1
|
Wei J, Meisl G, Dear AJ, Michaels TCT, Knowles TPJ. Kinetics of Amyloid Oligomer Formation. Annu Rev Biophys 2025; 54:185-207. [PMID: 39929552 DOI: 10.1146/annurev-biophys-080124-122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Low-molecular-weight oligomers formed from amyloidogenic peptides and proteins have been identified as key cytotoxins across a range of neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Developing therapeutic strategies that target oligomers is therefore emerging as a promising approach for combating protein misfolding diseases. As such, there is a great need to understand the fundamental properties, dynamics, and mechanisms associated with oligomer formation. In this review, we discuss how chemical kinetics provides a powerful tool for studying these systems. We review the chemical kinetics approach to determining the underlying molecular pathways of protein aggregation and discuss its applications to oligomer formation and dynamics. We discuss how this approach can reveal detailed mechanisms of primary and secondary oligomer formation, including the role of interfaces in these processes. We further use this framework to describe the processes of oligomer conversion and dissociation, and highlight the distinction between on-pathway and off-pathway oligomers. Furthermore, we showcase on the basis of experimental data the diversity of pathways leading to oligomer formation in various in vitro and in silico systems. Finally, using the lens of the chemical kinetics framework, we look at the current oligomer inhibitor strategies both in vitro and in vivo.
Collapse
Affiliation(s)
- Jiapeng Wei
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; , ,
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; , ,
| | - Alexander J Dear
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland; ,
- Bringing Materials to Life Initiative, ETH Zurich, Zurich, Switzerland
| | - Thomas C T Michaels
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland; ,
- Bringing Materials to Life Initiative, ETH Zurich, Zurich, Switzerland
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; , ,
| |
Collapse
|
2
|
Horne RI, Sandler SE, Vendruscolo M, Keyser UF. Detection of protein oligomers with nanopores. Nat Rev Chem 2025; 9:224-240. [PMID: 40045069 DOI: 10.1038/s41570-025-00694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 04/11/2025]
Abstract
Powerful single-molecule approaches have been developed for the accurate measurement of protein oligomers, but they are often low throughput and limited to the measurement of specific systems. To overcome this problem, nanopore-based detection holds the promise of providing the high throughput, broad applicability, and accuracy necessary to characterize protein oligomers in a variety of contexts. Nanopores provide accuracy comparable with that of state-of-the-art single-molecule detection methods, but with the added potential for fast and accurate measurements that may be amenable to industrial-scale manufacture. Key to enabling this expansion is combination with other emerging technologies such as DNA nanostructure tagging, machine learning-enabled signal analysis, and innovative detection device manufacture. Together, these technologies could enable widespread adoption of nanopore-based sensing in oligomer detection, revolutionizing diagnostics and biomarker detection in protein misfolding diseases.
Collapse
Affiliation(s)
- Robert I Horne
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Sarah E Sandler
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Ulrich F Keyser
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Halder B, Ghosh S, Khan T, Pal S, Das N, Sen P. Tracking heterogenous protein aggregation at nanoscale through fluorescence correlation spectroscopy. Photochem Photobiol 2024; 100:989-999. [PMID: 39032082 DOI: 10.1111/php.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Various biophysical techniques have been extensively employed to study protein aggregation due to its significance. Traditionally, these methods detect aggregation at micrometer length scales and micromolar concentrations. However, unlike in vitro, protein aggregation typically occurs at nanomolar concentrations in vivo. Here, using fluorescence correlation spectroscopy (FCS), we captured bromelain aggregation at concentrations as low as ~20 nM, surpassing the detection limit of traditional methods like thioflavin T fluorescence, scattering, and fluorescence microscopy by more than one order of magnitude. Moreover, using thioflavin T fluorescence-based FCS, we have detected larger aggregates at higher bromelain concentrations, which is undetectable in FCS otherwise. Importantly, our study reveals inherent heterogeneity in bromelain aggregation, inaccessible to ensemble-averaged techniques. The presented report may provide a platform for the characterization of premature aggregates at very low protein concentrations, which are thought to be functionally significant species in protein aggregation-induced diseases.
