networks. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Fine-Grained Analysis of Spontaneous Mutation Spectrum and Frequency in Arabidopsis thaliana. Genetics 2018; 211:703-714. [PMID: 30514707 PMCID: PMC6366913 DOI: 10.1534/genetics.118.301721] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/29/2018] [Indexed: 01/17/2023] Open
Abstract
Mutations are the ultimate source of all genetic variation. However, few direct estimates of the contribution of mutation to molecular genetic variation are available. To address this issue, we first analyzed the rate and spectrum of mutations in the Arabidopsis thaliana reference accession after 25 generations of single-seed descent. We then compared the mutation profile in these mutation accumulation (MA) lines against genetic variation observed in the 1001 Genomes Project. The estimated haploid single nucleotide mutation (SNM) rate for A. thaliana is 6.95 × 10−9 (SE ± 2.68 × 10−10) per site per generation, with SNMs having higher frequency in transposable elements (TEs) and centromeric regions. The estimated indel mutation rate is 1.30 × 10−9 (±1.07 × 10−10) per site per generation, with deletions being more frequent and larger than insertions. Among the 1694 unique SNMs identified in the MA lines, the positions of 389 SNMs (23%) coincide with biallelic SNPs from the 1001 Genomes population, and in 289 (17%) cases the changes are identical. Of the 329 unique indels identified in the MA lines, 96 (29%) overlap with indels from the 1001 Genomes dataset, and 16 indels (5% of the total) are identical. These overlap frequencies are significantly higher than expected, suggesting that de novo mutations are not uniformly distributed and arise at polymorphic sites more frequently than assumed. These results suggest that high mutation rate potentially contributes to high polymorphism and low mutation rate to reduced polymorphism in natural populations providing insights of mutational inputs in generating natural genetic diversity.
Collapse
|
34
|
Roessler K, Bousios A, Meca E, Gaut BS. Modeling Interactions between Transposable Elements and the Plant Epigenetic Response: A Surprising Reliance on Element Retention. Genome Biol Evol 2018; 10:803-815. [PMID: 29608716 PMCID: PMC5841382 DOI: 10.1093/gbe/evy043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) compose the majority of angiosperm DNA. Plants counteract TE activity by silencing them epigenetically. One form of epigenetic silencing requires 21-22 nt small interfering RNAs that act to degrade TE mRNA and may also trigger DNA methylation. DNA methylation is reinforced by a second mechanism, the RNA-dependent DNA methylation (RdDM) pathway. RdDM relies on 24 nt small interfering RNAs and ultimately establishes TEs in a quiescent state. These host factors interact at a systems level, but there have been no system level analyses of their interactions. Here, we define a deterministic model that represents the propagation of active TEs, aspects of the host response and the accumulation of silenced TEs. We describe general properties of the model and also fit it to biological data in order to explore two questions. The first is why two overlapping pathways are maintained, given that both are likely energetically expensive. Under our model, RdDM silenced TEs effectively even when the initiation of silencing was weak. This relationship implies that only a small amount of RNAi is needed to initiate TE silencing, but reinforcement by RdDM is necessary to efficiently counter TE propagation. Second, we investigated the reliance of the host response on rates of TE deletion. The model predicted that low levels of deletion lead to few active TEs, suggesting that silencing is most efficient when methylated TEs are retained in the genome, thereby providing one explanation for the large size of plant genomes.
