1
|
Nasim Z, Karim N, Blilou I, Ahn JH. NMD-mediated posttranscriptional regulation fine-tunes the NLR-WRKY regulatory module to modulate bacterial defense response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112528. [PMID: 40294849 DOI: 10.1016/j.plantsci.2025.112528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic surveillance system that maintains transcriptome integrity by degrading aberrant RNA transcripts. NMD ensures proper growth and development by preventing autoimmunity through the direct regulation of nucleotide-binding, leucine-rich repeat (NLR) genes. Whether NMD directly regulates WRKY genes remains unclear, despite their upregulation in NMD-deficient plants, and potential feedback between NLRs and WRKYs is also poorly understood. In this study, we showed that NMD also directly regulates a subset of WRKY (WRKY15, 18, 25, 33, 46, 60, and 70) genes, particularly at lower temperatures (16°C). NMD signature-containing transcripts of WRKY46 and WRKY70, selected as representative NMD-regulated WRKY genes, showed increased half-lives in NMD-deficient mutants. Transcriptome analyses showed that these seven NMD-regulated WRKY genes are induced in response to bacterial infection. Potential homologues of these seven NMD-regulated WRKY genes in maize and rice showed similar induction in response to bacterial pathogen infection. Furthermore, these NMD-regulated WRKY genes are induced in plants overexpressing RESISTANT TO P. SYRINGAE 4 (RPS4) in a temperature-dependent manner. By using ChIP-seq and DAP-seq data of WRKY transcription factors, we showed that WRKYs potentially regulate a significant number of NLR genes by directly binding to the W-box in their promoter regions. Taken together, our findings revealed that in addition to the NLRs, the NMD machinery also regulates WRKY genes to keep the basal defense levels in check and the WRKY transcription factors directly regulate NLR genes to constitutes a positive feedback regulatory loop to optimize the plant response to invading pathogens.
Collapse
Affiliation(s)
- Zeeshan Nasim
- Department of Molecular Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Nouroz Karim
- Department of Molecular Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ikram Blilou
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ji Hoon Ahn
- Department of Molecular Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Tan K, Sebat J, Wilkinson M. Cell type- and factor-specific nonsense-mediated RNA decay. Nucleic Acids Res 2025; 53:gkaf395. [PMID: 40366162 PMCID: PMC12076418 DOI: 10.1093/nar/gkaf395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/17/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that influences several biological processes. Specific features in messenger RNAs (mRNAs) have been found to trigger decay by NMD, leading to the assumption that NMD sensitivity is an intrinsic quality of a given transcript. Here, we provide evidence that, instead, an overriding factor dictating NMD sensitivity is the cell environment. Using several genome-wide techniques to detect NMD-target mRNAs, we find that hundreds of mRNAs are sensitized to NMD as human embryonic stem cells progress to form neural progenitor cells. Another class of mRNAs escape from NMD during this developmental progression. We show that the differential sensitivity to NMD extends to in vivo scenarios, and that the RNA-binding protein, HNRNPL, has a role in cell type-specific NMD. We also addressed another issue in the field-whether NMD factors are core or branch-specific in their action. Surprisingly, we found that UPF3B, an NMD factor critical for the nervous system, shares only 30% of NMD-target transcripts with the core NMD factor UPF2. Together, our findings have implications for how NMD is defined and measured, how NMD acts in different biological contexts, and how different NMD branches influence human diseases.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Jonathan Sebat
- Department of Psychiatry, Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
3
|
Zhang X, Olaniyan S, Li X, Zechmann B, Benton ML, Kebaara B. Global effect of copper excess and deficiency in Saccharomyces cerevisiae proficient or deficient in nonsense-mediated mRNA decay. Genomics 2025; 117:111020. [PMID: 39993546 DOI: 10.1016/j.ygeno.2025.111020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/02/2024] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
The highly conserved nonsense-mediated mRNA decay (NMD) pathway was initially identified as an mRNA surveillance pathway. NMD is now also known to have multiple functions including precise regulation of gene expression. In Saccharomyces cerevisiae, about 5-10 % of the transcriptome is regulated by the NMD pathway. Previous studies found environmental condition-specific regulation of transcripts by NMD in S. cerevisiae. In this study, we examined the effect varying copper levels have on global regulation of mRNAs by NMD. Specifically, the consequences of copper excess and deficiency on cellular ultrastructure and transcriptomes of S. cerevisiae cells with a functional and non-functional NMD pathway was investigated. Copper excess or deficiency resulted in enlarged vacuoles in yeast cells relative to cells grown in normal growth conditions. Additionally, yeast cells with a functional NMD pathway had dilated endoplasmic reticulum (ER) when exposed to elevated copper levels. In elevated copper levels dilated ER were not observed in cells with a non-functional NMD pathway. Furthermore, copper deficiency led to widespread changes in gene expression relative to the normal growth and elevated copper conditions. Significant enrichments for Molecular function (MF) included transmembrane transporter activity and helicase activity for transcripts upregulated in complete minimal (CM) only. For transcripts upregulated in both CM and 100 μM copper, significant enrichments for MF were found in structural constituent of cell wall, ferric-chelate reductase (NADPH) activity, metal ion and DNA binding. Transcripts upregulated specifically in low copper were greatly enriched for categories related to RNA binding and RNA metabolic processes.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Biology, Baylor University, Waco, TX, USA
| | | | - Xiayan Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | | | - Bessie Kebaara
- Department of Biology, Baylor University, Waco, TX, USA.
| |
Collapse
|
4
|
Ruiz-Gutierrez N, Dupas J, Auquier E, Barbarin-Bocahu I, Gaudon-Plesse C, Saveanu C, Graille M, Le Hir H. RNA anchoring of Upf1 facilitates recruitment of Dcp2 in the NMD decapping complex. Nucleic Acids Res 2025; 53:gkaf160. [PMID: 40071934 PMCID: PMC11897886 DOI: 10.1093/nar/gkaf160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Upf1 RNA helicase is a pivotal factor in the conserved nonsense-mediated mRNA decay (NMD) process. Upf1 is responsible for coordinating the recognition of premature termination codons (PTCs) in a translation-dependent manner and subsequently triggering mRNA degradation. Multiple factors assist Upf1 during these two consecutive steps. In Saccharomyces cerevisiae, Upf2 and Upf3 associated with Upf1 (Upf1-2/3) contribute to PTC recognition but are absent from the Upf1-decapping complex that includes Nmd4, Ebs1, Dcp1, and Dcp2. Despite their importance for NMD, the organization and dynamics of these Upf1-containing complexes remain unclear. Using recombinant proteins, here we show how distinct domains of Upf1 make direct contacts with Dcp1/Dcp2, Nmd4, and Ebs1. These proteins also bind to each other, forming an extended network of interactions within the Upf1-decapping complex. Dcp2 and Upf2 compete for the same binding site on the N-terminal CH domain of Upf1, which explains the presence of two mutually exclusive Upf1-containing complexes in cells. Our data demonstrate that Nmd4-assisted recruitment of Upf1 promotes anchoring of the decapping enzyme to NMD targets.
Collapse
Affiliation(s)
- Nadia Ruiz-Gutierrez
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 46 rue d’Ulm, 75005 Paris, France
| | - Jeanne Dupas
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 46 rue d’Ulm, 75005 Paris, France
| | - Elvire Auquier
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 46 rue d’Ulm, 75005 Paris, France
| | - Irène Barbarin-Bocahu
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Claudine Gaudon-Plesse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM, U1258, Université de Strasbourg, Illkirch, France
| | - Cosmin Saveanu
- Institut Pasteur, Université Paris Cité, Unité de Biologie des ARN des Pathogènes Fongiques, 75015 Paris, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Hervé Le Hir
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 46 rue d’Ulm, 75005 Paris, France
| |
Collapse
|
5
|
Zhang X, Kebaara BW. Nonsense-mediated mRNA decay of metal-binding activator MAC1 is dependent on copper levels and 3'-UTR length in Saccharomyces cerevisiae. Curr Genet 2024; 70:5. [PMID: 38709348 DOI: 10.1007/s00294-024-01291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway was initially identified as a surveillance pathway that degrades mRNAs containing premature termination codons (PTCs). NMD is now also recognized as a post-transcriptional regulatory pathway that regulates the expression of natural mRNAs. Earlier studies demonstrated that regulation of functionally related natural mRNAs by NMD can be differential and condition-specific in Saccharomyces cerevisiae. Here, we investigated the regulation of MAC1 mRNAs by NMD in response to copper as well as the role the MAC1 3'-UTR plays in this regulation. MAC1 is a copper-sensing transcription factor that regulates the high-affinity copper uptake system. MAC1 expression is activated upon copper deprivation. We found that MAC1 mRNAs are regulated by NMD under complete minimal (CM) but escaped NMD under low and high copper conditions. Mac1 protein regulated gene, CTR1 is not regulated by NMD in conditions where MAC1 mRNAs are NMD sensitive. We also found that the MAC1 3'-UTR is the NMD targeting feature on the mRNAs, and that MAC1 mRNAs lacking 3'-UTRs were stabilized during copper deprivation. Our results demonstrate a mechanism of regulation for a metal-sensing transcription factor, at both the post-transcriptional and post-translational levels, where MAC1 mRNA levels are regulated by NMD and copper, while the activity of Mac1p is controlled by copper levels.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX, 76798, USA
| | - Bessie W Kebaara
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX, 76798, USA.
