1
|
Preisig BC, Meyer M. Predictive coding and dimension-selective attention enhance the lateralization of spoken language processing. Neurosci Biobehav Rev 2025; 172:106111. [PMID: 40118260 DOI: 10.1016/j.neubiorev.2025.106111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/12/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
Hemispheric lateralization in speech and language processing exemplifies functional brain specialization. Seminal work in patients with left hemisphere damage highlighted the left-hemispheric dominance in language functions. However, speech processing is not confined to the left hemisphere. Hence, some researchers associate lateralization with auditory processing asymmetries: slow temporal and fine spectral acoustic information is preferentially processed in right auditory regions, while faster temporal information is primarily handled by left auditory regions. Other scholars posit that lateralization relates more to linguistic processing, particularly for speech and speech-like stimuli. We argue that these seemingly distinct accounts are interdependent. Linguistic analysis of speech relies on top-down processes, such as predictive coding and dimension-selective auditory attention, which enhance lateralized processing by engaging left-lateralized sensorimotor networks. Our review highlights that lateralization is weaker for simple sounds, stronger for speech-like sounds, and strongest for meaningful speech. Evidence shows that predictive speech processing and selective attention enhance lateralization. We illustrate that these top-down processes rely on left-lateralized sensorimotor networks and provide insights into the role of these networks in speech processing.
Collapse
Affiliation(s)
- Basil C Preisig
- The Institute for the Interdisciplinary Study of Language Evolution, Evolutionary Neuroscience of Language, University of Zurich, Switzerland; Zurich Center for Linguistics, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, Switzerland.
| | - Martin Meyer
- The Institute for the Interdisciplinary Study of Language Evolution, Evolutionary Neuroscience of Language, University of Zurich, Switzerland; Zurich Center for Linguistics, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, Switzerland
| |
Collapse
|
2
|
Reid AP, Neophytou D, Levy R, Pham C, Oviedo HV. Asynchronous development of the mouse auditory cortex is driven by hemispheric identity and sex. Nat Commun 2025; 16:3654. [PMID: 40246875 PMCID: PMC12006290 DOI: 10.1038/s41467-025-58891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
Lateralized auditory processing is essential for specialized functions such as speech processing, typically dominated by the Left Auditory Cortex (ACx) in humans. Hemispheric specializations also occur in the adult mouse ACx, but their developmental origins are unclear. Our study finds that the Left and Right ACx in mice reach developmental milestones at different ages. Thalamocortical responses and maturation of synaptic dynamics develop earlier in the Right ACx than the Left. We show that this timing offset predicts hemisphere-dependent differences in sensory-driven plasticity. Juvenile tone exposure at specific times results in imbalanced adult tone frequency representations in the Right and Left ACx. Additionally, sex influences the timing of plasticity; female Right ACx plasticity occurs before male Right ACx, and female Left ACx aligns with male Right ACx plasticity. Our findings demonstrate that sex and hemispheric identity drive asynchronous development and contribute to functional differences in sensory cortices.
Collapse
Affiliation(s)
- Ashlan P Reid
- The City College of New York, New York, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Robert Levy
- The City College of New York, New York, NY, USA
| | - Cody Pham
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Hysell V Oviedo
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Oderbolz C, Poeppel D, Meyer M. Asymmetric Sampling in Time: Evidence and perspectives. Neurosci Biobehav Rev 2025; 171:106082. [PMID: 40010659 DOI: 10.1016/j.neubiorev.2025.106082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Auditory and speech signals are undisputedly processed in both left and right hemispheres, but this bilateral allocation is likely unequal. The Asymmetric Sampling in Time (AST) hypothesis proposed a division of labor that has its neuroanatomical basis in the distribution of neuronal ensembles with differing temporal integration constants: left auditory areas house a larger proportion of ensembles with shorter temporal integration windows (tens of milliseconds), suited to process rapidly changing signals; right auditory areas host a larger proportion with longer time constants (∼150-300 ms), ideal for slowly changing signals. Here we evaluate the large body of findings that clarifies this relationship between auditory temporal structure and functional lateralization. In this reappraisal, we unpack whether this relationship is influenced by stimulus type (speech/nonspeech), stimulus temporal extent (long/short), task engagement (high/low), or (imaging) modality (hemodynamic/electrophysiology/behavior). We find that the right hemisphere displays a clear preference for slowly changing signals whereas the left-hemispheric preference for rapidly changing signals is highly dependent on the experimental design. We consider neuroanatomical properties potentially linked to functional lateralization, contextualize the results in an evolutionary perspective, and highlight future directions.
Collapse
Affiliation(s)
- Chantal Oderbolz
- Institute for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich, Switzerland; Department of Neuroscience, Georgetown University Medical Center, Washington D.C., USA.
| | - David Poeppel
- Department of Psychology, New York University, New York, NY, USA
| | - Martin Meyer
- Institute for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Jonak CR, Assad SA, Garcia TA, Sandhu MS, Rumschlag JA, Razak KA, Binder DK. Phenotypic analysis of multielectrode array EEG biomarkers in developing and adult male Fmr1 KO mice. Neurobiol Dis 2024; 195:106496. [PMID: 38582333 DOI: 10.1016/j.nbd.2024.106496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability with symptoms that include increased anxiety and social and sensory processing deficits. Recent electroencephalographic (EEG) studies in humans with FXS have identified neural oscillation deficits that include increased resting state gamma power, increased amplitude of auditory evoked potentials, and reduced phase locking of sound-evoked gamma oscillations. Similar EEG phenotypes are present in mouse models of FXS, but very little is known about the development of such abnormal responses. In the current study, we employed a 30-channel mouse multielectrode array (MEA) system to record and analyze resting and stimulus-evoked EEG signals in male P21 and P91 WT and Fmr1 KO mice. This led to several novel findings. First, P91, but not P21, Fmr1 KO mice have significantly increased resting EEG power in the low- and high-gamma frequency bands. Second, both P21 and P91 Fmr1 KO mice have markedly attenuated inter-trial phase coherence (ITPC) to spectrotemporally dynamic auditory stimuli as well as to 40 Hz and 80 Hz auditory steady-state response (ASSR) stimuli. This suggests abnormal temporal processing from early development that may lead to abnormal speech and language function in FXS. Third, we found hemispheric asymmetry of fast temporal processing in the mouse auditory cortex in WT but not Fmr1 KO mice. Together, these findings define a set of EEG phenotypes in young and adult mice that can serve as translational targets for genetic and pharmacological manipulation in phenotypic rescue studies.
Collapse
Affiliation(s)
- Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Samantha A Assad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Terese A Garcia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Manbir S Sandhu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Jeffrey A Rumschlag
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, United States of America
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California, Riverside, CA, United States of America; Department of Psychology, University of California, Riverside, CA, United States of America
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America; Neuroscience Graduate Program, University of California, Riverside, CA, United States of America.
| |
Collapse
|
5
|
Trost W, Trevor C, Fernandez N, Steiner F, Frühholz S. Live music stimulates the affective brain and emotionally entrains listeners in real time. Proc Natl Acad Sci U S A 2024; 121:e2316306121. [PMID: 38408255 DOI: 10.1073/pnas.2316306121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
Music is powerful in conveying emotions and triggering affective brain mechanisms. Affective brain responses in previous studies were however rather inconsistent, potentially because of the non-adaptive nature of recorded music used so far. Live music instead can be dynamic and adaptive and is often modulated in response to audience feedback to maximize emotional responses in listeners. Here, we introduce a setup for studying emotional responses to live music in a closed-loop neurofeedback setup. This setup linked live performances by musicians to neural processing in listeners, with listeners' amygdala activity was displayed to musicians in real time. Brain activity was measured using functional MRI, and especially amygdala activity was quantified in real time for the neurofeedback signal. Live pleasant and unpleasant piano music performed in response to amygdala neurofeedback from listeners was acoustically very different from comparable recorded music and elicited significantly higher and more consistent amygdala activity. Higher activity was also found in a broader neural network for emotion processing during live compared to recorded music. This finding included observations of the predominance for aversive coding in the ventral striatum while listening to unpleasant music, and involvement of the thalamic pulvinar nucleus, presumably for regulating attentional and cortical flow mechanisms. Live music also stimulated a dense functional neural network with the amygdala as a central node influencing other brain systems. Finally, only live music showed a strong and positive coupling between features of the musical performance and brain activity in listeners pointing to real-time and dynamic entrainment processes.
