1
|
Wang P, Zhang L, Li H, Wang Y, Zhang S, Liu Z. Characterization of GRP as a functional neuropeptide in basal chordate amphioxus. Int J Biol Macromol 2019; 142:384-394. [PMID: 31593737 DOI: 10.1016/j.ijbiomac.2019.09.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 01/14/2023]
Abstract
Amphioxus belongs to the subphylum cephalochordata, an extant representative of the most basal chordates, whose regulation of endocrine system remains ambiguous. Here we clearly demonstrated the existence of a functional GRP neuropeptide in amphioxus, which was able to interact with GRP receptor, activate both PKC and PKA pathways, increase gh, igf, and vegf expression. We also showed that the transcription level of amphioxus grp was affected by temperature and light, indicating the role of this gene in the regulation of energy balance and circadian rhythms. In addition, the expression of the amphioxus grp was detected in cerebral vesicle that has been proposed to be the homologous organ of vertebrate brain. These data collectively suggested that a functional GRP neuropeptide had already emerged in amphioxus, which provided insights into the evolutionary origin of GRP in chordate and the functional homology between the cerebral vesicle and vertebrate brain.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Liping Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Haoyi Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Yunsheng Wang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
| | - Zhenhui Liu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China.
| |
Collapse
|
2
|
Khan M, Huang T, Lin CY, Wu J, Fan BM, Bian ZX. Exploiting cancer's phenotypic guise against itself: targeting ectopically expressed peptide G-protein coupled receptors for lung cancer therapy. Oncotarget 2017; 8:104615-104637. [PMID: 29262666 PMCID: PMC5732832 DOI: 10.18632/oncotarget.18403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023] Open
Abstract
Lung cancer, claiming millions of lives annually, has the highest mortality rate worldwide. This advocates the development of novel cancer therapies that are highly toxic for cancer cells but negligibly toxic for healthy cells. One of the effective treatments is targeting overexpressed surface receptors of cancer cells with receptor-specific drugs. The receptors-in-focus in the current review are the G-protein coupled receptors (GPCRs), which are often overexpressed in various types of tumors. The peptide subfamily of GPCRs is the pivot of the current article owing to the high affinity and specificity to and of their cognate peptide ligands, and the proven efficacy of peptide-based therapeutics. The article summarizes various ectopically expressed peptide GPCRs in lung cancer, namely, Cholecystokinin-B/Gastrin receptor, the Bombesin receptor family, Bradykinin B1 and B2 receptors, Arginine vasopressin receptors 1a, 1b and 2, and the Somatostatin receptor type 2. The autocrine growth and pro-proliferative pathways they mediate, and the distinct tumor-inhibitory effects of somatostatin receptors are then discussed. The next section covers how these pathways may be influenced or 'corrected' through therapeutics (involving agonists and antagonists) targeting the overexpressed peptide GPCRs. The review proceeds on to Nano-scaled delivery platforms, which enclose chemotherapeutic agents and are decorated with peptide ligands on their external surface, as an effective means of targeting cancer cells. We conclude that targeting these overexpressed peptide GPCRs is potentially evolving as a highly promising form of lung cancer therapy.
Collapse
Affiliation(s)
- Mahjabin Khan
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| | - Tao Huang
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| | - Cheng-Yuan Lin
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, P.R. China
| | - Jiang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Bao-Min Fan
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, P.R. China
| | - Zhao-Xiang Bian
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| |
Collapse
|
3
|
Punzo F, Tortora C, Di Pinto D, Manzo I, Bellini G, Casale F, Rossi F. Anti-proliferative, pro-apoptotic and anti-invasive effect of EC/EV system in human osteosarcoma. Oncotarget 2017; 8:54459-54471. [PMID: 28903355 PMCID: PMC5589594 DOI: 10.18632/oncotarget.17089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/28/2017] [Indexed: 12/29/2022] Open
Abstract
Osteosarcoma is the most common and aggressive bone tumor in children. The Endocannabinoid/Endovanilloid system has been proposed as anticancer target in tumor of different origins. This system is composed of two receptors (CB1 and CB2), the Transient Potential Vanilloid 1 (TRPV1) channel and their ligands and enzymes. CB1 is expressed mainly in central nervous system while CB2 predominantly on immune and peripheral cells. We investigated the effects of JWH-133 (CB2 agonist) and RTX (TRPV1 agonist) in six human Osteosarcoma cell lines: MG-63, U-2OS, MNNG/HOS, Saos-2, KHOS/NP, Hs888Lu, by Apoptosis and Migration-Assay. We also compared the effects of these compounds on Caspase-3, AKT, MMP-2 and Notch-1 regulation by Q-PCR and Western Blotting. We observed an anti-proliferative, pro-apoptotic, anti-invasive effect. Our results show that both CB2 stimulation and TRPV1 activation, in different Osteosarcoma cell lines, can act on the same pathways to obtain the same effect, indicating the Endocannabinoid/Endovanilloid system as a new therapeutic target in Osteosarcoma.