| |
Collapse
|
6
|
Alalam H, Zepeda-Martínez JA, Sunnerhagen P. Global SLAM-seq for accurate mRNA decay determination and identification of NMD targets. RNA (NEW YORK, N.Y.) 2022; 28:905-915. [PMID: 35296539 PMCID: PMC9074897 DOI: 10.1261/rna.079077.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Gene expression analysis requires accurate measurements of global RNA degradation rates, earlier problematic with methods disruptive to cell physiology. Recently, metabolic RNA labeling emerged as an efficient and minimally invasive technique applied in mammalian cells. Here, we have adapted SH-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) for a global mRNA stability study in yeast using 4-thiouracil pulse-chase labeling. We assign high-confidence half-life estimates for 67.5% of expressed ORFs, and measure a median half-life of 9.4 min. For mRNAs where half-life estimates exist in the literature, their ranking order was in good agreement with previous data, indicating that SLAM-seq efficiently classifies stable and unstable transcripts. We then leveraged our yeast protocol to identify targets of the nonsense-mediated decay (NMD) pathway by measuring the change in RNA half-lives, instead of steady-state RNA level changes. With SLAM-seq, we assign 580 transcripts as putative NMD targets, based on their measured half-lives in wild-type and upf3Δ mutants. We find 225 novel targets, and observe a strong agreement with previous reports of NMD targets, 61.2% of our candidates being identified in previous studies. This indicates that SLAM-seq is a simpler and more economic method for global quantification of mRNA half-lives. Our adaptation for yeast yielded global quantitative measures of the NMD effect on transcript half-lives, high correlation with RNA half-lives measured previously with more technically challenging protocols, and identification of novel NMD regulated transcripts that escaped prior detection.
Collapse
Affiliation(s)
- Hanna Alalam
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, S-405 30 Göteborg, Sweden
| | | | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, S-405 30 Göteborg, Sweden
| |
Collapse
|
7
|
Gilbert A, Saveanu C. Unusual SMG suspects recruit degradation enzymes in nonsense-mediated mRNA decay. Bioessays 2022; 44:e2100296. [PMID: 35266563 DOI: 10.1002/bies.202100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Degradation of eukaryotic RNAs that contain premature termination codons (PTC) during nonsense-mediated mRNA decay (NMD) is initiated by RNA decapping or endonucleolytic cleavage driven by conserved factors. Models for NMD mechanisms, including recognition of PTCs or the timing and role of protein phosphorylation for RNA degradation are challenged by new results. For example, the depletion of the SMG5/7 heterodimer, thought to activate RNA degradation by decapping, leads to a phenotype showing a defect of endonucleolytic activity of NMD complexes. This phenotype is not correlated to a decreased binding of the endonuclease SMG6 with the core NMD factor UPF1, suggesting that it is the result of an imbalance between active (e.g., in polysomes) and inactive (e.g., in RNA-protein condensates) states of NMD complexes. Such imbalance between multiple complexes is not restricted to NMD and should be taken into account when establishing causal links between gene function perturbation and observed phenotypes.
Collapse
Affiliation(s)
- Agathe Gilbert
- Institut Pasteur, Sorbonne Université, CNRS UMR-3525, Paris, F-75015, France
| | - Cosmin Saveanu
- Institut Pasteur, Sorbonne Université, CNRS UMR-3525, Paris, F-75015, France
| |
Collapse
|
8
|
Zhang X, Kebaara BW. Nonsense-mediated mRNA decay and metal ion homeostasis and detoxification in Saccharomyces cerevisiae. Biometals 2022; 35:1145-1156. [PMID: 36255607 PMCID: PMC9674712 DOI: 10.1007/s10534-022-00450-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
The highly conserved Nonsense-mediated mRNA decay (NMD) pathway is a translation dependent mRNA degradation pathway. Although NMD is best known for its role in degrading mRNAs with premature termination codons (PTCs) generated during transcription, splicing, or damage to the mRNAs, NMD is now also recognized as a pathway with additional important functions. Notably, NMD precisely regulates protein coding natural mRNAs, hence controlling gene expression within several physiologically significant pathways. Such pathways affected by NMD include nutritional bio-metal homeostasis and metal ion detoxification, as well as crosstalk between these pathways. Here, we focus on the relationships between NMD and various metal homeostasis and detoxification pathways. We review the described role that the NMD pathway plays in magnesium, zinc, iron, and copper homeostasis, as well as cadmium detoxification.
Collapse
Affiliation(s)
- Xinyi Zhang
- grid.252890.40000 0001 2111 2894Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798 USA
| | - Bessie W. Kebaara
- grid.252890.40000 0001 2111 2894Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798 USA
| |
Collapse
|
9
|
Andjus S, Morillon A, Wery M. From Yeast to Mammals, the Nonsense-Mediated mRNA Decay as a Master Regulator of Long Non-Coding RNAs Functional Trajectory. Noncoding RNA 2021; 7:ncrna7030044. [PMID: 34449682 PMCID: PMC8395947 DOI: 10.3390/ncrna7030044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022] Open
Abstract
The Nonsense-Mediated mRNA Decay (NMD) has been classically viewed as a translation-dependent RNA surveillance pathway degrading aberrant mRNAs containing premature stop codons. However, it is now clear that mRNA quality control represents only one face of the multiple functions of NMD. Indeed, NMD also regulates the physiological expression of normal mRNAs, and more surprisingly, of long non-coding (lnc)RNAs. Here, we review the different mechanisms of NMD activation in yeast and mammals, and we discuss the molecular bases of the NMD sensitivity of lncRNAs, considering the functional roles of NMD and of translation in the metabolism of these transcripts. In this regard, we describe several examples of functional micropeptides produced from lncRNAs. We propose that translation and NMD provide potent means to regulate the expression of lncRNAs, which might be critical for the cell to respond to environmental changes.
Collapse
Affiliation(s)
- Sara Andjus
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL University, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France;
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France
- Correspondence: (A.M.); (M.W.)
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France
- Correspondence: (A.M.); (M.W.)
| |
Collapse
|
10
|
Grosse S, Lu YY, Coban I, Neumann B, Krebber H. Nuclear SR-protein mediated mRNA quality control is continued in cytoplasmic nonsense-mediated decay. RNA Biol 2021; 18:1390-1407. [PMID: 33406982 PMCID: PMC8489946 DOI: 10.1080/15476286.2020.1851506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One important task of eukaryotic cells is to translate only mRNAs that were correctly processed to prevent the production of truncated proteins, found in neurodegenerative diseases and cancer. Nuclear quality control of splicing requires the SR-like proteins Gbp2 and Hrb1 in S. cerevisiae, where they promote the degradation of faulty pre-mRNAs. Here we show that Gbp2 and Hrb1 also function in nonsense mediated decay (NMD) of spliced premature termination codon (PTC)-containing mRNAs. Our data support a model in which they are in a complex with the Upf-proteins and help to transmit the Upf1-mediated PTC recognition to the transcripts ends. Most importantly they appear to promote translation repression of spliced transcripts that contain a PTC and to finally facilitate degradation of the RNA, presumably by supporting the recruitment of the degradation factors. Therefore, they seem to control mRNA quality beyond the nuclear border and may thus be global surveillance factors. Identification of SR-proteins as general cellular surveillance factors in yeast will help to understand the complex human system in which many diseases with defects in SR-proteins or NMD are known, but the proteins were not yet recognized as general RNA surveillance factors.