Collapse
Affiliation(s)
- Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Shreya Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Subhendu Pal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
4
|
Sandler S, Horne RI, Rocchetti S, Novak R, Hsu NS, Castellana Cruz M, Faidon Brotzakis Z, Gregory RC, Chia S, Bernardes GJL, Keyser UF, Vendruscolo M. Multiplexed Digital Characterization of Misfolded Protein Oligomers via Solid-State Nanopores. J Am Chem Soc 2023; 145:25776-25788. [PMID: 37972287 PMCID: PMC10690769 DOI: 10.1021/jacs.3c09335] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Misfolded protein oligomers are of central importance in both the diagnosis and treatment of Alzheimer's and Parkinson's diseases. However, accurate high-throughput methods to detect and quantify oligomer populations are still needed. We present here a single-molecule approach for the detection and quantification of oligomeric species. The approach is based on the use of solid-state nanopores and multiplexed DNA barcoding to identify and characterize oligomers from multiple samples. We study α-synuclein oligomers in the presence of several small-molecule inhibitors of α-synuclein aggregation as an illustration of the potential applicability of this method to the development of diagnostic and therapeutic methods for Parkinson's disease.
Collapse
Affiliation(s)
- Sarah
E. Sandler
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Robert I. Horne
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Sara Rocchetti
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Robert Novak
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Nai-Shu Hsu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marta Castellana Cruz
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Z. Faidon Brotzakis
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Rebecca C. Gregory
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Sean Chia
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research
(A*STAR), Singapore 138668
| | - Gonçalo J. L. Bernardes
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Ulrich F. Keyser
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
5
|
Wu K, Sun W, Li D, Diao J, Xiu P. Inhibition of Amyloid Nucleation by Steric Hindrance. J Phys Chem B 2022; 126:10045-10054. [PMID: 36417323 DOI: 10.1021/acs.jpcb.2c06330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite recent experiments and simulations suggesting that small-molecule inhibitors and some post-translational modifications (e.g., glycosylation and ubiquitination) can suppress the pathogenic aggregation of proteins due to steric hindrance, the effect of steric hindrance on amyloid formation has not been systematically studied. Based on Monte Carlo simulations using a coarse-grained model for amyloidogenic proteins and a hard sphere acting as steric hindrance, we investigated how steric hindrance on proteins could affect amyloid formation, particularly two steps of primary nucleation, namely, oligomerization and conformational conversion into a β-sheet-enriched nucleus. We found that steric spheres played an inhibitory role in oligomerization with the effect proportional to the sphere radius RS, which we attributed to the decline in the nonspecific attractions between proteins. During the second step, small steric spheres facilitated the conformational conversion of proteins while large ones suppressed the conversion. The overall steric effect on amyloid nucleation was inhibitory regardless of RS. As RS increased, oligomeric assemblies changed from amorphous into sheet-like, structurally ordered species, reminiscent of the structure of amyloid fibrils. The oligomers with large RS were off-pathway with their ordered structures induced by the competition between steric hindrance and nonspecific attractions of soluble proteins. Interestingly, the equimolar mixture of proteins with and without steric hindrance amplified the sterically inhibitory effect by increasing the energy barrier of protein's conformational conversion. The physical mechanisms and biological implications of the above results are discussed. Our findings improve the current understanding of how nature regulates protein aggregation and amyloid formation by steric hindrance.
Collapse
Affiliation(s)
- Kai Wu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Wuxuepeng Sun
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Dechang Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
6
|
Characterisation of Amyloid Aggregation and Inhibition by Diffusion-Based Single-Molecule Fluorescence Techniques. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein amyloid aggregation has been associated with more than 50 human disorders, including the most common neurodegenerative disorders Alzheimer’s and Parkinson’s disease. Interfering with this process is considered as a promising therapeutic strategy for these diseases. Our understanding of the process of amyloid aggregation and its role in disease has typically been limited by the use of ensemble-based biochemical and biophysical techniques, owing to the intrinsic heterogeneity and complexity of the process. Single-molecule techniques, and particularly diffusion-based single-molecule fluorescence approaches, have been instrumental to obtain meaningful information on the dynamic nature of the fibril-forming process, as well as the characterisation of the heterogeneity of the amyloid aggregates and the understanding of the molecular basis of inhibition of a number of molecules with therapeutic interest. In this article, we reviewed some recent contributions on the characterisation of the amyloid aggregation process, the identification of distinct structural groups of aggregates in homotypic or heterotypic aggregation, as well as on the study of the interaction of amyloid aggregates with other molecules, allowing the estimation of the binding sites, affinities, and avidities as examples of the type of relevant information we can obtain about these processes using these techniques.