Collapse
Affiliation(s)
- Kyria Roessler
- Department of Ecology and Evolutionary Biology, UC Irvine
| | | | - Esteban Meca
- Departamento de Agronomia, Universidad de Cordoba, Spain
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, UC Irvine
| |
Collapse
|
35
|
Birth and Death of LTR-Retrotransposons in Aegilops tauschii. Genetics 2018; 210:1039-1051. [PMID: 30158124 DOI: 10.1534/genetics.118.301198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 11/18/2022] Open
Abstract
Long terminal repeat-retrotransposons (LTR-RTs) are a major component of all flowering plant genomes. To analyze the time dynamics of LTR-RTs, we modeled the insertion rates of the 35 most abundant LTR-RT families in the genome of Aegilops tauschii, one of the progenitors of wheat. Our model of insertion rate (birth) takes into account random variation in LTR divergence and the deletion rate (death) of LTR-RTs. Modeling the death rate is crucial because ignoring it would underestimate insertion rates in the distant past. We rejected the hypothesis of constancy of insertion rates for all 35 families and showed by simulations that our hypothesis test controlled the false-positive rate. LTR-RT insertions peaked from 0.064 to 2.39 MYA across the 35 families. Among other effects, the average age of elements within a family was negatively associated with recombination rate along a chromosome, with proximity to the closest gene, and weakly associated with the proximity to its 5' end. Elements within a family that were near genes colinear with genes in the genome of tetraploid emmer wheat tended to be younger than those near noncolinear genes. We discuss these associations in the context of genome evolution and stability of genome sizes in the tribe Triticeae. We demonstrate the general utility of our models by analyzing the two most abundant LTR-RT families in Arabidopsis lyrata, and show that these families differed in their insertion dynamics. Our estimation methods are available in the R package TE on CRAN.
Collapse
|
36
|
Pasquesi GIM, Adams RH, Card DC, Schield DR, Corbin AB, Perry BW, Reyes-Velasco J, Ruggiero RP, Vandewege MW, Shortt JA, Castoe TA. Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nat Commun 2018; 9:2774. [PMID: 30018307 PMCID: PMC6050309 DOI: 10.1038/s41467-018-05279-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Broad paradigms of vertebrate genomic repeat element evolution have been largely shaped by analyses of mammalian and avian genomes. Here, based on analyses of genomes sequenced from over 60 squamate reptiles (lizards and snakes), we show that patterns of genomic repeat landscape evolution in squamates challenge such paradigms. Despite low variance in genome size, squamate genomes exhibit surprisingly high variation among species in abundance (ca. 25–73% of the genome) and composition of identifiable repeat elements. We also demonstrate that snake genomes have experienced microsatellite seeding by transposable elements at a scale unparalleled among eukaryotes, leading to some snake genomes containing the highest microsatellite content of any known eukaryote. Our analyses of transposable element evolution across squamates also suggest that lineage-specific variation in mechanisms of transposable element activity and silencing, rather than variation in species-specific demography, may play a dominant role in driving variation in repeat element landscapes across squamate phylogeny. Large-scale patterns of genomic repeat element evolution have been studied mainly in birds and mammals. Here, the authors analyze the genomes of over 60 squamate reptiles and show high variation in repeat elements compared to mammals and birds, and particularly high microsatellite seeding in snakes.
Collapse
Affiliation(s)
- Giulia I M Pasquesi
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Richard H Adams
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Andrew B Corbin
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Jacobo Reyes-Velasco
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA.,Department of Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Robert P Ruggiero
- Department of Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Michael W Vandewege
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, 19122, USA
| | - Jonathan A Shortt
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA.
| |
Collapse
|
37
|
Bonchev G, Willi Y. Accumulation of transposable elements in selfing populations of Arabidopsis lyrata supports the ectopic recombination model of transposon evolution. THE NEW PHYTOLOGIST 2018; 219:767-778. [PMID: 29757461 DOI: 10.1111/nph.15201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Transposable elements (TE) can constitute a large fraction of plant genomes, yet our understanding of their evolution and fitness effect is still limited. Here we tested several models of evolution that make specific predictions about differences in TE abundance between selfing and outcrossing taxa, and between small and large populations. We estimated TE abundance in multiple populations of North American Arabidopsis lyrata differing in mating system and long-term size, using transposon insertion display on several TE families. Selfing populations had higher TE copy numbers per individual and higher TE allele frequencies, supporting models which assume that selection against TEs acts predominantly against heterozygotes via the process of ectopic recombination. In outcrossing populations differing in long-term size, the data supported neither a model of density-regulated transposition nor a model of direct deleterious effect. Instead, the population structure of TEs revealed that outcrossing populations tended to split into western and eastern groups - as previously detected using microsatellite markers - whereas selfing populations from west and east were less differentiated. This, too, agrees with the model of ectopic recombination. Overall, our results suggest that TE elements are nearly neutral except for their deleterious potential to disturb meiosis in the heterozygous state.