Collapse
Affiliation(s)
- Wiebke Trost
- Cognitive and Affective Neuroscience Unit, Department of Psychology, University of Zurich, Zurich 8050, Switzerland
| | - Caitlyn Trevor
- Cognitive and Affective Neuroscience Unit, Department of Psychology, University of Zurich, Zurich 8050, Switzerland
| | - Natalia Fernandez
- Cognitive and Affective Neuroscience Unit, Department of Psychology, University of Zurich, Zurich 8050, Switzerland
| | - Florence Steiner
- Cognitive and Affective Neuroscience Unit, Department of Psychology, University of Zurich, Zurich 8050, Switzerland
| | - Sascha Frühholz
- Cognitive and Affective Neuroscience Unit, Department of Psychology, University of Zurich, Zurich 8050, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich 8057, Switzerland
- Department of Psychology, University of Oslo, Oslo 0373, Norway
| |
Collapse
|
6
|
Mowery TM, Wackym PA, Nacipucha J, Dangcil E, Stadler RD, Tucker A, Carayannopoulos NL, Beshy MA, Hong SS, Yao JD. Superior semicircular canal dehiscence and subsequent closure induces reversible impaired decision-making. Front Neurol 2023; 14:1259030. [PMID: 37905188 PMCID: PMC10613502 DOI: 10.3389/fneur.2023.1259030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 11/02/2023] Open
Abstract
Background Vestibular loss and dysfunction has been associated with cognitive deficits, decreased spatial navigation, spatial memory, visuospatial ability, attention, executive function, and processing speed among others. Superior semicircular canal dehiscence (SSCD) is a vestibular-cochlear disorder in humans in which a pathological third mobile window of the otic capsule creates changes to the flow of sound pressure energy through the perilymph/endolymph. The primary symptoms include sound-induced dizziness/vertigo, inner ear conductive hearing loss, autophony, headaches, and visual problems; however, individuals also experience measurable deficits in basic decision-making, short-term memory, concentration, spatial cognition, and depression. These suggest central mechanisms of impairment are associated with vestibular disorders; therefore, we directly tested this hypothesis using both an auditory and visual decision-making task of varying difficulty levels in our model of SSCD. Methods Adult Mongolian gerbils (n = 33) were trained on one of four versions of a Go-NoGo stimulus presentation rate discrimination task that included standard ("easy") or more difficult ("hard") auditory and visual stimuli. After 10 days of training, preoperative ABR and c+VEMP testing was followed by a surgical fenestration of the left superior semicircular canal. Animals with persistent circling or head tilt were excluded to minimize effects from acute vestibular injury. Testing recommenced at postoperative day 5 and continued through postoperative day 15 at which point final ABR and c+VEMP testing was carried out. Results Behavioral data (d-primes) were compared between preoperative performance (training day 8-10) and postoperative days 6-8 and 13-15. Behavioral performance was measured during the peak of SSCD induced ABR and c + VEMP impairment and the return towards baseline as the dehiscence began to resurface by osteoneogenesis. There were significant differences in behavioral performance (d-prime) and its behavioral components (Hits, Misses, False Alarms, and Correct Rejections). These changes were highly correlated with persistent deficits in c + VEMPs at the end of training (postoperative day 15). The controls demonstrated additional learning post procedure that was absent in the SSCD group. Conclusion These results suggest that aberrant asymmetric vestibular output results in decision-making impairments in these discrimination tasks and could be associated with the other cognitive impairments resulting from vestibular dysfunction.
Collapse
Affiliation(s)
- Todd M. Mowery
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, New Brunswick, NJ, United States
| | - P. Ashley Wackym
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, New Brunswick, NJ, United States
| | - Jacqueline Nacipucha
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Evelynne Dangcil
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Ryan D. Stadler
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Aaron Tucker
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Nicolas L. Carayannopoulos
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Mina A. Beshy
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Sean S. Hong
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Justin D. Yao
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, New Brunswick, NJ, United States
| |
Collapse
|
7
|
Wadle SL, Schmitt TTX, Engel J, Kurt S, Hirtz JJ. Altered population activity and local tuning heterogeneity in auditory cortex of Cacna2d3-deficient mice. Biol Chem 2023; 404:607-617. [PMID: 36342370 DOI: 10.1515/hsz-2022-0269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
The α2δ3 auxiliary subunit of voltage-activated calcium channels is required for normal synaptic transmission and precise temporal processing of sounds in the auditory brainstem. In mice its loss additionally leads to an inability to distinguish amplitude-modulated tones. Furthermore, loss of function of α2δ3 has been associated with autism spectrum disorder in humans. To investigate possible alterations of network activity in the higher-order auditory system in α2δ3 knockout mice, we analyzed neuronal activity patterns and topography of frequency tuning within networks of the auditory cortex (AC) using two-photon Ca2+ imaging. Compared to wild-type mice we found distinct subfield-specific alterations in the primary auditory cortex, expressed in overall lower correlations between the network activity patterns in response to different sounds as well as lower reliability of these patterns upon repetitions of the same sound. Higher AC subfields did not display these alterations but showed a higher amount of well-tuned neurons along with lower local heterogeneity of the neurons' frequency tuning. Our results provide new insight into AC network activity alterations in an autism spectrum disorder-associated mouse model.
Collapse
Affiliation(s)
- Simon L Wadle
- Physiology of Neuronal Networks, Department of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Tatjana T X Schmitt
- Physiology of Neuronal Networks, Department of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Jutta Engel
- Department of Biophysics, Saarland University, School of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), D-66421 Homburg, Germany
| | - Simone Kurt
- Department of Biophysics, Saarland University, School of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), D-66421 Homburg, Germany
| | - Jan J Hirtz
- Physiology of Neuronal Networks, Department of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
8
|
Bureš Z, Pysanenko K, Syka J. Differences in auditory temporal processing in the left and right auditory cortices of the rat. Hear Res 2023; 430:108708. [PMID: 36753899 DOI: 10.1016/j.heares.2023.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
In the present study, we examined hemispheric differences in the representation and processing of temporally structured auditory stimuli. Neuronal responses evoked by sinusoidally frequency modulated (FM) tones, frequency sweeps, amplitude modulated (AM) tones and noise, click trains with constant inter-click intervals and natural vocalizations were recorded from the left (LAC) and right (RAC) auditory cortices in adult (4-6 months old) anaesthetized F344 rats. Using vector strength, modulation-transfer functions, van Rossum distances, or direction-selectivity index, representation and processing of structured auditory stimuli were compared in the LAC and the RAC. The RAC generally tended to exhibit a higher ability to synchronize with the stimulus, a higher reproducibility of responses, and a higher proportion of direction-selective units. The LAC, on the other hand, mostly had higher relative response magnitudes in the modulation transfer functions. Importantly, the hemispheric differences were dependent on the type of the stimulus and there was also a significant inter-individual variability. Our findings indicate that neural coding in the RAC is based more on timing of action potentials (temporal code), while the LAC uses more the response magnitudes (rate code). It is thus necessary to distinguish between the type of the neural code and the stimulus feature it encodes and reconsider the simple opinion about dominance of the LAC for temporal processing, as it may not hold in general for all types of temporally structured stimuli.
Collapse
Affiliation(s)
- Zbyněk Bureš
- Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic; Department of Otorhinolaryngology, 3rd Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Prague, Czech Republic.
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic; Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| |
Collapse
|
9
|
Differences in temporal processing speeds between the right and left auditory cortex reflect the strength of recurrent synaptic connectivity. PLoS Biol 2022; 20:e3001803. [PMID: 36269764 PMCID: PMC9629599 DOI: 10.1371/journal.pbio.3001803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/02/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Brain asymmetry in the sensitivity to spectrotemporal modulation is an established functional feature that underlies the perception of speech and music. The left auditory cortex (ACx) is believed to specialize in processing fast temporal components of speech sounds, and the right ACx slower components. However, the circuit features and neural computations behind these lateralized spectrotemporal processes are poorly understood. To answer these mechanistic questions we use mice, an animal model that captures some relevant features of human communication systems. In this study, we screened for circuit features that could subserve temporal integration differences between the left and right ACx. We mapped excitatory input to principal neurons in all cortical layers and found significantly stronger recurrent connections in the superficial layers of the right ACx compared to the left. We hypothesized that the underlying recurrent neural dynamics would exhibit differential characteristic timescales corresponding to their hemispheric specialization. To investigate, we recorded spike trains from awake mice and estimated the network time constants using a statistical method to combine evidence from multiple weak signal-to-noise ratio neurons. We found longer temporal integration windows in the superficial layers of the right ACx compared to the left as predicted by stronger recurrent excitation. Our study shows substantial evidence linking stronger recurrent synaptic connections to longer network timescales. These findings support speech processing theories that purport asymmetry in temporal integration is a crucial feature of lateralization in auditory processing.
Collapse
|
10
|
Ruthig P, Schönwiesner M. Common principles in the lateralisation of auditory cortex structure and function for vocal communication in primates and rodents. Eur J Neurosci 2022; 55:827-845. [PMID: 34984748 DOI: 10.1111/ejn.15590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022]
Abstract
This review summarises recent findings on the lateralisation of communicative sound processing in the auditory cortex (AC) of humans, non-human primates, and rodents. Functional imaging in humans has demonstrated a left hemispheric preference for some acoustic features of speech, but it is unclear to which degree this is caused by bottom-up acoustic feature selectivity or top-down modulation from language areas. Although non-human primates show a less pronounced functional lateralisation in AC, the properties of AC fields and behavioral asymmetries are qualitatively similar. Rodent studies demonstrate microstructural circuits that might underlie bottom-up acoustic feature selectivity in both hemispheres. Functionally, the left AC in the mouse appears to be specifically tuned to communication calls, whereas the right AC may have a more 'generalist' role. Rodents also show anatomical AC lateralisation, such as differences in size and connectivity. Several of these functional and anatomical characteristics are also lateralized in human AC. Thus, complex vocal communication processing shares common features among rodents and primates. We argue that a synthesis of results from humans, non-human primates, and rodents is necessary to identify the neural circuitry of vocal communication processing. However, data from different species and methods are often difficult to compare. Recent advances may enable better integration of methods across species. Efforts to standardise data formats and analysis tools would benefit comparative research and enable synergies between psychological and biological research in the area of vocal communication processing.
Collapse
Affiliation(s)
- Philip Ruthig
- Faculty of Life Sciences, Leipzig University, Leipzig, Sachsen.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig
| | | |
Collapse
|
11
|
Slonina ZA, Poole KC, Bizley JK. What can we learn from inactivation studies? Lessons from auditory cortex. Trends Neurosci 2021; 45:64-77. [PMID: 34799134 PMCID: PMC8897194 DOI: 10.1016/j.tins.2021.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Inactivation experiments in auditory cortex (AC) produce widely varying results that complicate interpretations regarding the precise role of AC in auditory perception and ensuing behaviour. The advent of optogenetic methods in neuroscience offers previously unachievable insight into the mechanisms transforming brain activity into behaviour. With a view to aiding the design and interpretation of future studies in and outside AC, here we discuss the methodological challenges faced in manipulating neural activity. While considering AC’s role in auditory behaviour through the prism of inactivation experiments, we consider the factors that confound the interpretation of the effects of inactivation on behaviour, including the species, the type of inactivation, the behavioural task employed, and the exact location of the inactivation. Wide variation in the outcome of auditory cortex inactivation has been an impediment to clear conclusions regarding the roles of the auditory cortex in behaviour. Inactivation methods differ in their efficacy and specificity. The likelihood of observing a behavioural deficit is additionally influenced by factors such as the species being used, task design and reward. A synthesis of previous results suggests that auditory cortex involvement is critical for tasks that require integrating across multiple stimulus features, and less likely to be critical for simple feature discriminations. New methods of neural silencing provide opportunities for spatially and temporally precise manipulation of activity, allowing perturbation of individual subfields and specific circuits.
