1
|
Škrbić T, Giacometti A, Hoang TX, Maritan A, Banavar JR. Amino-Acid Characteristics in Protein Native State Structures. Biomolecules 2024; 14:805. [PMID: 39062519 PMCID: PMC11274641 DOI: 10.3390/biom14070805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The molecular machines of life, proteins, are made up of twenty kinds of amino acids, each with distinctive side chains. We present a geometrical analysis of the protrusion statistics of side chains in more than 4000 high-resolution protein structures. We employ a coarse-grained representation of the protein backbone viewed as a linear chain of Cα atoms and consider just the heavy atoms of the side chains. We study the large variety of behaviors of the amino acids based on both rudimentary structural chemistry as well as geometry. Our geometrical analysis uses a backbone Frenet coordinate system for the common study of all amino acids. Our analysis underscores the richness of the repertoire of amino acids that is available to nature to design protein sequences that fit within the putative native state folds.
Collapse
Affiliation(s)
- Tatjana Škrbić
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Campus Scientifico, Via Torino 155, 30170 Venice Mestre, Italy;
- Department of Physics and Institute for Fundamental Science, University of Oregon, Eugene, OR 97403, USA;
| | - Achille Giacometti
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Campus Scientifico, Via Torino 155, 30170 Venice Mestre, Italy;
- European Centre for Living Technology (ECLT), Ca’ Bottacin, Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy
| | - Trinh X. Hoang
- Institute of Physics, Vietnam Academy of Science and Technology, 10 DaoTan, Ba Dinh, Hanoi 11108, Vietnam;
| | - Amos Maritan
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy;
| | - Jayanth R. Banavar
- Department of Physics and Institute for Fundamental Science, University of Oregon, Eugene, OR 97403, USA;
| |
Collapse
|
2
|
Searching protein space for ancient sub-domain segments. Curr Opin Struct Biol 2021; 68:105-112. [PMID: 33476896 DOI: 10.1016/j.sbi.2020.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/29/2020] [Indexed: 01/08/2023]
Abstract
Evolutionary processes that formed the current protein universe left their traces, among them homologous segments that recur, or are 'reused,' in multiple proteins. These reused segments, called 'themes,' can be found at various scales, the best known of which is the domain. Yet, recent studies have begun to focus on the evolutionary insights that can be derived from sub-domain-scale themes, which are candidates for traces of more ancient events. Characterizing these may provide clues to the emergence of domains. Particularly interesting are themes that are reused across dissimilar contexts, that is, where the rest of the protein domain differs. We survey computational studies identifying reused themes within different contexts at the sub-domain level.
Collapse
|
3
|
Tian P, Best RB. Exploring the sequence fitness landscape of a bridge between protein folds. PLoS Comput Biol 2020; 16:e1008285. [PMID: 33048928 PMCID: PMC7553338 DOI: 10.1371/journal.pcbi.1008285] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Most foldable protein sequences adopt only a single native fold. Recent protein design studies have, however, created protein sequences which fold into different structures apon changes of environment, or single point mutation, the best characterized example being the switch between the folds of the GA and GB binding domains of streptococcal protein G. To obtain further insight into the design of sequences which can switch folds, we have used a computational model for the fitness landscape of a single fold, built from the observed sequence variation of protein homologues. We have recently shown that such coevolutionary models can be used to design novel foldable sequences. By appropriately combining two of these models to describe the joint fitness landscape of GA and GB, we are able to describe the propensity of a given sequence for each of the two folds. We have successfully tested the combined model against the known series of designed GA/GB hybrids. Using Monte Carlo simulations on this landscape, we are able to identify pathways of mutations connecting the two folds. In the absence of a requirement for domain stability, the most frequent paths go via sequences in which neither domain is stably folded, reminiscent of the propensity for certain intrinsically disordered proteins to fold into different structures according to context. Even if the folded state is required to be stable, we find that there is nonetheless still a wide range of sequences which are close to the transition region and therefore likely fold switches, consistent with recent estimates that fold switching may be more widespread than had been thought.