Collapse
Affiliation(s)
- Francesca Punzo
- Department of Women, Child and General and Specialist Surgery, Second University of Naples, 80138 Naples, Italy.,Department of Experimental Medicine, Division of Pharmacology "Leonardo Donatelli", The Second University of Naples, 80138 Naples, Italy
| | - Chiara Tortora
- Department of Women, Child and General and Specialist Surgery, Second University of Naples, 80138 Naples, Italy.,Department of Experimental Medicine, Division of Pharmacology "Leonardo Donatelli", The Second University of Naples, 80138 Naples, Italy
| | - Daniela Di Pinto
- Department of Women, Child and General and Specialist Surgery, Second University of Naples, 80138 Naples, Italy
| | - Iolanda Manzo
- Department of Experimental Medicine, Division of Pharmacology "Leonardo Donatelli", The Second University of Naples, 80138 Naples, Italy
| | - Giulia Bellini
- Department of Experimental Medicine, Division of Pharmacology "Leonardo Donatelli", The Second University of Naples, 80138 Naples, Italy
| | - Fiorina Casale
- Department of Women, Child and General and Specialist Surgery, Second University of Naples, 80138 Naples, Italy
| | - Francesca Rossi
- Department of Women, Child and General and Specialist Surgery, Second University of Naples, 80138 Naples, Italy
| |
Collapse
|
4
|
RC-3095, a gastrin-releasing peptide receptor antagonist, synergizes with gemcitabine to inhibit the growth of human pancreatic cancer CFPAC-1 in vitro and in vivo. Pancreas 2014; 43:15-21. [PMID: 24326363 DOI: 10.1097/mpa.0b013e3182a714cf] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Pancreatic cancer remains a lethal disease. In this study, we investigated the efficacy of a combination of gastrin-releasing peptide receptor antagonist RC-3095 and gemcitabine on pancreatic cancer CFPAC-1. METHODS The antiproliferation effects of RC-3095, gemcitabine, or the combination on pancreatic cancer were monitored in vitro. Nude mice bearing xenografts of CFPAC-1 cell received injections of the vehicle (control), RC-3095 (20 μg, subcutaneously, daily), gemcitabine (15 mg/kg, intraperitoneally, every 3 days), or the combination of RC-3095 and gemcitabine for 4 weeks. The histological changes and protein expression were tested using immunohistochemistry and Western blotting. RESULTS Treatment with the combination in culture exhibited a powerful inhibition effect on CFPAC-1 cell proliferation. In xenograft mice model, RC-3095 or gemcitabine significantly reduced the volume and weight of tumors after 4 weeks of treatment, as compared with controls. The combination more potently inhibited the tumor growth than either agent used individually. Immunohistochemistry and Western blotting showed gastrin-releasing peptide receptor/bombesin receptor subtype-3 positive cells and protein expression in tumors decreased by treatment with RC-3095 or gemcitabine alone or greater in combination. CONCLUSIONS Our data suggested that the combination could be considered for the possible new approaches for treatment of pancreatic cancers.
Collapse
|
5
|
Cheng J, Fan XM. Role of cyclooxygenase-2 in gastric cancer development and progression. World J Gastroenterol 2013; 19:7361-7368. [PMID: 24259966 PMCID: PMC3831217 DOI: 10.3748/wjg.v19.i42.7361] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/12/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
Although the incidence of gastric cancer has been declining in recent decades, it remains a major public health issue as the second leading cause of cancer death worldwide. In China, gastric cancer is still the main cause of death in patients with malignant tumors. Most patients are diagnosed at an advanced stage and mortality is high. Cyclooxygenase-2 (COX-2) is a rate-limiting enzyme in prostanoid synthesis and plays an important role in the development and progression of gastric cancer. The expression of COX-2 in gastric cancer is upregulated and its molecular mechanisms have been investigated. Helicobacter pylori infection, tumor suppressor gene mutation and the activation of nuclear factor-kappa B may be responsible for the elevated expression of COX-2 in gastric cancer. The mechanisms of COX-2 in the development and progression of gastric cancer are probably through promoting the proliferation of gastric cancer cells, while inhibiting apoptosis, assisting angiogenesis and lymphatic metastasis, and participating in cancer invasion and immunosuppression. This review is intended to discuss, comment and summarize recent research progress on the role of COX-2 in gastric cancer development and progression, and elucidate the molecular mechanisms which might be involved in the carcinogenesis.