Collapse
|
12
|
Washington SD, Pritchett DL, Keliris GA, Kanwal JS. Hemispheric and Sex Differences in Mustached Bat Primary Auditory Cortex Revealed by Neural Responses to Slow Frequency Modulations. Symmetry (Basel) 2021; 13. [PMID: 34513031 DOI: 10.3390/sym13061037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mustached bat (Pteronotus parnellii) is a mammalian model of cortical hemispheric asymmetry. In this species, complex social vocalizations are processed preferentially in the left Doppler-shifted constant frequency (DSCF) subregion of primary auditory cortex. Like hemispheric specializations for speech and music, this bat brain asymmetry differs between sexes (i.e., males>females) and is linked to spectrotemporal processing based on selectivities to frequency modulations (FMs) with rapid rates (>0.5 kHz/ms). Analyzing responses to the long-duration (>10 ms), slow-rate (<0.5 kHz/ms) FMs to which most DSCF neurons respond may reveal additional neural substrates underlying this asymmetry. Here, we bilaterally recorded responses from 176 DSCF neurons in male and female bats that were elicited by upward and downward FMs fixed at 0.04 kHz/ms and presented at 0-90 dB SPL. In females, we found inter-hemispheric latency differences consistent with applying different temporal windows to precisely integrate spectrotemporal information. In males, we found a substrate for asymmetry less related to spectrotemporal processing than to acoustic energy (i.e., amplitude). These results suggest that in the DSCF area, (1) hemispheric differences in spectrotemporal processing manifest differently between sexes, and (2) cortical asymmetry for social communication is driven by spectrotemporal processing differences and neural selectivities for amplitude.
Collapse
Affiliation(s)
- Stuart D Washington
- Department of Radiology, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA
- Laboratory of Auditory Communication and Cognition, Georgetown University, Department of Neurology, 3700 O St. NW, Washington, DC 20057, USA
| | - Dominique L Pritchett
- Department of Biology, EE Just Hall Building, Howard University, 415 College St. NW, Washington, DC 20059, USA
| | - Georgios A Keliris
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Jagmeet S Kanwal
- Laboratory of Auditory Communication and Cognition, Georgetown University, Department of Neurology, 3700 O St. NW, Washington, DC 20057, USA
| |
Collapse
|
13
|
Kozma R, Hu S, Sokolov Y, Wanger T, Schulz AL, Woldeit ML, Gonçalves AI, Ruszinkó M, Ohl FW. State Transitions During Discrimination Learning in the Gerbil Auditory Cortex Analyzed by Network Causality Metrics. Front Syst Neurosci 2021; 15:641684. [PMID: 33967706 PMCID: PMC8100519 DOI: 10.3389/fnsys.2021.641684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
This work studies the evolution of cortical networks during the transition from escape strategy to avoidance strategy in auditory discrimination learning in Mongolian gerbils trained by the well-established two-way active avoidance learning paradigm. The animals were implanted with electrode arrays centered on the surface of the primary auditory cortex and electrocorticogram (ECoG) recordings were made during performance of an auditory Go/NoGo discrimination task. Our experiments confirm previous results on a sudden behavioral change from the initial naïve state to an avoidance strategy as learning progresses. We employed two causality metrics using Granger Causality (GC) and New Causality (NC) to quantify changes in the causality flow between ECoG channels as the animals switched to avoidance strategy. We found that the number of channel pairs with inverse causal interaction significantly increased after the animal acquired successful discrimination, which indicates structural changes in the cortical networks as a result of learning. A suitable graph-theoretical model is developed to interpret the findings in terms of cortical networks evolving during cognitive state transitions. Structural changes lead to changes in the dynamics of neural populations, which are described as phase transitions in the network graph model with small-world connections. Overall, our findings underscore the importance of functional reorganization in sensory cortical areas as a possible neural contributor to behavioral changes.
Collapse
Affiliation(s)
- Robert Kozma
- Center for Large-Scale Intelligent Optimization and Networks, Department of Mathematics, University of Memphis, Memphis, TN, United States
| | - Sanqing Hu
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, China
| | - Yury Sokolov
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tim Wanger
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | | | - Marie L Woldeit
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Ana I Gonçalves
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Miklós Ruszinkó
- Alfréd Rényi Institute of Mathematics, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Frank W Ohl
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Institute of Biology, Otto von Guericke University, Magdeburg, Germany.,Center of Behavioral Brain Science (CBBS), Magdeburg, Germany
| |
Collapse
|
14
|
Age-related changes in the temporal processing of acoustical signals in the auditory cortex of rats. Hear Res 2020; 402:108025. [PMID: 32709399 DOI: 10.1016/j.heares.2020.108025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022]
Abstract
Age-related hearing loss is manifested primarily by a decreased sensitivity to faint sounds, that is, by elevation of the hearing thresholds. Nevertheless, aging also affects the ability of the auditory system to process temporal parameters of the sound stimulus. To explore the precision and reliability of auditory temporal processing during aging, responses to several types of sound stimuli were recorded from neurons of the auditory cortex (AC) of young and aged anaesthetized Fischer 344 rats. In response to broad-band noise bursts, the aged rats exhibited larger response magnitudes, a higher proportion of monotonic units, and also a larger variability of response magnitudes, suggesting a lower stability of the rate code. Of primary interest were the responses to temporally structured stimuli (amplitude-modulated (AM) noise, frequency-modulated (FM) tones, and click trains) recorded separately in the right and left AC. Significant differences of temporal processing were already found between the neuronal responses in the left and right AC in the young animals: for the click trains, the left hemisphere exhibited a greater responsiveness to higher repetition rates, lower vector strength values, and a lower similarity of responses. The two hemispheres were also affected differently by aging. In the right hemisphere, neurons in the aged animals displayed worse synchronization with the AM noise and clicks, but better synchronization with the FM tone. In the left hemisphere, neuronal synchronization with the stimulus modulation improved at a higher age for all three stimuli. The results show that the ability of the aging auditory system to process temporal parameters of the stimulus strongly depends on the stimulus type and on laterality. Furthermore, the commonly reported age-related decline in the temporal processing ability cannot be regarded as general as, at least at the neuronal level in the AC, objective measures of the temporal representation often exhibit age-related improvement instead of deterioration.
Collapse
|
15
|
Targeted Cortical Manipulation of Auditory Perception. Neuron 2019; 104:1168-1179.e5. [PMID: 31727548 PMCID: PMC6926484 DOI: 10.1016/j.neuron.2019.09.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/25/2019] [Accepted: 09/24/2019] [Indexed: 11/27/2022]
Abstract
Driving perception by direct activation of neural ensembles in cortex is a necessary step for achieving a causal understanding of the neural code for auditory perception and developing central sensory rehabilitation methods. Here, using optogenetic manipulations during an auditory discrimination task in mice, we show that auditory cortex can be short-circuited by coarser pathways for simple sound identification. Yet when the sensory decision becomes more complex, involving temporal integration of information, auditory cortex activity is required for sound discrimination and targeted activation of specific cortical ensembles changes perceptual decisions, as predicted by our readout of the cortical code. Hence, auditory cortex representations contribute to sound discriminations by refining decisions from parallel routes. Auditory cortex is dispensable for discrimination of dissimilar pure tones in mice Auditory cortex is involved in a sound discrimination requiring temporal integration Focal cortical activations bias choices in cortex-dependent discriminations Discrimination is faster for pure tones than for optogenetic cortical activations
Collapse
|
16
|
Schicknick H, Henschke JU, Budinger E, Ohl FW, Gundelfinger ED, Tischmeyer W. β-adrenergic modulation of discrimination learning and memory in the auditory cortex. Eur J Neurosci 2019; 50:3141-3163. [PMID: 31162753 PMCID: PMC6900137 DOI: 10.1111/ejn.14480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023]
Abstract
Despite vast literature on catecholaminergic neuromodulation of auditory cortex functioning in general, knowledge about its role for long‐term memory formation is scarce. Our previous pharmacological studies on cortex‐dependent frequency‐modulated tone‐sweep discrimination learning of Mongolian gerbils showed that auditory‐cortical D1/5‐dopamine receptor activity facilitates memory consolidation and anterograde memory formation. Considering overlapping functions of D1/5‐dopamine receptors and β‐adrenoceptors, we hypothesised a role of β‐adrenergic signalling in the auditory cortex for sweep discrimination learning and memory. Supporting this hypothesis, the β1/2‐adrenoceptor antagonist propranolol bilaterally applied to the gerbil auditory cortex after task acquisition prevented the discrimination increment that was normally monitored 1 day later. The increment in the total number of hurdle crossings performed in response to the sweeps per se was normal. Propranolol infusion after the seventh training session suppressed the previously established sweep discrimination. The suppressive effect required antagonist injection in a narrow post‐session time window. When applied to the auditory cortex 1 day before initial conditioning, β1‐adrenoceptor‐antagonising and β1‐adrenoceptor‐stimulating agents retarded and facilitated, respectively, sweep discrimination learning, whereas β2‐selective drugs were ineffective. In contrast, single‐sweep detection learning was normal after propranolol infusion. By immunohistochemistry, β1‐ and β2‐adrenoceptors were identified on the neuropil and somata of pyramidal and non‐pyramidal neurons of the gerbil auditory cortex. The present findings suggest that β‐adrenergic signalling in the auditory cortex has task‐related importance for discrimination learning of complex sounds: as previously shown for D1/5‐dopamine receptor signalling, β‐adrenoceptor activity supports long‐term memory consolidation and reconsolidation; additionally, tonic input through β1‐adrenoceptors may control mechanisms permissive for memory acquisition.
