1
|
Munzert KS, Engelsdorf T. Plant cell wall structure and dynamics in plant-pathogen interactions and pathogen defence. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:228-242. [PMID: 39470457 DOI: 10.1093/jxb/erae442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
Plant cell walls delimit cells from their environment and provide mechanical stability to withstand internal turgor pressure as well as external influences. Environmental factors can be beneficial or harmful for plants and vary substantially depending on prevailing combinations of climate conditions and stress exposure. Consequently, the physicochemical properties of plant cell walls need to be adaptive, and their functional integrity needs to be monitored by the plant. One major threat to plants is posed by phytopathogens, which employ a diversity of infection strategies and lifestyles to colonize host tissues. During these interactions, the plant cell wall represents a barrier that impedes the colonization of host tissues and pathogen spread. In a competition for maintenance and breakdown, plant cell walls can be rapidly and efficiently remodelled by enzymatic activities of plant and pathogen origin, heavily influencing the outcome of plant-pathogen interactions. We review the role of locally and systemically induced cell wall remodelling and the importance of tissue-dependent cell wall properties for the interaction with pathogens. Furthermore, we discuss the importance of cell wall-dependent signalling for defence response induction and the influence of abiotic factors on cell wall integrity and cell wall-associated pathogen resistance mechanisms.
Collapse
Affiliation(s)
- Kristina S Munzert
- Molecular Plant Physiology, Department of Biology, Philipps-Universität Marburg, D-35043 Marburg, Germany
| | - Timo Engelsdorf
- Molecular Plant Physiology, Department of Biology, Philipps-Universität Marburg, D-35043 Marburg, Germany
| |
Collapse
|
2
|
Djemouai N, Meklat A, Youcef KOH, Nacer A, Saadi SA, Verheecke-Vaessen C. Diversity and Bioactivity of Endophytic Actinobacteria Associated with the Roots of Artemisia herba-alba Asso from Algeria. Curr Microbiol 2024; 81:402. [PMID: 39392504 DOI: 10.1007/s00284-024-03932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
The isolation of endophytic actinobacteria from the roots of wild populations of Artemisia herba-alba Asso, a medicinal plant collected from the arid lands of Algeria, is reported for the first time. Forty-five actinobacterial isolates were identified by molecular analysis and in vitro evaluated for antimicrobial activity and plant growth-promoting (PGP) abilities (1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, nitrogen fixation, phosphate and potassium solubilization, ammonia, and siderophores production). The phylogenetic relationships based on 16S rRNA gene sequences show that the genus Nocardioides (n = 23) was dominant in the sampled localities. The remaining actinobacterial isolates were identified as Promicromonospora (n = 11), Streptomyces (n = 6), Micromonopora (n = 3), and Saccharothrix (n = 2). Only six (13.33%) strains (five Streptomyces and one Saccharothrix species) were antagonistic in vitro against at least one or more indicator microorganisms. The antimicrobial activity of actinobacterial strains targeted mainly Gram-positive bacteria. The results demonstrate that more than 73% of the isolated strains had ACC deaminase activity, could fix atmospheric nitrogen and were producers of ammonia and siderophores. However, only one (2.22%) strain named Saccharothrix sp. BT79 could solubilize phosphorus and potassium. Overall, many strains exhibited a broad spectrum of PGP abilities. Thus, A. herba-alba provides a source of endophytic actinobacteria that should be explored for their potential biological activities.
Collapse
Affiliation(s)
- Nadjette Djemouai
- Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaia, BP 455, 47000, Ghardaïa, Algeria.
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, B.P. 92, 16050, Kouba, Algiers, Algeria.
| | - Atika Meklat
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, B.P. 92, 16050, Kouba, Algiers, Algeria
| | - Khadidja Oulad Hadj Youcef
- Unité de Recherche Appliquée en Energies Renouvelables (URAER), Centre de Développement des Energies Renouvelables (CDER), Ghardaïa, Algeria
| | - Asma Nacer
- Equipe Biologie des Sols, Laboratoire de Biologie et Physiologie des Organismes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), El-Alia, Bab Ezzouar, BP32, 16111, Algiers, Algeria
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Sid Ahmed Saadi
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, B.P. 92, 16050, Kouba, Algiers, Algeria
| | | |
Collapse
|
3
|
de Carvalho-Niebel F, Fournier J, Becker A, Marín Arancibia M. Cellular insights into legume root infection by rhizobia. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102597. [PMID: 39067084 DOI: 10.1016/j.pbi.2024.102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024]
Abstract
Legume plants establish an endosymbiosis with nitrogen-fixing rhizobia bacteria, which are taken up from the environment anew by each host generation. This requires a dedicated genetic program on the host side to control microbe invasion, involving coordinated reprogramming of host cells to create infection structures that facilitate inward movement of the symbiont. Infection initiates in the epidermis, with different legumes utilizing distinct strategies for crossing this cell layer, either between cells (intercellular infection) or transcellularly (infection thread infection). Recent discoveries on the plant side using fluorescent-based imaging approaches have illuminated the spatiotemporal dynamics of infection, underscoring the importance of investigating this process at the dynamic single-cell level. Extending fluorescence-based live-dynamic approaches to the bacterial partner opens the exciting prospect of learning how individual rhizobia reprogram from rhizospheric to a host-confined state during early root infection.
Collapse
Affiliation(s)
| | - Joëlle Fournier
- LIPME, INRAE, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, D-35032, Marburg, Germany; Department of Biology, Philipps-Universität Marburg, D-35032, Marburg, Germany
| | | |
Collapse
|
4
|
Zhang X, Chen JX, Lian WT, Zhou HW, He Y, Li XX, Liao H. Molecular module GmPTF1a/b-GmNPLa regulates rhizobia infection and nodule formation in soybean. THE NEW PHYTOLOGIST 2024; 241:1813-1828. [PMID: 38062896 DOI: 10.1111/nph.19462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/08/2023] [Indexed: 01/26/2024]
Abstract
Nodulation begins with the initiation of infection threads (ITs) in root hairs. Though mutual recognition and early symbiotic signaling cascades in legumes are well understood, molecular mechanisms underlying bacterial infection processes and successive nodule organogenesis remain largely unexplored. We functionally investigated a novel pectate lyase enzyme, GmNPLa, and its transcriptional regulator GmPTF1a/b in soybean (Glycine max), where their regulatory roles in IT development and nodule formation were elucidated through investigation of gene expression patterns, bioinformatics analysis, biochemical verification of genetic interactions, and observation of phenotypic impacts in transgenic soybean plants. GmNPLa was specifically induced by rhizobium inoculation in root hairs. Manipulation of GmNPLa produced remarkable effects on IT and nodule formation. GmPTF1a/b displayed similar expression patterns as GmNPLa, and manipulation of GmPTF1a/b also severely influenced nodulation traits. LI soybeans with low nodulation phenotypes were nearly restored to HI nodulation level by complementation of GmNPLa and/or GmPTF1a. Further genetic and biochemical analysis demonstrated that GmPTF1a can bind to the E-box motif to activate transcription of GmNPLa, and thereby facilitate nodulation. Taken together, our findings potentially reveal novel mediation of cell wall gene expression involving the basic helix-loop-helix transcription factor GmPTF1a/b acts as a key early regulator of nodulation in soybean.
Collapse
Affiliation(s)
- Xiao Zhang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jia-Xin Chen
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen-Ting Lian
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui-Wen Zhou
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying He
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin-Xin Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
5
|
Su C. Pectin modifications at the symbiotic interface. THE NEW PHYTOLOGIST 2023; 238:25-32. [PMID: 36565041 DOI: 10.1111/nph.18705] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Plant cells are surrounded by a structured cell wall, which not only defines cell shape but also provides a structural barrier for protection against pathogen infection. However, the presence of this barrier does not impede the establishment of mutualistic symbioses between plants and several microbes (e.g. ectomycorrhizal fungi, arbuscular mycorrhizal fungi, and rhizobia). To establish such beneficial associations, symbiotic microbes need to colonize the plant tissues via intercellular and/or intracellular infection, a process that requires cell wall modifications. Although cell wall composition and changes during this process have interested researchers for years, the functional characterization of the molecular players involved is still limited. In this viewpoint, based on several new studies, I discuss how the PME-PL/PG pathway mediates cell wall pectin modifications at the symbiotic interface and highlight further research directions which can broaden our understanding of how beneficial root symbioses are established.
Collapse
Affiliation(s)
- Chao Su
- Plant Cell Biology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
6
|
Su C, Rodriguez-Franco M, Lace B, Nebel N, Hernandez-Reyes C, Liang P, Schulze E, Mymrikov EV, Gross NM, Knerr J, Wang H, Siukstaite L, Keller J, Libourel C, Fischer AAM, Gabor KE, Mark E, Popp C, Hunte C, Weber W, Wendler P, Stanislas T, Delaux PM, Einsle O, Grosse R, Römer W, Ott T. Stabilization of membrane topologies by proteinaceous remorin scaffolds. Nat Commun 2023; 14:323. [PMID: 36658193 PMCID: PMC9852587 DOI: 10.1038/s41467-023-35976-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
In plants, the topological organization of membranes has mainly been attributed to the cell wall and the cytoskeleton. Additionally, few proteins, such as plant-specific remorins have been shown to function as protein and lipid organizers. Root nodule symbiosis requires continuous membrane re-arrangements, with bacteria being finally released from infection threads into membrane-confined symbiosomes. We found that mutations in the symbiosis-specific SYMREM1 gene result in highly disorganized perimicrobial membranes. AlphaFold modelling and biochemical analyses reveal that SYMREM1 oligomerizes into antiparallel dimers and may form a higher-order membrane scaffolding structure. This was experimentally confirmed when expressing this and other remorins in wall-less protoplasts is sufficient where they significantly alter and stabilize de novo membrane topologies ranging from membrane blebs to long membrane tubes with a central actin filament. Reciprocally, mechanically induced membrane indentations were equally stabilized by SYMREM1. Taken together we describe a plant-specific mechanism that allows the stabilization of large-scale membrane conformations independent of the cell wall.