Collapse
Affiliation(s)
- Pengfei Tian
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, U.S.A
| |
Collapse
|
4
|
Edwards H, Deane CM. Structural Bridges through Fold Space. PLoS Comput Biol 2015; 11:e1004466. [PMID: 26372166 PMCID: PMC4570669 DOI: 10.1371/journal.pcbi.1004466] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/12/2015] [Indexed: 12/05/2022] Open
Abstract
Several protein structure classification schemes exist that partition the protein universe into structural units called folds. Yet these schemes do not discuss how these units sit relative to each other in a global structure space. In this paper we construct networks that describe such global relationships between folds in the form of structural bridges. We generate these networks using four different structural alignment methods across multiple score thresholds. The networks constructed using the different methods remain a similar distance apart regardless of the probability threshold defining a structural bridge. This suggests that at least some structural bridges are method specific and that any attempt to build a picture of structural space should not be reliant on a single structural superposition method. Despite these differences all representations agree on an organisation of fold space into five principal community structures: all-α, all-β sandwiches, all-β barrels, α/β and α + β. We project estimated fold ages onto the networks and find that not only are the pairings of unconnected folds associated with higher age differences than bridged folds, but this difference increases with the number of networks displaying an edge. We also examine different centrality measures for folds within the networks and how these relate to fold age. While these measures interpret the central core of fold space in varied ways they all identify the disposition of ancestral folds to fall within this core and that of the more recently evolved structures to provide the peripheral landscape. These findings suggest that evolutionary information is encoded along these structural bridges. Finally, we identify four highly central pivotal folds representing dominant topological features which act as key attractors within our landscapes. Folds are considered to be the structural units which make up the protein universe. Structural classification schemes focus on the assignment and organisation of protein domains into folds. However, they do not suggest how different folds might relate to one another in a global way. We introduce the concept of bridges through fold space: significant similarities between these units. We consider four alignment methods and a dynamic approach to placing these bridges. A greater consensus between these methods cannot be achieved by simply increasing the stringency with which edges are assigned. Instead, we emphasise the importance of considering consensus maps and only report results where there is agreement across all networks. It is possible that a study of the bridges may reveal evolutionary relationships. Based on a phylogenetic analysis of structures, we find that bridges consistently fall between folds which evolved at similar times. Moreover, the landscapes all consist of a core of older folds, with younger structures more often seen at the periphery. Finally we identify four pivotal folds in the landscapes. They contain topological motifs which unite disparate regions of fold space.
Collapse
Affiliation(s)
- Hannah Edwards
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Charlotte M. Deane
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Holzgräfe C, Wallin S. Smooth functional transition along a mutational pathway with an abrupt protein fold switch. Biophys J 2015; 107:1217-1225. [PMID: 25185557 DOI: 10.1016/j.bpj.2014.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 10/24/2022] Open
Abstract
Recent protein design experiments have demonstrated that proteins can migrate between folds through the accumulation of substitution mutations without visiting disordered or nonfunctional points in sequence space. To explore the biophysical mechanism underlying such transitions we use a three-letter continuous protein model with seven atoms per amino acid to provide realistic sequence-structure and sequence-function mappings through explicit simulation of the folding and interaction of model sequences. We start from two 16-amino-acid sequences folding into an α-helix and a β-hairpin, respectively, each of which has a preferred binding partner with 35 amino acids. We identify a mutational pathway between the two folds, which features a sharp fold switch. By contrast, we find that the transition in function is smooth. Moreover, the switch in preferred binding partner does not coincide with the fold switch. Discovery of new folds in evolution might therefore be facilitated by following fitness slopes in sequence space underpinned by binding-induced conformational switching.
Collapse
Affiliation(s)
- Christian Holzgräfe
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Lund, Sweden
| | - Stefan Wallin
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Shi G, Vogel T, Wüst T, Li YW, Landau DP. Effect of single-site mutations on hydrophobic-polar lattice proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:033307. [PMID: 25314564 DOI: 10.1103/physreve.90.033307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 06/04/2023]
Abstract
We developed a heuristic method for determining the ground-state degeneracy of hydrophobic-polar (HP) lattice proteins, based on Wang-Landau and multicanonical sampling. It is applied during comprehensive studies of single-site mutations in specific HP proteins with different sequences. The effects in which we are interested include structural changes in ground states, changes of ground-state energy, degeneracy, and thermodynamic properties of the system. With respect to mutations, both extremely sensitive and insensitive positions in the HP sequence have been found. That is, ground-state energies and degeneracies, as well as other thermodynamic and structural quantities, may be either largely unaffected or may change significantly due to mutation.