Collapse
Affiliation(s)
- Sebastian Grosse
- Abteilung Für Molekulare Genetik, Institut Für Mikrobiologie Und Genetik, Göttinger Zentrum Für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Yen-Yun Lu
- Abteilung Für Molekulare Genetik, Institut Für Mikrobiologie Und Genetik, Göttinger Zentrum Für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Ivo Coban
- Abteilung Für Molekulare Genetik, Institut Für Mikrobiologie Und Genetik, Göttinger Zentrum Für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Bettina Neumann
- Abteilung Für Molekulare Genetik, Institut Für Mikrobiologie Und Genetik, Göttinger Zentrum Für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung Für Molekulare Genetik, Institut Für Mikrobiologie Und Genetik, Göttinger Zentrum Für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Lavysh D, Neu-Yilik G. UPF1-Mediated RNA Decay-Danse Macabre in a Cloud. Biomolecules 2020; 10:E999. [PMID: 32635561 PMCID: PMC7407380 DOI: 10.3390/biom10070999] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) is the prototype example of a whole family of RNA decay pathways that unfold around a common central effector protein called UPF1. While NMD in yeast appears to be a linear pathway, NMD in higher eukaryotes is a multifaceted phenomenon with high variability with respect to substrate RNAs, degradation efficiency, effector proteins and decay-triggering RNA features. Despite increasing knowledge of the mechanistic details, it seems ever more difficult to define NMD and to clearly distinguish it from a growing list of other UPF1-mediated RNA decay pathways (UMDs). With a focus on mammalian, we here critically examine the prevailing NMD models and the gaps and inconsistencies in these models. By exploring the minimal requirements for NMD and other UMDs, we try to elucidate whether they are separate and definable pathways, or rather variations of the same phenomenon. Finally, we suggest that the operating principle of the UPF1-mediated decay family could be considered similar to that of a computing cloud providing a flexible infrastructure with rapid elasticity and dynamic access according to specific user needs.
Collapse
Affiliation(s)
- Daria Lavysh
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany;
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
- Department Clinical Pediatric Oncology, Hopp Kindertumorzentrum am NCT Heidelberg, 69120 Heidelberg, Germany
| | - Gabriele Neu-Yilik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany;
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
- Department Clinical Pediatric Oncology, Hopp Kindertumorzentrum am NCT Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Pereira R, Wei Y, Mohamed E, Radi M, Malina C, Herrgård MJ, Feist AM, Nielsen J, Chen Y. Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metab Eng 2019; 56:130-141. [DOI: 10.1016/j.ymben.2019.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022]
|
13
|
Peccarelli M, Scott TD, Kebaara BW. Nonsense-mediated mRNA decay of the ferric and cupric reductase mRNAs FRE1 and FRE2 in Saccharomyces cerevisiae. FEBS Lett 2019; 593:3228-3238. [PMID: 31322728 DOI: 10.1002/1873-3468.13545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 01/02/2023]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway regulates mRNAs that aberrantly terminate translation. This includes aberrant mRNAs and functional natural mRNAs. Natural mRNA degradation by NMD is triggered by mRNA features and environmental cues. Saccharomyces cerevisiae encodes multiple proteins with ferric and cupric reductase activity. Here, we examined the regulation by NMD of two mRNAs, FRE1 and FRE2, encoding ferric and cupric reductases in S. cerevisiae. We found that FRE2 mRNAs are regulated by NMD under noninducing conditions and that the FRE2 3'-UTR contributes to the degradation of the mRNAs by NMD. Conversely, FRE1 mRNAs are not regulated by NMD under comparable conditions. These findings suggest that regulation of functionally related mRNAs by NMD can be differential and conditional.
Collapse
|
14
|
Iacovella MG, Bremang M, Basha O, Giacò L, Carotenuto W, Golfieri C, Szakal B, Dal Maschio M, Infantino V, Beznoussenko GV, Joseph CR, Visintin C, Mironov AA, Visintin R, Branzei D, Ferreira-Cerca S, Yeger-Lotem E, De Wulf P. Integrating Rio1 activities discloses its nutrient-activated network in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 46:7586-7611. [PMID: 30011030 PMCID: PMC6125641 DOI: 10.1093/nar/gky618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
The Saccharomyces cerevisiae kinase/adenosine triphosphatase Rio1 regulates rDNA transcription and segregation, pre-rRNA processing and small ribosomal subunit maturation. Other roles are unknown. When overexpressed, human ortholog RIOK1 drives tumor growth and metastasis. Likewise, RIOK1 promotes 40S ribosomal subunit biogenesis and has not been characterized globally. We show that Rio1 manages directly and via a series of regulators, an essential signaling network at the protein, chromatin and RNA levels. Rio1 orchestrates growth and division depending on resource availability, in parallel to the nutrient-activated Tor1 kinase. To define the Rio1 network, we identified its physical interactors, profiled its target genes/transcripts, mapped its chromatin-binding sites and integrated our data with yeast’s protein–protein and protein–DNA interaction catalogs using network computation. We experimentally confirmed network components and localized Rio1 also to mitochondria and vacuoles. Via its network, Rio1 commands protein synthesis (ribosomal gene expression, assembly and activity) and turnover (26S proteasome expression), and impinges on metabolic, energy-production and cell-cycle programs. We find that Rio1 activity is conserved to humans and propose that pathological RIOK1 may fuel promiscuous transcription, ribosome production, chromosomal instability, unrestrained metabolism and proliferation; established contributors to cancer. Our study will advance the understanding of numerous processes, here revealed to depend on Rio1 activity.
Collapse
Affiliation(s)
- Maria G Iacovella
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Michael Bremang
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.,Current address: Proteome Sciences Plc, Hamilton House, Mabledon Place, London, United Kingdom
| | - Omer Basha
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | - Luciano Giacò
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Walter Carotenuto
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Cristina Golfieri
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Barnabas Szakal
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Marianna Dal Maschio
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Valentina Infantino
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Galina V Beznoussenko
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Chinnu R Joseph
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Clara Visintin
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Alexander A Mironov
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Rosella Visintin
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Dana Branzei
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy.,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Sébastien Ferreira-Cerca
- Lehrstuhl für Biochemie III, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | - Peter De Wulf
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.,Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
15
|
Ri H, Lee J, Sonn JY, Yoo E, Lim C, Choe J. Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors. Mol Cells 2019; 42:301-312. [PMID: 31091556 PMCID: PMC6530642 DOI: 10.14348/molcells.2019.2451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5 ) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB ) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.
Collapse
Affiliation(s)
- Hwajung Ri
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jongbin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jun Young Sonn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Eunseok Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
16
|
Karousis ED, Mühlemann O. Nonsense-Mediated mRNA Decay Begins Where Translation Ends. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032862. [PMID: 29891560 DOI: 10.1101/cshperspect.a032862] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is arguably the best-studied eukaryotic messenger RNA (mRNA) surveillance pathway, yet fundamental questions concerning the molecular mechanism of target RNA selection remain unsolved. Besides degrading defective mRNAs harboring premature termination codons (PTCs), NMD also targets many mRNAs encoding functional full-length proteins. Thus, NMD impacts on a cell's transcriptome and is implicated in a range of biological processes that affect a broad spectrum of cellular homeostasis. Here, we focus on the steps involved in the recognition of NMD targets and the activation of NMD. We summarize the accumulating evidence that tightly links NMD to translation termination and we further discuss the recruitment and activation of the mRNA degradation machinery and the regulation of this complex series of events. Finally, we review emerging ideas concerning the mechanistic details of NMD activation and the potential role of NMD as a general surveyor of translation efficacy.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
17
|
Ganesan R, Leszyk J, Jacobson A. Selective profiling of ribosomes associated with yeast Upf proteins. Methods 2018; 155:58-67. [PMID: 30593864 DOI: 10.1016/j.ymeth.2018.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
Ribosomes associated with nonsense-mediated decay factors Upf1, Upf2, or Upf3 were purified by immunoprecipitation, and enrichment and stoichiometry of Upf factors and ribosomal proteins were analyzed by western blot and mass spectrometry. Using a small RNA library preparation protocol that eliminates in-gel RNA and cDNA size selection and incorporates four random nucleotides on each side of the ribosome-protected RNA fragment allowed recovery, detection, and analysis of all size classes of protected fragments from a sample simultaneously.
Collapse
Affiliation(s)
- Robin Ganesan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, United States
| | - John Leszyk
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, United States
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, United States.
| |
Collapse
|
18
|
Dehecq M, Decourty L, Namane A, Proux C, Kanaan J, Le Hir H, Jacquier A, Saveanu C. Nonsense-mediated mRNA decay involves two distinct Upf1-bound complexes. EMBO J 2018; 37:embj.201899278. [PMID: 30275269 DOI: 10.15252/embj.201899278] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA degradation pathway involved in many cellular pathways and crucial for telomere maintenance and embryo development. Core NMD factors Upf1, Upf2 and Upf3 are conserved from yeast to mammals, but a universal NMD model is lacking. We used affinity purification coupled with mass spectrometry and an improved data analysis protocol to characterize the composition and dynamics of yeast NMD complexes in yeast (112 experiments). Unexpectedly, we identified two distinct complexes associated with Upf1: Upf1-23 (Upf1, Upf2, Upf3) and Upf1-decapping Upf1-decapping contained the mRNA decapping enzyme, together with Nmd4 and Ebs1, two proteins that globally affected NMD and were critical for RNA degradation mediated by the Upf1 C-terminal helicase region. The fact that Nmd4 association with RNA was partially dependent on Upf1-23 components and the similarity between Nmd4/Ebs1 and mammalian Smg5-7 proteins suggest that NMD operates through conserved, successive Upf1-23 and Upf1-decapping complexes. This model can be extended to accommodate steps that are missing in yeast, to serve for further mechanistic studies of NMD in eukaryotes.