Collapse
|
6
|
Yoon DH, Lim MH, Lee YR, Sung GH, Lee TH, Jeon BH, Cho JY, Song WO, Park H, Choi S, Kim TW. A novel synthetic analog of Militarin, MA-1 induces mitochondrial dependent apoptosis by ROS generation in human lung cancer cells. Toxicol Appl Pharmacol 2013; 273:659-71. [PMID: 24161344 DOI: 10.1016/j.taap.2013.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/04/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
A synthetic Militarin analog-1[(2R,3R,4R,5R)-1,6-bis(4-(2,4,4-trimethylpentan-2-yl)phenoxy) hexane-2,3,4,5-tetraol] is a novel derivative of constituents from Cordyceps militaris, which has been used to treat a variety of chronic diseases including inflammation, diabetes, hyperglycemia and cancers. Here, we report for the first time the synthesis of Militarin analog-1 (MA-1) and the apoptotic mechanism of MA-1 against human lung cancer cell lines. Treatment with MA-1 significantly inhibited the viability of 3 human lung cancer cell lines. The inhibition of viability and growth in MA-1-treated A549 cells with an IC50 of 5μM were mediated through apoptosis induction, as demonstrated by an increase in DNA fragmentation, sub-G0/G1-DNA fraction, nuclear condensation, and phosphatidylserine exposure. The apoptotic cell death caused mitochondrial membrane permeabilization through regulation of expression of the Bcl-2 family proteins, leading to cytochrome c release in a time-dependent manner. Subsequently, the final stage of apoptosis, activation of caspase-9/-3 and cleavage of poly (ADP ribose) polymerase, was induced. Furthermore, A549 lung cancer cells were more responsive to MA-1 than a bronchial epithelial cell line (BEAS-2B), involving the rapid generation of reactive oxygen species (ROS), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activation. The pharmacological inhibition of ROS generation and JNK/p38 MAPK exhibited attenuated DNA fragmentation in MA-1-induced apoptosis. Oral administration of MA-1 also retarded growth of A549 orthotopic xenografts. In conclusion, the present study indicates that the new synthetic derivative MA-1 triggers mitochondrial apoptosis through ROS generation and regulation of MAPKs and may be a potent therapeutic agent against human lung cancer.
Collapse
Affiliation(s)
- Deok Hyo Yoon
- Department of Biochemistry, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Shrinkage of experimental benign prostatic hyperplasia and reduction of prostatic cell volume by a gastrin-releasing peptide antagonist. Proc Natl Acad Sci U S A 2013; 110:2617-22. [PMID: 23359692 DOI: 10.1073/pnas.1222355110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gastrin releasing-peptide (GRP) is a potent growth factor in many malignancies. Benign prostatic hyperplasia (BPH) is a progressive age-related proliferation of glandular and stromal tissues; various growth factors and inflammatory processes are involved in its pathogenesis. We have demonstrated that potent antagonists of GRP inhibit growth of experimental human tumors including prostate cancer, but their effect on models of BPH has not been studied. Here, we evaluated the effects of GRP antagonist RC-3940-II on viability and cell volume of BPH-1 human prostate epithelial cells and WPMY-1 prostate stromal cells in vitro, and in testosterone-induced BPH in Wistar rats in vivo. RC-3940-II inhibited the proliferation of BPH-1 and WPMY-1 cells in a dose-dependent manner and reduced prostatic cell volume in vitro. Shrinkage of prostates was observed after 6 wk of treatment with RC-3940-II: a 15.9% decline with 25 μg/d; and a 18.4% reduction with 50 μg/d (P < 0.05 for all). Significant reduction in levels of proliferating cell nuclear antigen, NF-κβ/p50, cyclooxygenase-2, and androgen receptor was also seen. Analysis of transcript levels of genes related to growth, inflammatory processes, and signal transduction showed significant changes in the expression of more than 90 genes (P < 0.05). In conclusion, GRP antagonists reduce volume of human prostatic cells and lower prostate weight in experimental BPH through direct inhibitory effects on prostatic GRP receptors. GRP antagonists should be considered for further development as therapy for BPH.
