1
|
Plačková K, Bureš P, Lysak MA, Zedek F. Centromere drive may propel the evolution of chromosome and genome size in plants. ANNALS OF BOTANY 2024; 134:1067-1076. [PMID: 39196767 PMCID: PMC11687628 DOI: 10.1093/aob/mcae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND Genome size is influenced by natural selection and genetic drift acting on variations from polyploidy and repetitive DNA sequences. We hypothesized that centromere drive, where centromeres compete for inclusion in the functional gamete during meiosis, may also affect genome and chromosome size. This competition occurs in asymmetric meiosis, where only one of the four meiotic products becomes a gamete. If centromere drive influences chromosome size evolution, it may also impact post-polyploid diploidization, where a polyploid genome is restructured to function more like a diploid through chromosomal rearrangements, including fusions. We tested if plant lineages with asymmetric meiosis exhibit faster chromosome size evolution compared to those with only symmetric meiosis, which lack centromere drive as all four meiotic products become gametes. We also examined if positive selection on centromeric histone H3 (CENH3), a protein that can suppress centromere drive, is more frequent in these asymmetric lineages. METHODS We analysed plant groups with different meiotic modes: asymmetric in gymnosperms and angiosperms, and symmetric in bryophytes, lycophytes and ferns. We selected species based on available CENH3 gene sequences and chromosome size data. Using Ornstein-Uhlenbeck evolutionary models and phylogenetic regressions, we assessed the rates of chromosome size evolution and the frequency of positive selection on CENH3 in these clades. RESULTS Our analyses showed that clades with asymmetric meiosis have a higher frequency of positive selection on CENH3 and increased rates of chromosome size evolution compared to symmetric clades. CONCLUSIONS Our findings support the hypothesis that centromere drive accelerates chromosome and genome size evolution, potentially also influencing the process of post-polyploid diploidization. We propose a model which in a single framework helps explain the stability of chromosome size in symmetric lineages (bryophytes, lycophytes and ferns) and its variability in asymmetric lineages (gymnosperms and angiosperms), providing a foundation for future research in plant genome evolution.
Collapse
Affiliation(s)
- Klára Plačková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Martin A Lysak
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - František Zedek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| |
Collapse
|
2
|
Karami Fath M, Nazari A, Parsania N, Behboodi P, Ketabi SS, Razmjouei P, Farzam F, Shafagh SG, Nabi Afjadi M. Centromeres in cancer: Unraveling the link between chromosomal instability and tumorigenesis. Med Oncol 2024; 41:254. [PMID: 39352464 DOI: 10.1007/s12032-024-02524-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/14/2024]
Abstract
Centromeres are critical structures involved in chromosome segregation, maintaining genomic stability, and facilitating the accurate transmission of genetic information. They are key in coordinating the assembly and help keep the correct structure, location, and function of the kinetochore, a proteinaceous structure vital for ensuring proper chromosome segregation during cell division. Abnormalities in centromere structure can lead to aneuploidy or chromosomal instability, which have been implicated in various diseases, including cancer. Accordingly, abnormalities in centromeres, such as structural rearrangements and dysregulation of centromere-associated proteins, disrupt gene function, leading to uncontrolled cell growth and tumor progression. For instance, altered expression of CENP-A, CENP-E, and others such as BUB1, BUBR1, MAD1, and INCENP, have been shown to ascribe to centromere over-amplification, chromosome missegregation, aneuploidy, and chromosomal instability; this, in turn, can culminate in tumor progression. These centromere abnormalities also promoted tumor heterogeneity by generating genetically diverse cell populations within tumors. Advanced techniques like fluorescence in situ hybridization (FISH) and chromosomal microarray analysis are crucial for detecting centromere abnormalities, enabling accurate cancer classification and tailored treatment strategies. Researchers are exploring strategies to disrupt centromere-associated proteins for targeted cancer therapies. Thus, this review explores centromere abnormalities in cancer, their molecular mechanisms, diagnostic implications, and therapeutic targeting. It aims to advance our understanding of centromeres' role in cancer and develop advanced diagnostic tools and targeted therapies for improved cancer management and treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Parsania
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Paria Behboodi
- Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Pegah Razmjouei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Wernig-Zorc S, Kugler F, Schmutterer L, Räß P, Hausmann C, Holzinger S, Längst G, Schwartz U. nucMACC: An MNase-seq pipeline to identify structurally altered nucleosomes in the genome. SCIENCE ADVANCES 2024; 10:eadm9740. [PMID: 38959309 PMCID: PMC11221511 DOI: 10.1126/sciadv.adm9740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Micrococcal nuclease sequencing is the state-of-the-art method for determining chromatin structure and nucleosome positioning. Data analysis is complex due to the AT-dependent sequence bias of the endonuclease and the requirement for high sequencing depth. Here, we present the nucleosome-based MNase accessibility (nucMACC) pipeline unveiling the regulatory chromatin landscape by measuring nucleosome accessibility and stability. The nucMACC pipeline represents a systematic and genome-wide approach for detecting unstable ("fragile") nucleosomes. We have characterized the regulatory nucleosome landscape in Drosophila melanogaster, Saccharomyces cerevisiae, and mammals. Two functionally distinct sets of promoters were characterized, one associated with an unstable nucleosome and the other being nucleosome depleted. We show that unstable nucleosomes present intermediate states of nucleosome remodeling, preparing inducible genes for transcriptional activation in response to stimuli or stress. The presence of unstable nucleosomes correlates with RNA polymerase II proximal pausing. The nucMACC pipeline offers unparalleled precision and depth in nucleosome research and is a valuable tool for future nucleosome studies.
Collapse
Affiliation(s)
- Sara Wernig-Zorc
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Fabian Kugler
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Leo Schmutterer
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Patrick Räß
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Clemens Hausmann
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Simon Holzinger
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Gernot Längst
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Center Biology and Pre-clinical Medicine, University of Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Di Tommaso E, Giunta S. Dynamic interplay between human alpha-satellite DNA structure and centromere functions. Semin Cell Dev Biol 2024; 156:130-140. [PMID: 37926668 DOI: 10.1016/j.semcdb.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Maintenance of genome stability relies on functional centromeres for correct chromosome segregation and faithful inheritance of the genetic information. The human centromere is the primary constriction within mitotic chromosomes made up of repetitive alpha-satellite DNA hierarchically organized in megabase-long arrays of near-identical higher order repeats (HORs). Centromeres are epigenetically specified by the presence of the centromere-specific histone H3 variant, CENP-A, which enables the assembly of the kinetochore for microtubule attachment. Notably, centromeric DNA is faithfully inherited as intact haplotypes from the parents to the offspring without intervening recombination, yet, outside of meiosis, centromeres are akin to common fragile sites (CFSs), manifesting crossing-overs and ongoing sequence instability. Consequences of DNA changes within the centromere are just starting to emerge, with unclear effects on intra- and inter-generational inheritance driven by centromere's essential role in kinetochore assembly. Here, we review evidence of meiotic selection operating to mitigate centromere drive, as well as recent reports on centromere damage, recombination and repair during the mitotic cell division. We propose an antagonistic pleiotropy interpretation to reconcile centromere DNA instability as both driver of aneuploidy that underlies degenerative diseases, while also potentially necessary for the maintenance of homogenized HORs for centromere function. We attempt to provide a framework for this conceptual leap taking into consideration the structural interface of centromere-kinetochore interaction and present case scenarios for its malfunctioning. Finally, we offer an integrated working model to connect DNA instability, chromatin, and structural changes with functional consequences on chromosome integrity.
Collapse
Affiliation(s)
- Elena Di Tommaso
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Simona Giunta
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
5
|
Hocher A, Warnecke T. Nucleosomes at the Dawn of Eukaryotes. Genome Biol Evol 2024; 16:evae029. [PMID: 38366053 PMCID: PMC10919886 DOI: 10.1093/gbe/evae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024] Open
Abstract
Genome regulation in eukaryotes revolves around the nucleosome, the fundamental building block of eukaryotic chromatin. Its constituent parts, the four core histones (H3, H4, H2A, H2B), are universal to eukaryotes. Yet despite its exceptional conservation and central role in orchestrating transcription, repair, and other DNA-templated processes, the origins and early evolution of the nucleosome remain opaque. Histone-fold proteins are also found in archaea, but the nucleosome we know-a hetero-octameric complex composed of histones with long, disordered tails-is a hallmark of eukaryotes. What were the properties of the earliest nucleosomes? Did ancestral histones inevitably assemble into nucleosomes? When and why did the four core histones evolve? This review will look at the evolution of the eukaryotic nucleosome from the vantage point of archaea, focusing on the key evolutionary transitions required to build a modern nucleosome. We will highlight recent work on the closest archaeal relatives of eukaryotes, the Asgardarchaea, and discuss what their histones can and cannot tell us about the early evolution of eukaryotic chromatin. We will also discuss how viruses have become an unexpected source of information about the evolutionary path toward the nucleosome. Finally, we highlight the properties of early nucleosomes as an area where new tools and data promise tangible progress in the not-too-distant future.