Collapse
Affiliation(s)
- Chao Su
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | | | - Beatrice Lace
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Nils Nebel
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Casandra Hernandez-Reyes
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Pengbo Liang
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Eija Schulze
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Evgeny V Mymrikov
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Nikolas M Gross
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Julian Knerr
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Hong Wang
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Alexandra A M Fischer
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Division of Synthetic Biology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Katharina E Gabor
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Eric Mark
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Claudia Popp
- Ludwig-Maximilians-University (LMU) Munich, Institute of Genetics, 82152, Martinsried, Germany
| | - Carola Hunte
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Wilfried Weber
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Division of Synthetic Biology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Thomas Stanislas
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Oliver Einsle
- Institute of Biochemistry, Faculty of Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Robert Grosse
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Ott
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
7
|
Znój A, Gawor J, Gromadka R, Chwedorzewska KJ, Grzesiak J. Root-Associated Bacteria Community Characteristics of Antarctic Plants: Deschampsia antarctica and Colobanthus quitensis-a Comparison. MICROBIAL ECOLOGY 2022; 84:808-820. [PMID: 34661728 PMCID: PMC9622554 DOI: 10.1007/s00248-021-01891-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/30/2021] [Indexed: 05/11/2023]
Abstract
Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. are the only Magnoliophyta to naturally colonize the Antarctic region. The reason for their sole presence in Antarctica is still debated as there is no definitive consensus on how only two unrelated flowering plants managed to establish breeding populations in this part of the world. In this study, we have explored and compared the rhizosphere and root-endosphere dwelling microbial community of C. quitensis and D. antarctica specimens sampled in maritime Antarctica from sites displaying contrasting edaphic characteristics. Bacterial phylogenetic diversity (high-throughput 16S rRNA gene fragment targeted sequencing) and microbial metabolic activity (Biolog EcoPlates) with a geochemical soil background were assessed. Gathered data showed that the microbiome of C. quitensis root system was mostly site-dependent, displaying different characteristics in each of the examined locations. This plant tolerated an active bacterial community only in severe conditions (salt stress and nutrient deprivation), while in other more favorable circumstances, it restricted microbial activity, with a possibility of microbivory-based nutrient acquisition. The microbial communities of D. antarctica showed a high degree of similarity between samples within a particular rhizocompartment. The grass' endosphere was significantly enriched in plant beneficial taxa of the family Rhizobiaceae, which displayed obligatory endophyte characteristics, suggesting that at least part of this community is transmitted vertically. Ultimately, the ecological success of C. quitensis and D. antarctica in Antarctica might be largely attributed to their associations and management of root-associated microbiota.
Collapse
Affiliation(s)
- Anna Znój
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
- Botanical Garden-Center for Biological Diversity Conservation, Polish Academy of Sciences, Prawdziwka 2, 02-973, Warsaw, Poland
| | - Jan Gawor
- Environmental Laboratory of DNA Sequencing and Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Robert Gromadka
- Environmental Laboratory of DNA Sequencing and Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Katarzyna J Chwedorzewska
- Department of Botany, Warsaw, University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Jakub Grzesiak
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
8
|
Wu Z, Yang X, Lin S, Lee WH, Lam PKS. A Rhizobium bacterium and its population dynamics under different culture conditions of its associated toxic dinoflagellate Gambierdiscus balechii. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:542-551. [PMID: 37073262 PMCID: PMC10077202 DOI: 10.1007/s42995-021-00102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/31/2021] [Indexed: 05/03/2023]
Abstract
Rhizobium bacteria are known as symbionts of legumes for developing nodules on plant roots and fixing N2 for the host plants but unknown for associations with dinoflagellates. Here, we detected, isolated, and characterized a Rhizobium species from the marine toxic dinoflagellate Gambierdiscus culture. Its 16S rRNA gene (rDNA) is 99% identical to that of Rhizobium rosettiformans, and the affiliation is supported by the phylogenetic placement of its cell wall hydrolase -encoding gene (cwh). Using quantitative PCR of 16S rDNA and cwh, we found that the abundance of this bacterium increased during the late exponential growth phase of Gambierdiscus and under nitrogen limitation, suggesting potential physiological interactions between the dinoflagellate and the bacterium. This is the first report of dinoflagellate-associated Rhizobium bacterium, and its prevalence and ecological roles in dinoflagellate-Rhizobium relationships remain to be investigated in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00102-1.
Collapse
Affiliation(s)
- Zhen Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xiaohong Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005 China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005 China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340 USA
| | - Wai Hin Lee
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Paul K. S. Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057 China
| |
Collapse
|
9
|
Abidi W, Torres-Sánchez L, Siroy A, Krasteva PV. Weaving of bacterial cellulose by the Bcs secretion systems. FEMS Microbiol Rev 2021; 46:6388354. [PMID: 34634120 PMCID: PMC8892547 DOI: 10.1093/femsre/fuab051] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cellulose is the most abundant biological compound on Earth and while it is the predominant building constituent of plants, it is also a key extracellular matrix component in many diverse bacterial species. While bacterial cellulose was first described in the 19th century, it was not until this last decade that a string of structural works provided insights into how the cellulose synthase BcsA, assisted by its inner-membrane partner BcsB, senses c-di-GMP to simultaneously polymerize its substrate and extrude the nascent polysaccharide across the inner bacterial membrane. It is now established that bacterial cellulose can be produced by several distinct types of cellulose secretion systems and that in addition to BcsAB, they can feature multiple accessory subunits, often indispensable for polysaccharide production. Importantly, the last years mark significant progress in our understanding not only of cellulose polymerization per se but also of the bigger picture of bacterial signaling, secretion system assembly, biofilm formation and host tissue colonization, as well as of structural and functional parallels of this dominant biosynthetic process between the bacterial and eukaryotic domains of life. Here, we review current mechanistic knowledge on bacterial cellulose secretion with focus on the structure, assembly and cooperativity of Bcs secretion system components.
Collapse
Affiliation(s)
- Wiem Abidi
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.,École doctorale 'Innovation thérapeutique: du fundamental à l'appliqué' (ITFA), Université Paris-Saclay, 92296, Chatenay-Malabry, France
| | - Lucía Torres-Sánchez
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.,École doctorale 'Innovation thérapeutique: du fundamental à l'appliqué' (ITFA), Université Paris-Saclay, 92296, Chatenay-Malabry, France
| | - Axel Siroy
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Petya Violinova Krasteva
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| |
Collapse
|
10
|
Structure and Development of the Legume-Rhizobial Symbiotic Interface in Infection Threads. Cells 2021; 10:cells10051050. [PMID: 33946779 PMCID: PMC8146911 DOI: 10.3390/cells10051050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
The intracellular infection thread initiated in a root hair cell is a unique structure associated with Rhizobium-legume symbiosis. It is characterized by inverted tip growth of the plant cell wall, resulting in a tunnel that allows invasion of host cells by bacteria during the formation of the nitrogen-fixing root nodule. Regulation of the plant-microbial interface is essential for infection thread growth. This involves targeted deposition of the cell wall and extracellular matrix and tight control of cell wall remodeling. This review describes the potential role of different actors such as transcription factors, receptors, and enzymes in the rearrangement of the plant-microbial interface and control of polar infection thread growth. It also focuses on the composition of the main polymers of the infection thread wall and matrix and the participation of reactive oxygen species (ROS) in the development of the infection thread. Mutant analysis has helped to gain insight into the development of host defense reactions. The available data raise many new questions about the structure, function, and development of infection threads.
Collapse
|
11
|
Suchan DM, Bergsveinson J, Manzon L, Pierce A, Kryachko Y, Korber D, Tan Y, Tambalo DD, Khan NH, Whiting M, Yost CK. Transcriptomics reveal core activities of the plant growth-promoting bacterium Delftia acidovorans RAY209 during interaction with canola and soybean roots. Microb Genom 2020; 6:mgen000462. [PMID: 33151138 PMCID: PMC7725335 DOI: 10.1099/mgen.0.000462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023] Open
Abstract
The plant growth-promoting rhizobacterium Delftia acidovorans RAY209 is capable of establishing strong root attachment during early plant development at 7 days post-inoculation. The transcriptional response of RAY209 was measured using RNA-seq during early (day 2) and sustained (day 7) root colonization of canola plants, capturing RAY209 differentiation from a medium-suspended cell state to a strongly root-attached cell state. Transcriptomic data was collected in an identical manner during RAY209 interaction with soybean roots to explore the putative root colonization response to this globally relevant crop. Analysis indicated there is an increased number of significantly differentially expressed genes between medium-suspended and root-attached cells during early soybean root colonization relative to sustained colonization, while the opposite temporal pattern was observed for canola root colonization. Regardless of the plant host, root-attached RAY209 cells exhibited the least amount of differential gene expression between early and sustained root colonization. Root-attached cells of either canola or soybean roots expressed high levels of a fasciclin gene homolog encoding an adhesion protein, as well as genes encoding hydrolases, multiple biosynthetic processes, and membrane transport. Notably, while RAY209 ABC transporter genes of similar function were transcribed during attachment to either canola or soybean roots, several transporter genes were uniquely differentially expressed during colonization of the respective plant hosts. In turn, both canola and soybean plants expressed genes encoding pectin lyase and hydrolases - enzymes with purported function in remodelling extracellular matrices in response to RAY209 colonization. RAY209 exhibited both a core regulatory response and a planthost-specific regulatory response to root colonization, indicating that RAY209 specifically adjusts its cellular activities to adapt to the canola and soybean root environments. This transcriptomic data defines the basic RAY209 response as both a canola and soybean commercial crop and seed inoculant.