Collapse
Affiliation(s)
- Marine Dehecq
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Laurence Decourty
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| | - Abdelkader Namane
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| | - Caroline Proux
- Transcriptome and Epigenome, CITECH, Institut Pasteur, Paris, France
| | - Joanne Kanaan
- Expression des ARN Messagers Eucaryotes, Biology Department, CNRS UMR8197, Inserm U1024, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | - Hervé Le Hir
- Expression des ARN Messagers Eucaryotes, Biology Department, CNRS UMR8197, Inserm U1024, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | - Alain Jacquier
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| | - Cosmin Saveanu
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| |
Collapse
|
19
|
Muir VS, Gasch AP, Anderson P. The Substrates of Nonsense-Mediated mRNA Decay in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2018; 8:195-205. [PMID: 29122854 PMCID: PMC5765348 DOI: 10.1534/g3.117.300254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved pathway that strongly influences eukaryotic gene expression. Inactivating or inhibiting NMD affects the abundance of a substantial fraction of the transcriptome in numerous species. Transcripts whose abundance is altered in NMD-deficient cells may represent either direct substrates of NMD or indirect effects of inhibiting NMD. We present a genome-wide investigation of the direct substrates of NMD in Caenorhabditis elegans Our goals were (i) to identify mRNA substrates of NMD and (ii) to distinguish those mRNAs from others whose abundance is indirectly influenced by the absence of NMD. We previously demonstrated that Upf1p/SMG-2, the central effector of NMD in all studied eukaryotes, preferentially associates with mRNAs that contain premature translation termination codons. We used this preferential association to distinguish direct from indirect effects by coupling immunopurification of Upf1/SMG-2 with high-throughput mRNA sequencing of NMD-deficient mutants and NMD-proficient controls. We identify 680 substrates of NMD, 171 of which contain novel spliced forms that (i) include sequences of annotated introns and (ii) have not been previously documented in the C. elegans transcriptome. NMD degrades unproductively spliced mRNAs with sufficient efficiency in NMD-proficient strains that such mRNAs were not previously known. Two classes of genes are enriched among the identified NMD substrates: (i) mRNAs of expressed pseudogenes and (ii) mRNAs of gene families whose gene number has recently expanded in the C. elegans genome. Our results identify novel NMD substrates and provide a context for understanding NMD's role in normal gene expression and genome evolution.
Collapse
Affiliation(s)
- Virginia S Muir
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Philip Anderson
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
20
|
Qu YJ, Ge L, Bai JL, Cao YY, Jin YW, Wang H, Yang L, Song F. p.Val19Glyfs*21 and p.Leu228* variants in the survival of motor neuron 1 trigger nonsense-mediated mRNA decay causing the SMN1 PTC+ transcripts degradation. Mutat Res 2017; 806:31-38. [PMID: 28950212 DOI: 10.1016/j.mrfmmm.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/24/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Spinal Muscular Atrophy (SMA) results from loss-of-function mutations in the survival of motor neuron 1 (SMN1) gene. Our previous research showed that 40% of variants were nonsense or frameshift variants and SMN1 mRNA levels in the patients carrying these variants were significantly decreased. Here we selected one rare variant (p.Val19Glyfs*21) and one common variant (p.Leu228*) to explore the degradation mechanism of mutant transcripts. The levels of full-length (FL)-SMN1 transcripts and SMN protein in the cell lines from the patients with these variants were both significantly reduced (p<0.01). Treatment with two translation inhibitors (puromycin and Cycloheximide (CHX)) markedly increased the levels of FL-SMN1 transcripts with premature translation termination codons (PTCs) (p<0.01) and showed time-dependent (10h>5.5h) but not dose-dependent effects. Moreover, the knockdown of UPF1, a key factor in nonsense-mediated mRNA decay (NMD) by lentivirus, led to a 3.1-fold increase (p<0.01) in FL-SMN1 transcript levels in patient fibroblasts. Our research provides evidence that these two PTC-generating variants (p.Val19Glyfs*21 and p.Leu228*) can trigger NMD, causing rapid degradation of SMN1 transcripts thereby resulting in SMN protein deficiency. These two variants are highly pathogenic and are associated with more severe SMA phenotypes. Varying NMD efficiency after treatment with puromycin and CHX in different cell types was also observed.
Collapse
Affiliation(s)
- Yu-Jin Qu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Lin Ge
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jin-Li Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Yan-Yan Cao
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Yu-Wei Jin
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Hong Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Lan Yang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Fang Song
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
21
|
Celik A, Baker R, He F, Jacobson A. High-resolution profiling of NMD targets in yeast reveals translational fidelity as a basis for substrate selection. RNA (NEW YORK, N.Y.) 2017; 23:735-748. [PMID: 28209632 PMCID: PMC5393182 DOI: 10.1261/rna.060541.116] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/09/2017] [Indexed: 05/20/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) plays an important role in eukaryotic gene expression, yet the scope and the defining features of NMD-targeted transcripts remain elusive. To address these issues, we reevaluated the genome-wide expression of annotated transcripts in yeast cells harboring deletions of the UPF1, UPF2, or UPF3 genes. Our new RNA-seq analyses confirm previous results of microarray studies, but also uncover hundreds of new NMD-regulated transcripts that had escaped previous detection, including many intron-containing pre-mRNAs and several noncoding RNAs. The vast majority of NMD-regulated transcripts are normal-looking protein-coding mRNAs. Our bioinformatics analyses reveal that this set of NMD-regulated transcripts generally have lower translational efficiency and higher ratios of out-of-frame translation. NMD-regulated transcripts also have lower average codon optimality scores and higher transition probability to nonoptimal codons. Collectively, our results generate a comprehensive catalog of yeast NMD substrates and yield new insights into the mechanisms by which these transcripts are targeted by NMD.
Collapse
Affiliation(s)
- Alper Celik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Richard Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
22
|
Colombo M, Karousis ED, Bourquin J, Bruggmann R, Mühlemann O. Transcriptome-wide identification of NMD-targeted human mRNAs reveals extensive redundancy between SMG6- and SMG7-mediated degradation pathways. RNA (NEW YORK, N.Y.) 2017; 23:189-201. [PMID: 27864472 PMCID: PMC5238794 DOI: 10.1261/rna.059055.116] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/05/2016] [Indexed: 05/02/2023]
Abstract
Besides degrading aberrant mRNAs that harbor a premature translation termination codon (PTC), nonsense-mediated mRNA decay (NMD) also targets many seemingly "normal" mRNAs that encode for full-length proteins. To identify a bona fide set of such endogenous NMD targets in human cells, we applied a meta-analysis approach in which we combined transcriptome profiling of knockdowns and rescues of the three NMD factors UPF1, SMG6, and SMG7. We provide evidence that this combinatorial approach identifies NMD-targeted transcripts more reliably than previous attempts that focused on inactivation of single NMD factors. Our data revealed that SMG6 and SMG7 act on essentially the same transcripts, indicating extensive redundancy between the endo- and exonucleolytic decay routes. Besides mRNAs, we also identified as NMD targets many long noncoding RNAs as well as miRNA and snoRNA host genes. The NMD target feature with the most predictive value is an intron in the 3' UTR, followed by the presence of upstream open reading frames (uORFs) and long 3' UTRs. Furthermore, the 3' UTRs of NMD-targeted transcripts tend to have an increased GC content and to be phylogenetically less conserved when compared to 3' UTRs of NMD insensitive transcripts.
Collapse
Affiliation(s)
- Martino Colombo
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Evangelos D Karousis
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | - Joël Bourquin
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, CH-3012 Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
23
|
Johansson MJO. Determining if an mRNA is a Substrate of Nonsense-Mediated mRNA Decay in Saccharomyces cerevisiae. Methods Mol Biol 2017; 1507:169-177. [PMID: 27832540 DOI: 10.1007/978-1-4939-6518-2_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic quality control mechanism which triggers decay of mRNAs harboring premature translation termination codons. In this chapter, I describe methods for monitoring the influence of NMD on mRNA abundance and decay rates in Saccharomyces cerevisiae. The descriptions include detailed methods for growing yeast cells, total RNA isolation, and Northern blotting. Although the chapter focuses on NMD, the methods can be easily adapted to assess the effect of other mRNA decay pathways.