Collapse
Affiliation(s)
- Antoine Hocher
- Medical Research Council Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Tobias Warnecke
- Medical Research Council Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Trinity College, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Ólafsson G, Haase MAB, Boeke JD. Humanization reveals pervasive incompatibility of yeast and human kinetochore components. G3 (BETHESDA, MD.) 2023; 14:jkad260. [PMID: 37962556 PMCID: PMC10755175 DOI: 10.1093/g3journal/jkad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Kinetochores assemble on centromeres to drive chromosome segregation in eukaryotic cells. Humans and budding yeast share most of the structural subunits of the kinetochore, whereas protein sequences have diverged considerably. The conserved centromeric histone H3 variant, CenH3 (CENP-A in humans and Cse4 in budding yeast), marks the site for kinetochore assembly in most species. A previous effort to complement Cse4 in yeast with human CENP-A was unsuccessful; however, co-complementation with the human core nucleosome was not attempted. Previously, our lab successfully humanized the core nucleosome in yeast; however, this severely affected cellular growth. We hypothesized that yeast Cse4 is incompatible with humanized nucleosomes and that the kinetochore represented a limiting factor for efficient histone humanization. Thus, we argued that including the human CENP-A or a Cse4-CENP-A chimera might improve histone humanization and facilitate kinetochore function in humanized yeast. The opposite was true: CENP-A expression reduced histone humanization efficiency, was toxic to yeast, and disrupted cell cycle progression and kinetochore function in wild-type (WT) cells. Suppressors of CENP-A toxicity included gene deletions of subunits of 3 conserved chromatin remodeling complexes, highlighting their role in CenH3 chromatin positioning. Finally, we attempted to complement the subunits of the NDC80 kinetochore complex, individually and in combination, without success, in contrast to a previous study indicating complementation by the human NDC80/HEC1 gene. Our results suggest that limited protein sequence similarity between yeast and human components in this very complex structure leads to failure of complementation.
Collapse
Affiliation(s)
- Guðjón Ólafsson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 14 11201, USA
| |
Collapse
|
7
|
Cieslinski K, Wu YL, Nechyporenko L, Hörner SJ, Conti D, Skruzny M, Ries J. Nanoscale structural organization and stoichiometry of the budding yeast kinetochore. J Cell Biol 2023; 222:213833. [PMID: 36705601 PMCID: PMC9929930 DOI: 10.1083/jcb.202209094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023] Open
Abstract
Proper chromosome segregation is crucial for cell division. In eukaryotes, this is achieved by the kinetochore, an evolutionarily conserved multiprotein complex that physically links the DNA to spindle microtubules and takes an active role in monitoring and correcting erroneous spindle-chromosome attachments. Our mechanistic understanding of these functions and how they ensure an error-free outcome of mitosis is still limited, partly because we lack a complete understanding of the kinetochore structure in the cell. In this study, we use single-molecule localization microscopy to visualize individual kinetochore complexes in situ in budding yeast. For major kinetochore proteins, we measured their abundance and position within the metaphase kinetochore. Based on this comprehensive dataset, we propose a quantitative model of the budding yeast kinetochore. While confirming many aspects of previous reports based on bulk imaging, our results present a unifying nanoscale model of the kinetochore in budding yeast.
Collapse
Affiliation(s)
- Konstanty Cieslinski
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Translational Radiation Oncology Unit, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Yu-Le Wu
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Faculty of Biosciences, Collaboration for Joint PhD Degree Between European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany
| | - Lisa Nechyporenko
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Sarah Janice Hörner
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,https://ror.org/04p61dj41Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany,Interdisciplinary Center for Neuroscience, Heidelberg University, Heidelberg, Germany
| | - Duccio Conti
- https://ror.org/03vpj4s62Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michal Skruzny
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jonas Ries
- https://ror.org/03mstc592Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
8
|
Pesenti ME, Raisch T, Conti D, Walstein K, Hoffmann I, Vogt D, Prumbaum D, Vetter IR, Raunser S, Musacchio A. Structure of the human inner kinetochore CCAN complex and its significance for human centromere organization. Mol Cell 2022; 82:2113-2131.e8. [PMID: 35525244 PMCID: PMC9235857 DOI: 10.1016/j.molcel.2022.04.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
Centromeres are specialized chromosome loci that seed the kinetochore, a large protein complex that effects chromosome segregation. A 16-subunit complex, the constitutive centromere associated network (CCAN), connects between the specialized centromeric chromatin, marked by the histone H3 variant CENP-A, and the spindle-binding moiety of the kinetochore. Here, we report a cryo-electron microscopy structure of human CCAN. We highlight unique features such as the pseudo GTPase CENP-M and report how a crucial CENP-C motif binds the CENP-LN complex. The CCAN structure has implications for the mechanism of specific recognition of the CENP-A nucleosome. A model consistent with our structure depicts the CENP-C-bound nucleosome as connected to the CCAN through extended, flexible regions of CENP-C. An alternative model identifies both CENP-C and CENP-N as specificity determinants but requires CENP-N to bind CENP-A in a mode distinct from the classical nucleosome octamer.
Collapse
Affiliation(s)
- Marion E Pesenti
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Tobias Raisch
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Duccio Conti
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Kai Walstein
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid Hoffmann
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Dorothee Vogt
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany.
| |
Collapse
|
9
|
Matsuo Y. The Adenine/Thymine Deleterious Selection Model for GC Content Evolution at the Third Codon Position of the Histone Genes in Drosophila. Genes (Basel) 2021; 12:721. [PMID: 34065869 PMCID: PMC8150595 DOI: 10.3390/genes12050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/02/2022] Open
Abstract
The evolution of the GC (guanine cytosine) content at the third codon position of the histone genes (H1, H2A, H2B, H3, H4, H2AvD, H3.3A, H3.3B, and H4r) in 12 or more Drosophila species is reviewed. For explaining the evolution of the GC content at the third codon position of the genes, a model assuming selection with a deleterious effect for adenine/thymine and a size effect is presented. The applicability of the model to whole-genome genes is also discussed.
Collapse
Affiliation(s)
- Yoshinori Matsuo
- Division of Science and Technology, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| |
Collapse
|
10
|
Pillai A, Gungi A, Reddy PC, Galande S. Epigenetic Regulation in Hydra: Conserved and Divergent Roles. Front Cell Dev Biol 2021; 9:663208. [PMID: 34041242 PMCID: PMC8141815 DOI: 10.3389/fcell.2021.663208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Transitions in gene regulatory processes responsible for the emergence of specialized cell types and spatiotemporal regulation of developmental signaling prior to the divergence of Cnidaria and Bilateria are poorly understood. As a sister group of Bilateria, the phylum Cnidaria can provide significant insights into these processes. Among the cnidarians, hydrae have been studied for >250 years to comprehend the mechanisms underlying their unique immortality and robust regenerative capacity. Studies on Hydra spp. and other pre-bilaterians alike have advanced our understanding of the evolutionary underpinnings governing eumetazoan tissue development, homeostasis, and regeneration. In addition to its regenerative potential, Hydra exhibits continuously active axial patterning due to its peculiar tissue dynamics. These distinctive physiological processes necessitate large scale gene expression changes that are governed by the multitude of epigenetic mechanisms operating in cells. This review highlights the contemporary knowledge of epigenetic regulation in Hydra with contemporary studies from other members of Cnidaria, as well as the interplay between regulatory mechanisms wherever demonstrated. The studies covered in the scope of this review reveal both ancestral and divergent roles played by conserved epigenetic mechanisms with emphasis on transcriptional regulation. Additionally, single-cell transcriptomics data was mined to predict the physiological relevance of putative gene regulatory components, which is in agreement with published findings and yielded insights into the possible functions of the gene regulatory mechanisms that are yet to be deciphered in Hydra, such as DNA methylation. Finally, we delineate potentially rewarding epigenetics research avenues that can further leverage the unique biology of Hydra.
Collapse
Affiliation(s)
| | | | - Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
11
|
Krátká M, Šmerda J, Lojdová K, Bureš P, Zedek F. Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae. FRONTIERS IN PLANT SCIENCE 2021; 12:642661. [PMID: 33679859 PMCID: PMC7933567 DOI: 10.3389/fpls.2021.642661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/29/2021] [Indexed: 05/05/2023]
Abstract
Centromere drive model describes an evolutionary process initiated by centromeric repeats expansion, which leads to the recruitment of excess kinetochore proteins and consequent preferential segregation of an expanded centromere to the egg during female asymmetric meiosis. In response to these selfish centromeres, the histone protein CenH3, which recruits kinetochore components, adaptively evolves to restore chromosomal parity and counter the detrimental effects of centromere drive. Holocentric chromosomes, whose kinetochores are assembled along entire chromosomes, have been hypothesized to prevent expanded centromeres from acquiring a selective advantage and initiating centromere drive. In such a case, CenH3 would be subjected to less frequent or no adaptive evolution. Using codon substitution models, we analyzed 36 CenH3 sequences from 35 species of the holocentric family Cyperaceae. We found 10 positively selected codons in the CenH3 gene [six codons in the N-terminus and four in the histone fold domain (HFD)] and six branches of its phylogeny along which the positive selection occurred. One of the positively selected codons was found in the centromere targeting domain (CATD) that directly interacts with DNA and its mutations may be important in centromere drive suppression. The frequency of these positive selection events was comparable to the frequency of positive selection in monocentric clades with asymmetric female meiosis. Taken together, these results suggest that preventing centromere drive is not the primary adaptive role of holocentric chromosomes, and their ability to suppress it likely depends on their kinetochore structure in meiosis.