Collapse
Affiliation(s)
- Danae M. Suchan
- Department of Biology, University of Regina, Regina, SK, Canada
| | | | - Lori Manzon
- Department of Biology, University of Regina, Regina, SK, Canada
| | - Alexa Pierce
- Department of Biology, University of Regina, Regina, SK, Canada
- Lallemand Plant Care North America, Saskatoon, SK, Canada
| | - Yuriy Kryachko
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Darren Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yifang Tan
- Aquatic Crop Resource Development, National Research Council, Saskatoon, SK, Canada
| | | | - Nurul H. Khan
- Lallemand Plant Care North America, Saskatoon, SK, Canada
| | | | | |
Collapse
|
12
|
Guo C, Peng X, Zheng X, Wang X, Wang R, Huang Z, Yang Z. Comparison of bacterial diversity and abundance between sexes of Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae) from China. PeerJ 2020; 8:e8411. [PMID: 31988811 PMCID: PMC6969552 DOI: 10.7717/peerj.8411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background Insects harbor a myriad of microorganisms, many of which can affect the sex ratio and manipulate the reproduction of the host. Leptocybe invasa is an invasive pest that causes serious damage to eucalyptus plantations, and the thelytokous parthenogenesis, low temperature resistance, protection in galls, generation overlap and small body of L. invasa contribute to its rapid invasion and population growth. However, the endosymbiotic bacterial composition, abundance and sex differences of L. invasa remain unclear. Therefore, this research aimed to identify the bacterial communities in L. invasa adults and compare them between the sexes of L. invasa lineage B. Results The Illumina MiSeq platform was used to compare bacterial community composition between females and males of L. invasa by sequencing the V3–V4 region of the 16S ribosomal RNA gene. A total of 1,320 operational taxonomic units (OTUs) were obtained. These OTUs were subdivided into 24 phyla, 71 classes, 130 orders, 245 families and 501 genera. At the genus level, the dominant bacteria in females and males were Rickettsia and Rhizobium, respectively. Conclusion The endosymbiotic bacteria of L. invasa females and males were highly diverse. There were differences in the bacterial community of L. invasa between sexes, and the bacterial diversity in male specimens was greater than that in female specimens. This study presents a comprehensive comparison of bacterial communities in L. invasa and these data will provide an overall view of the bacterial community in both sexes of L. invasa with special attention on sex-related bacteria.
Collapse
Affiliation(s)
- Chunhui Guo
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Xin Peng
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Xiaoyun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Ruirui Wang
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Zongyou Huang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Zhende Yang
- College of Forestry, Guangxi University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
13
|
Legumes display common and host-specific responses to the rhizobial cellulase CelC2 during primary symbiotic infection. Sci Rep 2019; 9:13907. [PMID: 31554862 PMCID: PMC6761101 DOI: 10.1038/s41598-019-50337-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/02/2019] [Indexed: 01/08/2023] Open
Abstract
Primary infection of legumes by rhizobia involves the controlled localized enzymatic breakdown of cell walls at root hair tips. Previous studies determined the role of rhizobial CelC2 cellulase in different steps of the symbiotic interaction Rhizobium leguminosarum-Trifolium repens. Recent findings also showed that CelC2 influences early signalling events in the Ensifer meliloti-Medicago truncatula interaction. Here, we have monitored the root hair phenotypes of two legume plants, T. repens and M. sativa, upon inoculation with strains of their cognate and non-cognate rhizobial species, R. leguminosarum bv trifolii and E. meliloti, (over)expressing the CelC2 coding gene, celC. Regardless of the host, CelC2 specifically elicited ‘hole-on-the-tip’ events (Hot phenotype) in the root hair apex, consistent with the role of this endoglucanase in eroding the noncrystalline cellulose found in polarly growing cell walls. Overproduction of CelC2 also increased root hair tip redirections (RaT phenotype) events in both cognate and non-cognate hosts. Interestingly, heterologous celC expression also induced non-canonical alterations in ROS (Reactive Oxygen Species) homeostasis at root hair tips of Trifolium and Medicago. These results suggest the concurrence of shared unspecific and host-related plant responses to CelC2 during early steps of symbiotic rhizobial infection. Our data thus identify CelC2 cellulase as an important determinant of events underlying early infection of the legume host by rhizobia.
Collapse
|
14
|
Pujic P, Alloisio N, Fournier P, Roche D, Sghaier H, Miotello G, Armengaud J, Berry AM, Normand P. Omics of the early molecular dialogue between Frankia alni and Alnus glutinosa and the cellulase synton. Environ Microbiol 2019; 21:3328-3345. [PMID: 30917411 DOI: 10.1111/1462-2920.14606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022]
Abstract
The early Frankia-Alnus symbiotic molecular exchanges were analyzed in detail by protein and RNA omics. For this, Frankia cells were placed in the presence of Alnus roots but separated by a dialysis membrane for 64 h. The bacterial cells were then harvested and analyzed by high-throughput proteomics and transcriptomics (RNA-seq). The most upregulated gene clusters were found to be the potassium transporter operon kdp and an ABC transporter operon of uncharacterized function. The most upregulated proteins were found to be acyl dehydrogenases and the potassium transporter Kdp. These suggest a preadaptation to the impending stresses linked to the penetration into isotonic host tissues and a possible rearrangement of the membrane. Another cluster among the 60 most upregulated ones that comprised two cellulases and a cellulose synthase was conserved among the Frankia and other actinobacteria such as Streptomyces. Cellulase activity was detected on CMC all along the length of the root but not away from it. Frankia alni ACN14a was found to be unable to respire or grow on glucose as sole carbon source. The cellulose synthase was found active at the tip of hyphae in response to Alnus root exudates, resulting in a calcofluor stained tip.
Collapse
Affiliation(s)
- Petar Pujic
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMRA1418, Cedex 69622, Villeurbanne, France
| | - Nicole Alloisio
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMRA1418, Cedex 69622, Villeurbanne, France
| | - Pascale Fournier
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMRA1418, Cedex 69622, Villeurbanne, France
| | - David Roche
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Haitham Sghaier
- National Center for Nuclear Sciences and Technology, Sidi Thabet Technopark, Ariana, Tunisia
| | - Guylaine Miotello
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols sur Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols sur Cèze, France
| | - Alison M Berry
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Philippe Normand
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMRA1418, Cedex 69622, Villeurbanne, France
| |
Collapse
|
15
|
Xia Y, Wang M, Gao F, Lu M, Chen G. Effects of dietary probiotic supplementation on the growth, gut health and disease resistance of juvenile Nile tilapia ( Oreochromis niloticus). ACTA ACUST UNITED AC 2019; 6:69-79. [PMID: 32211531 PMCID: PMC7082692 DOI: 10.1016/j.aninu.2019.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 01/22/2023]
Abstract
This study investigated the effects of the Streptococcus agalactiae antagonizing probiotics Bacillus cereus NY5 and Bacillus subtilis as feed additives for Nile tilapia in terms of growth performance, intestinal health and resistance to S. agalactiae. A total of 720 apparently healthy juvenile Nile tilapia (0.20 ± 0.05 g) were randomly divided into 4 equal groups with 3 replicates for each group. Fish were fed a basal diet (control check group, CK group) supplemented with B. subtilis (1 × 108 CFU/g feed, BS group), B. cereus NY5 (1 × 108 CFU/g feed, BC group), and B. subtilis + B. cereus NY5 (0.5 × 108 CFU/g feed of each probiotic, BS + BC group) for 6 wk, and the probiotic supplementation groups were then fed the basal diet for 1 wk to investigate the gut microbial community. The results of this study showed that BS + BC and BC treatments significantly increased weight gain (WG), feed conversion ratio (FCR) and S. agalactiae resistance in Nile tilapia (P < 0.05). Gut microvilli length and density and c-type lysozyme (lyzc) gene expression were significantly increased by probiotic supplementation (P < 0.05). The results of high-throughput sequencing showed that the B. cereus NY5 and B. subtilis + B. cereus NY5-supplemented feed resulted in a significant improvement in tilapia autochthonous gut bacterial communities and had a stimulation effect on a variety of potential probiotics after 6 wk of feeding. After cessation of probiotic administration for 1 wk, the gut bacteria of the fish in the BS + BC and BC groups had minor changes and maintained a stable state. Consequently, it was inferred that, as a feed supplement, B. cereus NY5 and the mixture of B. subtilis and B. cereus NY5 at 1 × 108 CFU/g feed were able to promote growth and disease resistance, which may be associated with the supplement's effects on gut immune status, intestinal morphology, and intestinal microbial community composition.
Collapse
Affiliation(s)
- Yun Xia
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Miao Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Fengying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China
| |
Collapse
|
16
|
Bacteria from the endosphere and rhizosphere of Quercus spp. use mainly cell wall-associated enzymes to decompose organic matter. PLoS One 2019; 14:e0214422. [PMID: 30908541 PMCID: PMC6433265 DOI: 10.1371/journal.pone.0214422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 01/12/2023] Open
Abstract
Due to the ability of soil bacteria to solubilize minerals, fix N2 and mobilize nutrients entrapped in the organic matter, their role in nutrient turnover and plant fitness is of high relevance in forest ecosystems. Although several authors have already studied the organic matter decomposing enzymes produced by soil and plant root-interacting bacteria, most of the works did not account for the activity of cell wall-attached enzymes. Therefore, the enzyme deployment strategy of three bacterial collections (genera Luteibacter, Pseudomonas and Arthrobacter) associated with Quercus spp. roots was investigated by exploring both cell-bound and freely-released hydrolytic enzymes. We also studied the potential of these bacterial collections to produce enzymes involved in the transformation of plant and fungal biomass. Remarkably, the cell-associated enzymes accounted for the vast majority of the total activity detected among Luteibacter strains, suggesting that they could have developed a strategy to maintain the decomposition products in their vicinity, and therefore to reduce the diffusional losses of the products. The spectrum of the enzymes synthesized and the titres of activity were diverse among the three bacterial genera. While cellulolytic and hemicellulolytic enzymes were rather common among Luteibacter and Pseudomonas strains and less detected in Arthrobacter collection, the activity of lipase was widespread among all the tested strains. Our results indicate that a large fraction of the extracellular enzymatic activity is due to cell wall-attached enzymes for some bacteria, and that Quercus spp. root bacteria could contribute at different levels to carbon (C), phosphorus (P) and nitrogen (N) cycles.