Collapse
|
24
|
Lucas C, Ferreira C, Cazzanelli G, Franco-Duarte R, Tulha J, Roelink H, Conway SJ. Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications. J Dev Biol 2016; 4:E33. [PMID: 29615596 PMCID: PMC5831804 DOI: 10.3390/jdb4040033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information.
Collapse
Affiliation(s)
- Cândida Lucas
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Célia Ferreira
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Giulia Cazzanelli
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Ricardo Franco-Duarte
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Joana Tulha
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | | | | |
Collapse
|
25
|
Grudzien-Nogalska E, Kiledjian M. New insights into decapping enzymes and selective mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27425147 DOI: 10.1002/wrna.1379] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 01/04/2023]
Abstract
Removal of the 5' end cap is a critical determinant controlling mRNA stability and efficient gene expression. Removal of the cap is exquisitely controlled by multiple direct and indirect regulators that influence association with the cap and the catalytic step. A subset of these factors directly stimulate activity of the decapping enzyme, while others influence remodeling of factors bound to mRNA and indirectly stimulate decapping. Furthermore, the components of the general decapping machinery can also be recruited by mRNA-specific regulatory proteins to activate decapping. The Nudix hydrolase, Dcp2, identified as a first decapping enzyme, cleaves capped mRNA and initiates 5'-3' degradation. Extensive studies on Dcp2 led to broad understanding of its activity and the regulation of transcript specific decapping and decay. Interestingly, seven additional Nudix proteins possess intrinsic decapping activity in vitro and at least two, Nudt16 and Nudt3, are decapping enzymes that regulate mRNA stability in cells. Furthermore, a new class of decapping proteins within the DXO family preferentially function on incompletely capped mRNAs. Importantly, it is now evident that each of the characterized decapping enzymes predominantly modulates only a subset of mRNAs, suggesting the existence of multiple decapping enzymes functioning in distinct cellular pathways. WIREs RNA 2017, 8:e1379. doi: 10.1002/wrna.1379 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ewa Grudzien-Nogalska
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
26
|
Redefining the Translational Status of 80S Monosomes. Cell 2016; 164:757-69. [PMID: 26871635 DOI: 10.1016/j.cell.2016.01.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/20/2015] [Accepted: 12/23/2015] [Indexed: 11/20/2022]
Abstract
Fully assembled ribosomes exist in two populations: polysomes and monosomes. While the former has been studied extensively, to what extent translation occurs on monosomes and its importance for overall translational output remain controversial. Here, we used ribosome profiling to examine the translational status of 80S monosomes in Saccharomyces cerevisiae. We found that the vast majority of 80S monosomes are elongating, not initiating. Further, most mRNAs exhibit some degree of monosome occupancy, with monosomes predominating on nonsense-mediated decay (NMD) targets, upstream open reading frames (uORFs), canonical ORFs shorter than ∼ 590 nt, and ORFs for which the total time required to complete elongation is substantially shorter than that required for initiation. Importantly, mRNAs encoding low-abundance regulatory proteins tend to be enriched in the monosome fraction. Our data highlight the importance of monosomes for the translation of highly regulated mRNAs.
Collapse
|
27
|
Janke R, Kong J, Braberg H, Cantin G, Yates JR, Krogan NJ, Heyer WD. Nonsense-mediated decay regulates key components of homologous recombination. Nucleic Acids Res 2016; 44:5218-30. [PMID: 27001511 PMCID: PMC4914092 DOI: 10.1093/nar/gkw182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/29/2022] Open
Abstract
Cells frequently experience DNA damage that requires repair by homologous recombination (HR). Proteins involved in HR are carefully coordinated to ensure proper and efficient repair without interfering with normal cellular processes. In Saccharomyces cerevisiae, Rad55 functions in the early steps of HR and is regulated in response to DNA damage through phosphorylation by the Mec1 and Rad53 kinases of the DNA damage response. To further identify regulatory processes that target HR, we performed a high-throughput genetic interaction screen with RAD55 phosphorylation site mutants. Genes involved in the mRNA quality control process, nonsense-mediated decay (NMD), were found to genetically interact with rad55 phospho-site mutants. Further characterization revealed that RAD55 transcript and protein levels are regulated by NMD. Regulation of HR by NMD extends to multiple targets beyond RAD55, including RAD51, RAD54 and RAD57 Finally, we demonstrate that loss of NMD results in an increase in recombination rates and resistance to the DNA damaging agent methyl methanesulfonate, suggesting this pathway negatively regulates HR under normal growth conditions.
Collapse
Affiliation(s)
- Ryan Janke
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA 95616-8665, USA
| | - Jeremy Kong
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA 95616-8665, USA
| | - Hannes Braberg
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158-2517, USA
| | - Greg Cantin
- Department of Cell Biology, SR-11, Scripps Research institute, La Jolla, CA 92307, USA
| | - John R Yates
- Department of Cell Biology, SR-11, Scripps Research institute, La Jolla, CA 92307, USA
| | - Nevan J Krogan
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158-2517, USA California Institute for Quantitative Biosciences, QB3, San Francisco, CA 94158-2517, USA J. David Gladstone Institute, San Francisco, CA, 94158-2517, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA 95616-8665, USA Department of Molecular & Cellular Biology University of California, Davis, CA 95616-8665, USA
| |
Collapse
|
28
|
Brogna S, McLeod T, Petric M. The Meaning of NMD: Translate or Perish. Trends Genet 2016; 32:395-407. [PMID: 27185236 DOI: 10.1016/j.tig.2016.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/02/2016] [Accepted: 04/25/2016] [Indexed: 02/08/2023]
Abstract
Premature translation termination leads to a reduced mRNA level in all types of organisms. In eukaryotes, the phenomenon is known as nonsense-mediated mRNA decay (NMD). This is commonly regarded as the output of a specific surveillance and destruction mechanism that is activated by the presence of a premature translation termination codon (PTC) in an atypical sequence context. Despite two decades of research, it is still unclear how NMD discriminates between PTCs and normal stop codons. We suggest that cells do not possess any such mechanism and instead propose a new model in which this mRNA depletion is a consequence of the appearance of long tracts of mRNA that are unprotected by scanning ribosomes.
Collapse
Affiliation(s)
- Saverio Brogna
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK.
| | - Tina McLeod
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK
| | - Marija Petric
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
29
|
Karousis ED, Nasif S, Mühlemann O. Nonsense-mediated mRNA decay: novel mechanistic insights and biological impact. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:661-82. [PMID: 27173476 PMCID: PMC6680220 DOI: 10.1002/wrna.1357] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022]
Abstract
Nonsense‐mediated mRNA decay (NMD) was originally coined to define a quality control mechanism that targets mRNAs with truncated open reading frames due to the presence of a premature termination codon. Meanwhile, it became clear that NMD has a much broader impact on gene expression and additional biological functions beyond quality control are continuously being discovered. We review here the current views regarding the molecular mechanisms of NMD, according to which NMD ensues on mRNAs that fail to terminate translation properly, and point out the gaps in our understanding. We further summarize the recent literature on an ever‐rising spectrum of biological processes in which NMD appears to be involved, including homeostatic control of gene expression, development and differentiation, as well as viral defense. WIREs RNA 2016, 7:661–682. doi: 10.1002/wrna.1357 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability
Collapse
Affiliation(s)
| | - Sofia Nasif
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Cui P, Chen T, Qin T, Ding F, Wang Z, Chen H, Xiong L. The RNA Polymerase II C-Terminal Domain Phosphatase-Like Protein FIERY2/CPL1 Interacts with eIF4AIII and Is Essential for Nonsense-Mediated mRNA Decay in Arabidopsis. THE PLANT CELL 2016; 28:770-85. [PMID: 26887918 PMCID: PMC4826008 DOI: 10.1105/tpc.15.00771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/04/2016] [Accepted: 02/15/2016] [Indexed: 05/18/2023]
Abstract
Nonsense-mediated decay (NMD) is a posttranscriptional surveillance mechanism in eukaryotes that recognizes and degrades transcripts with premature translation-termination codons. The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2 (FRY2; also known as C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 [CPL1]) plays multiple roles in RNA processing in Arabidopsis thaliana Here, we found that FRY2/CPL1 interacts with two NMD factors, eIF4AIII and UPF3, and is involved in the dephosphorylation of eIF4AIII. This dephosphorylation retains eIF4AIII in the nucleus and limits its accumulation in the cytoplasm. By analyzing RNA-seq data combined with quantitative RT-PCR validation, we found that a subset of alternatively spliced transcripts and 5'-extended mRNAs with NMD-eliciting features accumulated in the fry2-1 mutant, cycloheximide-treated wild type, and upf3 mutant plants, indicating that FRY2 is essential for the degradation of these NMD transcripts.