Collapse
Affiliation(s)
| | | | | | | | - František Zedek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
12
|
Wang Y, Wang A, Liu Z, Thurman AL, Powers LS, Zou M, Zhao Y, Hefel A, Li Y, Zabner J, Au KF. Single-molecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res 2019; 29:1329-1342. [PMID: 31201211 PMCID: PMC6673713 DOI: 10.1101/gr.251116.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/10/2019] [Indexed: 11/25/2022]
Abstract
Genome-wide chromatin accessibility and nucleosome occupancy profiles have been widely investigated, while the long-range dynamics remain poorly studied at the single-cell level. Here, we present a new experimental approach, methyltransferase treatment followed by single-molecule long-read sequencing (MeSMLR-seq), for long-range mapping of nucleosomes and chromatin accessibility at single DNA molecules and thus achieve comprehensive-coverage characterization of the corresponding heterogeneity. MeSMLR-seq offers direct measurements of both nucleosome-occupied and nucleosome-evicted regions on a single DNA molecule, which is challenging for many existing methods. We applied MeSMLR-seq to haploid yeast, where single DNA molecules represent single cells, and thus we could investigate the combinatorics of many (up to 356) nucleosomes at long range in single cells. We illustrated the differential organization principles of nucleosomes surrounding the transcription start site for silent and actively transcribed genes, at the single-cell level and in the long-range scale. The heterogeneous patterns of chromatin status spanning multiple genes were phased. Together with single-cell RNA-seq data, we quantitatively revealed how chromatin accessibility correlated with gene transcription positively in a highly heterogeneous scenario. Moreover, we quantified the openness of promoters and investigated the coupled chromatin changes of adjacent genes at single DNA molecules during transcription reprogramming. In addition, we revealed the coupled changes of chromatin accessibility for two neighboring glucose transporter genes in response to changes in glucose concentration.
Collapse
Affiliation(s)
- Yunhao Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Anqi Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Zujun Liu
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Andrew L Thurman
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Linda S Powers
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Meng Zou
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Adam Hefel
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Yunyi Li
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Kin Fai Au
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA.,Department of Biostatistics, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
13
|
Hörandl E, Speijer D. How oxygen gave rise to eukaryotic sex. Proc Biol Sci 2019; 285:rspb.2017.2706. [PMID: 29436502 PMCID: PMC5829205 DOI: 10.1098/rspb.2017.2706] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
How did full meiotic eukaryotic sex evolve and what was the immediate advantage allowing it to develop? We propose that the crucial determinant can be found in internal reactive oxygen species (ROS) formation at the start of eukaryotic evolution approximately 2 × 109 years ago. The large amount of ROS coming from a bacterial endosymbiont gave rise to DNA damage and vast increases in host genome mutation rates. Eukaryogenesis and chromosome evolution represent adaptations to oxidative stress. The host, an archaeon, most probably already had repair mechanisms based on DNA pairing and recombination, and possibly some kind of primitive cell fusion mechanism. The detrimental effects of internal ROS formation on host genome integrity set the stage allowing evolution of meiotic sex from these humble beginnings. Basic meiotic mechanisms thus probably evolved in response to endogenous ROS production by the ‘pre-mitochondrion’. This alternative to mitosis is crucial under novel, ROS-producing stress situations, like extensive motility or phagotrophy in heterotrophs and endosymbiontic photosynthesis in autotrophs. In multicellular eukaryotes with a germline–soma differentiation, meiotic sex with diploid–haploid cycles improved efficient purging of deleterious mutations. Constant pressure of endogenous ROS explains the ubiquitous maintenance of meiotic sex in practically all eukaryotic kingdoms. Here, we discuss the relevant observations underpinning this model.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Göttingen, Germany
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Centre (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Concurrent Duplication of Drosophila Cid and Cenp-C Genes Resulted in Accelerated Evolution and Male Germline-Biased Expression of the New Copies. J Mol Evol 2018; 86:353-364. [DOI: 10.1007/s00239-018-9851-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 06/15/2018] [Indexed: 11/26/2022]
|
15
|
Fuse T, Katsumata K, Morohoshi K, Mukai Y, Ichikawa Y, Kurumizaka H, Yanagida A, Urano T, Kato H, Shimizu M. Parallel mapping with site-directed hydroxyl radicals and micrococcal nuclease reveals structural features of positioned nucleosomes in vivo. PLoS One 2017; 12:e0186974. [PMID: 29073207 PMCID: PMC5658119 DOI: 10.1371/journal.pone.0186974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
Micrococcal nuclease (MNase) has been widely used for analyses of nucleosome locations in many organisms. However, due to its sequence preference, the interpretations of the positions and occupancies of nucleosomes using MNase have remained controversial. Next-generation sequencing (NGS) has also been utilized for analyses of MNase-digests, but some technical biases are commonly present in the NGS experiments. Here, we established a gel-based method to map nucleosome positions in Saccharomyces cerevisiae, using isolated nuclei as the substrate for the histone H4 S47C-site-directed chemical cleavage in parallel with MNase digestion. The parallel mapping allowed us to compare the chemically and enzymatically cleaved sites by indirect end-labeling and primer extension mapping, and thus we could determine the nucleosome positions and the sizes of the nucleosome-free regions (or nucleosome-depleted regions) more accurately, as compared to nucleosome mapping by MNase alone. The analysis also revealed that the structural features of the nucleosomes flanked by the nucleosome-free region were different from those within regularly arrayed nucleosomes, showing that the structures and dynamics of individual nucleosomes strongly depend on their locations. Moreover, we demonstrated that the parallel mapping results were generally consistent with the previous genome-wide chemical mapping and MNase-Seq results. Thus, the gel-based parallel mapping will be useful for the analysis of a specific locus under various conditions.
Collapse
Affiliation(s)
- Tomohiro Fuse
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Koji Katsumata
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Koya Morohoshi
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Yukio Mukai
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yuichi Ichikawa
- Graduate School of Advanced Science and Engineering/RISE/IMSB, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering/RISE/IMSB, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Akio Yanagida
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Mitsuhiro Shimizu
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
- * E-mail:
| |
Collapse
|
16
|
Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol 2017; 18:548-562. [PMID: 28537572 DOI: 10.1038/nrm.2017.47] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in genomics technology have provided the means to probe myriad chromatin interactions at unprecedented spatial and temporal resolution. This has led to a profound understanding of nucleosome organization within the genome, revealing that nucleosomes are highly dynamic. Nucleosome dynamics are governed by a complex interplay of histone composition, histone post-translational modifications, nucleosome occupancy and positioning within chromatin, which are influenced by numerous regulatory factors, including general regulatory factors, chromatin remodellers, chaperones and polymerases. It is now known that these dynamics regulate diverse cellular processes ranging from gene transcription to DNA replication and repair.
Collapse
|
17
|
How does chromatin package DNA within nucleus and regulate gene expression? Int J Biol Macromol 2017; 101:862-881. [PMID: 28366861 DOI: 10.1016/j.ijbiomac.2017.03.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/26/2023]
Abstract
The human body is made up of 60 trillion cells, each cell containing 2 millions of genomic DNA in its nucleus. How is this genomic deoxyribonucleic acid [DNA] organised into nuclei? Around 1880, W. Flemming discovered a nuclear substance that was clearly visible on staining under primitive light microscopes and named it 'chromatin'; this is now thought to be the basic unit of genomic DNA organization. Since long before DNA was known to carry genetic information, chromatin has fascinated biologists. DNA has a negatively charged phosphate backbone that produces electrostatic repulsion between adjacent DNA regions, making it difficult for DNA to fold upon itself. In this article, we will try to shed light on how does chromatin package DNA within nucleus and regulate gene expression?
Collapse
|
18
|
Muiruri KS, Britt A, Amugune NO, Nguu EK, Chan S, Tripathi L. Expressed Centromere Specific Histone 3 ( CENH3) Variants in Cultivated Triploid and Wild Diploid Bananas ( Musa spp.). FRONTIERS IN PLANT SCIENCE 2017; 8:1034. [PMID: 28706522 PMCID: PMC5489561 DOI: 10.3389/fpls.2017.01034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/30/2017] [Indexed: 05/03/2023]
Abstract
Centromeres are specified by a centromere specific histone 3 (CENH3) protein, which exists in a complex environment, interacting with conserved proteins and rapidly evolving satellite DNA sequences. The interactions may become more challenging if multiple CENH3 versions are introduced into the zygote as this can affect post-zygotic mitosis and ultimately sexual reproduction. Here, we characterize CENH3 variant transcripts expressed in cultivated triploid and wild diploid progenitor bananas. We describe both splice- and allelic-[Single Nucleotide Polymorphisms (SNP)] variants and their effects on the predicted secondary structures of protein. Expressed CENH3 transcripts from six banana genotypes were characterized and clustered into three groups (MusaCENH-1A, MusaCENH-1B, and MusaCENH-2) based on similarity. The CENH3 groups differed with SNPs as well as presence of indels resulting from retained and/or skipped exons. The CENH3 transcripts from different banana genotypes were spliced in either 7/6, 5/4 or 6/5 exons/introns. The 7/6 and the 5/4 exon/intron structures were found in both diploids and triploids, however, 7/6 was most predominant. The 6/5 exon/introns structure was a result of failure of the 7/6 to splice correctly. The various transcripts obtained were predicted to encode highly variable N-terminal tails and a relatively conserved C-terminal histone fold domain (HFD). The SNPs were predicted in some cases to affect the secondary structure of protein by lengthening or shorting the affected domains. Sequencing of banana CENH3 transcripts predicts SNP variations that affect amino acid sequences and alternatively spliced transcripts. Most of these changes affect the N-terminal tail of CENH3.