Collapse
|
17
|
Basile LA, Zalguizuri A, Briones G, Lepek VC. Two Rieske Fe/S Proteins and TAT System in Mesorhizobium loti MAFF303099: Differential Regulation and Roles on Nodulation. FRONTIERS IN PLANT SCIENCE 2018; 9:1686. [PMID: 30515183 PMCID: PMC6256036 DOI: 10.3389/fpls.2018.01686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Mesorhizobium loti MAFF303099 is a rhizobial strain that nodulates Lotus spp. A M. loti MAFF303099 mutant strain affected in the tatC gene was generated. This strain presented an altered protein secretion level to the culture supernatant and also a higher sensitivity to SDS. Its nodulation phenotype on Lotus showed the induction of small and colorless nodules, and in a larger number than those induced by the wild-type strain. In addition, these nodules presented defects in the degree of occupation by rhizobia. Two Rieske Fe/S proteins, encoded by the mll2707 and mlr0970 genes, were predicted as potential Tat substrates in M. loti MAFF303099. The transcriptional expression of mll2707 and mlr0970 genes was analyzed under different oxygen growth conditions. The mll2707 gene was expressed constitutively, while the expression of the mlr0970 gene was only detected under anaerobic and microaerophilic in vitro conditions. Both genes were down-regulated in the tatC mutant strain. mll2707 and mlr0970 mRNAs from the wild-type strain were detected in nodules. Using a translational reporter peptide fusion, we found that the Mll2707 protein was only detectable in the wild-type strain. On the other hand, although Mlr0970 protein was detected in wild-type and tatC mutant strains, its association with the membrane was favored in the wild-type strain. The tatC and the mll2707 mutant strains were affected in the cytochrome c oxidase activity. These results confirm that Mll2707 is required for cytochrome c-dependent respiration and that Tat functionality is required for the correct activity of Mll2707. The mll2707 mutant strain showed a nodulation phenotype similar to the tatC mutant strain, although it presented only a slight difference in comparison with wild-type strain in terms of nodule occupation. No defective phenotype was observed in the nodulation with the mlr0970 mutant strain. These results indicate that, of the two Rieske Fe/S proteins coded by M. loti MAFF303099, only Mll2707 expression is required for the induction of effective nodules, and that the functionality of the Tat system is necessary not only for the correct function of this protein, but also for some other protein required in an earlier stage of the nodulation process.
Collapse
|
18
|
Xia Y, Lu M, Chen G, Cao J, Gao F, Wang M, Liu Z, Zhang D, Zhu H, Yi M. Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2018; 76:368-379. [PMID: 29550602 DOI: 10.1016/j.fsi.2018.03.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 05/20/2023]
Abstract
The present study aimed to evaluate the individual and combined effects of Lactobacillus rhamnosus (LR) JCM1136 and Lactococcus lactis subsp. lactis (LL) JCM5805 on the growth, intestinal microbiota, intestinal morphology, immune response and disease resistance of juvenile Nile tilapia (Oreochromis niloticus). A total of 720 apparently healthy juvenile Nile tilapia (0.20 ± 0.05 g) were randomly divided into four equal groups. Fish were fed with a basal diet (CK) supplemented with JCM1136 (LR), JCM5805 (LL), and JCM1136 + JCM5805 (LR+LL) at 1 × 108 CFU/g basal diet for 6 weeks, followed by a basal diet for 1 week. After 6 weeks of feeding, the LL treatment significantly increased the growth and feed utilization of Nile tilapia when compared with the CK. Light microscopy and transmission electron microscopy images of the midgut revealed that probiotic supplementation significantly increased gut microvilli length and microvilli density compared to CK. The transcript levels of several key immune-related genes in the mid-intestine and liver of fish were analyzed by means of quantitative polymerase chain reaction (qPCR) at the end of the sixth week. The results showed the following: when compared to CK group, fish in LR had significantly increased transcript levels of IFN-γ, lyzc, hsp70 and IL-1β in the intestine; LL fish showed significantly increased expressions of TNF-α, IFN-γ, lyzc, hsp70 and IL-1β in the intestine and liver; and intestine lyzc, hsp70 and IL-1β and liver TNF-α, IFN-γ, hsp70 and IL-1β were significantly increased in LR+LL fish. Following a 6-week period of being fed probiotics or a control diet, the tilapia were challenged with an intraperitoneal injection of 20 μl of the pathogenic Streptococcus agalactiae (WC1535) (1 × 105 CFU/ml). The survival rates of the probiotic-fed groups were significantly higher than that of the CK group, and the LL group had the highest survival rate. High-throughput sequencing revealed a significantly higher presence of JCM5805 in the guts of LL fish during the period of probiotic application, but this was no longer detected in all LL samples 1 week post cessation of probiotic administration. Cessation of probiotic administration led to disorders of individual gut microbes within the LR and LL groups. Statistical analysis (LEfSe) demonstrated that three phyla, namely, Bacteroidetes, Fusobacteria and Actinobacteria were enriched in the CK group, while the abundance of Proteobacteria was greater in the probiotic-fed fish. At the genus level, Plesiomonas, which includes potential pathogens of fish, were significantly decreased in the probiotic-fed groups. In contrast, a significant increase of Rhizobium and Achromobacter, which can produce a variety of enzymes with cellulolytic and pectolytic activity, were observed in fish fed with probiotics, indicating that dietary probiotics were helpful in the propagation of some probiotic bacteria. Our data revealed that JCM1136 and JCM5805, as a feed additive at 108 CFU/g feed, could improve intestinal morphology, enhance immune status and disease resistance, and affect the gut microbiota of tilapia; thus, these additives could be used as probiotics for juvenile Nile tilapia. JCM5805 was more effective than JCM1136 or the mixture of the two for promoting the growth, enhancing the immune status and disease resistance of tilapia.
Collapse
Affiliation(s)
- Yun Xia
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China.
| | - Jianmeng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Fengying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Miao Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Defeng Zhang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Huaping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Mengmeng Yi
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
19
|
Robledo M, Menéndez E, Jiménez-Zurdo JI, Rivas R, Velázquez E, Martínez-Molina E, Oldroyd G, Mateos PF. Heterologous Expression of Rhizobial CelC2 Cellulase Impairs Symbiotic Signaling and Nodulation in Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:568-575. [PMID: 29334470 DOI: 10.1094/mpmi-11-17-0265-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The infection of legume plants by rhizobia is tightly regulated to ensure accurate bacterial penetration, infection, and development of functionally efficient nitrogen-fixing root nodules. Rhizobial Nod factors (NF) have key roles in the elicitation of nodulation signaling. Infection of white clover roots also involves the tightly regulated specific breakdown of the noncrystalline apex of cell walls in growing root hairs, which is mediated by Rhizobium leguminosarum bv. trifolii cellulase CelC2. Here, we have analyzed the impact of this endoglucanase on symbiotic signaling in the model legume Medicago truncatula. Ensifer meliloti constitutively expressing celC gene exhibited delayed nodulation and elicited aberrant ineffective nodules, hampering plant growth in the absence of nitrogen. Cotreatment of roots with NF and CelC2 altered Ca2+ spiking in root hairs and induction of the early nodulin gene ENOD11. Our data suggest that CelC2 alters early signaling between partners in the rhizobia-legume interaction.
Collapse
Affiliation(s)
- Marta Robledo
- 1 Departamento de Microbiología y Genética, Centro Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca, Unidad Asociada CSIC/USAL, Spain
- 2 Estación Experimental del Zaidín, CSIC, Granada, Spain; and
| | - Esther Menéndez
- 1 Departamento de Microbiología y Genética, Centro Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca, Unidad Asociada CSIC/USAL, Spain
| | | | - Raúl Rivas
- 1 Departamento de Microbiología y Genética, Centro Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca, Unidad Asociada CSIC/USAL, Spain
| | - Encarna Velázquez
- 1 Departamento de Microbiología y Genética, Centro Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca, Unidad Asociada CSIC/USAL, Spain
| | - Eustoquio Martínez-Molina
- 1 Departamento de Microbiología y Genética, Centro Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca, Unidad Asociada CSIC/USAL, Spain
| | - Giles Oldroyd
- 3 Department of Cell and Development Biology, John Innes Centre, Norwich, U.K
| | - Pedro F Mateos
- 1 Departamento de Microbiología y Genética, Centro Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca, Unidad Asociada CSIC/USAL, Spain
| |
Collapse
|
20
|
Lace B, Ott T. Commonalities and Differences in Controlling Multipartite Intracellular Infections of Legume Roots by Symbiotic Microbes. PLANT & CELL PHYSIOLOGY 2018; 59:661-672. [PMID: 29474692 DOI: 10.1093/pcp/pcy043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 05/11/2023]
Abstract
Legumes have the almost unique ability to establish symbiotic associations with rhizobia and arbuscular mycorrhizal fungi. Forward and reverse genetics have identified a large number of genes that are required for either or both interactions. However, and in sharp contrast to natural soils, these interactions have been almost exclusively investigated under laboratory conditions by using separate inoculation systems, whereas both symbionts are simultaneously present in the field. Considering our recent understanding of the individual symbioses, the community is now promisingly positioned to co-inoculate plants with two or more microbes in order to understand mechanistically how legumes efficiently balance, regulate and potentially separate these symbioses and other endophytic microbes within the same root. Here, we discuss a number of key control layers that should be considered when assessing tri- or multipartite beneficial interactions and that may contribute to colonization patterns in legume roots.