Collapse
Affiliation(s)
- Peng Cui
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Tao Chen
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Tao Qin
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Feng Ding
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zhenyu Wang
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Hao Chen
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Liming Xiong
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
31
|
Peccarelli M, Scott TD, Steele M, Kebaara BW. mRNAs involved in copper homeostasis are regulated by the nonsense-mediated mRNA decay pathway depending on environmental conditions. Fungal Genet Biol 2016; 86:81-90. [DOI: 10.1016/j.fgb.2015.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/20/2022]
|
32
|
Target Discrimination in Nonsense-Mediated mRNA Decay Requires Upf1 ATPase Activity. Mol Cell 2015; 59:413-25. [PMID: 26253027 DOI: 10.1016/j.molcel.2015.06.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/27/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022]
Abstract
RNA quality-control pathways get rid of faulty RNAs and therefore must be able to discriminate these RNAs from those that are normal. Here we present evidence that the adenosine triphosphatase (ATPase) cycle of the SF1 helicase Upf1 is required for mRNA discrimination during nonsense-mediated decay (NMD). Mutations affecting the Upf1 ATPase cycle disrupt the mRNA selectivity of Upf1, leading to indiscriminate accumulation of NMD complexes on both NMD target and non-target mRNAs. In addition, two modulators of NMD-translation and termination codon-proximal poly(A) binding protein-depend on the ATPase activity of Upf1 to limit Upf1-non-target association. Preferential ATPase-dependent dissociation of Upf1 from non-target mRNAs in vitro suggests that selective release of Upf1 contributes to the ATPase dependence of Upf1 target discrimination. Given the prevalence of helicases in RNA regulation, ATP hydrolysis may be a widely used activity in target RNA discrimination.
Collapse
|
33
|
Shaul O. Unique Aspects of Plant Nonsense-Mediated mRNA Decay. TRENDS IN PLANT SCIENCE 2015; 20:767-779. [PMID: 26442679 DOI: 10.1016/j.tplants.2015.08.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 05/20/2023]
Abstract
Nonsense-mediated mRNA Decay (NMD) is a eukaryotic quality-control mechanism that governs the stability of both aberrant and normal transcripts. Although plant and mammalian NMD share great similarity, they differ in certain mechanistic and regulatory aspects. Whereas SMG6 (from Caenorhabditis elegans 'suppressor with morphogenetic effect on genitalia')-catalyzed endonucleolytic cleavage is a prominent step in mammalian NMD, plant NMD targets are degraded by an SMG7-induced exonucleolytic pathway. Both mammalian and plant NMD are downregulated by stress, thereby enhancing the expression of defense response genes. However, the target genes and processes affected differ. Several plant and mammalian NMD factors are regulated by negative feedback-loops. However, while the loop regulating UPF3 (up-frameshift 3) expression in not vital for mammalian NMD, the sensitivity of UPF3 to NMD is crucial for the overall regulation of plant NMD.
Collapse
Affiliation(s)
- Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
34
|
He F, Jacobson A. Nonsense-Mediated mRNA Decay: Degradation of Defective Transcripts Is Only Part of the Story. Annu Rev Genet 2015; 49:339-66. [PMID: 26436458 DOI: 10.1146/annurev-genet-112414-054639] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance mechanism that monitors cytoplasmic mRNA translation and targets mRNAs undergoing premature translation termination for rapid degradation. From yeasts to humans, activation of NMD requires the function of the three conserved Upf factors: Upf1, Upf2, and Upf3. Here, we summarize the progress in our understanding of the molecular mechanisms of NMD in several model systems and discuss recent experiments that address the roles of Upf1, the principal regulator of NMD, in the initial targeting and final degradation of NMD-susceptible mRNAs. We propose a unified model for NMD in which the Upf factors provide several functions during premature termination, including the stimulation of release factor activity and the dissociation and recycling of ribosomal subunits. In this model, the ultimate degradation of the mRNA is the last step in a complex premature termination process.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| |
Collapse
|
35
|
He F, Jacobson A. Control of mRNA decapping by positive and negative regulatory elements in the Dcp2 C-terminal domain. RNA (NEW YORK, N.Y.) 2015; 21:1633-47. [PMID: 26184073 PMCID: PMC4536323 DOI: 10.1261/rna.052449.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/08/2015] [Indexed: 05/23/2023]
Abstract
Decapping commits an mRNA to complete degradation and promotes general 5' to 3' decay, nonsense-mediated decay (NMD), and transcript-specific degradation. In Saccharomyces cerevisiae, a single decapping enzyme composed of a regulatory subunit (Dcp1) and a catalytic subunit (Dcp2) targets thousands of distinct substrate mRNAs. However, the mechanisms controlling this enzyme's in vivo activity and substrate specificity remain elusive. Here, using a genetic approach, we show that the large C-terminal domain of Dcp2 includes a set of conserved negative and positive regulatory elements. A single negative element inhibits enzymatic activity and controls the downstream functions of several positive elements. The positive elements recruit the specific decapping activators Edc3, Pat1, and Upf1 to form distinct decapping complexes and control the enzyme's substrate specificity and final activation. Our results reveal unforeseen regulatory mechanisms that control decapping enzyme activity and function in vivo, and define roles for several decapping activators in the regulation of mRNA decapping.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
36
|
Malabat C, Feuerbach F, Ma L, Saveanu C, Jacquier A. Quality control of transcription start site selection by nonsense-mediated-mRNA decay. eLife 2015; 4:e06722. [PMID: 25905671 PMCID: PMC4434318 DOI: 10.7554/elife.06722] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/22/2015] [Indexed: 01/01/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA quality-control pathway targeting transcripts such as messenger RNAs harboring premature stop-codons or short upstream open reading frame (uORFs). Our transcription start sites (TSSs) analysis of Saccharomyces cerevisiae cells deficient for RNA degradation pathways revealed that about half of the pervasive transcripts are degraded by NMD, which provides a fail-safe mechanism to remove spurious transcripts that escaped degradation in the nucleus. Moreover, we found that the low specificity of RNA polymerase II TSSs selection generates, for 47% of the expressed genes, NMD-sensitive transcript isoforms carrying uORFs or starting downstream of the ATG START codon. Despite the low abundance of this last category of isoforms, their presence seems to constrain genomic sequences, as suggested by the significant bias against in-frame ATGs specifically found at the beginning of the corresponding genes and reflected by a depletion of methionines in the N-terminus of the encoded proteins.
Collapse
Affiliation(s)
- Christophe Malabat
- Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
| | - Frank Feuerbach
- Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
| | - Laurence Ma
- Plate-Forme Génomique, Institut Pasteur, Paris, France
| | - Cosmin Saveanu
- Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
| | - Alain Jacquier
- Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
37
|
Smith JE, Baker KE. Nonsense-mediated RNA decay--a switch and dial for regulating gene expression. Bioessays 2015; 37:612-23. [PMID: 25820233 DOI: 10.1002/bies.201500007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nonsense-mediated RNA decay (NMD) represents an established quality control checkpoint for gene expression that protects cells from consequences of gene mutations and errors during RNA biogenesis that lead to premature termination during translation. Characterization of NMD-sensitive transcriptomes has revealed, however, that NMD targets not only aberrant transcripts but also a broad array of mRNA isoforms expressed from many endogenous genes. NMD is thus emerging as a master regulator that drives both fine and coarse adjustments in steady-state RNA levels in the cell. Importantly, while NMD activity is subject to autoregulation as a means to maintain homeostasis, modulation of the pathway by external cues provides a means to reprogram gene expression and drive important biological processes. Finally, the unanticipated observation that transcripts predicted to lack protein-coding capacity are also sensitive to this translation-dependent surveillance mechanism implicates NMD in regulating RNA function in new and diverse ways.