Collapse
Affiliation(s)
- Kariuki S. Muiruri
- International Institute of Tropical AgricultureNairobi, Kenya
- School of Biological Sciences, University of NairobiNairobi, Kenya
| | - Anne Britt
- Department of Plant Biology, University of California, Davis, DavisCA, United States
| | | | - Edward K. Nguu
- Department of Biochemistry, University of NairobiNairobi, Kenya
| | - Simon Chan
- Department of Plant Biology, University of California, Davis, DavisCA, United States
| | - Leena Tripathi
- International Institute of Tropical AgricultureNairobi, Kenya
- *Correspondence: Leena Tripathi,
| |
Collapse
|
19
|
Sepsi A, Higgins JD, Heslop-Harrison JSP, Schwarzacher T. CENH3 morphogenesis reveals dynamic centromere associations during synaptonemal complex formation and the progression through male meiosis in hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:235-249. [PMID: 27624968 DOI: 10.1111/tpj.13379] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/04/2016] [Accepted: 09/08/2016] [Indexed: 05/02/2023]
Abstract
During meiosis, centromeres in some species undergo a series of associations, but the processes and progression to homologous pairing is still a matter of debate. Here, we aimed to correlate meiotic centromere dynamics and early telomere behaviour to the progression of synaptonemal complex (SC) construction in hexaploid wheat (2n = 42) by triple immunolabelling of CENH3 protein marking functional centromeres, and SC proteins ASY1 (unpaired lateral elements) and ZYP1 (central elements in synapsed chromosomes). We show that single or multiple centromere associations formed in meiotic interphase undergo a progressive polarization (clustering) at the nuclear periphery in early leptotene, leading to formation of the telomere bouquet. Critically, immunolabelling shows the dynamics of these presynaptic centromere associations and a structural reorganization of the centromeric chromatin coinciding with key events of synapsis initiation from the subtelomeric regions. As short stretches of subtelomeric synapsis emerged at early zygotene, centromere clusters lost their strong polarization, gradually resolving as individual centromeres indicated by more than 21 CENH3 foci associated with unpaired lateral elements. Only following this centromere depolarization were homologous chromosome arms connected, as observed by the alignment and fusion of interstitial ZYP1 loci elongating at zygotene so synapsis at centromeres is a continuation of the interstitial synapsis. Our results thus reveal that centromere associations are a component of the timing and progression of chromosome synapsis, and the gradual release of the individual centromeres from the clusters correlates with the elongation of interstitial synapsis between the corresponding homologues.
Collapse
Affiliation(s)
- Adél Sepsi
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - James D Higgins
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Trude Schwarzacher
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
20
|
CENP-A and H3 Nucleosomes Display a Similar Stability to Force-Mediated Disassembly. PLoS One 2016; 11:e0165078. [PMID: 27820823 PMCID: PMC5098787 DOI: 10.1371/journal.pone.0165078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022] Open
Abstract
Centromere-specific nucleosomes are a central feature of the kinetochore complex during mitosis, in which microtubules exert pulling and pushing forces upon the centromere. CENP-A nucleosomes have been assumed to be structurally unique, thereby providing resilience under tension relative to their H3 canonical counterparts. Here, we directly test this hypothesis by subjecting CENP-A and H3 octameric nucleosomes, assembled on random or on centromeric DNA sequences, to varying amounts of applied force by using single-molecule magnetic tweezers. We monitor individual disassembly events of CENP-A and H3 nucleosomes. Regardless of the DNA sequence, the force-mediated disassembly experiments for CENP-A and H3 nucleosomes demonstrate similar rupture forces, life time residency and disassembly steps. From these experiments, we conclude that CENP-A does not, by itself, contribute unique structural features to the nucleosome that lead to a significant resistance against force-mediated disruption. The data present insights into the mechanistic basis for how CENP-A nucleosomes might contribute to the structural foundation of the centromere in vivo.
Collapse
|
21
|
Zhao H, Winogradoff D, Bui M, Dalal Y, Papoian GA. Promiscuous Histone Mis-Assembly Is Actively Prevented by Chaperones. J Am Chem Soc 2016; 138:13207-13218. [PMID: 27454815 PMCID: PMC7757119 DOI: 10.1021/jacs.6b05355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Histone proteins are essential for the organization, expression, and inheritance of genetic material for eukaryotic cells. A centromere-specific H3 histone variant, centromere protein A (CENP-A), shares about 50% amino acid sequence identity with H3. CENP-A is required for packaging the centromere and for the proper separation of chromosomes during mitosis. Despite their distinct biological functions, previously reported crystal structures of the CENP-A/H4 and H3/H4 dimers reveal a high degree of similarity. In this work, we characterize the structural dynamics of CENP-A/H4 and H3/H4 dimers based on a dual-resolution approach, using both microsecond-scale explicit-solvent all-atom and coarse-grained (CG) molecular dynamics (MD) simulations. Our data show that the H4 histone is significantly more rigid compared with the H3 histone and its variant CENP-A, hence, serving as a reinforcing structural element within the histone core. We report that the CENP-A/H4 dimer is significantly more dynamic than its canonical counterpart H3/H4, and our results provide a physical explanation for this flexibility. Further, we observe that the centromere-specific chaperone Holliday Junction Recognition Protein (HJURP) stabilizes the CENP-A/H4 dimer by forming a specific electrostatic interaction network. Finally, replacing CENP-A S68 with E68 disrupts the binding interface between CENP-A and HJURP in all-atom MD simulation, and consistently, in vivo experiments demonstrate that replacing CENP-A S68 with E68 disrupts CENP-A's localization to the centromere. Based on all our results, we propose that, during the CENP-A/H4 deposition process, the chaperone HJURP protects various substructures of the dimer, serving both as a folding and binding chaperone.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David Winogradoff
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Minh Bui
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Garegin A. Papoian
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
22
|
KdmB, a Jumonji Histone H3 Demethylase, Regulates Genome-Wide H3K4 Trimethylation and Is Required for Normal Induction of Secondary Metabolism in Aspergillus nidulans. PLoS Genet 2016; 12:e1006222. [PMID: 27548260 PMCID: PMC4993369 DOI: 10.1371/journal.pgen.1006222] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
Histone posttranslational modifications (HPTMs) are involved in chromatin-based regulation of fungal secondary metabolite biosynthesis (SMB) in which the corresponding genes—usually physically linked in co-regulated clusters—are silenced under optimal physiological conditions (nutrient-rich) but are activated when nutrients are limiting. The exact molecular mechanisms by which HPTMs influence silencing and activation, however, are still to be better understood. Here we show by a combined approach of quantitative mass spectrometry (LC-MS/MS), genome-wide chromatin immunoprecipitation (ChIP-seq) and transcriptional network analysis (RNA-seq) that the core regions of silent A. nidulans SM clusters generally carry low levels of all tested chromatin modifications and that heterochromatic marks flank most of these SM clusters. During secondary metabolism, histone marks typically associated with transcriptional activity such as H3 trimethylated at lysine-4 (H3K4me3) are established in some, but not all gene clusters even upon full activation. KdmB, a Jarid1-family histone H3 lysine demethylase predicted to comprise a BRIGHT domain, a zinc-finger and two PHD domains in addition to the catalytic Jumonji domain, targets and demethylates H3K4me3 in vivo and mediates transcriptional downregulation. Deletion of kdmB leads to increased transcription of about ~1750 genes across nutrient-rich (primary metabolism) and nutrient-limiting (secondary metabolism) conditions. Unexpectedly, an equally high number of genes exhibited reduced expression in the kdmB deletion strain and notably, this group was significantly enriched for genes with known or predicted functions in secondary metabolite biosynthesis. Taken together, this study extends our general knowledge about multi-domain KDM5 histone demethylases and provides new details on the chromatin-level regulation of fungal secondary metabolite production. In this work we monitored by proteomic analysis and ChIP-seq the genome-wide distribution of several key modifications on histone H3 in the model fungus Aspergillus nidulans cultivated either under optimal physiological conditions (active growth) or less favourable conditions which are known to promote the production of secondary metabolites (SM). When we correlated the chromatin status to transcriptional activities in actively growing cells we found that the silenced SM gene clusters are flanked by heterochromatic domains presumably contributing to silencing but that the bodies of the clusters only carry background levels of any of the investigated marks. In nutrient-depleted conditions, activating marks were invading some, but by far not all transcribed clusters, leaving open the question how activation of these regions occurs at the chromatin level. Surprisingly, a large number of these gene clusters actually depend on KdmB for normal activation and it will be interesting to see in future how this protein thought to mainly act as repressor by removing positive H3K4m3 marks switches gears to activate transcription directly or indirectly.
Collapse
|
23
|
Kowar T, Zakrzewski F, Macas J, Kobližková A, Viehoever P, Weisshaar B, Schmidt T. Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris). BMC PLANT BIOLOGY 2016; 16:120. [PMID: 27230558 PMCID: PMC4881148 DOI: 10.1186/s12870-016-0805-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Sugar beet (Beta vulgaris) is an important crop of temperate climate zones, which provides nearly 30 % of the world's annual sugar needs. From the total genome size of 758 Mb, only 567 Mb were incorporated in the recently published genome sequence, due to the fact that regions with high repetitive DNA contents (e.g. satellite DNAs) are only partially included. Therefore, to fill these gaps and to gain information about the repeat composition of centromeres and heterochromatic regions, we performed chromatin immunoprecipitation followed by sequencing (ChIP-Seq) using antibodies against the centromere-specific histone H3 variant of sugar beet (CenH3) and the heterochromatic mark of dimethylated lysine 9 of histone H3 (H3K9me2). RESULTS ChIP-Seq analysis revealed that active centromeres containing CenH3 consist of the satellite pBV and the Ty3-gypsy retrotransposon Beetle7, while heterochromatin marked by H3K9me2 exhibits heterogeneity in repeat composition. H3K9me2 was mainly associated with the satellite family pEV, the Ty1-copia retrotransposon family Cotzilla and the DNA transposon superfamily of the En/Spm type. In members of the section Beta within the genus Beta, immunostaining using the CenH3 antibody was successful, indicating that orthologous CenH3 proteins are present in closely related species within this section. CONCLUSIONS The identification of repetitive genome portions by ChIP-Seq experiments complemented the sugar beet reference sequence by providing insights into the repeat composition of poorly characterized CenH3-chromatin and H3K9me2-heterochromatin. Therefore, our work provides the basis for future research and application concerning the sugar beet centromere and repeat-rich heterochromatic regions characterized by the presence of H3K9me2.