Collapse
|
8
|
Rick FG, Buchholz S, Schally AV, Szalontay L, Krishan A, Datz C, Stadlmayr A, Aigner E, Perez R, Seitz S, Block NL, Hohla F. Combination of gastrin-releasing peptide antagonist with cytotoxic agents produces synergistic inhibition of growth of human experimental colon cancers. Cell Cycle 2012; 11:2518-25. [PMID: 22751419 DOI: 10.4161/cc.20900] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We investigated the efficacy of a powerful antagonist of bombesin/gastrin-releasing peptide (BN/GRP) RC-3940-II administered as a single agent or in combination with cytotoxic agents on the growth of HT-29, HCT-116 and HCT-15 human colon cancer in vitro and in vivo. GRP-receptor mRNA and protein were found in all three cell lines tested. Exposure of HT-29 cells to 10 μM RC-3940-II led to an increase in the number of cells blocked in S phase and G 2/M and cells with lower G(0)/G(1) DNA content. Similar changes on the cell cycle traverse of HT-29 cells could also be seen at lower concentrations of RC-3940-II (1 μM) after pretreatment with 100 nM GRP (14-27), indicating a dose-dependent mechanism of action based on the blockage of BN/GRP induced proliferation of tumor cells at lower concentrations. Daily in vivo treatment with BN/GRP antagonist RC-3940-II decreased the volume of HT-29, HCT-116 and HCT-15 tumors xenografted into athymic nude mice by 25 to 67% (p < 0.005). Combined treatment with RC-3940-II and chemotherapeutic agents 5-FU and irinotecan resulted in a synergistic tumor growth suppression of HT-29, HCT-116 and HCT-15 xenografts by 43% to 78%. In HT-29 and HCT-116 xenografts the inhibition for the combinations of RC-3940-II and irinotecan vs. single substances (p < 0.05) was significantly greater. These findings support the use of RC-3940-II as an anticancer agent and may help to design clinical trials using RC-3940-II in combinations with cytotoxic agents.
Collapse
Affiliation(s)
- Ferenc G Rick
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Roesler R, Schwartsmann G. Gastrin-releasing peptide receptors in the central nervous system: role in brain function and as a drug target. Front Endocrinol (Lausanne) 2012; 3:159. [PMID: 23251133 PMCID: PMC3523293 DOI: 10.3389/fendo.2012.00159] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/23/2012] [Indexed: 11/13/2022] Open
Abstract
Neuropeptides acting on specific cell membrane receptors of the G protein-coupled receptor (GPCR) superfamily regulate a range of important aspects of nervous and neuroendocrine function. Gastrin-releasing peptide (GRP) is a mammalian neuropeptide that binds to the GRP receptor (GRPR, BB2). Increasing evidence indicates that GRPR-mediated signaling in the central nervous system (CNS) plays an important role in regulating brain function, including aspects related to emotional responses, social interaction, memory, and feeding behavior. In addition, some alterations in GRP or GRPR expression or function have been described in patients with neurodegenerative, neurodevelopmental, and psychiatric disorders, as well as in brain tumors. Findings from preclinical models are consistent with the view that the GRPR might play a role in brain disorders, and raise the possibility that GRPR agonists might ameliorate cognitive and social deficits associated with neurological diseases, while antagonists may reduce anxiety and inhibit the growth of some types of brain cancer. Further preclinical and translational studies evaluating the potential therapeutic effects of GRPR ligands are warranted.