Collapse
Affiliation(s)
- Horst Schicknick
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Julia U Henschke
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Molecular Neurobiology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Wolfgang Tischmeyer
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
17
|
Levy RB, Marquarding T, Reid AP, Pun CM, Renier N, Oviedo HV. Circuit asymmetries underlie functional lateralization in the mouse auditory cortex. Nat Commun 2019; 10:2783. [PMID: 31239458 PMCID: PMC6592910 DOI: 10.1038/s41467-019-10690-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/24/2019] [Indexed: 11/29/2022] Open
Abstract
The left hemisphere's dominance in processing social communication has been known for over a century, but the mechanisms underlying this lateralized cortical function are poorly understood. Here, we compare the structure, function, and development of each auditory cortex (ACx) in the mouse to look for specializations that may underlie lateralization. Using Fos brain volume imaging, we found greater activation in the left ACx in response to vocalizations, while the right ACx responded more to frequency sweeps. In vivo recordings identified hemispheric differences in spectrotemporal selectivity, reinforcing their functional differences. We then compared the synaptic connectivity within each hemisphere and discovered lateralized circuit-motifs that are hearing experience-dependent. Our results suggest a specialist role for the left ACx, focused on facilitating the detection of specific vocalization features, while the right ACx is a generalist with the ability to integrate spectrotemporal features more broadly.
Collapse
Affiliation(s)
- Robert B Levy
- Biology Department, The City College of New York, New York, NY, 10031, USA
| | - Tiemo Marquarding
- Biology Department, The City College of New York, New York, NY, 10031, USA
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Ashlan P Reid
- Biology Department, The City College of New York, New York, NY, 10031, USA
| | - Christopher M Pun
- The City College of New York, Macaulay Honors College, New York, NY, 10031, USA
| | - Nicolas Renier
- Institut du Cerveau et de la Moelle Epinière, Paris, 75013, France
| | - Hysell V Oviedo
- Biology Department, The City College of New York, New York, NY, 10031, USA.
- CUNY Graduate Center, New York, NY, 10016, USA.
| |
Collapse
|
18
|
Kommajosyula SP, Cai R, Bartlett E, Caspary DM. Top-down or bottom up: decreased stimulus salience increases responses to predictable stimuli of auditory thalamic neurons. J Physiol 2019; 597:2767-2784. [PMID: 30924931 DOI: 10.1113/jp277450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/25/2019] [Indexed: 01/29/2023] Open
Abstract
KEY POINTS Temporal imprecision leads to deficits in the comprehension of signals in cluttered acoustic environments, and the elderly are shown to use cognitive resources to disambiguate these signals. To mimic ageing in young rats, we delivered sound signals that are temporally degraded, which led to temporally imprecise neural codes. Instead of adaptation to repeated stimuli, with degraded signals, there was a relative increase in firing rates, similar to that seen in aged rats. We interpret this increase with repetition as a repair mechanism for strengthening the internal representations of degraded signals by the higher-order structures. ABSTRACT To better understand speech in challenging environments, older adults increasingly use top-down cognitive and contextual resources. The medial geniculate body (MGB) integrates ascending inputs with descending predictions to dynamically gate auditory representations based on salience and context. A previous MGB single-unit study found an increased preference for predictable sinusoidal amplitude modulated (SAM) stimuli in aged rats relative to young rats. The results suggested that the age-degraded/jittered up-stream acoustic code may engender an increased preference for predictable/repeating acoustic signals, possibly reflecting increased use of top-down resources. In the present study, we recorded from units in young-adult MGB, comparing responses to standard SAM with those evoked by less salient SAM (degraded) stimuli. We hypothesized that degrading the SAM stimulus would simulate the degraded ascending acoustic code seen in the elderly, increasing the preference for predictable stimuli. Single units were recorded from clusters of advanceable tetrodes implanted above the MGB of young-adult awake rats. Less salient SAM significantly increased the preference for predictable stimuli, especially at higher modulation frequencies. Rather than adaptation, higher modulation frequencies elicited increased numbers of spikes with each successive trial/repeat of the less salient SAM. These findings are consistent with previous findings obtained in aged rats suggesting that less salient acoustic signals engage the additional use of top-down resources, as reflected by an increased preference for repeating stimuli that enhance the representation of complex environmental/communication sounds.
Collapse
Affiliation(s)
- Srinivasa P Kommajosyula
- Southern Illinois University School of Medicine, , Department of Pharmacology, Springfield, IL, USA
| | - Rui Cai
- Southern Illinois University School of Medicine, , Department of Pharmacology, Springfield, IL, USA
| | - Edward Bartlett
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Donald M Caspary
- Southern Illinois University School of Medicine, , Department of Pharmacology, Springfield, IL, USA
| |
Collapse
|
19
|
Neural Variability Limits Adolescent Skill Learning. J Neurosci 2019; 39:2889-2902. [PMID: 30755494 DOI: 10.1523/jneurosci.2878-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 12/31/2022] Open
Abstract
Skill learning is fundamental to the acquisition of many complex behaviors that emerge during development. For example, years of practice give rise to perceptual improvements that contribute to mature speech and language skills. While fully honed learning skills might be thought to offer an advantage during the juvenile period, the ability to learn actually continues to develop through childhood and adolescence, suggesting that the neural mechanisms that support skill learning are slow to mature. To address this issue, we asked whether the rate and magnitude of perceptual learning varies as a function of age as male and female gerbils trained on an auditory task. Adolescents displayed a slower rate of perceptual learning compared with their young and mature counterparts. We recorded auditory cortical neuron activity from a subset of adolescent and adult gerbils as they underwent perceptual training. While training enhanced the sensitivity of most adult units, the sensitivity of many adolescent units remained unchanged, or even declined across training days. Therefore, the average rate of cortical improvement was significantly slower in adolescents compared with adults. Both smaller differences between sound-evoked response magnitudes and greater trial-to-trial response fluctuations contributed to the poorer sensitivity of individual adolescent neurons. Together, these findings suggest that elevated sensory neural variability limits adolescent skill learning.SIGNIFICANCE STATEMENT The ability to learn new skills emerges gradually as children age. This prolonged development, often lasting well into adolescence, suggests that children, teens, and adults may rely on distinct neural strategies to improve their sensory and motor capabilities. Here, we found that practice-based improvement on a sound detection task is slower in adolescent gerbils than in younger or older animals. Neural recordings made during training revealed that practice enhanced the sound sensitivity of adult cortical neurons, but had a weaker effect in adolescents. This latter finding was partially explained by the fact that adolescent neural responses were more variable than in adults. Our results suggest that one mechanistic basis of adult-like skill learning is a reduction in neural response variability.
Collapse
|
20
|
Piantadosi PT, Yeates DC, Floresco SB. Cooperative and dissociable involvement of the nucleus accumbens core and shell in the promotion and inhibition of actions during active and inhibitory avoidance. Neuropharmacology 2018; 138:57-71. [DOI: 10.1016/j.neuropharm.2018.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/07/2018] [Accepted: 05/21/2018] [Indexed: 11/28/2022]
|
21
|
Oviedo HV. Connectivity motifs of inhibitory neurons in the mouse Auditory Cortex. Sci Rep 2017; 7:16987. [PMID: 29208907 PMCID: PMC5717100 DOI: 10.1038/s41598-017-16904-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/19/2017] [Indexed: 11/18/2022] Open
Abstract
Connectivity determines the function of neural circuits and it is the gateway to behavioral output. The emergent properties of the Auditory Cortex (ACx) have been difficult to unravel partly due to our assumption that it is organized similarly to other sensory areas. But detailed investigations of its functional connectivity have begun to reveal significant differences from other cortical areas that perform different functions. Using Laser Scanning Photostimulation we previously discovered unique circuit features in the ACx. Specifically, we found that the functional asymmetry of the ACx (tonotopy and isofrequency axes) is reflected in the local circuitry of excitatory inputs to Layer 3 pyramidal neurons. In the present study we extend the functional wiring diagram of the ACx with an investigation of the connectivity patterns of inhibitory subclasses. We compared excitatory input to parvalbumin (PV) and somatostatin (SOM)-expressing interneurons and found distinct circuit-motifs between and within these subpopulations. Moreover, these connectivity motifs emerged as intrinsic differences between the left and right ACx. Our results support a functional circuit based approach to understand the role of inhibitory neurons in auditory processing.
Collapse
Affiliation(s)
- Hysell V Oviedo
- The City College of New York, Biology Department, New York, NY, USA.
| |
Collapse
|
22
|
Selezneva E, Oshurkova E, Scheich H, Brosch M. Category-specific neuronal activity in left and right auditory cortex and in medial geniculate body of monkeys. PLoS One 2017; 12:e0186556. [PMID: 29073162 PMCID: PMC5657994 DOI: 10.1371/journal.pone.0186556] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022] Open
Abstract
We address the question of whether the auditory cortex of the left and right hemisphere and the auditory thalamus are differently involved in the performance of cognitive tasks. To understand these differences on the level of single neurons we compared neuronal firing in the primary and posterior auditory cortex of the two hemispheres and in the medial geniculate body in monkeys while subjects categorized pitch relationships in tone sequences. In contrast to earlier findings in imaging studies performed on humans, we found little difference between the three brain regions in terms of the category-specificity of their neuronal responses, of tonic firing related to task components, and of decision-related firing. The differences between the results in humans and monkeys may result from the type of neuronal activity considered and how it was analyzed, from the auditory cortical fields studied, or from fundamental differences between these species.