Collapse
Affiliation(s)
- Georgi Bonchev
- Institute of Biology, Evolutionary Botany, University of Neuchâtel, Neuchâtel, 2000, Switzerland
- Institute of Plant Physiology and Genetics, Laboratory of Genome Dynamics and Stability, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Yvonne Willi
- Institute of Biology, Evolutionary Botany, University of Neuchâtel, Neuchâtel, 2000, Switzerland
- Department of Environmental Sciences, University of Basel, Basel, 4056, Switzerland
| |
Collapse
|
38
|
Han MJ, Xu HE, Xiong XM, Zhang HH. Evolutionary dynamics of transposable elements during silkworm domestication. Genes Genomics 2018; 40:1041-1051. [DOI: 10.1007/s13258-018-0713-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/31/2018] [Indexed: 11/24/2022]
|
39
|
Serrato-Capuchina A, Matute DR. The Role of Transposable Elements in Speciation. Genes (Basel) 2018; 9:E254. [PMID: 29762547 PMCID: PMC5977194 DOI: 10.3390/genes9050254] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
Understanding the phenotypic and molecular mechanisms that contribute to genetic diversity between and within species is fundamental in studying the evolution of species. In particular, identifying the interspecific differences that lead to the reduction or even cessation of gene flow between nascent species is one of the main goals of speciation genetic research. Transposable elements (TEs) are DNA sequences with the ability to move within genomes. TEs are ubiquitous throughout eukaryotic genomes and have been shown to alter regulatory networks, gene expression, and to rearrange genomes as a result of their transposition. However, no systematic effort has evaluated the role of TEs in speciation. We compiled the evidence for TEs as potential causes of reproductive isolation across a diversity of taxa. We find that TEs are often associated with hybrid defects that might preclude the fusion between species, but that the involvement of TEs in other barriers to gene flow different from postzygotic isolation is still relatively unknown. Finally, we list a series of guides and research avenues to disentangle the effects of TEs on the origin of new species.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| | - Daniel R Matute
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
40
|
Abstract
Transposable elements (TEs) are mobile genetic elements that were once perceived as merely selfish, but are now recognized as potent agents of adaptation. One way TEs contribute to genome evolution is through TE exaptation, a process whereby TEs, which usually persist by replicating in the genome, transform into novel host genes, which thereafter persist by conferring phenotypic benefits. Exapted TEs are known to contribute diverse and vital functions, and may facilitate punctuated equilibrium, yet we have little understanding about the process of TE exaptation. In order to facilitate our understanding of how TE coding sequences may become exapted, here we incorporate the findings of recent publications into a framework and six-step model.
Collapse
Affiliation(s)
- Zoé Joly-Lopez
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Thomas E Bureau
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
41
|
Sundaram V, Wang T. Transposable Element Mediated Innovation in Gene Regulatory Landscapes of Cells: Re-Visiting the "Gene-Battery" Model. Bioessays 2018; 40:10.1002/bies.201700155. [PMID: 29206283 PMCID: PMC5912915 DOI: 10.1002/bies.201700155] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/25/2017] [Indexed: 01/31/2023]
Abstract
Transposable elements (TEs) are no longer considered to be "junk" DNA. Here, we review how TEs can impact gene regulation systematically. TEs encode various regulatory elements that enables them to regulate gene expression. RJ Britten and EH Davidson hypothesized that TEs can integrate the function of various transcriptional regulators into gene regulatory networks. Uniquely TEs can deposit regulatory sites across the genome when they transpose, and thereby bring multiple genes under control of the same regulatory logic. Several studies together have robustly established that TEs participate in embryonic development and oncogenesis. We discuss the regulatory characteristics of TEs in context of evolution to understand the extent of their impact on gene networks. Understanding these features of TEs is central to future investigations of TEs in cellular processes and phenotypic presentations, which are applicable to development and disease studies. We re-visit the Britten-Davidson "gene-battery" model and understand the genetic and transcriptional impact of TEs in innovating gene regulatory networks.