Collapse
Affiliation(s)
- Jenna E Smith
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Kristian E Baker
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
38
|
Obenoskey J, Lane DR, Atkin AL, Kebaara BW. Immunity of the Saccharomyces cerevisiae SSY5 mRNA to nonsense-mediated mRNA decay. Front Mol Biosci 2014; 1:25. [PMID: 25988166 PMCID: PMC4428434 DOI: 10.3389/fmolb.2014.00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/13/2014] [Indexed: 11/13/2022] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway is a specialized pathway that triggers the rapid degradation of select mRNAs. Initially, identified as a pathway that degrades mRNAs with premature termination codons, NMD is now recognized as a pathway that also regulates some natural mRNAs. Since natural mRNAs do not typically contain premature termination codons, these mRNAs contain features that target them to NMD. In Saccharomyces cerevisiae mRNAs with atypically long 3′-UTRs are usually degraded by NMD, however in some conditions a constitutively expressed SSY5 mRNA with multiple NMD targeting signals including an atypically long 3′-UTR is an exception. We investigated the features of the SSY5 mRNAs that confer immunity to NMD. We found that the SSY5 mRNA 3′-UTRs are sufficient to target NMD insensitive mRNA to the pathway. Replacing the SSY5 3′-UTRs with the cyc1-512 3′-UTRs, known to target mRNAs to NMD or with the CYC1 3′-UTR, known not to target mRNAs to NMD, resulted in production of SSY5 mRNAs that were regulated by NMD. These observations suggest that the SSY5 mRNAs require sequences both within the 5′-UTR and/or ORF as well as the 3′-UTR to escape decay by NMD.
Collapse
Affiliation(s)
| | - Dakota R Lane
- Department of Biology, Baylor University Waco, TX, USA
| | - Audrey L Atkin
- School of Biological Sciences, University of Nebraska-Lincoln Lincoln, NE, USA
| | | |
Collapse
|
39
|
Celik A, Kervestin S, Jacobson A. NMD: At the crossroads between translation termination and ribosome recycling. Biochimie 2014; 114:2-9. [PMID: 25446649 DOI: 10.1016/j.biochi.2014.10.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of three regulatory mechanisms that monitor the cytoplasm for aberrant mRNAs. NMD is usually triggered by premature translation termination codons that arise from mutations, transcription errors, or inefficient splicing, but which also occur in transcripts with alternately spliced isoforms or upstream open reading frames, or in the context of long 3'-UTRs. This surveillance pathway requires detection of the nonsense codon by the eukaryotic release factors (eRF1 and eRF3) and the activities of the Upf proteins, but the exact mechanism by which a nonsense codon is recognized as premature, and the individual roles of the Upf proteins, are poorly understood. In this review, we highlight important differences between premature and normal termination. Based on our current understanding of normal termination and ribosome recycling, we propose a similar mechanism for premature termination events that includes a role for the Upf proteins. In this model, the Upf proteins not only target the mRNA and nascent peptide for degradation, but also assume the role of recycling factors and rescue a ribosome stalled at a premature nonsense codon. The ATPase and helicase activities of Upf1, with the help of Upf2 and Upf3, are thus thought to be the catalytic force in ribosome subunit dissociation and ribosome recycling at an otherwise poorly dissociable termination event. While this model is somewhat speculative, it provides a unified vision for current data and a direction for future research.
Collapse
Affiliation(s)
- Alper Celik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, USA
| | - Stephanie Kervestin
- CNRS FRE3630 Associated with Université Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, USA.
| |
Collapse
|
40
|
Regulation of natural mRNAs by the nonsense-mediated mRNA decay pathway. EUKARYOTIC CELL 2014; 13:1126-35. [PMID: 25038084 DOI: 10.1128/ec.00090-14] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway is a specialized mRNA degradation pathway that degrades select mRNAs. This pathway is conserved in all eukaryotes examined so far, and it triggers the degradation of mRNAs that prematurely terminate translation. Originally identified as a pathway that degrades mRNAs with premature termination codons as a result of errors during transcription, splicing, or damage to the mRNA, NMD is now also recognized as a pathway that degrades some natural mRNAs. The degradation of natural mRNAs by NMD has been identified in multiple eukaryotes, including Saccharomyces cerevisiae, Drosophila melanogaster, Arabidopsis thaliana, and humans. S. cerevisiae is used extensively as a model to study natural mRNA regulation by NMD. Inactivation of the NMD pathway in S. cerevisiae affects approximately 10% of the transcriptome. Similar percentages of natural mRNAs in the D. melanogaster and human transcriptomes are also sensitive to the pathway, indicating that NMD is important for the regulation of gene expression in multiple organisms. NMD can either directly or indirectly regulate the decay rate of natural mRNAs. Direct NMD targets possess NMD-inducing features. This minireview focuses on the regulation of natural mRNAs by the NMD pathway, as well as the features demonstrated to target these mRNAs for decay by the pathway in S. cerevisiae. We also compare NMD-targeting features identified in S. cerevisiae with known NMD-targeting features in other eukaryotic organisms.
Collapse
|
41
|
Hayashi T, Ebe M, Nagao K, Kokubu A, Sajiki K, Yanagida M. Schizosaccharomyces pombe centromere protein Mis19 links Mis16 and Mis18 to recruit CENP-A through interacting with NMD factors and the SWI/SNF complex. Genes Cells 2014; 19:541-54. [PMID: 24774534 DOI: 10.1111/gtc.12152] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/14/2014] [Indexed: 01/05/2023]
Abstract
CENP-A is a centromere-specific variant of histone H3 that is required for accurate chromosome segregation. The fission yeast Schizosaccharomyces pombe and mammalian Mis16 and Mis18 form a complex essential for CENP-A recruitment to centromeres. It is unclear, however, how the Mis16-Mis18 complex achieves this function. Here, we identified, by mass spectrometry, novel fission yeast centromere proteins Mis19 and Mis20 that directly interact with Mis16 and Mis18. Like Mis18, Mis19 and Mis20 are localized at the centromeres during interphase, but not in mitosis. Inactivation of Mis19 in a newly isolated temperature-sensitive mutant resulted in CENP-A delocalization and massive chromosome missegregation, whereas Mis20 was dispensable for proper chromosome segregation. Mis19 might be a bridge component for Mis16 and Mis18. We isolated extragenic suppressor mutants for temperature-sensitive mis18 and mis19 mutants and used whole-genome sequencing to determine the mutated sites. We identified two groups of loss-of-function suppressor mutations in non-sense-mediated mRNA decay factors (upf2 and ebs1), and in SWI/SNF chromatin-remodeling components (snf5, snf22 and sol1). Our results suggest that the Mis16-Mis18-Mis19-Mis20 CENP-A-recruiting complex, which is functional in the G1-S phase, may be counteracted by the SWI/SNF chromatin-remodeling complex and non-sense-mediated mRNA decay, which may prevent CENP-A deposition at the centromere.
Collapse
Affiliation(s)
- Takeshi Hayashi
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Lykke-Andersen J, Bennett EJ. Protecting the proteome: Eukaryotic cotranslational quality control pathways. ACTA ACUST UNITED AC 2014; 204:467-76. [PMID: 24535822 PMCID: PMC3926952 DOI: 10.1083/jcb.201311103] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The correct decoding of messenger RNAs (mRNAs) into proteins is an essential cellular task. The translational process is monitored by several quality control (QC) mechanisms that recognize defective translation complexes in which ribosomes are stalled on substrate mRNAs. Stalled translation complexes occur when defects in the mRNA template, the translation machinery, or the nascent polypeptide arrest the ribosome during translation elongation or termination. These QC events promote the disassembly of the stalled translation complex and the recycling and/or degradation of the individual mRNA, ribosomal, and/or nascent polypeptide components, thereby clearing the cell of improper translation products and defective components of the translation machinery.
Collapse
Affiliation(s)
- Jens Lykke-Andersen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | | |
Collapse
|
43
|
In vivo determination of direct targets of the nonsense-mediated decay pathway in Drosophila. G3-GENES GENOMES GENETICS 2014; 4:485-96. [PMID: 24429422 PMCID: PMC3962487 DOI: 10.1534/g3.113.009357] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a mRNA degradation pathway that regulates a significant portion of the transcriptome. The expression levels of numerous genes are known to be altered in NMD mutants, but it is not known which of these transcripts is a direct pathway target. Here, we present the first genome-wide analysis of direct NMD targeting in an intact animal. By using rapid reactivation of the NMD pathway in a Drosophila melanogaster NMD mutant and globally monitoring of changes in mRNA expression levels, we can distinguish between primary and secondary effects of NMD on gene expression. Using this procedure, we identified 168 candidate direct NMD targets in vivo. Remarkably, we found that 81% of direct target genes do not show increased expression levels in an NMD mutant, presumably due to feedback regulation. Because most previous studies have used up-regulation of mRNA expression as the only means to identify NMD-regulated transcripts, our results provide new directions for understanding the roles of the NMD pathway in endogenous gene regulation during animal development and physiology. For instance, we show clearly that direct target genes have longer 3′ untranslated regions compared with nontargets, suggesting long 3′ untranslated regions target mRNAs for NMD in vivo. In addition, we investigated the role of NMD in suppressing transcriptional noise and found that although the transposable element Copia is up-regulated in NMD mutants, this effect appears to be indirect.