Collapse
Affiliation(s)
- Elena Selezneva
- Specal Lab Primate Neurobiology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Elena Oshurkova
- Department Auditory Learning and Speech, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Henning Scheich
- Department Auditory Learning and Speech, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Michael Brosch
- Specal Lab Primate Neurobiology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
23
|
A Role for Auditory Corticothalamic Feedback in the Perception of Complex Sounds. J Neurosci 2017; 37:6149-6161. [PMID: 28559384 PMCID: PMC5481946 DOI: 10.1523/jneurosci.0397-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
Abstract
Feedback signals from the primary auditory cortex (A1) can shape the receptive field properties of neurons in the ventral division of the medial geniculate body (MGBv). However, the behavioral significance of corticothalamic modulation is unknown. The aim of this study was to elucidate the role of this descending pathway in the perception of complex sounds. We tested the ability of adult female ferrets to detect the presence of a mistuned harmonic in a complex tone using a positive conditioned go/no-go behavioral paradigm before and after the input from layer VI in A1 to MGBv was bilaterally and selectively eliminated using chromophore-targeted laser photolysis. MGBv neurons were identified by their short latencies and sharp tuning curves. They responded robustly to harmonic complex tones and exhibited an increase in firing rate and temporal pattern changes when one frequency component in the complex tone was mistuned. Injections of fluorescent microbeads conjugated with a light-sensitive chromophore were made in MGBv, and, following retrograde transport to the cortical cell bodies, apoptosis was induced by infrared laser illumination of A1. This resulted in a selective loss of ∼60% of layer VI A1-MGBv neurons. After the lesion, mistuning detection was impaired, as indicated by decreased d' values, a shift of the psychometric curves toward higher mistuning values, and increased thresholds, whereas discrimination performance was unaffected when level cues were also available. Our results suggest that A1-MGBv corticothalamic feedback contributes to the detection of harmonicity, one of the most important grouping cues in the perception of complex sounds.SIGNIFICANCE STATEMENT Perception of a complex auditory scene is based on the ability of the brain to group those sound components that belong to the same source and to segregate them from those belonging to different sources. Because two people talking simultaneously may differ in their voice pitch, perceiving the harmonic structure of sounds is very important for auditory scene analysis. Here we demonstrate mistuning sensitivity in the thalamus and that feedback from the primary auditory cortex is required for the normal ability of ferrets to detect a mistuned harmonic within a complex sound. These results provide novel insight into the function of descending sensory pathways in the brain and suggest that this corticothalamic circuit plays an important role in scene analysis.
Collapse
|
24
|
Black E, Stevenson JL, Bish JP. The Role of Musical Experience in Hemispheric Lateralization of Global and Local Auditory Processing. Perception 2017; 46:956-975. [DOI: 10.1177/0301006616685954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The global precedence effect is a phenomenon in which global aspects of visual and auditory stimuli are processed before local aspects. Individuals with musical experience perform better on all aspects of auditory tasks compared with individuals with less musical experience. The hemispheric lateralization of this auditory processing is less well-defined. The present study aimed to replicate the global precedence effect with auditory stimuli and to explore the lateralization of global and local auditory processing in individuals with differing levels of musical experience. A total of 38 college students completed an auditory-directed attention task while electroencephalography was recorded. Individuals with low musical experience responded significantly faster and more accurately in global trials than in local trials regardless of condition, and significantly faster and more accurately when pitches traveled in the same direction (compatible condition) than when pitches traveled in two different directions (incompatible condition) consistent with a global precedence effect. In contrast, individuals with high musical experience showed less of a global precedence effect with regards to accuracy, but not in terms of reaction time, suggesting an increased ability to overcome global bias. Further, a difference in P300 latency between hemispheres was observed. These findings provide a preliminary neurological framework for auditory processing of individuals with differing degrees of musical experience.
Collapse
Affiliation(s)
- Emily Black
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
25
|
Andics A, Gábor A, Gácsi M, Faragó T, Szabó D, Miklósi Á. Neural mechanisms for lexical processing in dogs. Science 2016; 353:1030-1032. [PMID: 27576923 DOI: 10.1126/science.aaf3777] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/28/2016] [Indexed: 11/02/2022]
Abstract
During speech processing, human listeners can separately analyze lexical and intonational cues to arrive at a unified representation of communicative content. The evolution of this capacity can be best investigated by comparative studies. Using functional magnetic resonance imaging, we explored whether and how dog brains segregate and integrate lexical and intonational information. We found a left-hemisphere bias for processing meaningful words, independently of intonation; a right auditory brain region for distinguishing intonationally marked and unmarked words; and increased activity in primary reward regions only when both lexical and intonational information were consistent with praise. Neural mechanisms to separately analyze and integrate word meaning and intonation in dogs suggest that this capacity can evolve in the absence of language.
Collapse
Affiliation(s)
- A Andics
- MTA-ELTE Comparative Ethology Research Group, Eötvös Loránd University, H-1117 Budapest, Pázmány Páter sátány 1/C, Hungary. Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Páter sátány 1/C, Hungary. MR Research Centre, Semmelweis University, H-1083 Budapest, Balassa u. 6, Hungary.
| | - A Gábor
- Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Páter sátány 1/C, Hungary
| | - M Gácsi
- MTA-ELTE Comparative Ethology Research Group, Eötvös Loránd University, H-1117 Budapest, Pázmány Páter sátány 1/C, Hungary
| | - T Faragó
- MTA-ELTE Comparative Ethology Research Group, Eötvös Loránd University, H-1117 Budapest, Pázmány Páter sátány 1/C, Hungary
| | - D Szabó
- MTA-ELTE Comparative Ethology Research Group, Eötvös Loránd University, H-1117 Budapest, Pázmány Páter sátány 1/C, Hungary. Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Páter sátány 1/C, Hungary
| | - Á Miklósi
- MTA-ELTE Comparative Ethology Research Group, Eötvös Loránd University, H-1117 Budapest, Pázmány Páter sátány 1/C, Hungary. Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Páter sátány 1/C, Hungary
| |
Collapse
|
26
|
Wiegner A, Wright CG, Vollmer M. Multichannel cochlear implant for selective neuronal activation and chronic use in the free-moving Mongolian gerbil. J Neurosci Methods 2016; 273:40-54. [PMID: 27519925 DOI: 10.1016/j.jneumeth.2016.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Animal models for chronic multichannel cochlear implant stimulation and selective neuronal activation contribute to a better understanding of auditory signal processing and central neural plasticity. NEW METHOD This paper describes the design and surgical implantation of a multichannel cochlear implant (CI) system for chronic use in the free-moving gerbil. For chronic stimulation, adult-deafened gerbils were connected to a multichannel commutator that allowed low resistance cable rotation and stable electric connectivity to the current source. RESULTS Despite the small scale of the gerbil cochlea and auditory brain regions, final electrophysiological mapping experiments revealed selective and tonotopically organized neuronal activation in the auditory cortex. Contact impedances and electrically evoked auditory brainstem responses were stable over several weeks demonstrating the long-term integrity of the implant and the efficacy of the stimulation. COMPARISON WITH EXISTING METHODS Most animal models on multichannel signal processing and stimulation-induced plasticity are limited to larger animals such as ferrets, cats and primates. Multichannel CI stimulation in the free-moving rodent and evidence for selective neuronal activation in gerbil auditory cortex have not been previously reported. CONCLUSIONS Overall, our results show that the gerbil is a robust rodent model for selective and tonotopically organized multichannel CI stimulation. We anticipate that this model provides a useful tool to develop and test both passive stimulation and behavioral training strategies for plastic reorganization and restoration of degraded unilateral and bilateral central auditory signal processing in the hearing impaired and deaf central auditory system.
Collapse
Affiliation(s)
- Armin Wiegner
- Comprehensive Hearing Center, University Hospital Wuerzburg, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany.
| | - Charles G Wright
- Department of Otolaryngology-Head and Neck Surgery, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, United States.
| | - Maike Vollmer
- Comprehensive Hearing Center, University Hospital Wuerzburg, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany.
| |
Collapse
|
27
|
Schulz AL, Woldeit ML, Gonçalves AI, Saldeitis K, Ohl FW. Selective Increase of Auditory Cortico-Striatal Coherence during Auditory-Cued Go/NoGo Discrimination Learning. Front Behav Neurosci 2016; 9:368. [PMID: 26793085 PMCID: PMC4707278 DOI: 10.3389/fnbeh.2015.00368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/21/2015] [Indexed: 11/19/2022] Open
Abstract
Goal directed behavior and associated learning processes are tightly linked to neuronal activity in the ventral striatum. Mechanisms that integrate task relevant sensory information into striatal processing during decision making and learning are implicitly assumed in current reinforcement models, yet they are still weakly understood. To identify the functional activation of cortico-striatal subpopulations of connections during auditory discrimination learning, we trained Mongolian gerbils in a two-way active avoidance task in a shuttlebox to discriminate between falling and rising frequency modulated tones with identical spectral properties. We assessed functional coupling by analyzing the field-field coherence between the auditory cortex and the ventral striatum of animals performing the task. During the course of training, we observed a selective increase of functional coupling during Go-stimulus presentations. These results suggest that the auditory cortex functionally interacts with the ventral striatum during auditory learning and that the strengthening of these functional connections is selectively goal-directed.
Collapse
Affiliation(s)
- Andreas L Schulz
- Department Systems Physiology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Marie L Woldeit
- Department Systems Physiology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Ana I Gonçalves
- Department Systems Physiology, Leibniz Institute for NeurobiologyMagdeburg, Germany; Department Systems Biology, Institute of Biology, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Katja Saldeitis
- Department Systems Physiology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology, Leibniz Institute for NeurobiologyMagdeburg, Germany; Department Systems Biology, Institute of Biology, Otto-von-Guericke UniversityMagdeburg, Germany; Center for Behavioral Brain SciencesMagdeburg, Germany
| |
Collapse
|
28
|
Berger JI, Coomber B, Wells TT, Wallace MN, Palmer AR. Changes in the response properties of inferior colliculus neurons relating to tinnitus. Front Neurol 2014; 5:203. [PMID: 25346722 PMCID: PMC4191193 DOI: 10.3389/fneur.2014.00203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/26/2014] [Indexed: 12/03/2022] Open
Abstract
Tinnitus is often identified in animal models by using the gap prepulse inhibition of acoustic startle. Impaired gap detection following acoustic over-exposure (AOE) is thought to be caused by tinnitus “filling in” the gap, thus, reducing its salience. This presumably involves altered perception, and could conceivably be caused by changes at the level of the neocortex, i.e., cortical reorganization. Alternatively, reduced gap detection ability might reflect poorer temporal processing in the brainstem, caused by AOE; in which case, impaired gap detection would not be a reliable indicator of tinnitus. We tested the latter hypothesis by examining gap detection in inferior colliculus (IC) neurons following AOE. Seven of nine unilaterally noise-exposed guinea pigs exhibited behavioral evidence of tinnitus. In these tinnitus animals, neural gap detection thresholds (GDTs) in the IC significantly increased in response to broadband noise stimuli, but not to pure tones or narrow-band noise. In addition, when IC neurons were sub-divided according to temporal response profile (onset vs. sustained firing patterns), we found a significant increase in the proportion of onset-type responses after AOE. Importantly, however, GDTs were still considerably shorter than gap durations commonly used in objective behavioral tests for tinnitus. These data indicate that the neural changes observed in the IC are insufficient to explain deficits in behavioral gap detection that are commonly attributed to tinnitus. The subtle changes in IC neuron response profiles following AOE warrant further investigation.