Collapse
Affiliation(s)
- Vasavi Sundaram
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St Louis, Missouri 63110, United States of America
| |
Collapse
|
42
|
Jiang X, Tang H, Ye Z, Lynch M. Insertion Polymorphisms of Mobile Genetic Elements in Sexual and Asexual Populations of Daphnia pulex. Genome Biol Evol 2017; 9:362-374. [PMID: 28057730 PMCID: PMC5381639 DOI: 10.1093/gbe/evw302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2016] [Indexed: 12/20/2022] Open
Abstract
Transposable elements (TEs) constitute a substantial portion of many eukaryotic genomes, and can in principle contribute to evolutionary innovation as well as genomic deterioration. Daphnia pulex serves as a useful model for studying TE dynamics as a potential cause and/or consequence of asexuality. We analyzed insertion polymorphisms of TEs in 20 sexual and 20 asexual isolates of D. pulex across North American from their available whole-genome sequencing data. Our results show that the total fraction of the derived sequences of TEs is not substantially different between asexual and sexual D. pulex isolates. However, in general, sexual clones contain fewer fixed TE insertions but more total insertion polymorphisms than asexual clones, supporting the hypothesis that sexual reproduction facilitates the spread and elimination of TEs. We identified nine asexual-specific fixed TE insertions, eight long terminal repeat retrotransposons, and one DNA transposon. By comparison, no sexual-specific fixed TE insertions were observed in our analysis. Furthermore, except one TE insertion located on a contig from chromosome 7, the other eight asexual-specific insertion sites are located on contigs from chromosome 9 that is known to be associated with obligate asexuality in D. pulex. We found that all nine asexual-specific fixed TE insertions can also be detected in some Daphnia pulicaria isolates, indicating that a substantial number of TE insertions in asexual D. pulex have been directly inherited from D. pulicaria during the origin of obligate asexuals.
Collapse
Affiliation(s)
- Xiaoqian Jiang
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Haixu Tang
- School of Informatics and Computing, Indiana University, Bloomington, Indiana
| | - Zhiqiang Ye
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
43
|
Gratia JP. Genetic recombinational events in prokaryotes and their viruses: insight into the study of evolution and biodiversity. Antonie van Leeuwenhoek 2017; 110:1493-1514. [DOI: 10.1007/s10482-017-0916-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
|
44
|
Bouallègue M, Filée J, Kharrat I, Mezghani-Khemakhem M, Rouault JD, Makni M, Capy P. Diversity and evolution of mariner-like elements in aphid genomes. BMC Genomics 2017; 18:494. [PMID: 28662628 PMCID: PMC5490172 DOI: 10.1186/s12864-017-3856-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022] Open
Abstract
Background Although transposons have been identified in almost all organisms, genome-wide information on mariner elements in Aphididae remains unknown. Genomes of Acyrthosiphon pisum, Diuraphis noxia and Myzus persicae belonging to the Macrosiphini tribe, actually available in databases, have been investigated. Results A total of 22 lineages were identified. Classification and phylogenetic analysis indicated that they were subdivided into three monophyletic groups, each of them containing at least one putative complete sequence, and several non-autonomous sublineages corresponding to Miniature Inverted-Repeat Transposable Elements (MITE), probably generated by internal deletions. A high proportion of truncated and dead copies was also detected. The three clusters can be defined from their catalytic site: (i) mariner DD34D, including three subgroups of the irritans subfamily (Macrosiphinimar, Batmar-like elements and Dnomar-like elements); (ii) rosa DD41D, found in A. pisum and D. noxia; (iii) a new clade which differs from rosa through long TIRs and thus designated LTIR-like elements. Based on its catalytic domain, this new clade is subdivided into DD40D and DD41D subgroups. Compared to other Tc1/mariner superfamily sequences, rosa DD41D and LTIR DD40-41D seem more related to maT DD37D family. Conclusion Overall, our results reveal three clades belonging to the irritans subfamily, rosa and new LTIR-like elements. Data on structure and specific distribution of these transposable elements in the Macrosiphini tribe contribute to the understanding of their evolutionary history and to that of their hosts. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3856-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maryem Bouallègue