Collapse
Affiliation(s)
- Rafael Roesler
- Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do SulPorto Alegre, Brazil
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do SulPorto Alegre, Brazil
- National Institute for Translational MedicinePorto Alegre, Brazil
- *Correspondence: Rafael Roesler, Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil. e-mail:
| | - Gilberto Schwartsmann
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do SulPorto Alegre, Brazil
- National Institute for Translational MedicinePorto Alegre, Brazil
- Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do SulPorto Alegre, Brazil
| |
Collapse
|
10
|
Lee J, Kim H, Kim S, Lee H, Kim J, Kim N, Park HJ, Choi EK, Lee JS, Kim C. A multifunctional mesoporous nanocontainer with an iron oxide core and a cyclodextrin gatekeeper for an efficient theranostic platform. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm32137h] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Liu TA, Jan YJ, Ko BS, Chen SC, Liang SM, Hung YL, Hsu C, Shen TL, Lee YM, Chen PF, Wang J, Shyue SK, Liou JY. Increased expression of 14-3-3β promotes tumor progression and predicts extrahepatic metastasis and worse survival in hepatocellular carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2698-708. [PMID: 21967815 DOI: 10.1016/j.ajpath.2011.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/20/2011] [Accepted: 08/11/2011] [Indexed: 01/06/2023]
Abstract
14-3-3β is implicated in cell survival, proliferation, migration, and tumor growth; however, its clinical relevance in tumor progression and metastasis have never been elucidated. To evaluate the clinical significance of 14-3-3β, we analyzed the association of 14-3-3β expression and clinicopathologic characteristics in primary and subsequent metastatic tumors of hepatocellular carcinoma patients. 14-3-3β was expressed abundantly in 40 of 55 (70.7%) primary tumors. Increased 14-3-3β expression in primary tumors predicted a higher 5-year cumulative incidence of subsequent extrahepatic metastasis, and multivariate analysis revealed 14-3-3β overexpression was an independent risk factor for extrahepatic metastasis. Patients with increased 14-3-3β expression in primary tumors had worse 5-year overall survival rates, and 14-3-3β overexpression was an independent prognostic factor on Cox regression analysis. Furthermore, stably overexpressed 14-3-3β enhanced hepatocellular carcinoma cell migration and proliferation and increased anchorage-independent cell growth. In addition, in vivo study in a nude-mice model showed tumor formation significantly increased with 14-3-3β overexpression. In conclusion, this is the first report to show that increased 14-3-3β expression is associated with subsequent extrahepatic metastasis and worse survival rates, as well as cancer progression of hepatocellular carcinoma. Thus, 14-3-3β may be a novel prognostic biomarker and therapeutic target in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tzu-An Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Park HJ, Kim SR, Kim MK, Choi KS, Jang HO, Yun I, Bae SK, Bae MK. Neuromedin B receptor antagonist suppresses tumor angiogenesis and tumor growth in vitro and in vivo. Cancer Lett 2011; 312:117-27. [PMID: 21908103 DOI: 10.1016/j.canlet.2011.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/05/2011] [Accepted: 08/09/2011] [Indexed: 11/29/2022]
Abstract
Neuromedin B (NMB), a member of the mammalian bombesin-like peptide family, and its receptor were aberrantly expressed in vascularized solid tumors. Here, the NMB receptor (NMB-R) antagonist PD168368 specifically inhibited both NMB-induced in vivo and in vitro angiogenesis. In addition, PD168368 showed growth inhibitory effects on MDA-MB-231 breast cancer cells by inducing cell cycle arrest and apoptosis. Furthermore, PD168368 effectively suppressed tumor growth in a xenograft model of breast tumor in vivo. Overall, NMB-R antagonist exhibited a significant antitumor activity by simultaneously inhibiting neovascularization and cancer cell growth, thereby suggesting that NMB-R could be a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Hyun-Joo Park
- School of Dentistry, Pusan National University, Yangsan 626-870, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wen X, Chao C, Ives K, Hellmich MR. Regulation of bombesin-stimulated cyclooxygenase-2 expression in prostate cancer cells. BMC Mol Biol 2011; 12:29. [PMID: 21745389 PMCID: PMC3142223 DOI: 10.1186/1471-2199-12-29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 07/11/2011] [Indexed: 01/06/2023] Open
Abstract
Background Cyclooxygenase-2 (COX-2) and the bombesin (BBS)-like peptide, gastrin-releasing peptide (GRP), have been implicated in the progression of hormone-refractory prostate cancer; however, a mechanistic link between the bioactive peptide and COX-2 expression in prostate cells has not been made. Results We report that BBS stimulates COX-2 mRNA and protein expression, and the release of prostaglandin E2 from the GRP receptor (GRPR)-positive, androgen-insensitive prostate cancer cell line, PC-3. BBS-stimulated COX-2 expression is mediated, in part, by p38MAPK and PI3 kinase (PI3K)/Akt pathways, and blocked by a GRPR antagonist. The PI3K/Akt pathway couples GRPR to the transcription factor, activator protein-1 (AP-1), and enhanced COX-2 promoter activity. Although BBS stimulates nuclear factor-kappaB (NF-κB) in PC-3, NF-κB does not regulate GRPR-mediated COX-2 expression. The p38MAPK pathway increases BBS-stimulated COX-2 expression by slowing the degradation of COX-2 mRNA. Expression of recombinant GRPR in the androgen-sensitive cell line LNCaP is sufficient to confer BBS-stimulated COX-2 expression via the p38MAPK and PI3K/Akt pathways. Conclusions Our study establishes a mechanistic link between GRPR activation and enhanced COX-2 expression in prostate cancer cell lines, and suggests that inhibiting GRPR may, in the future, provide an effective therapeutic alternative to non-steroidal anti-inflammatory drugs for inhibiting COX-2 in patients with recurrent prostate cancer.