Collapse
Affiliation(s)
- Joel I Berger
- MRC Institute of Hearing Research, University Park , Nottingham , UK
| | - Ben Coomber
- MRC Institute of Hearing Research, University Park , Nottingham , UK
| | - Tobias T Wells
- MRC Institute of Hearing Research, University Park , Nottingham , UK
| | - Mark N Wallace
- MRC Institute of Hearing Research, University Park , Nottingham , UK
| | - Alan R Palmer
- MRC Institute of Hearing Research, University Park , Nottingham , UK
| |
Collapse
|
29
|
Ohl FW. Role of cortical neurodynamics for understanding the neural basis of motivated behavior - lessons from auditory category learning. Curr Opin Neurobiol 2014; 31:88-94. [PMID: 25241212 DOI: 10.1016/j.conb.2014.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/25/2022]
Abstract
Rhythmic activity appears in the auditory cortex in both microscopic and macroscopic observables and is modulated by both bottom-up and top-down processes. How this activity serves both types of processes is largely unknown. Here we review studies that have recently improved our understanding of potential functional roles of large-scale global dynamic activity patterns in auditory cortex. The experimental paradigm of auditory category learning allowed critical testing of the hypothesis that global auditory cortical activity states are associated with endogenous cognitive states mediating the meaning associated with an acoustic stimulus rather than with activity states that merely represent the stimulus for further processing.
Collapse
Affiliation(s)
- Frank W Ohl
- Leibniz Institute for Neurobiology, Department of Systems Physiology of Learning, Brenneckestr. 6, D-39118 Magdeburg, Germany.
| |
Collapse
|
30
|
Sensory cortex lesion triggers compensatory neuronal plasticity. BMC Neurosci 2014; 15:57. [PMID: 24886276 PMCID: PMC4017824 DOI: 10.1186/1471-2202-15-57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lesions to the human brain often cause dramatic impairments in the life of patients because of the very limited capacity of the mammalian nervous system to regenerate. On the other hand, neuronal tissue has a high capacity to reorganize itself so that loss of function due to brain damage may be compensated through neuroplastic reorganization of undamaged tissue in brain regions adjacent or contralateral to the lesion site. In this study we investigated the effect of serial lesions of the auditory cortices (AC) in both hemispheres of Mongolian gerbils on discrimination performance for fast amplitude modulated tones (AM). Healthy animals were trained to discriminate two fast AM, an ability that has previously been shown to critically depend on cortical processing. Their ability to maintain significant discrimination performance was retested after unilateral AC lesion, and again after lesion of the contralateral AC, with 15 days of continuing training in between the two lesions. RESULTS After bilateral cortical ablation of both AC and 45 days of training the animals show no change in pure tone detection threshold as measured with modulation of the acoustic startle reflex which has been shown to rely on subcortical structures. In contrast to simultaneous bilateral ablation of AC that results in complete loss of AM discrimination ability in this paradigm we found compensatory plasticity that seems to be triggered by unilateral cortical ablation with subsequent training and that is able to almost fully compensate for the lost cortical functions. CONCLUSIONS Our results demonstrate that AM discrimination ability that normally depends on AC may be transferred to other brain regions when the brain has time to activate compensatory plasticity between the lesions of the two AC hemispheres. For this process to take place obviously one intact AC hemisphere is needed. This finding may open perspectives for new therapeutic strategies that may alleviate the impairments after multiple ischemic strokes.
Collapse
|
31
|
Hecht D. Cerebral lateralization of pro- and anti-social tendencies. Exp Neurobiol 2014; 23:1-27. [PMID: 24737936 PMCID: PMC3984952 DOI: 10.5607/en.2014.23.1.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/18/2014] [Accepted: 02/17/2014] [Indexed: 12/25/2022] Open
Abstract
Mounting evidence suggest that the right-hemisphere (RH) has a relative advantage, over the left-hemisphere (LH), in mediating social intelligence - identifying social stimuli, understanding the intentions of other people, awareness of the dynamics in social relationships, and successful handling of social interactions. Furthermore, a review and synthesis of the literature suggest that pro-social attitudes and behaviors are associated with physiological activity in the RH, whereas unsocial and anti-social tendencies are mediated primarily by the LH. This hemispheric asymmetry is rooted in several neurobiological and functional differences between the two hemispheres. (I) Positive social interactions often require inhibiting one's immediate desires and considering the perspectives and needs of others. Given that self-control is mediated by the RH, pro-social emotions and behaviors are, therefore, inherently associated with the RH as it subserves the brain's self-restraint mechanisms. (II) The RH mediates experiences of vulnerability. It registers the relative clumsiness and motor weakness of the left limbs, and it is involved, more than the LH, in processing threats and mediating fear. Emotional states of vulnerability trigger the need for affiliation and sociality, therefore the RH has a greater role in mediating pro-social attitudes and behaviors. (III) The RH mediates a holistic mode of representing the world. Holistic perception emphasizes similarities rather than differences, takes a long-term perspective, is associated with divergent thinking and seeing other points-of-view, and it mediates a personal mode of relating to people. All these features of holistic perception facilitate a more empathetic attitude toward others and pro-social behaviors.
Collapse
Affiliation(s)
- David Hecht
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
32
|
Heimrath K, Kuehne M, Heinze HJ, Zaehle T. Transcranial direct current stimulation (tDCS) traces the predominance of the left auditory cortex for processing of rapidly changing acoustic information. Neuroscience 2014; 261:68-73. [DOI: 10.1016/j.neuroscience.2013.12.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
|
33
|
Centanni TM, Sloan AM, Reed AC, Engineer CT, Rennaker RL, Kilgard MP. Detection and identification of speech sounds using cortical activity patterns. Neuroscience 2014; 258:292-306. [PMID: 24286757 PMCID: PMC3898816 DOI: 10.1016/j.neuroscience.2013.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
Abstract
We have developed a classifier capable of locating and identifying speech sounds using activity from rat auditory cortex with an accuracy equivalent to behavioral performance and without the need to specify the onset time of the speech sounds. This classifier can identify speech sounds from a large speech set within 40 ms of stimulus presentation. To compare the temporal limits of the classifier to behavior, we developed a novel task that requires rats to identify individual consonant sounds from a stream of distracter consonants. The classifier successfully predicted the ability of rats to accurately identify speech sounds for syllable presentation rates up to 10 syllables per second (up to 17.9 ± 1.5 bits/s), which is comparable to human performance. Our results demonstrate that the spatiotemporal patterns generated in primary auditory cortex can be used to quickly and accurately identify consonant sounds from a continuous speech stream without prior knowledge of the stimulus onset times. Improved understanding of the neural mechanisms that support robust speech processing in difficult listening conditions could improve the identification and treatment of a variety of speech-processing disorders.
Collapse
Affiliation(s)
| | - A M Sloan
- University of Texas at Dallas, United States
| | - A C Reed
- University of Texas at Dallas, United States
| | | | | | - M P Kilgard
- University of Texas at Dallas, United States
| |
Collapse
|
34
|
Unilateral auditory cortex lesions impair or improve discrimination learning of amplitude modulated sounds, depending on lesion side. PLoS One 2014; 9:e87159. [PMID: 24466338 PMCID: PMC3900711 DOI: 10.1371/journal.pone.0087159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/19/2013] [Indexed: 11/19/2022] Open
Abstract
A fundamental principle of brain organization is bilateral symmetry of structures and functions. For spatial sensory and motor information processing, this organization is generally plausible subserving orientation and coordination of a bilaterally symmetric body. However, breaking of the symmetry principle is often seen for functions that depend on convergent information processing and lateralized output control, e.g. left hemispheric dominance for the linguistic speech system. Conversely, a subtle splitting of functions into hemispheres may occur if peripheral information from symmetric sense organs is partly redundant, e.g. auditory pattern recognition, and therefore allows central conceptualizations of complex stimuli from different feature viewpoints, as demonstrated e.g. for hemispheric analysis of frequency modulations in auditory cortex (AC) of mammals including humans. Here we demonstrate that discrimination learning of rapidly but not of slowly amplitude modulated tones is non-uniformly distributed across both hemispheres: While unilateral ablation of left AC in gerbils leads to impairment of normal discrimination learning of rapid amplitude modulations, right side ablations lead to improvement over normal learning. These results point to a rivalry interaction between both ACs in the intact brain where the right side competes with and weakens learning capability maximally attainable by the dominant left side alone.