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France.,Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Université de Tunis El Manar, 1002, Tunis, Tunisie
| | - Jonathan Filée
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Imen Kharrat
- Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Université de Tunis El Manar, 1002, Tunis, Tunisie
| | - Maha Mezghani-Khemakhem
- Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Université de Tunis El Manar, 1002, Tunis, Tunisie
| | - Jacques-Deric Rouault
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Mohamed Makni
- Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Université de Tunis El Manar, 1002, Tunis, Tunisie
| | - Pierre Capy
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
45
|
Abstract
Comparing genomes of closely related genotypes from populations with distinct demographic histories can help reveal the impact of effective population size on genome evolution. For this purpose, we present a high quality genome assembly of Daphnia pulex (PA42), and compare this with the first sequenced genome of this species (TCO), which was derived from an isolate from a population with >90% reduction in nucleotide diversity. PA42 has numerous similarities to TCO at the gene level, with an average amino acid sequence identity of 98.8 and >60% of orthologous proteins identical. Nonetheless, there is a highly elevated number of genes in the TCO genome annotation, with ∼7000 excess genes appearing to be false positives. This view is supported by the high GC content, lack of introns, and short length of these suspicious gene annotations. Consistent with the view that reduced effective population size can facilitate the accumulation of slightly deleterious genomic features, we observe more proliferation of transposable elements (TEs) and a higher frequency of gained introns in the TCO genome.
Collapse
|
46
|
Fernández-Medina RD, Carareto CMA, Struchiner CJ, Ribeiro JMC. Transposable elements in the Anopheles funestus transcriptome. Genetica 2017; 145:275-293. [PMID: 28424974 DOI: 10.1007/s10709-017-9964-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/27/2017] [Indexed: 12/27/2022]
Abstract
Transposable elements (TEs) are present in most of the eukaryotic genomes and their impact on genome evolution is increasingly recognized. Although there is extensive information on the TEs present in several eukaryotic genomes, less is known about the expression of these elements at the transcriptome level. Here we present a detailed analysis regarding the expression of TEs in Anopheles funestus, the second most important vector of human malaria in Africa. Several transcriptionally active TE families belonging both to Class I and II were identified and characterized. Interestingly, we have identified a full-length putative active element (including the presence of full length TIRs in the genomic sequence) belonging to the hAT superfamily, which presents active members in other insect genomes. This work contributes to a comprehensive understanding of the landscape of transposable elements in A. funestus transcriptome. Our results reveal that TEs are abundant and diverse in the mosquito and that most of the TE families found in the genome are represented in the mosquito transcriptome, a fact that could indicate activity of these elements.The vast diversity of TEs expressed in A. funestus suggests that there is ongoing amplification of several families in this organism.
Collapse
Affiliation(s)
- Rita D Fernández-Medina
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública, Av. Brasil, 4365, Rio de Janeiro, Brazil.
| | - Claudia M A Carareto
- Departamento de Biologia, UNESP-Universidade Estadual Paulista, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, Brazil
| | - Cláudio J Struchiner
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública, Av. Brasil, 4365, Rio de Janeiro, Brazil
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, 20852, USA
| |
Collapse
|
47
|
Cross-Regulation between Transposable Elements and Host DNA Replication. Viruses 2017; 9:v9030057. [PMID: 28335567 PMCID: PMC5371812 DOI: 10.3390/v9030057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 12/27/2022] Open
Abstract
Transposable elements subvert host cellular functions to ensure their survival. Their interaction with the host DNA replication machinery indicates that selective pressures lead them to develop ancestral and convergent evolutionary adaptations aimed at conserved features of this fundamental process. These interactions can shape the co-evolution of the transposons and their hosts.