Collapse
Affiliation(s)
- Xiaodong Wen
- Department of Surgery, Univ. of Texas Medical Branch, 301 Univ. Blvd., Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
14
|
Chougule M, Patel AR, Sachdeva P, Jackson T, Singh M. Anticancer activity of Noscapine, an opioid alkaloid in combination with Cisplatin in human non-small cell lung cancer. Lung Cancer 2011; 71:271-82. [PMID: 20674069 PMCID: PMC3094914 DOI: 10.1016/j.lungcan.2010.06.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 06/01/2010] [Accepted: 06/01/2010] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to examine the efficacy of Noscapine (Nos) and Cisplatin (Cis) combination treatment in vitro in A549 and H460 lung cancer cells, in vivo in murine xenograft model and to investigate the underlying mechanism. The combination index values (< 0.6) suggested synergistic effects of Nos+Cis and resulted in the highest increase in percentage of apoptotic NSCLC cells and increased expression of p53, p21, caspase 3, cleaved caspase 3, cleaved PARP, Bax, and decreased expression of Bcl₂ and surviving proteins compared with treatment with either agent. Nos+Cis treatment reduced tumor volume by 78.1 ± 7.5% compared with 38.2 ± 6.8% by Cis or 35.4 ± 6.9% by Nos alone in murine xenograft lung cancer model. Nos+Cis treatment decreased expression of pAkt, Akt, cyclin D1, survivin, PARP, Bcl₂, and increased expression of p53, p21, Bax, cleaved PARP, caspase 3, cleaved caspase 3, cleaved caspase 8, caspase 8, cleaved caspase 9 and caspase 9 compared to single-agent treated and control groups. Our results suggest that Nos enhanced the anticancer activity of Cis in an additive to synergistic manner by activating multiple signaling pathways including apoptosis. These findings suggest potential benefit for use of Nos and Cis combination in treatment of lung cancer.
Collapse
Affiliation(s)
- Mahavir Chougule
- College of Pharmacy and Pharmaceutical Sciences, Florida A and M University, Tallahassee, FL 32307, USA
| | - Apurva R. Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A and M University, Tallahassee, FL 32307, USA
| | - Pratik Sachdeva
- College of Pharmacy and Pharmaceutical Sciences, Florida A and M University, Tallahassee, FL 32307, USA
| | - Tanise Jackson
- College of Pharmacy and Pharmaceutical Sciences, Florida A and M University, Tallahassee, FL 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A and M University, Tallahassee, FL 32307, USA
| |
Collapse
|
15
|
Sancho V, Di Florio A, Moody TW, Jensen RT. Bombesin receptor-mediated imaging and cytotoxicity: review and current status. Curr Drug Deliv 2011; 8:79-134. [PMID: 21034419 PMCID: PMC3058932 DOI: 10.2174/156720111793663624] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 02/05/2010] [Indexed: 11/22/2022]
Abstract
The three mammalian bombesin (Bn) receptors (gastrin-releasing peptide [GRP] receptor, neuromedin B [NMB] receptor, BRS-3) are one of the classes of G protein-coupled receptors that are most frequently over-express/ectopically expressed by common, important malignancies. Because of the clinical success of somatostatin receptor-mediated imaging and cytotoxicity with neuroendocrine tumors, there is now increasing interest in pursuing a similar approach with Bn receptors. In the last few years then have been more than 200 studies in this area. In the present paper, the in vitro and in vivo results, as well as results of human studies from many of these studies are reviewed and the current state of Bn receptor-mediated imaging or cytotoxicity is discussed. Both Bn receptor-mediated imaging studies as well as Bn receptor-mediated tumoral cytotoxic studies using radioactive and non-radioactive Bn-based ligands are covered.