Collapse
|
44
|
Decourty L, Doyen A, Malabat C, Frachon E, Rispal D, Séraphin B, Feuerbach F, Jacquier A, Saveanu C. Long Open Reading Frame Transcripts Escape Nonsense-Mediated mRNA Decay in Yeast. Cell Rep 2014; 6:593-8. [DOI: 10.1016/j.celrep.2014.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/19/2013] [Accepted: 01/17/2014] [Indexed: 11/24/2022] Open
|
45
|
Metze S, Herzog VA, Ruepp MD, Mühlemann O. Comparison of EJC-enhanced and EJC-independent NMD in human cells reveals two partially redundant degradation pathways. RNA (NEW YORK, N.Y.) 2013; 19:1432-48. [PMID: 23962664 PMCID: PMC3854533 DOI: 10.1261/rna.038893.113] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/08/2013] [Indexed: 05/18/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic post-transcriptional gene regulation mechanism that eliminates mRNAs with the termination codon (TC) located in an unfavorable environment for efficient translation termination. The best-studied NMD-targeted mRNAs contain premature termination codons (PTCs); however, NMD regulates even many physiological mRNAs. An exon-junction complex (EJC) located downstream from a TC acts as an NMD-enhancing signal, but is not generally required for NMD. Here, we compared these "EJC-enhanced" and "EJC-independent" modes of NMD with regard to their requirement for seven known NMD factors in human cells using two well-characterized NMD reporter genes (immunoglobulin μ and β-Globin) with or without an intron downstream from the PTC. We show that both NMD modes depend on UPF1 and SMG1, but detected transcript-specific differences with respect to the requirement for UPF2 and UPF3b, consistent with previously reported UPF2- and UPF3-independent branches of NMD. In addition and contrary to expectation, a higher sensitivity of EJC-independent NMD to reduced UPF2 and UPF3b concentrations was observed. Our data further revealed a redundancy of the endo- and exonucleolytic mRNA degradation pathways in both modes of NMD. Moreover, the relative contributions of both decay pathways differed between the reporters, with PTC-containing immunoglobulin μ transcripts being preferentially subjected to SMG6-mediated endonucleolytic cleavage, whereas β-Globin transcripts were predominantly degraded by the SMG5/SMG7-dependent pathway. Overall, the surprising heterogeneity observed with only two NMD reporter pairs suggests the existence of several mechanistically distinct branches of NMD in human cells.
Collapse
Affiliation(s)
- Stefanie Metze
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Veronika A. Herzog
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
- Corresponding authorE-mail
| |
Collapse
|
46
|
Min EE, Roy B, Amrani N, He F, Jacobson A. Yeast Upf1 CH domain interacts with Rps26 of the 40S ribosomal subunit. RNA (NEW YORK, N.Y.) 2013; 19:1105-15. [PMID: 23801788 PMCID: PMC3708530 DOI: 10.1261/rna.039396.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/17/2013] [Indexed: 05/18/2023]
Abstract
The central nonsense-mediated mRNA decay (NMD) regulator, Upf1, selectively targets nonsense-containing mRNAs for rapid degradation. In yeast, Upf1 preferentially associates with mRNAs that are NMD substrates, but the mechanism of its selective retention on these mRNAs has yet to be elucidated. Previously, we demonstrated that Upf1 associates with 40S ribosomal subunits. Here, we define more precisely the nature of this association using conventional and affinity-based purification of ribosomal subunits, and a two-hybrid screen to identify Upf1-interacting ribosomal proteins. Upf1 coimmunoprecipitates specifically with epitope-tagged 40S ribosomal subunits, and Upf1 association with high-salt washed or puromycin-released 40S subunits was found to occur without simultaneous eRF1, eRF3, Upf2, or Upf3 association. Two-hybrid analyses and in vitro binding assays identified a specific interaction between Upf1 and Rps26. Using mutations in domains of UPF1 known to be crucial for its function, we found that Upf1:40S association is modulated by ATP, and Upf1:Rps26 interaction is dependent on the N-terminal Upf1 CH domain. The specific association of Upf1 with the 40S subunit is consistent with the notion that this RNA helicase not only triggers rapid decay of nonsense-containing mRNAs, but may also have an important role in dissociation of the premature termination complex.
Collapse
|
47
|
Hurt JA, Robertson AD, Burge CB. Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res 2013; 23:1636-50. [PMID: 23766421 PMCID: PMC3787261 DOI: 10.1101/gr.157354.113] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UPF1 is a DNA/RNA helicase with essential roles in nonsense-mediated mRNA decay (NMD) and embryonic development. How UPF1 regulates target abundance and the relationship between NMD and embryogenesis are not well understood. To explore how NMD shapes the embryonic transcriptome, we integrated genome-wide analyses of UPF1 binding locations, NMD-regulated gene expression, and translation in murine embryonic stem cells (mESCs). We identified over 200 direct UPF1 binding targets using crosslinking/immunoprecipitation-sequencing (CLIP-seq) and revealed a repression pathway that involves 3′ UTR binding by UPF1 and translation but is independent of canonical targeting features involving 3′ UTR length and stop codon placement. Interestingly, NMD targeting of this set of mRNAs occurs in other mouse tissues and is conserved in human. We also show, using ribosome footprint profiling, that actively translated upstream open reading frames (uORFs) are enriched in transcription factor mRNAs and predict mRNA repression by NMD, while poorly translated mRNAs escape repression. Together, our results identify novel NMD determinants and targets and provide context for understanding the impact of UPF1 and NMD on the mESC transcriptome.
Collapse
Affiliation(s)
- Jessica A Hurt
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
48
|
Zhou Y, Chen C, Johansson MJO. The pre-mRNA retention and splicing complex controls tRNA maturation by promoting TAN1 expression. Nucleic Acids Res 2013; 41:5669-78. [PMID: 23605039 PMCID: PMC3675484 DOI: 10.1093/nar/gkt269] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The conserved pre-mRNA retention and splicing (RES) complex, which in yeast consists of Bud13p, Snu17p and Pml1p, is thought to promote nuclear retention of unspliced pre-mRNAs and enhance splicing of a subset of transcripts. Here, we find that the absence of Bud13p or Snu17p causes greatly reduced levels of the modified nucleoside N4-acetylcytidine (ac4C) in tRNA and that a lack of Pml1p reduces ac4C levels at elevated temperatures. The ac4C nucleoside is normally found at position 12 in the tRNA species specific for serine and leucine. We show that the tRNA modification defect in RES-deficient cells is attributable to inefficient splicing of TAN1 pre-mRNA and the effects of reduced Tan1p levels on formation of ac4C. Analyses of cis-acting elements in TAN1 pre-mRNA showed that the intron sequence between the 5′ splice site and branchpoint is necessary and sufficient to mediate RES dependency. We also show that in RES-deficient cells, the TAN1 pre-mRNA is targeted for degradation by the cytoplasmic nonsense-mediated mRNA decay pathway, indicating that poor nuclear retention may contribute to the tRNA modification defect. Our results demonstrate that TAN1 pre-mRNA processing has an unprecedented requirement for RES factors and that the complex controls the formation of ac4C in tRNA.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | |
Collapse
|
49
|
Matia-González AM, Hasan A, Moe GH, Mata J, Rodríguez-Gabriel MA. Functional characterization of Upf1 targets in Schizosaccharomyces pombe. RNA Biol 2013; 10:1057-65. [PMID: 23619768 DOI: 10.4161/rna.24569] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a highly conserved mechanism of mRNA degradation. NMD eliminates mRNAs containing premature termination codons (PTCs), preventing the production of truncated proteins with possible deleterious effects. However, there is mounting evidence that NMD factors, like Upf1, Upf2 and Upf3, participate in general regulation of gene expression, affecting the expression of genes lacking PTCs. We have used the fission yeast Schizosaccharomyces pombe to identify mRNAs directly regulated by NMD. Using a combination of genetic and biochemical approaches, we have defined a population of fission yeast mRNAs specifically regulated by Upf1. We show that other components of the Upf complex, Upf2 and Upf3, are required for binding of Upf1 to its RNA targets and for the proper response of fission yeast to oxidative stress. Finally, we investigated the physiological importance of this phenomenon, and demonstrate that the Upf1-dependent downregulation of some of its direct targets is necessary for normal resistance to oxidative stress.
Collapse
|
50
|
Wang X, Okonkwo O, Kebaara BW. Physiological basis of copper tolerance ofSaccharomyces cerevisiaenonsense-mediated mRNA decay mutants. Yeast 2013; 30:179-90. [DOI: 10.1002/yea.2950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/10/2013] [Accepted: 02/12/2013] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xuya Wang
- Department of Biology; Baylor University; Waco; TX; 76798; USA
| | - Obi Okonkwo
- Department of Biology; Baylor University; Waco; TX; 76798; USA
| | | |
Collapse
|