Collapse
Affiliation(s)
- Beatrice Lace
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Thomas Ott
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, D-79104 Freiburg, Germany
| |
Collapse
|
21
|
Klonowska A, Melkonian R, Miché L, Tisseyre P, Moulin L. Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic evolutionary history. BMC Genomics 2018; 19:105. [PMID: 29378510 PMCID: PMC5789663 DOI: 10.1186/s12864-018-4487-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Rhizobial symbionts belong to the classes Alphaproteobacteria and Betaproteobacteria (called "alpha" and "beta"-rhizobia). Most knowledge on the genetic basis of symbiosis is based on model strains belonging to alpha-rhizobia. Mimosa pudica is a legume that offers an excellent opportunity to study the adaptation toward symbiotic nitrogen fixation in beta-rhizobia compared to alpha-rhizobia. In a previous study (Melkonian et al., Environ Microbiol 16:2099-111, 2014) we described the symbiotic competitiveness of M. pudica symbionts belonging to Burkholderia, Cupriavidus and Rhizobium species. RESULTS In this article we present a comparative analysis of the transcriptomes (by RNAseq) of B. phymatum STM815 (BP), C. taiwanensis LMG19424 (CT) and R. mesoamericanum STM3625 (RM) in conditions mimicking the early steps of symbiosis (i.e. perception of root exudates). BP exhibited the strongest transcriptome shift both quantitatively and qualitatively, which mirrors its high competitiveness in the early steps of symbiosis and its ancient evolutionary history as a symbiont, while CT had a minimal response which correlates with its status as a younger symbiont (probably via acquisition of symbiotic genes from a Burkholderia ancestor) and RM had a typical response of Alphaproteobacterial rhizospheric bacteria. Interestingly, the upregulation of nodulation genes was the only common response among the three strains; the exception was an up-regulated gene encoding a putative fatty acid hydroxylase, which appears to be a novel symbiotic gene specific to Mimosa symbionts. CONCLUSION The transcriptional response to root exudates was correlated to each strain nodulation competitiveness, with Burkholderia phymatum appearing as the best specialised symbiont of Mimosa pudica.
Collapse
Affiliation(s)
| | - Rémy Melkonian
- IRD, UMR LSTM, Campus de Baillarguet, Montpellier, France
| | - Lucie Miché
- IRD, UMR LSTM, Campus de Baillarguet, Montpellier, France.,Present address: Aix Marseille University, University of Avignon, CNRS, IRD, IMBE, Marseille, France
| | | | - Lionel Moulin
- IRD, Cirad, University of Montpellier, IPME, Montpellier, France.
| |
Collapse
|
22
|
Abstract
Rhizobia are some of the best-studied plant microbiota. These oligotrophic Alphaproteobacteria or Betaproteobacteria form symbioses with their legume hosts. Rhizobia must exist in soil and compete with other members of the microbiota before infecting legumes and forming N2-fixing bacteroids. These dramatic lifestyle and developmental changes are underpinned by large genomes and even more complex pan-genomes, which encompass the whole population and are subject to rapid genetic exchange. The ability to respond to plant signals and chemoattractants and to colonize nutrient-rich roots are crucial for the competitive success of these bacteria. The availability of a large body of genomic, physiological, biochemical and ecological studies makes rhizobia unique models for investigating community interactions and plant colonization.
Collapse
|
23
|
De Oliveira CT, Pereira JQ, Brandelli A, Daroit DJ. Prospecting soil bacteria from subtropical Brazil for hydrolases production. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
|
25
|
Bedrunka P, Graumann PL. Subcellular clustering of a putative c-di-GMP-dependent exopolysaccharide machinery affecting macro colony architecture in Bacillus subtilis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:211-222. [PMID: 27897378 DOI: 10.1111/1758-2229.12496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
The structure of bacterial biofilms is predominantly established through the secretion of extracellular polymeric substances (EPS). They show that Bacillus subtilis contains an operon (ydaJ-N) whose induction leads to increased Congo Red staining of biofilms and strongly altered biofilm architecture, suggesting that it mediates the production of an unknown exopolysaccharide. Supporting this idea, overproduction of YdaJKLMN leads to cell clumping during exponential growth in liquid culture, and also causes colony morphology alterations in wild type cells, as well as in a mutant background lacking the major exopolysaccharide of B. subtilis. The first gene product of the operon, YdaJ, appears to modify the overproduction effects, but is not essential for cell clumping or altered colony morphology, while the presence of the c-di-GMP receptor YdaK is required, suggesting an involvement of second messenger c-di-GMP. YdaM, YdaN and YdaK colocalize to clusters predominantly at the cell poles and are statically positioned at this subcellular site, similar to other exopolysaccharide machinery components in other bacteria. Their analysis reveals that B. subtilis contains a static subcellular assembly of an EPS machinery that affects cell aggregation and biofilm formation.
Collapse
Affiliation(s)
- Patricia Bedrunka
- LOEWE SYNMIKRO, LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse, Marburg, 35043, Germany
| | - Peter L Graumann
- LOEWE SYNMIKRO, LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse, Marburg, 35043, Germany
| |
Collapse
|
26
|
Scapin SMN, Souza FHM, Zanphorlin LM, de Almeida TS, Sade YB, Cardoso AM, Pinheiro GL, Murakami MT. Structure and function of a novel GH8 endoglucanase from the bacterial cellulose synthase complex of Raoultella ornithinolytica. PLoS One 2017; 12:e0176550. [PMID: 28448629 PMCID: PMC5407803 DOI: 10.1371/journal.pone.0176550] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/12/2017] [Indexed: 02/02/2023] Open
Abstract
Cellulose synthesis in bacteria is a complex process involving the concerted action of several enzymes whose genes are often organized in operons. This process influences many fundamental physiological aspects such as bacteria and host interaction, biofilm formation, among others. Although it might sound contradictory, the participation of cellulose-degrading enzymes is critical to this process. The presence of endoglucanases from family 8 of glycosyl hydrolases (GH8) in bacterial cellulose synthase (Bcs) complex has been described in different bacteria, including the model organism Komagataeibacter xylinus; however, their role in this process is not completely understood. In this study, we describe the biochemical characterization and three-dimensional structure of a novel GH8 member from Raoultella ornithinolytica, named AfmE1, which was previously identified by our group from the metagenomic analysis of the giant snail Achatina fulica. Our results demonstrated that AfmE1 is an endo-β-1,4-glucanase, with maximum activity in acidic to neutral pH over a wide temperature range. This enzyme cleaves cello-oligosaccharides with a degree of polymerization ≥ 5 and presents six glucosyl-binding subsites. The structural comparison of AfmE1 with other GH8 endoglucanases showed significant structural dissimilarities in the catalytic cleft, particularly in the subsite +3, which correlate with different functional mechanisms, such as the recognition of substrate molecules having different arrangements and crystallinities. Together, these findings provide new insights into molecular and structural features of evolutionarily conserved endoglucanases from the bacterial cellulose biosynthetic machinery.
Collapse
Affiliation(s)
- Sandra Mara Naressi Scapin
- Division of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Rio de Janeiro, Brazil
- * E-mail: (SMNS); (MTM)
| | - Flavio Henrique Moreira Souza
- Brazilian Bioethanol Science and Technology Laboratory, National Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Leticia Maria Zanphorlin
- Brazilian Bioethanol Science and Technology Laboratory, National Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Thamyres Silva de Almeida
- Division of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Rio de Janeiro, Brazil
| | - Youssef Bacila Sade
- Division of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Rio de Janeiro, Brazil
| | - Alexander Machado Cardoso
- Division of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Rio de Janeiro, Brazil
| | - Guilherme Luiz Pinheiro
- Division of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Rio de Janeiro, Brazil
| | - Mario Tyago Murakami
- Brazilian Bioethanol Science and Technology Laboratory, National Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
- * E-mail: (SMNS); (MTM)
| |
Collapse
|
27
|
Montella S, Ventorino V, Lombard V, Henrissat B, Pepe O, Faraco V. Discovery of genes coding for carbohydrate-active enzyme by metagenomic analysis of lignocellulosic biomasses. Sci Rep 2017; 7:42623. [PMID: 28198423 PMCID: PMC5309792 DOI: 10.1038/srep42623] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 01/13/2017] [Indexed: 12/03/2022] Open
Abstract
In this study, a high-throughput sequencing approach was applied to discover novel biocatalysts for lignocellulose hydrolysis from three dedicated energy crops, Arundo donax, Eucalyptus camaldulensis and Populus nigra, after natural biodegradation. The microbiomes of the three lignocellulosic biomasses were dominated by bacterial species (approximately 90%) with the highest representation by the Streptomyces genus both in the total microbial community composition and in the microbial diversity related to GH families of predicted ORFs. Moreover, the functional clustering of the predicted ORFs showed a prevalence of poorly characterized genes, suggesting these lignocellulosic biomasses are potential sources of as yet unknown genes. 1.2%, 0.6% and 3.4% of the total ORFs detected in A. donax, E. camaldulensis and P. nigra, respectively, were putative Carbohydrate-Active Enzymes (CAZymes). Interestingly, the glycoside hydrolases abundance in P. nigra (1.8%) was higher than that detected in the other biomasses investigated in this study. Moreover, a high percentage of (hemi)cellulases with different activities and accessory enzymes (mannanases, polygalacturonases and feruloyl esterases) was detected, confirming that the three analyzed samples were a reservoir of diversified biocatalysts required for an effective lignocellulose saccharification.