Collapse
Affiliation(s)
- Veronica Sancho
- Digestive Diseases Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
16
|
Li X, Lv Y, Yuan A, Li Z. Gastrin-releasing peptide links stressor to cancer progression. J Cancer Res Clin Oncol 2010; 136:483-91. [PMID: 20140628 DOI: 10.1007/s00432-010-0766-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 01/13/2010] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Gastrin-releasing peptide (GRP) plays an important role in cancer growth and metastasis; however, the mechanisms of how GRP affects cancer progression are not well understood. Recent studies revealed that chronic stress is a major risk factor for cancer progression, and this effect may be mediated by GRP. In this review, we will discuss the mechanisms and implications of GRP linking stressor to cancer progression. MATERIALS AND METHODS We retrieved the studies of the relationship between GRP, stress and cancers through PubMed using systematic methods to search, select, and evaluate the findings. RESULTS The results suggested that GRP can mediate the effects of stress on cancers at systemic, tissue and cellular levels: Stress elicits the secretion of GRP in the brain and GRP in turn activates the stress response pathways resulting in an elevation of stress hormones and GRP in the plasma and tissues. GRP in synergy with stress hormones stimulates the growth and invasion of cancer cells by suppressing the anti-tumor immune function and directly activating the pro-proliferative and pro-migratory signaling pathways in cancer cells. CONCLUSION GRP is a multi-functional peptide, which acts as a stress mediator as well as a growth factor linking stressor to cancer progression. GRP and its high-affinity receptor are useful targets for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Xinqiu Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 277, West Yanta Road, 710061, Xi'an, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Abstract
MicroRNAs (miRNAs) have recently emerged as an important new class of cellular regulators that control various cellular processes and are implicated in human diseases, including cancer. Here, we show that loss of let-7 function enhances lung tumor formation in vivo, strongly supporting the hypothesis that let-7 is a tumor suppressor. Moreover, we report that exogenous delivery of let-7 to established tumors in mouse models of non-small-cell lung cancer (NSCLC) significantly reduces the tumor burden. These results demonstrate the therapeutic potential of let-7 in NSCLC and point to miRNA replacement therapy as a promising approach in cancer treatment.
Collapse
|
18
|
Abstract
MicroRNAs (miRNAs) have recently emerged as an important new class of cellular regulators that control various cellular processes and are implicated in human diseases, including cancer. Here, we show that loss of let-7 function enhances lung tumor formation in vivo, strongly supporting the hypothesis that let-7 is a tumor suppressor. Moreover, we report that exogenous delivery of let-7 to established tumors in mouse models of non-small-cell lung cancer (NSCLC) significantly reduces the tumor burden. These results demonstrate the therapeutic potential of let-7 in NSCLC and point to miRNA replacement therapy as a promising approach in cancer treatment.
Collapse
|
19
|
Junker K, Petersen I. [Small cell lung cancer: pathology and molecular pathology]. DER PATHOLOGE 2009; 30:131-40. [PMID: 19148591 DOI: 10.1007/s00292-008-1115-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the current WHO classification, together with the subtype of combined small cell lung cancer, small cell lung cancers (SCLC) are listed as a special tumour entity. Their microscopic appearance is characterised by small tumour cells with scant cytoplasm and frequently hypodiploid nuclei. For the precise histological diagnosis of SCLC, especially for the diagnostic differentiation from pulmonary NHL infiltrates, additional immunohistochemical investigations are recommended. The presented core classification of lung cancer is intended to facilitate the semi-quantitative registration of "atypical" SCLC. Genetically SCLC is especially characterised by manifold chromosomal deletions with losses of whole chromosomes or chromosome arms, associated with the inactivation of numerous tumour suppressor genes. Whereas the extensive DNA losses may explain the marked sensitivity of SCLC to anti-neoplastic chemotherapy or radiotherapy, its considerable chromosomal instability is correlated with the development of resistance to therapy.
Collapse
Affiliation(s)
- K Junker
- Zentrum für Pathologie, Klinikum Bremen-Mitte, Bremen, Deutschland.
| | | |
Collapse
|
20
|
Expression of GRP and its receptor is associated with improved survival in patients with colon cancer. Clin Exp Metastasis 2009; 26:663-71. [PMID: 19430935 DOI: 10.1007/s10585-009-9265-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 04/22/2009] [Indexed: 12/23/2022]
Abstract
Epithelial cells lining the adult human colon do not normally express gastrin releasing peptide (GRP) or its receptor (GRPR), but both can be up regulated post malignant transformation. However, controversy exists as to the contribution these proteins make to tumor cell behavior once present. Since GRPR activation promotes proliferation, it has been assumed that their aberrant expression promotes colon cancer (CC) growth and progression. Yet we have contended that when expressed, GRP/GRPR benefits the host since in vitro studies demonstrate they enhance tumor cell attachment to the extracellular matrix and promote CC cytolysis by natural killer lymphocytes. Thus the aim of this study was to ascertain the effect of aberrant GRP/GRPR expression on patient survival. To do this we identified all CC diagnosed at a single institution from 1998 to 2002 that were classified as AJCC stage II or III (n = 88); of these 50 (57%) had sufficient tissues remaining for study. GRP/GRPR expression and natural killer cell density were determined immunohistochemically at the leading edge of each CC, and survival assessed by Kaplan Meier analysis. Expression of high levels of GRPR alone, or both GRP and GRPR, was associated with delayed CC recurrence (14.1-17.0 months, respectfully; P = 0.005) and increased survival (10.1-13.1 months, respectfully; P = 0.0124). CC expressing GRP/GRPR were associated with significantly fewer lymph node metastases than tumors not expressing these proteins, and contained significantly more CD16 + natural killer cells, than tumors not expressing these proteins. These findings demonstrate that patients whose CC express GRPR are associated with a survival advantage as compared to those whose CC do not express these proteins.