Collapse
|
35
|
Ross B, Jamali S, Tremblay KL. Plasticity in neuromagnetic cortical responses suggests enhanced auditory object representation. BMC Neurosci 2013; 14:151. [PMID: 24314010 PMCID: PMC3924184 DOI: 10.1186/1471-2202-14-151] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/27/2013] [Indexed: 11/20/2022] Open
Abstract
Background Auditory perceptual learning persistently modifies neural networks in the central nervous system. Central auditory processing comprises a hierarchy of sound analysis and integration, which transforms an acoustical signal into a meaningful object for perception. Based on latencies and source locations of auditory evoked responses, we investigated which stage of central processing undergoes neuroplastic changes when gaining auditory experience during passive listening and active perceptual training. Young healthy volunteers participated in a five-day training program to identify two pre-voiced versions of the stop-consonant syllable ‘ba’, which is an unusual speech sound to English listeners. Magnetoencephalographic (MEG) brain responses were recorded during two pre-training and one post-training sessions. Underlying cortical sources were localized, and the temporal dynamics of auditory evoked responses were analyzed. Results After both passive listening and active training, the amplitude of the P2m wave with latency of 200 ms increased considerably. By this latency, the integration of stimulus features into an auditory object for further conscious perception is considered to be complete. Therefore the P2m changes were discussed in the light of auditory object representation. Moreover, P2m sources were localized in anterior auditory association cortex, which is part of the antero-ventral pathway for object identification. The amplitude of the earlier N1m wave, which is related to processing of sensory information, did not change over the time course of the study. Conclusion The P2m amplitude increase and its persistence over time constitute a neuroplastic change. The P2m gain likely reflects enhanced object representation after stimulus experience and training, which enables listeners to improve their ability for scrutinizing fine differences in pre-voicing time. Different trajectories of brain and behaviour changes suggest that the preceding effect of a P2m increase relates to brain processes, which are necessary precursors of perceptual learning. Cautious discussion is required when interpreting the finding of a P2 amplitude increase between recordings before and after training and learning.
Collapse
Affiliation(s)
- Bernhard Ross
- Rotman Research Institute, Baycrest Centre, 3560 Bathurst Street, Toronto M6A 2E1, ON, Canada.
| | | | | |
Collapse
|
36
|
Gu F, Zhang C, Hu A, Zhao G. Left hemisphere lateralization for lexical and acoustic pitch processing in Cantonese speakers as revealed by mismatch negativity. Neuroimage 2013; 83:637-45. [DOI: 10.1016/j.neuroimage.2013.02.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/18/2013] [Accepted: 02/25/2013] [Indexed: 10/26/2022] Open
|
37
|
Mylius J, Brosch M, Scheich H, Budinger E. Subcortical auditory structures in the Mongolian gerbil: I. Golgi architecture. J Comp Neurol 2013; 521:1289-321. [PMID: 23047461 DOI: 10.1002/cne.23232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/25/2012] [Accepted: 10/02/2012] [Indexed: 12/17/2022]
Abstract
By means of the Golgi-Cox and Nissl methods we investigated the cyto- and fiberarchitecture as well as the morphology of neurons in the subcortical auditory structures of the Mongolian gerbil (Meriones unguiculatus), a frequently used animal model in auditory neuroscience. We describe the divisions and subdivisions of the auditory thalamus including the medial geniculate body, suprageniculate nucleus, and reticular thalamic nucleus, as well as of the inferior colliculi, nuclei of the lateral lemniscus, superior olivary complex, and cochlear nuclear complex. In this study, we 1) confirm previous results about the organization of the gerbil's subcortical auditory pathway using other anatomical staining methods (e.g., Budinger et al. [2000] Eur J Neurosci 12:2452-2474); 2) add substantially to the knowledge about the laminar and cellular organization of the gerbil's subcortical auditory structures, in particular about the orientation of their fibrodendritic laminae and about the morphology of their most distinctive neuron types; and 3) demonstrate that the cellular organization of these structures, as seen by the Golgi technique, corresponds generally to that of other mammalian species, in particular to that of rodents.
Collapse
Affiliation(s)
- Judith Mylius
- Special Laboratory Primate Neurobiology, Leibniz Institute for Neurobiology, D-39118 Magdeburg, Germany
| | | | | | | |
Collapse
|
38
|
Honma Y, Tsukano H, Horie M, Ohshima S, Tohmi M, Kubota Y, Takahashi K, Hishida R, Takahashi S, Shibuki K. Auditory cortical areas activated by slow frequency-modulated sounds in mice. PLoS One 2013; 8:e68113. [PMID: 23874516 PMCID: PMC3714279 DOI: 10.1371/journal.pone.0068113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/24/2013] [Indexed: 11/18/2022] Open
Abstract
Species-specific vocalizations in mice have frequency-modulated (FM) components slower than the lower limit of FM direction selectivity in the core region of the mouse auditory cortex. To identify cortical areas selective to slow frequency modulation, we investigated tonal responses in the mouse auditory cortex using transcranial flavoprotein fluorescence imaging. For differentiating responses to frequency modulation from those to stimuli at constant frequencies, we focused on transient fluorescence changes after direction reversal of temporally repeated and superimposed FM sweeps. We found that the ultrasonic field (UF) in the belt cortical region selectively responded to the direction reversal. The dorsoposterior field (DP) also responded weakly to the reversal. Regarding the responses in UF, no apparent tonotopic map was found, and the right UF responses were significantly larger in amplitude than the left UF responses. The half-max latency in responses to FM sweeps was shorter in UF compared with that in the primary auditory cortex (A1) or anterior auditory field (AAF). Tracer injection experiments in the functionally identified UF and DP confirmed that these two areas receive afferent inputs from the dorsal part of the medial geniculate nucleus (MG). Calcium imaging of UF neurons stained with fura-2 were performed using a two-photon microscope, and the presence of UF neurons that were selective to both direction and direction reversal of slow frequency modulation was demonstrated. These results strongly suggest a role for UF, and possibly DP, as cortical areas specialized for processing slow frequency modulation in mice.
Collapse
Affiliation(s)
- Yuusuke Honma
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Niigata, Japan
- Department of Otolaryngology, Faculty of Medicine, Niigata University, Asahi-machi, Niigata, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Niigata, Japan
| | - Masao Horie
- Department of Anatomy, Faculty of Medicine, Niigata University, Asahi-machi, Niigata, Japan
| | - Shinsuke Ohshima
- Department of Otolaryngology, Faculty of Medicine, Niigata University, Asahi-machi, Niigata, Japan
| | - Manavu Tohmi
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Niigata, Japan
| | - Yamato Kubota
- Department of Otolaryngology, Faculty of Medicine, Niigata University, Asahi-machi, Niigata, Japan
| | - Kuniyuki Takahashi
- Department of Otolaryngology, Faculty of Medicine, Niigata University, Asahi-machi, Niigata, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Niigata, Japan
| | - Sugata Takahashi
- Department of Otolaryngology, Faculty of Medicine, Niigata University, Asahi-machi, Niigata, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Niigata, Japan
- * E-mail:
| |
Collapse
|
39
|
Angenstein N, Brechmann A. Left auditory cortex is involved in pairwise comparisons of the direction of frequency modulated tones. Front Neurosci 2013; 7:115. [PMID: 23847464 PMCID: PMC3705175 DOI: 10.3389/fnins.2013.00115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/18/2013] [Indexed: 11/13/2022] Open
Abstract
Evaluating series of complex sounds like those in speech and music requires sequential comparisons to extract task-relevant relations between subsequent sounds. With the present functional magnetic resonance imaging (fMRI) study, we investigated whether sequential comparison of a specific acoustic feature within pairs of tones leads to a change in lateralized processing in the auditory cortex (AC) of humans. For this we used the active categorization of the direction (up vs. down) of slow frequency modulated (FM) tones. Several studies suggest that this task is mainly processed in the right AC. These studies, however, tested only the categorization of the FM direction of each individual tone. In the present study we ask the question whether the right lateralized processing changes when, in addition, the FM direction is compared within pairs of successive tones. For this we use an experimental approach involving contralateral noise presentation in order to explore the contributions made by the left and right AC in the completion of the auditory task. This method has already been applied to confirm the right-lateralized processing of the FM direction of individual tones. In the present study, the subjects were required to perform, in addition, a sequential comparison of the FM direction in pairs of tones. The results suggest a division of labor between the two hemispheres such that the FM direction of each individual tone is mainly processed in the right AC whereas the sequential comparison of this feature between tones in a pair is probably performed in the left AC.
Collapse
Affiliation(s)
- Nicole Angenstein
- Special Lab Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology Magdeburg, Germany
| | | |
Collapse
|
40
|
The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study. Neuropsychologia 2013; 51:1608-18. [DOI: 10.1016/j.neuropsychologia.2013.04.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/14/2013] [Accepted: 04/18/2013] [Indexed: 11/16/2022]
|
41
|
Electrical stimulation of lateral habenula during learning: frequency-dependent effects on acquisition but not retrieval of a two-way active avoidance response. PLoS One 2013; 8:e65684. [PMID: 23840355 PMCID: PMC3695985 DOI: 10.1371/journal.pone.0065684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/26/2013] [Indexed: 12/29/2022] Open
Abstract
The lateral habenula (LHb) is an epithalamic structure involved in signaling reward omission and aversive stimuli, and it inhibits dopaminergic neurons during motivated behavior. Less is known about LHb involvement in the acquisition and retrieval of avoidance learning. Our previous studies indicated that brief electrical stimulation of the LHb, time-locked to the avoidance of aversive footshock (presumably during the positive affective “relief” state that occurs when an aversive outcome is averted), inhibited the acquisition of avoidance learning. In the present study, we used the same paradigm to investigate different frequencies of LHb stimulation. The effect of 20 Hz vs. 50 Hz vs. 100 Hz stimulation was investigated during two phases, either during acquisition or retrieval in Mongolian gerbils. The results indicated that 50 Hz, but not 20 Hz, was sufficient to produce a long-term impairment in avoidance learning, and was somewhat more effective than 100 Hz in this regard. None of the stimulation parameters led to any effects on retrieval of avoidance learning, nor did they affect general motor activity. This suggests that, at frequencies in excess of the observed tonic firing rates of LHb neurons (>1–20 Hz), LHb stimulation may serve to interrupt the consolidation of new avoidance memories. However, these stimulation parameters are not capable of modifying avoidance memories that have already undergone extensive consolidation.