Collapse
Affiliation(s)
- Teresa Kowar
- Department of Plant Cell and Molecular Biology, TU Dresden, Dresden, D-01062, Germany
| | - Falk Zakrzewski
- Department of Plant Cell and Molecular Biology, TU Dresden, Dresden, D-01062, Germany
| | - Jiří Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, Česke Budějovice, CZ-37005, Czech Republic
| | - Andrea Kobližková
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, Česke Budějovice, CZ-37005, Czech Republic
| | - Prisca Viehoever
- CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstr. 25, Bielefeld, D-33615, Germany
| | - Bernd Weisshaar
- CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstr. 25, Bielefeld, D-33615, Germany.
| | - Thomas Schmidt
- Department of Plant Cell and Molecular Biology, TU Dresden, Dresden, D-01062, Germany
| |
Collapse
|
24
|
Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome. Sci Rep 2015; 5:17038. [PMID: 26602160 PMCID: PMC4658507 DOI: 10.1038/srep17038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/07/2015] [Indexed: 01/01/2023] Open
Abstract
The centromeric nucleosome is a key epigenetic determinant of centromere identity and function. Consequently, deciphering how CENP-A containing nucleosomes contribute structurally to centromere function is a fundamental question in chromosome biology. Here, we performed microsecond timescale all-atom molecular dynamics (MD) simulations of CENP-A and H3 nucleosomes, and report that the octameric CENP-A core particles and nucleosomes display different dynamics from their canonical H3-containing counterparts. The most significant motion observed is within key interactions at the heart of the CENP-A octameric core, wherein shearing of contacts within the CENP-A:CENP-A' dimerization interface results in a weaker four helix bundle, and an extrusion of 10-30 bp of DNA near the pseudo-dyad. Coupled to other local and global fluctuations, the CENP-A nucleosome occupies a more rugged free energy landscape than the canonical H3 nucleosome. Taken together, our data suggest that CENP-A encodes enhanced distortability to the octameric nucleosome, which may allow for enhanced flexing of the histone core in vivo.
Collapse
|
25
|
Boltengagen M, Huang A, Boltengagen A, Trixl L, Lindner H, Kremser L, Offterdinger M, Lusser A. A novel role for the histone acetyltransferase Hat1 in the CENP-A/CID assembly pathway in Drosophila melanogaster. Nucleic Acids Res 2015; 44:2145-59. [PMID: 26586808 PMCID: PMC4797270 DOI: 10.1093/nar/gkv1235] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/02/2015] [Indexed: 12/21/2022] Open
Abstract
The incorporation of CENP-A into centromeric chromatin is an essential prerequisite for kinetochore formation. Yet, the molecular mechanisms governing this process are surprisingly divergent in different organisms. While CENP-A loading mechanisms have been studied in some detail in mammals, there are still large gaps to our understanding of CENP-A/Cid loading pathways in Drosophila. Here, we report on the characterization and delineation of at least three different CENP-A preloading complexes in Drosophila. Two complexes contain the CENP-A chaperones CAL1, FACT and/or Caf1/Rbap48. Notably, we identified a novel complex consisting of the histone acetyltransferase Hat1, Caf1 and CENP-A/H4. We show that Hat1 is required for proper CENP-A loading into chromatin, since knock-down in S2 cells leads to reduced incorporation of newly synthesized CENP-A. In addition, we demonstrate that CENP-A/Cid interacts with the HAT1 complex via an N-terminal region, which is acetylated in cytoplasmic but not in nuclear CENP-A. Since Hat1 is not responsible for acetylation of CENP-A/Cid, these results suggest a histone acetyltransferase activity-independent escort function for Hat1. Thus, our results point toward intriguing analogies between the complex processing pathways of newly synthesized CENP-A and canonical histones.
Collapse
Affiliation(s)
- Mark Boltengagen
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anming Huang
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anastasiya Boltengagen
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas Trixl
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin Offterdinger
- Division of Neurobiochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
26
|
Kuppu S, Tan EH, Nguyen H, Rodgers A, Comai L, Chan SWL, Britt AB. Point Mutations in Centromeric Histone Induce Post-zygotic Incompatibility and Uniparental Inheritance. PLoS Genet 2015; 11:e1005494. [PMID: 26352591 PMCID: PMC4564284 DOI: 10.1371/journal.pgen.1005494] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/12/2015] [Indexed: 12/04/2022] Open
Abstract
The centromeric histone 3 variant (CENH3, aka CENP-A) is essential for the segregation of sister chromatids during mitosis and meiosis. To better define CENH3 functional constraints, we complemented a null allele in Arabidopsis with a variety of mutant alleles, each inducing a single amino acid change in conserved residues of the histone fold domain. Many of these transgenic missense lines displayed wild-type growth and fertility on self-pollination, but exhibited frequent post-zygotic death and uniparental inheritance when crossed with wild-type plants. The failure of centromeres marked by these missense mutation in the histone fold domain of CENH3 reproduces the genome elimination syndromes described with chimeric CENH3 and CENH3 from diverged species. Additionally, evidence that a single point mutation is sufficient to generate a haploid inducer provide a simple one-step method for the identification of non-transgenic haploid inducers in existing mutagenized collections of crop species. As proof of the extreme simplicity of this approach to create haploid-inducing lines, we performed an in silico search for previously identified point mutations in CENH3 and identified an Arabidopsis line carrying the A86V substitution within the histone fold domain. This A87V non-transgenic line, while fully fertile on self-pollination, produced postzygotic death and uniparental haploids when crossed to wild type. The centromeric histone protein, CENH3, plays an important role in chromosome segregation during mitosis and meiosis. Here we show that single amino acid changes in CENH3, while producing no obvious effect on mitosis or meiosis, affect segregation postzygotically upon outcrossing to plants carrying wild-type centromeres. This results in uniparental inheritance among some progeny, and seed death in a larger fraction of progeny. Interestingly, changes competent to induce haploid in Arabidopsis existed in a TILLING population and in unrelated plant species. Our findings have two major consequences. First, uniparental inheritance facilitates the production of haploid plants that can easily be doubled to produce completely homozygous lines in a single generation. Secondly, our findings suggest that natural variation in CENH3 may result in partial reproductive isolation, because chromosomes of the mutant parent from F1 hybrid progeny are culled during embryonic development, while no reproductive defects are observed in self-pollinated plants. We do not know if the same mutations are haploid-inducing in other species, but uniparental chromosome loss, and the seed abortion that accompanies it results in an outcrossing-specific penalty that could potentially be involved in reproductive isolation.
Collapse
Affiliation(s)
- Sundaram Kuppu
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Ek Han Tan
- Plant Biology and Genome Center, University of California Davis, Davis, California, United States of America
| | - Hanh Nguyen
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Andrea Rodgers
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Luca Comai
- Plant Biology and Genome Center, University of California Davis, Davis, California, United States of America
| | - Simon W. L. Chan
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Anne B. Britt
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Fujita R, Otake K, Arimura Y, Horikoshi N, Miya Y, Shiga T, Osakabe A, Tachiwana H, Ohzeki JI, Larionov V, Masumoto H, Kurumizaka H. Stable complex formation of CENP-B with the CENP-A nucleosome. Nucleic Acids Res 2015; 43:4909-22. [PMID: 25916850 PMCID: PMC4446444 DOI: 10.1093/nar/gkv405] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 04/15/2015] [Indexed: 01/16/2023] Open
Abstract
CENP-A and CENP-B are major components of centromeric chromatin. CENP-A is the histone H3 variant, which forms the centromere-specific nucleosome. CENP-B specifically binds to the CENP-B box DNA sequence on the centromere-specific repetitive DNA. In the present study, we found that the CENP-A nucleosome more stably retains human CENP-B than the H3.1 nucleosome in vitro. Specifically, CENP-B forms a stable complex with the CENP-A nucleosome, when the CENP-B box sequence is located at the proximal edge of the nucleosome. Surprisingly, the CENP-B binding was weaker when the CENP-B box sequence was located in the distal linker region of the nucleosome. This difference in CENP-B binding, depending on the CENP-B box location, was not observed with the H3.1 nucleosome. Consistently, we found that the DNA-binding domain of CENP-B specifically interacted with the CENP-A-H4 complex, but not with the H3.1-H4 complex, in vitro. These results suggested that CENP-B forms a more stable complex with the CENP-A nucleosome through specific interactions with CENP-A, if the CENP-B box is located proximal to the CENP-A nucleosome. Our in vivo assay also revealed that CENP-B binding in the vicinity of the CENP-A nucleosome substantially stabilizes the CENP-A nucleosome on alphoid DNA in human cells.
Collapse
Affiliation(s)
- Risa Fujita
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Koichiro Otake
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yasuhiro Arimura
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Naoki Horikoshi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuta Miya
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Tatsuya Shiga
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Akihisa Osakabe
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroaki Tachiwana
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Jun-ichirou Ohzeki
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Vladimir Larionov
- Development Therapeutic Branch, National Cancer Institute, National Institutes of Health, Building 37, Room 5040, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
28
|
Rhee HS, Bataille AR, Zhang L, Pugh BF. Subnucleosomal structures and nucleosome asymmetry across a genome. Cell 2014; 159:1377-88. [PMID: 25480300 PMCID: PMC4258235 DOI: 10.1016/j.cell.2014.10.054] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/19/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Genes are packaged into nucleosomal arrays, each nucleosome typically having two copies of histones H2A, H2B, H3, and H4. Histones have distinct posttranslational modifications, variant isoforms, and dynamics. Whether each histone copy within a nucleosome has distinct properties, particularly in relation to the direction of transcription, is unknown. Here we use chromatin immunoprecipitation-exonuclease (ChIP-exo) to resolve the organization of individual histones on a genomic scale. We detect widespread subnucleosomal structures in dynamic chromatin, including what appear to be half-nucleosomes consisting of one copy of each histone. We also detect interactions of H3 tails with linker DNA between nucleosomes, which may be negatively regulated by methylation of H3K36. Histone variant H2A.Z is enriched on the promoter-distal half of the +1 nucleosome, whereas H2BK123 ubiquitylation and H3K9 acetylation are enriched on the promoter-proximal half in a transcription-linked manner. Subnucleosome asymmetries might serve as molecular beacons that guide transcription.