Collapse
Affiliation(s)
- Guangjie Shi
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Thomas Vogel
- Theoretical Division (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Thomas Wüst
- Scientific IT Services, ETH Zürich IT Services, 8092 Zürich, Switzerland
| | - Ying Wai Li
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - David P Landau
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
7
|
Suhrer SJ, Gruber M, Wiederstein M, Sippl MJ. Effective techniques for protein structure mining. Methods Mol Biol 2012; 857:33-54. [PMID: 22323216 DOI: 10.1007/978-1-61779-588-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Retrieval and characterization of protein structure relationships are instrumental in a wide range of tasks in structural biology. The classification of protein structures (COPS) is a web service that provides efficient access to structure and sequence similarities for all currently available protein structures. Here, we focus on the application of COPS to the problem of template selection in homology modeling.
Collapse
Affiliation(s)
- Stefan J Suhrer
- Center of Applied Molecular Engineering, Division of Bioinformatics, University of Salzburg, Salzburg, Austria.
| | | | | | | |
Collapse
|
8
|
Holzgräfe C, Irbäck A, Troein C. Mutation-induced fold switching among lattice proteins. J Chem Phys 2011; 135:195101. [DOI: 10.1063/1.3660691] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Morrone A, McCully ME, Bryan PN, Brunori M, Daggett V, Gianni S, Travaglini-Allocatelli C. The denatured state dictates the topology of two proteins with almost identical sequence but different native structure and function. J Biol Chem 2011; 286:3863-72. [PMID: 21118804 PMCID: PMC3030387 DOI: 10.1074/jbc.m110.155911] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 11/19/2010] [Indexed: 11/06/2022] Open
Abstract
The protein folding problem is often studied by comparing the mechanisms of proteins sharing the same structure but different sequence. The recent design of the two proteins G(A)88 and G(B)88, displaying different structures and functions while sharing 88% sequence identity (49 out of 56 amino acids), allows the unique opportunity for a complementary approach. At which stage of its folding pathway does a protein commit to a given topology? Which residues are crucial in directing folding mechanisms to a given structure? By using a combination of biophysical and computational techniques, we have characterized the folding of both G(A)88 and G(B)88. We show that, contrary to expectation, G(B)88, characterized by a native α+β fold, displays in the denatured state a content of native-like helical structure greater than G(A)88, which is all-α in its native state. Both experiments and simulations indicate that such residual structure may be tuned by changing pH. Thus, despite the high sequence identity, the folding pathways for these two proteins appear to diverge as early as in the denatured state. Our results suggest a mechanism whereby protein topology is committed very early along the folding pathway, being imprinted in the residual structure of the denatured state.
Collapse
Affiliation(s)
- Angela Morrone
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Università di Roma “La Sapienza”, 5 00185 Rome, Italy
| | - Michelle E. McCully
- the Biomolecular Structure and Design Program and Department of Bioengineering, University of Washington, Seattle, Washington 98195, and
| | - Philip N. Bryan
- the Institute for Bioscience and Biotechnology Research/Department of Bioengineering, University of Maryland, Rockville, Maryland 20850
| | - Maurizio Brunori
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Università di Roma “La Sapienza”, 5 00185 Rome, Italy
| | - Valerie Daggett
- the Biomolecular Structure and Design Program and Department of Bioengineering, University of Washington, Seattle, Washington 98195, and
| | - Stefano Gianni
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Università di Roma “La Sapienza”, 5 00185 Rome, Italy
| | - Carlo Travaglini-Allocatelli
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Università di Roma “La Sapienza”, 5 00185 Rome, Italy
| |
Collapse
|
10
|
Schellenberg MJ, Ritchie DB, Wu T, Markin CJ, Spyracopoulos L, MacMillan AM. Context-dependent remodeling of structure in two large protein fragments. J Mol Biol 2010; 402:720-30. [PMID: 20713060 DOI: 10.1016/j.jmb.2010.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/05/2010] [Accepted: 08/10/2010] [Indexed: 11/25/2022]
Abstract
Protein folding involves the formation of secondary structural elements from the primary sequence and their association with tertiary assemblies. The relation of this primary sequence to a specific folded protein structure remains a central question in structural biology. An increasing body of evidence suggests that variations in homologous sequence ranging from point mutations to substantial insertions or deletions can yield stable proteins with markedly different folds. Here we report the structural characterization of domain IV (D4) and ΔD4 (polypeptides with 222 and 160 amino acids, respectively) that differ by virtue of an N-terminal deletion of 62 amino acids (28% of the overall D4 sequence). The high-resolution crystal structures of the monomeric D4 and the dimeric ΔD4 reveal substantially different folds despite an overall conservation of secondary structure. These structures show that the formation of tertiary structures, even in extended polypeptide sequences, can be highly context dependent, and they serve as a model for structural plasticity in protein isoforms.