Collapse
Affiliation(s)
- Salvatore Montella
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples "Federico II", Portici (Napoli), Italy
| | - Vincent Lombard
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRA, USC 1408 AFMB, 13288 Marseille, France
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRA, USC 1408 AFMB, 13288 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples "Federico II", Portici (Napoli), Italy
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
| |
Collapse
|
28
|
Ahmad I, Rouf SF, Sun L, Cimdins A, Shafeeq S, Le Guyon S, Schottkowski M, Rhen M, Römling U. BcsZ inhibits biofilm phenotypes and promotes virulence by blocking cellulose production in Salmonella enterica serovar Typhimurium. Microb Cell Fact 2016; 15:177. [PMID: 27756305 PMCID: PMC5070118 DOI: 10.1186/s12934-016-0576-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/03/2016] [Indexed: 02/04/2023] Open
Abstract
Background Cellulose, a 1,4 beta-glucan polysaccharide, is produced by a variety of organisms including bacteria. Although the production of cellulose has a high biological, ecological and economical impact, regulatory mechanisms of cellulose biosynthesis are mostly unknown. Family eight cellulases are regularly associated with cellulose biosynthesis operons in bacteria; however, their function is poorly characterized. In this study, we analysed the role of the cellulase BcsZ encoded by the bcsABZC cellulose biosynthesis operon of Salmonella enterica serovar Typhimurium (S. Typhimurium) in biofilm related behavior. We also investigated the involvement of BcsZ in pathogenesis of S. Typhimurium including a murine typhoid fever infection model. Result In S. Typhimurium, cellulase BcsZ with a putative periplasmic location negatively regulates cellulose biosynthesis. Moreover, as assessed with a non-polar mutant, BcsZ affects cellulose-associated phenotypes such as the rdar biofilm morphotype, cell clumping, biofilm formation, pellicle formation and flagella-dependent motility. Strikingly, although upregulation of cellulose biosynthesis was not observed on agar plate medium at 37 °C, BcsZ is required for efficient pathogen-host interaction. Key virulence phenotypes of S. Typhimurium such as invasion of epithelial cells and proliferation in macrophages were positively regulated by BcsZ. Further on, a bcsZ mutant was outcompeted by the wild type in organ colonization in the murine typhoid fever infection model. Selected phenotypes were relieved upon deletion of the cellulose synthase BcsA and/or the central biofilm activator CsgD. Conclusion Although the protein scaffold has an additional physiological role, our findings indicate that the catalytic activity of BcsZ effectively downregulates CsgD activated cellulose biosynthesis. Repression of cellulose production by BcsZ subsequently enables Salmonella to efficiently colonize the host. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0576-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Syed Fazle Rouf
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Quebec, Canada
| | - Lei Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Annika Cimdins
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Soazig Le Guyon
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marco Schottkowski
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
29
|
Rachwał K, Boguszewska A, Kopcińska J, Karaś M, Tchórzewski M, Janczarek M. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover. Front Microbiol 2016; 7:1302. [PMID: 27602024 PMCID: PMC4993760 DOI: 10.3389/fmicb.2016.01302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/08/2016] [Indexed: 11/13/2022] Open
Abstract
Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca(2+)-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with the wild type, the rosR mutant infected host plant roots much less effectively and its nodule occupation was disturbed. At the ultrastructural level, the most striking differences between the mutant and the wild-type nodules concerned the structure of infection threads, release of bacteria, and bacteroid differentiation. This confirms an essential role of RosR in establishment of successful symbiotic interaction of R. leguminosarum bv. trifolii with clover plants.
Collapse
Affiliation(s)
- Kamila Rachwał
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University Lublin, Poland
| | - Aleksandra Boguszewska
- Department of Molecular Biology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University Lublin, Poland
| | - Joanna Kopcińska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences Warsaw, Poland
| | - Magdalena Karaś
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University Lublin, Poland
| | - Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University Lublin, Poland
| |
Collapse
|
30
|
Evaluation of a potential promoter region of cellulase production. N Biotechnol 2016. [DOI: 10.1016/j.nbt.2015.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Lin L, Fu C, Huang W. Improving the activity of the endoglucanase, Cel8M from Escherichia coli by error-prone PCR. Enzyme Microb Technol 2016; 86:52-8. [DOI: 10.1016/j.enzmictec.2016.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 11/29/2022]
|
32
|
|
33
|
Genre A, Russo G. Does a Common Pathway Transduce Symbiotic Signals in Plant-Microbe Interactions? FRONTIERS IN PLANT SCIENCE 2016; 7:96. [PMID: 26909085 PMCID: PMC4754458 DOI: 10.3389/fpls.2016.00096] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/18/2016] [Indexed: 05/02/2023]
Abstract
Recent years have witnessed major advances in our knowledge of plant mutualistic symbioses such as the rhizobium-legume symbiosis (RLS) and arbuscular mycorrhizas (AM). Some of these findings caused the revision of longstanding hypotheses, but one of the most solid theories is that a conserved set of plant proteins rules the transduction of symbiotic signals from beneficial glomeromycetes and rhizobia in a so-called common symbiotic pathway (CSP). Nevertheless, the picture still misses several elements, and a few crucial points remain unclear. How does one common pathway discriminate between - at least - two symbionts? Can we exclude that microbes other than AM fungi and rhizobia also use this pathway to communicate with their host plants? We here discuss the possibility that our current view is biased by a long-lasting focus on legumes, whose ability to develop both AM and RLS is an exception among plants and a recent innovation in their evolution; investigations in non-legumes are starting to place legume symbiotic signaling in a broader perspective. Furthermore, recent studies suggest that CSP proteins act in a wider scenario of symbiotic and non-symbiotic signaling. Overall, evidence is accumulating in favor of distinct activities for CSP proteins in AM and RLS, depending on the molecular and cellular context where they act.
Collapse
|
34
|
Geddes BA, Oresnik IJ. The Mechanism of Symbiotic Nitrogen Fixation. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Diez-Mendez A, Menéndez E, García-Fraile P, Celador-Lera L, Rivas R, Mateos PF. Rhizobium cellulosilyticum as a co-inoculant enhances Phaseolus vulgaris grain yield under greenhouse conditions. Symbiosis 2015. [DOI: 10.1007/s13199-015-0372-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
|
37
|
Trujillo ME, Riesco R, Benito P, Carro L. Endophytic Actinobacteria and the Interaction of Micromonospora and Nitrogen Fixing Plants. Front Microbiol 2015; 6:1341. [PMID: 26648923 PMCID: PMC4664631 DOI: 10.3389/fmicb.2015.01341] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023] Open
Abstract
For a long time, it was believed that a healthy plant did not harbor any microorganisms within its tissues, as these were often considered detrimental for the plant. In the last three decades, the numbers of studies on plant microbe-interactions has led to a change in our view and we now know that many of these invisible partners are essential for the overall welfare of the plant. The application of Next Generation Sequencing techniques is a powerful tool that has permitted the detection and identification of microbial communities in healthy plants. Among the new plant microbe interactions recently reported several actinobacteria such as Micromonospora are included. Micromonospora is a Gram-positive bacterium with a wide geographical distribution; it can be found in the soil, mangrove sediments, and freshwater and marine ecosistems. In the last years our group has focused on the isolation of Micromonospora strains from nitrogen fixing nodules of both leguminous and actinorhizal plants and reported for the first time its wide distribution in nitrogen fixing nodules of both types of plants. These studies have shown how this microoganism had been largely overlooked in this niche due to its slow growth. Surprisingly, the genetic diversity of Micromonospora strains isolated from nodules is very high and several new species have been described. The current data indicate that Micromonospora saelicesensis is the most frequently isolated species from the nodular tissues of both leguminous and actinorhizal plants. Further studies have also been carried out to confirm the presence of Micromonospora inside the nodule tissues, mainly by specific in situ hybridization. The information derived from the genome of the model strain, Micromonospora lupini, Lupac 08, has provided useful information as to how this bacterium may relate with its host plant. Several strategies potentially necessary for Micromonospora to thrive in the soil, a highly competitive, and rough environment, and as an endophytic bacterium with the capacity to colonize the internal plant tissues which are protected from the invasion of other soil microbes were identified. The genome data also revealed the potential of M. lupini Lupac 08 as a plant growth promoting bacterium. Several loci involved in plant growth promotion features such as the production of siderophores, phytohormones, and the degradation of chitin (biocontrol) were also located on the genome and the functionality of these genes was confirmed in the laboratory. In addition, when several host plants species were inoculated with Micromonospora strains, the plant growth enhancing effect was evident under greenhouse conditions. Unexpectedly, a high number of plant-cell wall degrading enzymes were also detected, a trait usually found only in pathogenic bacteria. Thus, Micromonospora can be added to the list of new plant-microbe interactions. The current data indicate that this microorganism may have an important application in agriculture and other biotechnological processes. The available information is promising but limited, much research is still needed to determine which is the ecological function of Micromonospora in interaction with nitrogen fixing plants.
Collapse
Affiliation(s)
- Martha E Trujillo
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Raúl Riesco
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Patricia Benito
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Lorena Carro
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
38
|
|
39
|
Abstract
Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial Nops (nodulation outer proteins) play a crucial symbiotic role in many strain-host combinations. Nops are defined as proteins secreted via a rhizobial T3SS (type III secretion system). Functional T3SSs have been characterized in many rhizobial strains. Nops have been identified using various genetic, biochemical, proteomic, genomic and experimental approaches. Certain Nops represent extracellular components of the T3SS, which are visible in electron micrographs as bacterial surface appendages called T3 (type III) pili. Other Nops are T3 effector proteins that can be translocated into plant cells. Rhizobial T3 effectors manipulate cellular processes in host cells to suppress plant defence responses against rhizobia and to promote symbiosis-related processes. Accordingly, mutant strains deficient in synthesis or secretion of T3 effectors show reduced symbiotic properties on certain host plants. On the other hand, direct or indirect recognition of T3 effectors by plant cells expressing specific R (resistance) proteins can result in effector triggered defence responses that negatively affect rhizobial infection. Hence Nops are double-edged swords that may promote establishment of symbiosis with one legume (symbiotic factors) and impair symbiotic processes when bacteria are inoculated on another legume species (asymbiotic factors). In the present review, we provide an overview of our current understanding of Nops. We summarize their symbiotic effects, their biochemical properties and their possible modes of action. Finally, we discuss future perspectives in the field of T3 effector research.