Collapse
Affiliation(s)
- Ho Sung Rhee
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alain R Bataille
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Liye Zhang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
29
|
Abstract
Since discovery of the centromere-specific histone H3 variant CENP-A, centromeres have come to be defined as chromatin structures that establish the assembly site for the complex kinetochore machinery. In most organisms, centromere activity is defined epigenetically, rather than by specific DNA sequences. In this review, we describe selected classic work and recent progress in studies of centromeric chromatin with a focus on vertebrates. We consider possible roles for repetitive DNA sequences found at most centromeres, chromatin factors and modifications that assemble and activate CENP-A chromatin for kinetochore assembly, plus the use of artificial chromosomes and kinetochores to study centromere function.
Collapse
Affiliation(s)
- Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics and Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan.
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK.
| |
Collapse
|
30
|
Kawashima T, Berger F. Epigenetic reprogramming in plant sexual reproduction. Nat Rev Genet 2014; 15:613-24. [DOI: 10.1038/nrg3685] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Wisniewski J, Hajj B, Chen J, Mizuguchi G, Xiao H, Wei D, Dahan M, Wu C. Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres. eLife 2014; 3:e02203. [PMID: 24844245 PMCID: PMC4067749 DOI: 10.7554/elife.02203] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The budding yeast centromere contains Cse4, a specialized histone H3 variant. Fluorescence pulse-chase analysis of an internally tagged Cse4 reveals that it is replaced with newly synthesized molecules in S phase, remaining stably associated with centromeres thereafter. In contrast, C-terminally-tagged Cse4 is functionally impaired, showing slow cell growth, cell lethality at elevated temperatures, and extra-centromeric nuclear accumulation. Recent studies using such strains gave conflicting findings regarding the centromeric abundance and cell cycle dynamics of Cse4. Our findings indicate that internally tagged Cse4 is a better reporter of the biology of this histone variant. Furthermore, the size of centromeric Cse4 clusters was precisely mapped with a new 3D-PALM method, revealing substantial compaction during anaphase. Cse4-specific chaperone Scm3 displays steady-state, stoichiometric co-localization with Cse4 at centromeres throughout the cell cycle, while undergoing exchange with a nuclear pool. These findings suggest that a stable Cse4 nucleosome is maintained by dynamic chaperone-in-residence Scm3.DOI: http://dx.doi.org/10.7554/eLife.02203.001.
Collapse
Affiliation(s)
- Jan Wisniewski
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Bassam Hajj
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jiji Chen
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gaku Mizuguchi
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Debbie Wei
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Maxime Dahan
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Carl Wu
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
32
|
Reply to "CENP-A octamers do not confer a reduction in nucleosome height by AFM". Nat Struct Mol Biol 2014; 21:5-8. [PMID: 24389543 DOI: 10.1038/nsmb.2744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Wang SH, Nan R, Accardo MC, Sentmanat M, Dimitri P, Elgin SCR. A distinct type of heterochromatin at the telomeric region of the Drosophila melanogaster Y chromosome. PLoS One 2014; 9:e86451. [PMID: 24475122 PMCID: PMC3901700 DOI: 10.1371/journal.pone.0086451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/16/2013] [Indexed: 11/24/2022] Open
Abstract
Heterochromatin assembly and its associated phenotype, position effect variegation (PEV), provide an informative system to study chromatin structure and genome packaging. In the fruit fly Drosophila melanogaster, the Y chromosome is entirely heterochromatic in all cell types except the male germline; as such, Y chromosome dosage is a potent modifier of PEV. However, neither Y heterochromatin composition, nor its assembly, has been carefully studied. Here, we report the mapping and characterization of eight reporter lines that show male-specific PEV. In all eight cases, the reporter insertion sites lie in the telomeric transposon array (HeT-A and TART-B2 homologous repeats) of the Y chromosome short arm (Ys). Investigations of the impact on the PEV phenotype of mutations in known heterochromatin proteins (i.e., modifiers of PEV) show that this Ys telomeric region is a unique heterochromatin domain: it displays sensitivity to mutations in HP1a, EGG and SU(VAR)3-9, but no sensitivity to Su(z)2 mutations. It appears that the endo-siRNA pathway plays a major targeting role for this domain. Interestingly, an ectopic copy of 1360 is sufficient to induce a piRNA targeting mechanism to further enhance silencing of a reporter cytologically localized to the Ys telomere. These results demonstrate the diversity of heterochromatin domains, and the corresponding variation in potential targeting mechanisms.
Collapse
Affiliation(s)
- Sidney H. Wang
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Ruth Nan
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Maria C. Accardo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin” and Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Roma, Italy
| | - Monica Sentmanat
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie “Charles Darwin” and Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Roma, Italy
| | - Sarah C. R. Elgin
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
34
|
Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning. Proc Natl Acad Sci U S A 2013; 110:20158-63. [PMID: 24277842 DOI: 10.1073/pnas.1315809110] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Using a recently developed chemical approach, we have generated a genome-wide map of nucleosomes in vivo in Schizosaccharomyces pombe (S. pombe) at base pair resolution. The shorter linker length previously identified in S. pombe is due to a preponderance of nucleosomes separated by ∼4/5 bp, placing nucleosomes on opposite faces of the DNA. The periodic dinucleotide feature thought to position nucleosomes is equally strong in exons as in introns, demonstrating that nucleosome positioning information can be superimposed on coding information. Unlike the case in Saccharomyces cerevisiae, A/T-rich sequences are enriched in S. pombe nucleosomes, particularly at ±20 bp around the dyad. This difference in nucleosome binding preference gives rise to a major distinction downstream of the transcription start site, where nucleosome phasing is highly predictable by A/T frequency in S. pombe but not in S. cerevisiae, suggesting that the genomes and DNA binding preferences of nucleosomes have coevolved in different species. The poly (dA-dT) tracts affect but do not deplete nucleosomes in S. pombe, and they prefer special rotational positions within the nucleosome, with longer tracts enriched in the 10- to 30-bp region from the dyad. S. pombe does not have a well-defined nucleosome-depleted region immediately upstream of most transcription start sites; instead, the -1 nucleosome is positioned with the expected spacing relative to the +1 nucleosome, and its occupancy is negatively correlated with gene expression. Although there is generally very good agreement between nucleosome maps generated by chemical cleavage and micrococcal nuclease digestion, the chemical map shows consistently higher nucleosome occupancy on DNA with high A/T content.
Collapse
|
35
|
Thomae AW, Schade GOM, Padeken J, Borath M, Vetter I, Kremmer E, Heun P, Imhof A. A pair of centromeric proteins mediates reproductive isolation in Drosophila species. Dev Cell 2013; 27:412-24. [PMID: 24239514 DOI: 10.1016/j.devcel.2013.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/26/2013] [Accepted: 10/01/2013] [Indexed: 01/09/2023]
Abstract
Speciation involves the reproductive isolation of natural populations due to the sterility or lethality of their hybrids. However, the molecular basis of hybrid lethality and the evolutionary driving forces that provoke it remain largely elusive. The hybrid male rescue (Hmr) and the lethal hybrid rescue (Lhr) genes serve as a model to study speciation in Drosophilids because their interaction causes lethality in male hybrid offspring. Here, we show that HMR and LHR form a centromeric complex necessary for proper chromosome segregation. We find that the Hmr expression level is substantially higher in Drosophila melanogaster, whereas Lhr expression levels are increased in Drosophila simulans. The resulting elevated amount of HMR/LHR complex in hybrids results in an extensive mislocalization of the complex, an interference with the regulation of transposable elements, and an impairment of cell proliferation. Our findings provide evidence for a major role of centromere divergence in the generation of biodiversity.
Collapse
Affiliation(s)
- Andreas W Thomae
- Munich Centre of Integrated Protein Science and Adolf-Butenandt Institute, Ludwig Maximilians University of Munich, 80336 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Topological similarity between the 2μm plasmid partitioning locus and the budding yeast centromere: evidence for a common evolutionary origin? Biochem Soc Trans 2013; 41:501-7. [PMID: 23514143 DOI: 10.1042/bst20120224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The partitioning locus STB of the selfish plasmid, the 2μm circle, of Saccharomyces cerevisiae is essential for the propagation of this multi-copy extra-chromosomal DNA element with nearly chromosome-like stability. The functional competence of STB requires the plasmid-coded partitioning proteins Rep1 and Rep2 as well as host-coded proteins. Host factors that associate with STB in a Rep1- and Rep2-dependent manner also interact with centromeres, and play important roles in chromosome segregation. They include the cohesin complex and the centromere-specific histone H3 variant Cse4. The genetically defined point centromere of S. cerevisiae differs starkly from the much more widespread epigenetically specified regional centromeres of eukaryotes. The particularly small size of the S. cerevisiae centromere and the association of chromosome segregation factors with STB raise the possibility of an evolutionary link between these two partitioning loci. The unusual positive supercoiling harboured by the S. cerevisiae centromere and STB in vivo in their functional states, unveiled by recent experiments, bolsters the notion of their potential descent from an ancestral plasmid partitioning locus.