Collapse
Affiliation(s)
- Matthew J Schellenberg
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
An increasing number of proteins demonstrate the ability to switch between very different fold topologies, expanding their functional utility through new binding interactions. Recent examples of fold switching from naturally occurring and designed systems have a number of common features: (i) The structural transitions require states with diminished stability; (ii) Switching involves flexible regions in one conformer or the other; (iii) A new binding surface is revealed in the alternate fold that can lead to both stabilization of the alternative state and expansion of biological function. Fold switching not only provides insight into how new folds evolve, but also indicates that an amino acid sequence has more information content than previously thought. A polypeptide chain can encode a stable fold while simultaneously hiding latent propensities for alternative states with novel functions.
Collapse
Affiliation(s)
- Philip N Bryan
- Institute for Bioscience and Biotechnology Research, Department of Bioengineering, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | | |
Collapse
|
12
|
Phages have adapted the same protein fold to fulfill multiple functions in virion assembly. Proc Natl Acad Sci U S A 2010; 107:14384-9. [PMID: 20660769 DOI: 10.1073/pnas.1005822107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolutionary relationships may exist among very diverse groups of proteins even though they perform different functions and display little sequence similarity. The tailed bacteriophages present a uniquely amenable system for identifying such groups because of their huge diversity yet conserved genome structures. In this work, we used structural, functional, and genomic context comparisons to conclude that the head-tail connector protein and tail tube protein of bacteriophage lambda diverged from a common ancestral protein. Further comparisons of tertiary and quaternary structures indicate that the baseplate hub and tail terminator proteins of bacteriophage may also be part of this same family. We propose that all of these proteins evolved from a single ancestral tail tube protein fold, and that gene duplication followed by differentiation led to the specialized roles of these proteins seen in bacteriophages today. Although this type of evolutionary mechanism has been proposed for other systems, our work provides an evolutionary mechanism for a group of proteins with different functions that bear no sequence similarity. Our data also indicate that the addition of a structural element at the N terminus of the lambda head-tail connector protein endows it with a distinctive protein interaction capability compared with many of its putative homologues.
Collapse
|
13
|
Shen Y, Bryan PN, He Y, Orban J, Baker D, Bax A. De novo structure generation using chemical shifts for proteins with high-sequence identity but different folds. Protein Sci 2010; 19:349-56. [PMID: 19998407 DOI: 10.1002/pro.303] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Proteins with high-sequence identity but very different folds present a special challenge to sequence-based protein structure prediction methods. In particular, a 56-residue three-helical bundle protein (GA(95)) and an alpha/beta-fold protein (GB(95)), which share 95% sequence identity, were targets in the CASP-8 structure prediction contest. With only 12 out of 300 submitted server-CASP8 models for GA(95) exhibiting the correct fold, this protein proved particularly challenging despite its small size. Here, we demonstrate that the information contained in NMR chemical shifts can readily be exploited by the CS-Rosetta structure prediction program and yields adequate convergence, even when input chemical shifts are limited to just amide (1)H(N) and (15)N or (1)H(N) and (1)H(alpha) values.
Collapse
Affiliation(s)
- Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | | | | | | | |
Collapse
|
14
|
A minimal sequence code for switching protein structure and function. Proc Natl Acad Sci U S A 2009; 106:21149-54. [PMID: 19923431 DOI: 10.1073/pnas.0906408106] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present here a structural and mechanistic description of how a protein changes its fold and function, mutation by mutation. Our approach was to create 2 proteins that (i) are stably folded into 2 different folds, (ii) have 2 different functions, and (iii) are very similar in sequence. In this simplified sequence space we explore the mutational path from one fold to another. We show that an IgG-binding, 4beta+alpha fold can be transformed into an albumin-binding, 3-alpha fold via a mutational pathway in which neither function nor native structure is completely lost. The stabilities of all mutants along the pathway are evaluated, key high-resolution structures are determined by NMR, and an explanation of the switching mechanism is provided. We show that the conformational switch from 4beta+alpha to 3-alpha structure can occur via a single amino acid substitution. On one side of the switch point, the 4beta+alpha fold is >90% populated (pH 7.2, 20 degrees C). A single mutation switches the conformation to the 3-alpha fold, which is >90% populated (pH 7.2, 20 degrees C). We further show that a bifunctional protein exists at the switch point with affinity for both IgG and albumin.