Collapse
|
40
|
Augimeri RV, Varley AJ, Strap JL. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria. Front Microbiol 2015; 6:1282. [PMID: 26635751 PMCID: PMC4646962 DOI: 10.3389/fmicb.2015.01282] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/31/2015] [Indexed: 01/21/2023] Open
Abstract
Bacterial cellulose (BC) serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation, and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC-containing biofilms is to establish close contact with a preferred host to facilitate efficient host-bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology, and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3'→5')-cyclic diguanylate (c-di-GMP) levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal, or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host-bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, its regulation and its ecophysiological roles.
Collapse
Affiliation(s)
| | | | - Janice L. Strap
- Molecular Microbial Biochemistry Laboratory, Faculty of Science, University of Ontario Institute of TechnologyOshawa, ON, Canada
| |
Collapse
|
41
|
Balsanelli E, Tadra-Sfeir MZ, Faoro H, Pankievicz VC, de Baura VA, Pedrosa FO, de Souza EM, Dixon R, Monteiro RA. Molecular adaptations of Herbaspirillum seropedicae during colonization of the maize rhizosphere. Environ Microbiol 2015; 18:2343-56. [PMID: 25923055 DOI: 10.1111/1462-2920.12887] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/21/2015] [Indexed: 12/21/2022]
Abstract
Molecular mechanisms of plant recognition and colonization by diazotrophic bacteria are barely understood. Herbaspirillum seropedicae is a Betaproteobacterium capable of colonizing epiphytically and endophytically commercial grasses, to promote plant growth. In this study, we utilized RNA-seq to compare the transcriptional profiles of planktonic and maize root-attached H. seropedicae SmR1 recovered 1 and 3 days after inoculation. The results indicated that nitrogen metabolism was strongly activated in the rhizosphere and polyhydroxybutyrate storage was mobilized in order to assist the survival of H. seropedicae during the early stages of colonization. Epiphytic cells showed altered transcription levels of several genes associated with polysaccharide biosynthesis, peptidoglycan turnover and outer membrane protein biosynthesis, suggesting reorganization of cell wall envelope components. Specific methyl-accepting chemotaxis proteins and two-component systems were differentially expressed between populations over time, suggesting deployment of an extensive bacterial sensory system for adaptation to the plant environment. An insertion mutation inactivating a methyl-accepting chemosensor induced in planktonic bacteria, decreased chemotaxis towards the plant and attachment to roots. In summary, analysis of mutant strains combined with transcript profiling revealed several molecular adaptations that enable H. seropedicae to sense the plant environment, attach to the root surface and survive during the early stages of maize colonization.
Collapse
Affiliation(s)
- Eduardo Balsanelli
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Michelle Z Tadra-Sfeir
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Helisson Faoro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Vânia Cs Pankievicz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Valter A de Baura
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio O Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel M de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Ray Dixon
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Rose A Monteiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
42
|
A stress-induced small RNA modulates alpha-rhizobial cell cycle progression. PLoS Genet 2015; 11:e1005153. [PMID: 25923724 PMCID: PMC4414408 DOI: 10.1371/journal.pgen.1005153] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 03/18/2015] [Indexed: 01/22/2023] Open
Abstract
Mechanisms adjusting replication initiation and cell cycle progression in response to environmental conditions are crucial for microbial survival. Functional characterization of the trans-encoded small non-coding RNA (trans-sRNA) EcpR1 in the plant-symbiotic alpha-proteobacterium Sinorhizobium meliloti revealed a role of this class of riboregulators in modulation of cell cycle regulation. EcpR1 is broadly conserved in at least five families of the Rhizobiales and is predicted to form a stable structure with two defined stem-loop domains. In S. meliloti, this trans-sRNA is encoded downstream of the divK-pleD operon. ecpR1 belongs to the stringent response regulon, and its expression was induced by various stress factors and in stationary phase. Induced EcpR1 overproduction led to cell elongation and increased DNA content, while deletion of ecpR1 resulted in reduced competitiveness. Computationally predicted EcpR1 targets were enriched with cell cycle-related mRNAs. Post-transcriptional repression of the cell cycle key regulatory genes gcrA and dnaA mediated by mRNA base-pairing with the strongly conserved loop 1 of EcpR1 was experimentally confirmed by two-plasmid differential gene expression assays and compensatory changes in sRNA and mRNA. Evidence is presented for EcpR1 promoting RNase E-dependent degradation of the dnaA mRNA. We propose that EcpR1 contributes to modulation of cell cycle regulation under detrimental conditions. Microorganisms frequently encounter adverse conditions unfavorable for cell proliferation. They have evolved diverse mechanisms, including transcriptional control and targeted protein degradation, to adjust cell cycle progression in response to environmental cues. Non-coding RNAs are widespread regulators of various cellular processes in all domains of life. In prokaryotes, trans-encoded small non-coding RNAs (trans-sRNAs) contribute to a rapid cellular response to changing environments, but so far have not been directly related to cell cycle regulation. Here, we report the first example of a trans-sRNA (EcpR1) with two experimentally confirmed targets in the core of cell cycle regulation and demonstrate that in the plant-symbiotic alpha-proteobacterium Sinorhizobium meliloti the regulatory mechanism involves base-pairing of this sRNA with the dnaA and gcrA mRNAs. Most trans-sRNAs are restricted to closely related species, but the stress-induced EcpR1 is broadly conserved in the order of Rhizobiales suggesting an evolutionary advantage conferred by ecpR1. It broadens the functional diversity of prokaryotic sRNAs and adds a new regulatory level to the mechanisms that contribute to interlinking stress responses with the cell cycle machinery.
Collapse
|
43
|
Fournier J, Teillet A, Chabaud M, Ivanov S, Genre A, Limpens E, de Carvalho-Niebel F, Barker DG. Remodeling of the infection chamber before infection thread formation reveals a two-step mechanism for rhizobial entry into the host legume root hair. PLANT PHYSIOLOGY 2015; 167:1233-42. [PMID: 25659382 PMCID: PMC4378154 DOI: 10.1104/pp.114.253302] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In many legumes, root entry of symbiotic nitrogen-fixing rhizobia occurs via host-constructed tubular tip-growing structures known as infection threads (ITs). Here, we have used a confocal microscopy live-tissue imaging approach to investigate early stages of IT formation in Medicago truncatula root hairs (RHs) expressing fluorescent protein fusion reporters. This has revealed that ITs only initiate 10 to 20 h after the completion of RH curling, by which time major modifications have occurred within the so-called infection chamber, the site of bacterial entrapment. These include the accumulation of exocytosis (M. truncatula Vesicle-Associated Membrane Protein721e)- and cell wall (M. truncatula EARLY NODULIN11)-associated markers, concomitant with radial expansion of the chamber. Significantly, the infection-defective M. truncatula nodule inception-1 mutant is unable to create a functional infection chamber. This underlines the importance of the NIN-dependent phase of host cell wall remodeling that accompanies bacterial proliferation and precedes IT formation, and leads us to propose a two-step model for rhizobial infection initiation in legume RHs.
Collapse
Affiliation(s)
- Joëlle Fournier
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| | - Alice Teillet
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| | - Mireille Chabaud
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| | - Sergey Ivanov
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| | - Andrea Genre
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| | - Erik Limpens
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| | - Fernanda de Carvalho-Niebel
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| | - David G Barker
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| |
Collapse
|
44
|
The intracellular Scots pine shoot symbiont Methylobacterium extorquens DSM13060 aggregates around the host nucleus and encodes eukaryote-like proteins. mBio 2015; 6:mBio.00039-15. [PMID: 25805725 PMCID: PMC4453540 DOI: 10.1128/mbio.00039-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endophytes are microbes that inhabit plant tissues without any apparent signs of infection, often fundamentally altering plant phenotypes. While endophytes are typically studied in plant roots, where they colonize the apoplast or dead cells, Methylobacterium extorquens strain DSM13060 is a facultatively intracellular symbiont of the meristematic cells of Scots pine (Pinus sylvestris L.) shoot tips. The bacterium promotes host growth and development without the production of known plant growth-stimulating factors. Our objective was to examine intracellular colonization by M. extorquens DSM13060 of Scots pine and sequence its genome to identify novel molecular mechanisms potentially involved in intracellular colonization and plant growth promotion. Reporter construct analysis of known growth promotion genes demonstrated that these were only weakly active inside the plant or not expressed at all. We found that bacterial cells accumulate near the nucleus in intact, living pine cells, pointing to host nuclear processes as the target of the symbiont’s activity. Genome analysis identified a set of eukaryote-like functions that are common as effectors in intracellular bacterial pathogens, supporting the notion of intracellular bacterial activity. These include ankyrin repeats, transcription factors, and host-defense silencing functions and may be secreted by a recently imported type IV secretion system. Potential factors involved in host growth include three copies of phospholipase A2, an enzyme that is rare in bacteria but implicated in a range of plant cellular processes, and proteins putatively involved in gibberellin biosynthesis. Our results describe a novel endophytic niche and create a foundation for postgenomic studies of a symbiosis with potential applications in forestry and agriculture. All multicellular eukaryotes host communities of essential microbes, but most of these interactions are still poorly understood. In plants, bacterial endophytes are found inside all tissues. M. extorquens DSM13060 occupies an unusual niche inside cells of the dividing shoot tissues of a pine and stimulates seedling growth without producing cytokinin, auxin, or other plant hormones commonly synthesized by plant-associated bacteria. Here, we tracked the bacteria using a fluorescent tag and confocal laser scanning microscopy and found that they localize near the nucleus of the plant cell. This prompted us to sequence the genome and identify proteins that may affect host growth by targeting processes in the host cytoplasm and nucleus. We found many novel genes whose products may modulate plant processes from within the plant cell. Our results open up new avenues to better understand how bacteria assist in plant growth, with broad implications for plant science, forestry, and agriculture.