Collapse
|
37
|
Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids. J Genet Genomics 2013; 40:413-20. [PMID: 23969250 DOI: 10.1016/j.jgg.2013.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/28/2013] [Accepted: 05/03/2013] [Indexed: 11/21/2022]
Abstract
Wheat-rye addition and substitution lines and their self progenies revealed variations in telomeric heterochromatin and centromeres. Furthermore, a mitotically unstable dicentric chromosome and stable multicentric chromosomes were observed in the progeny of a Chinese Spring-Imperial rye 3R addition line. An unstable multicentric chromosome was found in the progeny of a 6R/6D substitution line. Drastic variation of terminal heterochromatin including movement and disappearance of terminal heterochromatin occurred in the progeny of wheat-rye addition line 3R, and the 5RS ditelosomic addition line. Highly stable minichromosomes were observed in the progeny of a monosomic 4R addition line, a ditelosomic 5RS addition line and a 6R/6D substitution line. Minichromosomes, with and without the FISH signals for telomeric DNA (TTTAGGG)n, derived from a monosomic 4R addition line are stable and transmissible to the next generation. The results indicated that centromeres and terminal heterochromatin can be profoundly altered in wheat-rye hybrid derivatives.
Collapse
|
38
|
Furuyama T, Codomo CA, Henikoff S. Reconstitution of hemisomes on budding yeast centromeric DNA. Nucleic Acids Res 2013; 41:5769-83. [PMID: 23620291 PMCID: PMC3675498 DOI: 10.1093/nar/gkt314] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The structure of nucleosomes that contain the cenH3 histone variant has been controversial. In budding yeast, a single right-handed cenH3/H4/H2A/H2B tetramer wraps the ∼80-bp Centromere DNA Element II (CDE II) sequence of each centromere into a ‘hemisome’. However, attempts to reconstitute cenH3 particles in vitro have yielded exclusively ‘octasomes’, which are observed in vivo on chromosome arms only when Cse4 (yeast cenH3) is overproduced. Here, we show that Cse4 octamers remain intact under conditions of low salt and urea that dissociate H3 octamers. However, particles consisting of two DNA duplexes wrapped around a Cse4 octamer and separated by a gap efficiently split into hemisomes. Hemisome dimensions were confirmed using a calibrated gel-shift assay and atomic force microscopy, and their identity as tightly wrapped particles was demonstrated by gelFRET. Surprisingly, Cse4 hemisomes were stable in 4 M urea. Stable Cse4 hemisomes could be reconstituted using either full-length or tailless histones and with a 78-bp CDEII segment, which is predicted to be exceptionally stiff. We propose that CDEII DNA stiffness evolved to favor Cse4 hemisome over octasome formation. The precise correspondence between Cse4 hemisomes resident on CDEII in vivo and reconstituted on CDEII in vitro without any other factors implies that CDEII is sufficient for hemisome assembly.
Collapse
Affiliation(s)
- Takehito Furuyama
- Howard Hughes Medical Institute and Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
39
|
Vagnarelli P. Chromatin reorganization through mitosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 90:179-224. [PMID: 23582205 DOI: 10.1016/b978-0-12-410523-2.00006-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chromosome condensation is one of the major chromatin-remodeling events that occur during cell division. The changes in chromatin compaction and higher-order structure organization are essential requisites for ensuring a faithful transmission of the replicated genome to daughter cells. Although the observation of mitotic chromosome condensation has fascinated Scientists for a century, we are still far away from understanding how the process works from a molecular point of view. In this chapter, I will analyze our current understanding of chromatin condensation during mitosis with particular attention to the major molecular players that trigger and maintain this particular chromatin conformation. However, within the chromosome, not all regions of the chromatin are organized in the same manner. I will address separately the structure and functions of particular chromatin domains such as the centromere. Finally, the transition of the chromatin through mitosis represents just an interlude for gene expression between two cell cycles. How the transcriptional information that governs cell linage identity is transmitted from mother to daughter represents a big and interesting question. I will present how cells take care of the aspect ensuring that mitotic chromosome condensation and the block of transcription does not wipe out the cell identity.
Collapse
Affiliation(s)
- Paola Vagnarelli
- Heinz Wolff Building, Brunel University, Uxbridge, United Kingdom.
| |
Collapse
|
40
|
Abstract
In the eukaryotic nucleus, processes of DNA metabolism such as transcription, DNA replication, and repair occur in the context of DNA packaged into nucleosomes and higher order chromatin structures. In order to overcome the barrier presented by chromatin structures to the protein machinery carrying out these processes, the cell relies on a class of enzymes called chromatin remodeling complexes which catalyze ATP-dependent restructuring and repositioning of nucleosomes. Chromatin remodelers are large multi-subunit complexes which all share a common SF2 helicase ATPase domain in their catalytic subunit, and are classified into four different families-SWI/SNF, ISWI, CHD, INO80-based on the arrangement of other domains in their catalytic subunit as well as their non-catalytic subunit composition. A large body of structural, biochemical, and biophysical evidence suggests chromatin remodelers operate as histone octamer-anchored directional DNA translocases in order to disrupt DNA-histone interactions and catalyze nucleosome sliding. Remodeling mechanisms are family-specific and depend on factors such as how the enzyme engages with nucleosomal and linker DNA, features of DNA loop intermediates, specificity for mono- or oligonucleosomal substrates, and ability to remove histones and exchange histone variants. Ultimately, the biological function of chromatin remodelers and their genomic targeting in vivo is regulated by each complex's subunit composition, association with chromatin modifiers and histone chaperones, and affinity for chromatin signals such as histone posttranslational modifications.
Collapse
|
41
|
Current progress on structural studies of nucleosomes containing histone H3 variants. Curr Opin Struct Biol 2012; 23:109-15. [PMID: 23265997 DOI: 10.1016/j.sbi.2012.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/21/2012] [Accepted: 10/25/2012] [Indexed: 02/04/2023]
Abstract
The nucleosome is the basic repeating unit of chromatin. During the nucleosome assembly process, DNA is wrapped around two H3-H4 dimers, followed by the inclusion of two H2A-H2B dimers. The H3-H4 dimers provide the fundamental architecture of the nucleosome. Many non-allelic variants have been found for H3, but not for H4, suggesting that the functions of chromatin domains may, at least in part, be dictated by the specific H3 variant that is incorporated. A prominent example is the centromeric H3 variant, CENP-A, which specifies the function of centromeres in chromosomes. In this review, we survey the current progress in the studies of nucleosomes containing H3 variants, and discuss their implications for the architecture and dynamics of chromatin domains.
Collapse
|
42
|
Tachiwana H, Kagawa W, Kurumizaka H. Comparison between the CENP-A and histone H3 structures in nucleosomes. Nucleus 2012; 3:6-11. [PMID: 22127263 DOI: 10.4161/nucl.18372] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Centromeres are epigenetically marked by the assembly of nucleosomes containing the centromere-specific histone H3 variant, CENP-A (CENP-A nucleosome) and their inheritance is probably dictated by the architecture of the centromeric nucleosome. We previously determined the crystal structure of the human CENP-A nucleosome. CENP-A forms a histone octamer containing two each of histones H2A, H2B, H4 and CENP-A and the DNA is left-handedly wrapped around the histone octamer, as in canonical nucleosomes containing histone H3. In the CENP-A nucleosome structure, 13 base pairs of the DNA ends are detached from the histone surface and two CENP-A regions, the αN helix and loop 1, adopt different structures from those in the H3 nucleosome. In this Extra View article, we provide a detailed structural comparison between CENP-A and H3 in nucleosomes and describe their distinctions and similarities.
Collapse
Affiliation(s)
- Hiroaki Tachiwana
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | | | | |
Collapse
|
43
|
Abstract
Neocentromeres are ectopic sites where new functional kinetochores assemble and permit chromosome segregation. Neocentromeres usually form following genomic alterations that remove or disrupt centromere function. The ability to form neocentromeres is conserved in eukaryotes ranging from fungi to mammals. Neocentromeres that rescue chromosome fragments in cells with gross chromosomal rearrangements are found in several types of human cancers, and in patients with developmental disabilities. In this review, we discuss the importance of neocentromeres to human health and evaluate recently developed model systems to study neocentromere formation, maintenance, and function in chromosome segregation. Additionally, studies of neocentromeres provide insight into native centromeres; analysis of neocentromeres found in human clinical samples and induced in model organisms distinguishes features of centromeres that are dependent on centromere DNA from features that are epigenetically inherited together with the formation of a functional kinetochore.
Collapse
|
44
|
Brogaard K, Xi L, Wang JP, Widom J. A map of nucleosome positions in yeast at base-pair resolution. Nature 2012; 486:496-501. [PMID: 22722846 PMCID: PMC3786739 DOI: 10.1038/nature11142] [Citation(s) in RCA: 351] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 04/11/2012] [Indexed: 12/25/2022]
Abstract
The exact positions of nucleosomes along genomic DNA can influence many aspects of chromosome function, yet existing methods for mapping nucleosomes do not provide the necessary single base pair accuracy to determine these positions. Here we develop and apply a new approach for direct mapping of nucleosome centers based on chemical modification of engineered histones. The resulting map locates nucleosome positions genome-wide in unprecedented detail and accuracy. It reveals novel aspects of the in vivo nucleosome organization that are linked to transcription factor binding, RNA polymerase pausing, and the higher order structure of the chromatin fiber.