Collapse
|
21
|
Abstract
COX-2 is an inducible enzyme which is over expressed in gastric cancer tissues and plays an important role in the incidence, development and prognosis of gastric cancer by regulating the formation of vessel, inducing mutations, immune suppression, suppression of apoptosis, changing the activity of adhesion molecule to promote tumor metastasis, and so on. COX selective inhibitors can be used as one of the basic anti-tumor drugs because of their tumor suppression function in the future.
Collapse
|
22
|
Ruibal A, Abdulkader I, Gude F, Pombo M, León L, Barandela J, Sánchez-Salmón A. La expresión inmunohistoquímica intensa de ciclooxigenasa 2 se asocia inversamente con los valores máximos de SUV en la 18F-FDG-PET de pacientes afectados de carcinomas no microcíticos de pulmón. Relación con otros factores biológicos. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s0212-6982(09)70209-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Taylor BN, Mehta RR, Yamada T, Lekmine F, Christov K, Chakrabarty AM, Green A, Bratescu L, Shilkaitis A, Beattie CW, Das Gupta TK. Noncationic Peptides Obtained From Azurin Preferentially Enter Cancer Cells. Cancer Res 2009; 69:537-46. [DOI: 10.1158/0008-5472.can-08-2932] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Zhao KJ, Shen JK. Advances of gastrin-releasing peptide receptor in treatment of tumors. Shijie Huaren Xiaohua Zazhi 2009; 17:63-67. [DOI: 10.11569/wcjd.v17.i1.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mammalian gastrin-releasing peptide (GRP), known as autocrine growth factors in tumors, is involved in the pathogenesis and progression of many human malignant tumors, and high expression of its receptor, GRPR, in a large spectrum of human cancers gives support to the conclusion that GRPR is a new molecular target in experimental and clinical cancer therapy. GRPRs may be potential carriers for cytotoxins, immunotoxins or radioactive compounds. Moreover, blocking gastrin-releasing peptide receptor signaling pathways by means of antisence oligonucleotide, RNA interference and its antagonists has exhibited impressive antitumor activity.
Collapse
|
25
|
Abd-Elgaliel WR, Gallazzi F, Garrison JC, Rold TL, Sieckman GL, Figueroa SD, Hoffman TJ, Lever SZ. Design, synthesis, and biological evaluation of an antagonist-bombesin analogue as targeting vector. Bioconjug Chem 2008; 19:2040-8. [PMID: 18808168 PMCID: PMC2659627 DOI: 10.1021/bc800290c] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The gastrin releasing peptide receptor (GRP-R) is overexpressed on a number of tumors and cancer cell lines including pancreas, prostate, breast, gastrointestinal, and small cell lung cancer (SCLC). Radiolabeled bombesin (BBN) analogues have exhibited high binding affinity and specificity to the GRP-R. A bombesin analogue with an antagonist targeting vector at the C-terminus, DOTA-aminohexanoyl-[D-Phe(6), Leu-NHCH 2CH 2CH3(13), des Met(14)] BBN[6-14] (1, "Bomproamide"), has been synthesized and displays high binding affinity (IC50 = 1.36 +/- 0.09 nM) against (125)I-Tyr (4)-BBN in in vitro competitive assays using PC-3 cells. Maximum internalization of (111)In-1 reached 14% in PC-3 cells after 45 min of incubation. Rapid (0.25 h PI) and high (12.21 +/- 3.2%ID/g) pancreatic uptake of (111)In-1 was observed in healthy CF-1 mice, and 90% of the activity was blocked by coinjection of 100 mug of BBN. Rapid (0.25 h PI) and high uptake (6.90 +/- 1.06%ID/g) was observed in PC-3 prostate cancer xenografts in SCID mice, as well as visualized clearly in a SPECT/CT study. These results support the use of a bombesin construct with an antagonist C-terminal vector as a candidate of choice for specific in vivo imaging of tumors overexpressing GRP-receptors.
Collapse
Affiliation(s)
- Wael R Abd-Elgaliel
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
|