Collapse
|
45
|
Suzaki T, Yoro E, Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:111-58. [PMID: 25805123 DOI: 10.1016/bs.ircmb.2015.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Legumes and a few other plant species can establish a symbiotic relationship with nitrogen-fixing rhizobia, which enables them to survive in a nitrogen-deficient environment. During the course of nodulation, infection with rhizobia induces the dedifferentiation of host cells to form primordia of a symbiotic organ, the nodule, which prepares plants to accommodate rhizobia in host cells. While these nodulation processes are known to be genetically controlled by both plants and rhizobia, recent advances in studies on two model legumes, Lotus japonicus and Medicago truncatula, have provided great insight into the underlying plant-side molecular mechanism. In this chapter, we review such knowledge, with particular emphasis on two key processes of nodulation, nodule development and rhizobial invasion.
Collapse
Affiliation(s)
- Takuya Suzaki
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Emiko Yoro
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
46
|
Berlemont R, Allison SD, Weihe C, Lu Y, Brodie EL, Martiny JBH, Martiny AC. Cellulolytic potential under environmental changes in microbial communities from grassland litter. Front Microbiol 2014; 5:639. [PMID: 25505459 PMCID: PMC4243572 DOI: 10.3389/fmicb.2014.00639] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/06/2014] [Indexed: 12/02/2022] Open
Abstract
In many ecosystems, global changes are likely to profoundly affect microorganisms. In Southern California, changes in precipitation and nitrogen deposition may influence the composition and functional potential of microbial communities and their resulting ability to degrade plant material. To test whether such environmental changes impact the distribution of functional groups involved in leaf litter degradation, we determined how the genomic diversity of microbial communities in a semi-arid grassland ecosystem changed under reduced precipitation or increased N deposition. We monitored communities seasonally over a period of 2 years to place environmental change responses into the context of natural variation. Fungal and bacterial communities displayed strong seasonal patterns, Fungi being mostly detected during the dry season whereas Bacteria were common during wet periods. Most putative cellulose degraders were associated with 33 bacterial genera and predicted to constitute 18% of the microbial community. Precipitation reduction reduced bacterial abundance and cellulolytic potential whereas nitrogen addition did not affect the cellulolytic potential of the microbial community. Finally, we detected a strong correlation between the frequencies of genera of putative cellulose degraders and cellulase genes. Thus, microbial taxonomic composition was predictive of cellulolytic potential. This work provides a framework for how environmental changes affect microorganisms responsible for plant litter deconstruction.
Collapse
Affiliation(s)
- Renaud Berlemont
- Department of Earth System Science, University of California, IrvineIrvine, CA, USA
- Department of Biological Science, California State UniversityLong Beach, CA, USA
| | - Steven D. Allison
- Department of Earth System Science, University of California, IrvineIrvine, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, IrvineIrvine, CA, USA
| | - Claudia Weihe
- Department of Ecology and Evolutionary Biology, University of California, IrvineIrvine, CA, USA
| | - Ying Lu
- Department of Ecology and Evolutionary Biology, University of California, IrvineIrvine, CA, USA
| | - Eoin L. Brodie
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of CaliforniaBerkeley, CA, USA
| | - Jennifer B. H. Martiny
- Department of Ecology and Evolutionary Biology, University of California, IrvineIrvine, CA, USA
| | - Adam C. Martiny
- Department of Earth System Science, University of California, IrvineIrvine, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, IrvineIrvine, CA, USA
| |
Collapse
|
47
|
Xiang L, Li A, Tian C, Zhou Y, Zhang G, Ma Y. Identification and characterization of a new acid-stable endoglucanase from a metagenomic library. Protein Expr Purif 2014; 102:20-6. [DOI: 10.1016/j.pep.2014.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/27/2014] [Accepted: 07/28/2014] [Indexed: 11/28/2022]
|
48
|
Martínez-Hidalgo P, Galindo-Villardón P, Trujillo ME, Igual JM, Martínez-Molina E. Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising Plant Probiotic Bacteria. Sci Rep 2014; 4:6389. [PMID: 25227415 PMCID: PMC4165979 DOI: 10.1038/srep06389] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/18/2014] [Indexed: 11/09/2022] Open
Abstract
Biotic interactions can improve agricultural productivity without costly and environmentally challenging inputs. Micromonospora strains have recently been reported as natural endophytes of legume nodules but their significance for plant development and productivity has not yet been established. The aim of this study was to determine the diversity and function of Micromonospora isolated from Medicago sativa root nodules. Micromonospora-like strains from field alfalfa nodules were characterized by BOX-PCR fingerprinting and 16S rRNA gene sequencing. The ecological role of the interaction of the 15 selected representative Micromonospora strains was tested in M. sativa. Nodulation, plant growth and nutrition parameters were analyzed. Alfalfa nodules naturally contain abundant and highly diverse populations of Micromonospora, both at the intra- and at interspecific level. Selected Micromonospora isolates significantly increase the nodulation of alfalfa by Ensifer meliloti 1021 and also the efficiency of the plant for nitrogen nutrition. Moreover, they promote aerial growth, the shoot-to-root ratio, and raise the level of essential nutrients. Our results indicate that Micromonospora acts as a Rhizobia Helper Bacteria (RHB) agent and has probiotic effects, promoting plant growth and increasing nutrition efficiency. Its ecological role, biotechnological potential and advantages as a plant probiotic bacterium (PPB) are also discussed.
Collapse
Affiliation(s)
- Pilar Martínez-Hidalgo
- 1] Department of Microbiology and Genetics. University of Salamanca. Plaza Doctores de la Reina s/n. 37007 Salamanca, Spain [2] Unidad Asociada USAL-CSIC "Interacción Planta-Microorganismo"
| | | | | | - José M Igual
- 1] Instituto de Recursos Naturales y Agrobiología de Salamanca (CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain [2] Unidad Asociada USAL-CSIC "Interacción Planta-Microorganismo"
| | - Eustoquio Martínez-Molina
- 1] Department of Microbiology and Genetics. University of Salamanca. Plaza Doctores de la Reina s/n. 37007 Salamanca, Spain [2] Unidad Asociada USAL-CSIC "Interacción Planta-Microorganismo"
| |
Collapse
|
49
|
Moebius N, Üzüm Z, Dijksterhuis J, Lackner G, Hertweck C. Active invasion of bacteria into living fungal cells. eLife 2014; 3:e03007. [PMID: 25182414 PMCID: PMC4166002 DOI: 10.7554/elife.03007] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022] Open
Abstract
The rice seedling blight fungus Rhizopus microsporus and its endosymbiont Burkholderia rhizoxinica form an unusual, highly specific alliance to produce the highly potent antimitotic phytotoxin rhizoxin. Yet, it has remained a riddle how bacteria invade the fungal cells. Genome mining for potential symbiosis factors and functional analyses revealed that a type 2 secretion system (T2SS) of the bacterial endosymbiont is required for the formation of the endosymbiosis. Comparative proteome analyses show that the T2SS releases chitinolytic enzymes (chitinase, chitosanase) and chitin-binding proteins. The genes responsible for chitinolytic proteins and T2SS components are highly expressed during infection. Through targeted gene knock-outs, sporulation assays and microscopic investigations we found that chitinase is essential for bacteria to enter hyphae. Unprecedented snapshots of the traceless bacterial intrusion were obtained using cryo-electron microscopy. Beyond unveiling the pivotal role of chitinolytic enzymes in the active invasion of a fungus by bacteria, these findings grant unprecedented insight into the fungal cell wall penetration and symbiosis formation.
Collapse
Affiliation(s)
- Nadine Moebius
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Zerrin Üzüm
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | | | - Gerald Lackner
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| |
Collapse
|
50
|
Rich MK, Schorderet M, Reinhardt D. The role of the cell wall compartment in mutualistic symbioses of plants. FRONTIERS IN PLANT SCIENCE 2014; 5:238. [PMID: 24917869 PMCID: PMC4041022 DOI: 10.3389/fpls.2014.00238] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/12/2014] [Indexed: 05/18/2023]
Abstract
Plants engage in mutualistic interactions with microbes that improve their mineral nutrient supply. The most wide-spread symbiotic association is arbuscular mycorrhiza (AM), in which fungi of the order Glomeromycota invade roots and colonize the cellular lumen of cortical cells. The establishment of this interaction requires a dedicated molecular-genetic program and a cellular machinery of the plant host. This program is partially shared with the root nodule symbiosis (RNS), which involves prokaryotic partners collectively referred to as rhizobia. Both, AM and RNS are endosymbioses that involve intracellular accommodation of the microbial partner in the cells of the plant host. Since plant cells are surrounded by sturdy cell walls, root penetration and cell invasion requires mechanisms to overcome this barrier while maintaining the cytoplasm of the two partners separate during development of the symbiotic association. Here, we discuss the diverse functions of the cell wall compartment in establishment and functioning of plant symbioses with the emphasis on AM and RNS, and we describe the stages of the AM association between the model organisms Petunia hybrida and Rhizophagus irregularis.
Collapse
Affiliation(s)
| | | | - Didier Reinhardt
- Department of Biology, University of FribourgFribourg, Switzerland
| |
Collapse
|