Collapse
Affiliation(s)
- Kristin Brogaard
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
45
|
Herpes simplex virus 1 DNA is in unstable nucleosomes throughout the lytic infection cycle, and the instability of the nucleosomes is independent of DNA replication. J Virol 2012; 86:11287-300. [PMID: 22875975 DOI: 10.1128/jvi.01468-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) DNA is chromatinized during latency and consequently regularly digested by micrococcal nuclease (MCN) to nucleosome-size fragments. In contrast, MCN digests HSV-1 DNA in lytically infected cells to mostly heterogeneous sizes. Yet HSV-1 DNA coimmunoprecipitates with histones during lytic infections. We have shown that at 5 h postinfection, most nuclear HSV-1 DNA is in particularly unstable nucleoprotein complexes and consequently is more accessible to MCN than DNA in cellular chromatin. HSV-1 DNA was quantitatively recovered at this time in complexes with the biophysical properties of mono- to polynucleosomes following a modified MCN digestion developed to detect potential unstable intermediates. We proposed that most HSV-1 DNA is in unstable nucleosome-like complexes during lytic infections. Physiologically, nucleosome assembly typically associates with DNA replication, although DNA replication transiently disrupts nucleosomes. It therefore remained unclear whether the instability of the HSV-1 nucleoprotein complexes was related to the ongoing viral DNA replication. Here we tested whether HSV-1 DNA is in unstable nucleosome-like complexes before, during, or after the peak of viral DNA replication or when HSV-1 DNA replication is inhibited. HSV-1 DNA was quantitatively recovered in complexes fractionating as mono- to polynucleosomes from nuclei harvested at 2, 5, 7, or 9 h after infection, even if viral DNA replication was inhibited. Therefore, most HSV-1 DNA is in unstable nucleosome-like complexes throughout the lytic replication cycle, and the instability of these complexes is surprisingly independent of HSV-1 DNA replication. The specific accessibility of nuclear HSV-1 DNA, however, varied at different times after infection.
Collapse
|
46
|
Lochmann B, Ivanov D. Histone H3 localizes to the centromeric DNA in budding yeast. PLoS Genet 2012; 8:e1002739. [PMID: 22693454 PMCID: PMC3364953 DOI: 10.1371/journal.pgen.1002739] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/14/2012] [Indexed: 11/30/2022] Open
Abstract
During cell division, segregation of sister chromatids to daughter cells is achieved by the poleward pulling force of microtubules, which attach to the chromatids by means of a multiprotein complex, the kinetochore. Kinetochores assemble at the centromeric DNA organized by specialized centromeric nucleosomes. In contrast to other eukaryotes, which typically have large repetitive centromeric regions, budding yeast CEN DNA is defined by a 125 bp sequence and assembles a single centromeric nucleosome. In budding yeast, as well as in other eukaryotes, the Cse4 histone variant (known in vertebrates as CENP-A) is believed to substitute for histone H3 at the centromeric nucleosome. However, the exact composition of the CEN nucleosome remains a subject of debate. We report the use of a novel ChIP approach to reveal the composition of the centromeric nucleosome and its localization on CEN DNA in budding yeast. Surprisingly, we observed a strong interaction of H3, as well as Cse4, H4, H2A, and H2B, but not histone chaperone Scm3 (HJURP in human) with the centromeric DNA. H3 localizes to centromeric DNA at all stages of the cell cycle. Using a sequential ChIP approach, we could demonstrate the co-occupancy of H3 and Cse4 at the CEN DNA. Our results favor a H3-Cse4 heterotypic octamer at the budding yeast centromere. Whether or not our model is correct, any future model will have to account for the stable association of histone H3 with the centromeric DNA. During cell division, replicated DNA molecules are pulled to daughter cells by microtubules, which originate at the spindle poles and attach to a multiprotein complex, the kinetochore. The kinetochore assembles at a special region of the chromosome, termed the centromere. The kinetochore is comprised of more than 50 different proteins whose precise functions are far from being fully understood. The kinetochore assembles on the foundation of a specialized centromeric nucleosome. A nucleosome is a complex of eight subunits, termed histones, which compacts the DNA by wrapping it around itself in 1.7 turns of a superhelix. The centromeric nucleosome is very special, and its stoichiometry and structure are a subject of intense debate. It is believed that the centromeric nucleosome is devoid of histone H3 and instead contains its variant, termed CENP-A in vertebrates or Cse4 in budding yeast. Here we report that in budding yeast both CENP-A and histone H3 localize to a small centromeric DNA fragment that, due to its size, cannot accommodate more than a single nucleosome. Our results necessitate a revision of what is known about the structure of the inner kinetochore and the role of CENP-A in its assembly.
Collapse
Affiliation(s)
| | - Dmitri Ivanov
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- * E-mail:
| |
Collapse
|
47
|
Hoeijmakers WAM, Flueck C, Françoijs KJ, Smits AH, Wetzel J, Volz JC, Cowman AF, Voss T, Stunnenberg HG, Bártfai R. Plasmodium falciparum centromeres display a unique epigenetic makeup and cluster prior to and during schizogony. Cell Microbiol 2012; 14:1391-401. [PMID: 22507744 DOI: 10.1111/j.1462-5822.2012.01803.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/05/2012] [Accepted: 04/11/2012] [Indexed: 11/30/2022]
Abstract
Centromeres are essential for the faithful transmission of chromosomes to the next generation, therefore being essential in all eukaryotic organisms. The centromeres of Plasmodium falciparum, the causative agent of the most severe form of malaria, have been broadly mapped on most chromosomes, but their epigenetic composition remained undefined. Here, we reveal that the centromeric histone variant PfCENH3 occupies a 4-4.5 kb region on each P. falciparum chromosome, which is devoid of pericentric heterochromatin but harbours another histone variant, PfH2A.Z. These CENH3 covered regions pinpoint the exact position of the centromere on all chromosomes and revealed that all centromeric regions have similar size and sequence composition. Immunofluorescence assay of PfCENH3 strongly suggests that P. falciparum centromeres cluster to a single nuclear location prior to and during mitosis and cytokinesis but dissociate soon after invasion. In summary, we reveal a dynamic association of Plasmodium centromeres, which bear a unique epigenetic signature and conform to a strict structure. These findings suggest that DNA-associated and epigenetic elements play an important role in centromere establishment in this important human pathogen.
Collapse
Affiliation(s)
- Wieteke A M Hoeijmakers
- Department of Molecular Biology, Radboud University, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Burrack LS, Berman J. Flexibility of centromere and kinetochore structures. Trends Genet 2012; 28:204-12. [PMID: 22445183 DOI: 10.1016/j.tig.2012.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 12/14/2022]
Abstract
Centromeres, and the kinetochores that assemble on them, are essential for accurate chromosome segregation. Diverse centromere organization patterns and kinetochore structures have evolved in eukaryotes ranging from yeast to humans. In addition, centromere DNA and kinetochore position can vary even within individual cells. This flexibility is manifested in several ways: centromere DNA sequences evolve rapidly, kinetochore positions shift in response to altered chromosome structure, and kinetochore complex numbers change in response to fluctuations in kinetochore protein levels. Despite their differences, all of these diverse structures promote efficient chromosome segregation. This robustness is inherent to chromosome segregation mechanisms and balances genome stability with adaptability. In this review, we explore the mechanisms and consequences of centromere and kinetochore flexibility as well as the benefits and limitations of different experimental model systems for their study.
Collapse
Affiliation(s)
- Laura S Burrack
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55405, USA
| | | |
Collapse
|
49
|
Abstract
The parabasalid protist Trichomonas vaginalis is a widespread parasite that affects humans, frequently causing vaginitis in infected women. Trichomonad mitosis is marked by the persistence of the nuclear membrane and the presence of an asymmetric extranuclear spindle with no obvious direct connection to the chromosomes. No centromeric markers have been described in T. vaginalis, which has prevented a detailed analysis of mitotic events in this organism. In other eukaryotes, nucleosomes of centromeric chromatin contain the histone H3 variant CenH3. The principal aim of this work was to identify a CenH3 homolog in T. vaginalis. We performed a screen of the T. vaginalis genome to retrieve sequences of canonical and variant H3 histones. Three variant histone H3 proteins were identified, and the subcellular localization of their epitope-tagged variants was determined. The localization of the variant TVAG_185390 could not be distinguished from that of the canonical H3 histone. The sequence of the variant TVAG_087830 closely resembled that of histone H3. The tagged protein colocalized with sites of active transcription, indicating that the variant TVAG_087830 represented H3.3 in T. vaginalis. The third H3 variant (TVAG_224460) was localized to 6 or 12 distinct spots at the periphery of the nucleus, corresponding to the number of chromosomes in G(1) phase and G(2) phase, respectively. We propose that this variant represents the centromeric marker CenH3 and thus can be employed as a tool to study mitosis in T. vaginalis. Furthermore, we suggest that the peripheral distribution of CenH3 within the nucleus results from the association of centromeres with the nuclear envelope throughout the cell cycle.
Collapse
|
50
|
Coffman VC, Wu P, Parthun MR, Wu JQ. CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast. ACTA ACUST UNITED AC 2012; 195:563-72. [PMID: 22084306 PMCID: PMC3257534 DOI: 10.1083/jcb.201106078] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The stoichiometries of kinetochores and their constituent proteins in yeast and vertebrate cells were determined using the histone H3 variant CENP-A, known as Cse4 in budding yeast, as a counting standard. One Cse4-containing nucleosome exists in the centromere (CEN) of each chromosome, so it has been assumed that each anaphase CEN/kinetochore cluster contains 32 Cse4 molecules. We report that anaphase CEN clusters instead contained approximately fourfold more Cse4 in Saccharomyces cerevisiae and ~40-fold more CENP-A (Cnp1) in Schizosaccharomyces pombe than predicted. These results suggest that the number of CENP-A molecules exceeds the number of kinetochore-microtubule (MT) attachment sites on each chromosome and that CENP-A is not the sole determinant of kinetochore assembly sites in either yeast. In addition, we show that fission yeast has enough Dam1-DASH complex for ring formation around attached MTs. The results of this study suggest the need for significant revision of existing CEN/kinetochore architectural models.
Collapse
Affiliation(s)
- Valerie C Coffman
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|