Collapse
|
15
|
Structural relationships among proteins with different global topologies and their implications for function annotation strategies. Proc Natl Acad Sci U S A 2009; 106:17377-82. [PMID: 19805138 DOI: 10.1073/pnas.0907971106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has become increasingly apparent that geometric relationships often exist between regions of two proteins that have quite different global topologies or folds. In this article, we examine whether such relationships can be used to infer a functional connection between the two proteins in question. We find, by considering a number of examples involving metal and cation binding, sugar binding, and aromatic group binding, that geometrically similar protein fragments can share related functions, even if they have been classified as belonging to different folds and topologies. Thus, the use of classifications inevitably limits the number of functional inferences that can be obtained from the comparative analysis of protein structures. In contrast, the development of interactive computational tools that recognize the "continuous" nature of protein structure/function space, by increasing the number of potentially meaningful relationships that are considered, may offer a dramatic enhancement in the ability to extract information from protein structure databases. We introduce the MarkUs server, that embodies this strategy and that is designed for a user interested in developing and validating specific functional hypotheses.
Collapse
|
16
|
Sippl MJ. Fold space unlimited. Curr Opin Struct Biol 2009; 19:312-20. [DOI: 10.1016/j.sbi.2009.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/16/2009] [Accepted: 03/16/2009] [Indexed: 11/25/2022]
|
17
|
Petrey D, Honig B. Is protein classification necessary? Toward alternative approaches to function annotation. Curr Opin Struct Biol 2009; 19:363-8. [PMID: 19269161 PMCID: PMC2745633 DOI: 10.1016/j.sbi.2009.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 02/02/2009] [Indexed: 11/16/2022]
Abstract
The current nonredundant protein sequence database contains over seven million entries and the number of individual functional domains is significantly larger than this value. The vast quantity of data associated with these proteins poses enormous challenges to any attempt at function annotation. Classification of proteins into sequence and structural groups has been widely used as an approach to simplifying the problem. In this article we question such strategies. We describe how the multifunctionality and structural diversity of even closely related proteins confounds efforts to assign function on the basis of overall sequence or structural similarity. Rather, we suggest that strategies that avoid classification may offer a more robust approach to protein function annotation.
Collapse
Affiliation(s)
- Donald Petrey
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
18
|
Abstract
Molecular modeling techniques have made significant advances in recent years and are becoming essential components of many chemical, physical and biological studies. Here we present three widely used techniques used in the simulation of biomolecular systems: structural and homology modeling, molecular dynamics and molecular docking. For each of these topics we present a brief discussion of the underlying scientific basis of the technique, some simple examples of how the method is commonly applied, and some discussion of the limitations and caveats of which the user should be aware. References for further reading as well as an extensive list of software resources are provided.
Collapse
Affiliation(s)
- Akansha Saxena
- Biomedical Engineering, Washington University, St Louis, Missouri, USA
| | - Diana Wong
- Biomedical Engineering, Washington University, St Louis, Missouri, USA
| | - Karthikeyan Diraviyam
- Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - David Sept
- Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Cuff AL, Sillitoe I, Lewis T, Redfern OC, Garratt R, Thornton J, Orengo CA. The CATH classification revisited--architectures reviewed and new ways to characterize structural divergence in superfamilies. Nucleic Acids Res 2009; 37:D310-4. [PMID: 18996897 PMCID: PMC2686597 DOI: 10.1093/nar/gkn877] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 11/13/2022] Open
Abstract
The latest version of CATH (class, architecture, topology, homology) (version 3.2), released in July 2008 (http://www.cathdb.info), contains 114,215 domains, 2178 Homologous superfamilies and 1110 fold groups. We have assigned 20,330 new domains, 87 new homologous superfamilies and 26 new folds since CATH release version 3.1. A total of 28,064 new domains have been assigned since our NAR 2007 database publication (CATH version 3.0). The CATH website has been completely redesigned and includes more comprehensive documentation. We have revisited the CATH architecture level as part of the development of a 'Protein Chart' and present information on the population of each architecture. The CATHEDRAL structure comparison algorithm has been improved and used to characterize structural diversity in CATH superfamilies and structural overlaps between superfamilies. Although the majority of superfamilies in CATH are not structurally diverse and do not overlap significantly with other superfamilies, approximately 4% of superfamilies are very diverse and these are the superfamilies that are most highly populated in both the PDB and in the genomes. Information on the degree of structural diversity in each superfamily and structural overlaps between superfamilies can now be downloaded from the CATH website.
Collapse
Affiliation(s)
- Alison L Cuff
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| | | | | | | | | | | | | |
Collapse
|