Collapse
|
48
|
|
49
|
Bouallègue M, Rouault JD, Hua-Van A, Makni M, Capy P. Molecular Evolution of piggyBac Superfamily: From Selfishness to Domestication. Genome Biol Evol 2017; 9:323-339. [PMID: 28082605 PMCID: PMC5381638 DOI: 10.1093/gbe/evw292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2016] [Indexed: 12/19/2022] Open
Abstract
The piggyBac transposable element was originally isolated from the cabbage looper moth, Trichoplusia ni, in the 1980s. Despite its early discovery and specificity compared to the other Class II elements, the diversity and evolution of this superfamily have been only partially analyzed. Two main types of elements can be distinguished: the piggyBac-like elements (PBLE) with terminal inverted repeats, untranslated region, and an open reading frame encoding a transposase, and the piggyBac-derived sequences (PGBD), containing a sequence derived from a piggyBac transposase, and which correspond to domesticated elements. To define the distribution, their structural diversity and phylogenetic relationships, analyses were conducted using known PBLE and PGBD sequences to scan databases. From this data mining, numerous new sequences were characterized (50 for PBLE and 396 for PGBD). Structural analyses suggest that four groups of PBLE can be defined according to the presence/absence of sub-terminal repeats. The transposase is characterized by highly variable catalytic domain and C-terminal region. There is no relationship between the structural groups and the phylogeny of these PBLE elements. The PGBD are clearly structured into nine main groups. A new group of domesticated elements is suspected in Neopterygii and the remaining eight previously described elements have been investigated in more detail. In all cases, these sequences are no longer transposable elements, the catalytic domain of the ancestral transposase is not always conserved, but they are under strong purifying selection. The phylogeny of both PBLE and PGBD suggests multiple and independent domestication events of PGBD from different PBLE ancestors.
Collapse
Affiliation(s)
- Maryem Bouallègue
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Univ. Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
- Université de Tunis El Manar, Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Tunis, Tunisie
| | - Jacques-Deric Rouault
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Univ. Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélie Hua-Van
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Univ. Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mohamed Makni
- Université de Tunis El Manar, Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Tunis, Tunisie
| | - Pierre Capy
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Univ. Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
50
|
Venner S, Miele V, Terzian C, Biémont C, Daubin V, Feschotte C, Pontier D. Ecological networks to unravel the routes to horizontal transposon transfers. PLoS Biol 2017; 15:e2001536. [PMID: 28199335 PMCID: PMC5331948 DOI: 10.1371/journal.pbio.2001536] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transposable elements (TEs) represent the single largest component of numerous eukaryotic genomes, and their activity and dispersal constitute an important force fostering evolutionary innovation. The horizontal transfer of TEs (HTT) between eukaryotic species is a common and widespread phenomenon that has had a profound impact on TE dynamics and, consequently, on the evolutionary trajectory of many species' lineages. However, the mechanisms promoting HTT remain largely unknown. In this article, we argue that network theory combined with functional ecology provides a robust conceptual framework and tools to delineate how complex interactions between diverse organisms may act in synergy to promote HTTs.
Collapse
Affiliation(s)
- Samuel Venner
- Laboratoire de Biométrie et Biologie Evolutive UMR5558-CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
- LabEx ECOFECT (Eco-Evolutionary Dynamics of Infectious Diseases), Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
| | - Vincent Miele
- Laboratoire de Biométrie et Biologie Evolutive UMR5558-CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
| | - Christophe Terzian
- LabEx ECOFECT (Eco-Evolutionary Dynamics of Infectious Diseases), Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
- UMR754 INRA, Université Claude Bernard Lyon 1, Lyon, France
- Ecole Pratique des Hautes Etudes, Paris, France
| | - Christian Biémont
- Laboratoire de Biométrie et Biologie Evolutive UMR5558-CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
| | - Vincent Daubin
- Laboratoire de Biométrie et Biologie Evolutive UMR5558-CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
- LabEx ECOFECT (Eco-Evolutionary Dynamics of Infectious Diseases), Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah, School of Medicine, Salt Lake City, Utah, United States of America
| | - Dominique Pontier
- Laboratoire de Biométrie et Biologie Evolutive UMR5558-CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
- LabEx ECOFECT (Eco-Evolutionary Dynamics of Infectious Diseases), Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
| |
Collapse
|