Collapse
|
42
|
Barton BK, Lew R, Kovesdi C, Cottrell ND, Ulrich T. Developmental differences in auditory detection and localization of approaching vehicles. ACCIDENT; ANALYSIS AND PREVENTION 2013; 53:1-8. [PMID: 23357030 DOI: 10.1016/j.aap.2012.12.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 06/01/2023]
Abstract
Pedestrian safety is a significant problem in the United States, with thousands being injured each year. Multiple risk factors exist, but one poorly understood factor is pedestrians' ability to attend to vehicles using auditory cues. Auditory information in the pedestrian setting is increasing in importance with the growing number of quieter hybrid and all-electric vehicles on America's roadways that do not emit sound cues pedestrians expect from an approaching vehicle. Our study explored developmental differences in pedestrians' detection and localization of approaching vehicles. Fifty children ages 6-9 years, and 35 adults participated. Participants' performance varied significantly by age, and with increasing speed and direction of the vehicle's approach. Results underscore the importance of understanding children's and adults' use of auditory cues for pedestrian safety and highlight the need for further research.
Collapse
Affiliation(s)
- Benjamin K Barton
- Department of Psychology and Communication Studies, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844-3043, United States.
| | | | | | | | | |
Collapse
|
43
|
Audiovisual integration in the primary auditory cortex of an awake rodent. Neurosci Lett 2013; 534:24-9. [DOI: 10.1016/j.neulet.2012.10.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/17/2012] [Accepted: 10/24/2012] [Indexed: 11/23/2022]
|
44
|
Barton BK, Ulrich TA, Lew R. Auditory detection and localization of approaching vehicles. ACCIDENT; ANALYSIS AND PREVENTION 2012; 49:347-353. [PMID: 22658950 DOI: 10.1016/j.aap.2011.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/28/2011] [Accepted: 11/25/2011] [Indexed: 06/01/2023]
Abstract
Pedestrians must use a variety of cues when making safe decisions, many of which require processing of auditory information. We examined detection and localization of approaching vehicles using auditory cues. 50 adults ages 18-49 were presented with actual sounds of vehicles approaching at 5, 12, 25, and 35 mph. Three indices were of interest: the distance at which vehicles were detected, participants' decision regarding the direction from which vehicles were approaching, and their determination of the vehicles' arrival at their location. Participants more easily detected vehicles moving at higher speeds and vehicles approaching from the right. Determination of the direction of approach reached 90% accuracy or better when vehicles were traveling at, or greater than, 12 mph, and were more approaching from the right. Determination of vehicle arrival deteriorated significantly as speeds increased. Implications of the use of auditory cues in pedestrian settings, and future directions, are discussed.
Collapse
Affiliation(s)
- Benjamin K Barton
- Department of Psychology & Communication Studies, PO 443043, University of Idaho, Moscow, ID 83844-3043, United States.
| | | | | |
Collapse
|
45
|
Ilango A, Shumake J, Wetzel W, Scheich H, Ohl FW. The role of dopamine in the context of aversive stimuli with particular reference to acoustically signaled avoidance learning. Front Neurosci 2012; 6:132. [PMID: 23049495 PMCID: PMC3442182 DOI: 10.3389/fnins.2012.00132] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 08/25/2012] [Indexed: 11/13/2022] Open
Abstract
Learning from punishment is a powerful means for behavioral adaptation with high relevance for various mechanisms of self-protection. Several studies have explored the contribution of released dopamine (DA) or responses of DA neurons on reward seeking using rewards such as food, water, and sex. Phasic DA signals evoked by rewards or conditioned reward predictors are well documented, as are modulations of these signals by such parameters as reward magnitude, probability, and deviation of actually occurring from expected rewards. Less attention has been paid to DA neuron firing and DA release in response to aversive stimuli, and the prediction and avoidance of punishment. In this review, we first focus on DA changes in response to aversive stimuli as measured by microdialysis and voltammetry followed by the change in electrophysiological signatures by aversive stimuli and fearful events. We subsequently focus on the role of DA and effect of DA manipulations on signaled avoidance learning, which consists of learning the significance of a warning cue through Pavlovian associations and the execution of an instrumental avoidance response. We present a coherent framework utilizing the data on microdialysis, voltammetry, electrophysiological recording, electrical brain stimulation, and behavioral analysis. We end by outlining current gaps in the literature and proposing future directions aimed at incorporating technical and conceptual progress to understand the involvement of reward circuit on punishment based decisions.
Collapse
Affiliation(s)
- Anton Ilango
- Leibniz Institute for Neurobiology Magdeburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Washington SD, Kanwal JS. Sex-dependent hemispheric asymmetries for processing frequency-modulated sounds in the primary auditory cortex of the mustached bat. J Neurophysiol 2012; 108:1548-66. [PMID: 22649207 PMCID: PMC3544949 DOI: 10.1152/jn.00952.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 05/26/2012] [Indexed: 11/22/2022] Open
Abstract
Species-specific vocalizations of mammals, including humans, contain slow and fast frequency modulations (FMs) as well as tone and noise bursts. In this study, we established sex-specific hemispheric differences in the tonal and FM response characteristics of neurons in the Doppler-shifted constant-frequency processing area in the mustached bat's primary auditory cortex (A1). We recorded single-unit cortical activity from the right and left A1 in awake bats in response to the presentation of tone bursts and linear FM sweeps that are contained within their echolocation and/or communication sounds. Peak response latencies to neurons' preferred or best FMs were significantly longer on the right compared with the left in both sexes, and in males this right-left difference was also present for the most excitatory tone burst. Based on peak response magnitudes, right hemispheric A1 neurons in males preferred low-rate, narrowband FMs, whereas those on the left were less selective, responding to FMs with a variety of rates and bandwidths. The distributions of parameters for best FMs in females were similar on the two sides. Together, our data provide the first strong physiological support of a sex-specific, spectrotemporal hemispheric asymmetry for the representation of tones and FMs in a nonhuman mammal. Specifically, our results demonstrate a left hemispheric bias in males for the representation of a diverse array of FMs differing in rate and bandwidth. We propose that these asymmetries underlie lateralized processing of communication sounds and are common to species as divergent as bats and humans.
Collapse
Affiliation(s)
- Stuart D Washington
- 1Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, District of Columbia, USA
| | | |
Collapse
|
47
|
Meyer M, Elmer S, Jäncke L. Musical expertise induces neuroplasticity of the planum temporale. Ann N Y Acad Sci 2012; 1252:116-23. [DOI: 10.1111/j.1749-6632.2012.06450.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Interaction between bottom-up and top-down effects during the processing of pitch intervals in sequences of spoken and sung syllables. Neuroimage 2012; 61:715-22. [PMID: 22503936 DOI: 10.1016/j.neuroimage.2012.03.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/14/2012] [Accepted: 03/29/2012] [Indexed: 11/21/2022] Open
Abstract
The processing of pitch intervals may be differentially influenced when musical or speech stimuli carry the pitch information. Most insights into the neural basis of pitch interval processing come from studies on music perception. However, music, in contrast to speech, contains a stable set of pitch intervals. To converge the investigation of pitch interval processing in music and speech, we used sequences of the same spoken or sung syllables. The pitch of these syllables varied either by semitone steps like in music or by smaller intervals. Participants had to differentiate the sequences according to their different sizes of pitch intervals or to the direction of the last frequency step in the sequence. The results depended strongly on the specific task demands. Whereas the interval-size task itself recruited more regions in right lateralized fronto-parietal brain network, stronger activity on semitone than on non-semitone sequences was found in the left hemisphere (mainly in frontal cortex) during this task. These effects were also influenced by the speech mode (spoken or sung syllables). Our findings suggest that the processing of pitch intervals in sequences of syllables depends on an interaction between bottom-up (speech mode, pitch interval) and top-down effects (task).
Collapse
|
49
|
Gerbils. THE LABORATORY RABBIT, GUINEA PIG, HAMSTER, AND OTHER RODENTS 2012. [PMCID: PMC7158315 DOI: 10.1016/b978-0-12-380920-9.00052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The gerbil is usually nonaggressive and is one of the easiest rodents to maintain and handle. Its disposition, curious nature, relative freedom from naturally occurring infectious diseases, and adaptability to its environment have contributed to its popularity as a laboratory animal. Gerbils are found in deserts and semiarid geographical regions of the world. The Mongolian gerbils that are available today originated from 20 pairs of captured animals that were maintained in 1935 in a closed, random-bred colony at the Kitasato Institute in Japan. Gerbils have several unique anatomical and physiological features. Mature gerbils are smaller than rats, but larger than mice. Mongolian gerbils are attracted to saliva and use salivary cues to discriminate between siblings and nonsiblings, and females use oral cues in the selection of sociosexual partners. Gerbils have been used as experimental models in a number of areas of biomedical research. Gerbils are excellent subjects for laboratory animal research as they are susceptible to bacterial, viral, and parasitic pathogens that affect humans and other species. Gerbils may have spontaneous seizures secondary to stress such as handling, cage change, abrupt noises, or changes in the environment. Cystic ovaries are seen commonly in female gerbils over 1 year of age. Gerbils have unique characteristics, which make them appropriate for a number of animal models. Classically, gerbils have been used in research involving stroke, parasitology, infectious diseases, epilepsy, brain development and behavior, and hearing.
Collapse
|
50
|
DELIANO MATTHIAS, OHL FRANKW. NEURODYNAMICS OF CATEGORY LEARNING: TOWARDS UNDERSTANDING THE CREATION OF MEANING IN THE BRAIN. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793005709001192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Category learning, the formation and use of categories (equivalence classes of meaning), is an elemental function of cognition. We report our approach to study the physiological mechanisms underlying category learning using high-density multi-channel recordings of electrocorticograms in rodents. These data suggest the coexistence of separate coding principles for representing physical stimulus attributes ("stimulus representation") and subjectively relevant information (meaning) about stimuli, respectively. The implications of these findings for the construction of interactive cortical sensory neuroprostheses are discussed.
Collapse
Affiliation(s)
- MATTHIAS DELIANO
- Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, D-39118, Germany
| | - FRANK W. OHL
- Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, D-39118, Germany
| |
Collapse
|