Collapse
|
7
|
Alraawi Z, Banerjee N, Mohanty S, Kumar TKS. Amyloidogenesis: What Do We Know So Far? Int J Mol Sci 2022; 23:ijms232213970. [PMID: 36430450 PMCID: PMC9695042 DOI: 10.3390/ijms232213970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The study of protein aggregation, and amyloidosis in particular, has gained considerable interest in recent times. Several neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) show a characteristic buildup of proteinaceous aggregates in several organs, especially the brain. Despite the enormous upsurge in research articles in this arena, it would not be incorrect to say that we still lack a crystal-clear idea surrounding these notorious aggregates. In this review, we attempt to present a holistic picture on protein aggregation and amyloids in particular. Using a chronological order of discoveries, we present the case of amyloids right from the onset of their discovery, various biophysical techniques, including analysis of the structure, the mechanisms and kinetics of the formation of amyloids. We have discussed important questions on whether aggregation and amyloidosis are restricted to a subset of specific proteins or more broadly influenced by the biophysiochemical and cellular environment. The therapeutic strategies and the significant failure rate of drugs in clinical trials pertaining to these neurodegenerative diseases have been also discussed at length. At a time when the COVID-19 pandemic has hit the globe hard, the review also discusses the plausibility of the far-reaching consequences posed by the virus, such as triggering early onset of amyloidosis. Finally, the application(s) of amyloids as useful biomaterials has also been discussed briefly in this review.
Collapse
Affiliation(s)
- Zeina Alraawi
- Department of Chemistry and Biochemistry, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Srujana Mohanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | | |
Collapse
|
8
|
Tahirbegi B, Magness AJ, Piersimoni ME, Teng X, Hooper J, Guo Y, Knöpfel T, Willison KR, Klug DR, Ying L. Toward high-throughput oligomer detection and classification for early-stage aggregation of amyloidogenic protein. Front Chem 2022; 10:967882. [PMID: 36110142 PMCID: PMC9468268 DOI: 10.3389/fchem.2022.967882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/28/2022] [Indexed: 12/01/2022] Open
Abstract
Aggregation kinetics of proteins and peptides have been studied extensively due to their significance in many human diseases, including neurodegenerative disorders, and the roles they play in some key physiological processes. However, most of these studies have been performed as bulk measurements using Thioflavin T or other fluorescence turn-on reagents as indicators of fibrillization. Such techniques are highly successful in making inferences about the nucleation and growth mechanism of fibrils, yet cannot directly measure assembly reactions at low protein concentrations which is the case for amyloid-β (Aβ) peptide under physiological conditions. In particular, the evolution from monomer to low-order oligomer in early stages of aggregation cannot be detected. Single-molecule methods allow direct access to such fundamental information. We developed a high-throughput protocol for single-molecule photobleaching experiments using an automated fluorescence microscope. Stepwise photobleaching analysis of the time profiles of individual foci allowed us to determine stoichiometry of protein oligomers and probe protein aggregation kinetics. Furthermore, we investigated the potential application of supervised machine learning with support vector machines (SVMs) as well as multilayer perceptron (MLP) artificial neural networks to classify bleaching traces into stoichiometric categories based on an ensemble of measurable quantities derivable from individual traces. Both SVM and MLP models achieved a comparable accuracy of more than 80% against simulated traces up to 19-mer, although MLP offered considerable speed advantages, thus making it suitable for application to high-throughput experimental data. We used our high-throughput method to study the aggregation of Aβ40 in the presence of metal ions and the aggregation of α-synuclein in the presence of gold nanoparticles.
Collapse
Affiliation(s)
- Bogachan Tahirbegi
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Alastair J. Magness
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Xiangyu Teng
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - James Hooper
- School of Food Science and Nutrition and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Yuan Guo
- School of Food Science and Nutrition and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Thomas Knöpfel
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Keith R. Willison
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - David R. Klug
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Liming Ying
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Zhang S, Yoo S, Snyder DT, Katz BB, Henrickson A, Demeler B, Wysocki VH, Kreutzer AG, Nowick JS. A Disulfide-Stabilized Aβ that Forms Dimers but Does Not Form Fibrils. Biochemistry 2022; 61:252-264. [PMID: 35080857 PMCID: PMC9083094 DOI: 10.1021/acs.biochem.1c00739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aβ dimers are a basic building block of many larger Aβ oligomers and are among the most neurotoxic and pathologically relevant species in Alzheimer's disease. Homogeneous Aβ dimers are difficult to prepare, characterize, and study because Aβ forms heterogeneous mixtures of oligomers that vary in size and can rapidly aggregate into more stable fibrils. This paper introduces AβC18C33 as a disulfide-stabilized analogue of Aβ42 that forms stable homogeneous dimers in lipid environments but does not aggregate to form insoluble fibrils. The AβC18C33 peptide is readily expressed in Escherichia coli and purified by reverse-phase HPLC to give ca. 8 mg of pure peptide per liter of bacterial culture. SDS-PAGE establishes that AβC18C33 forms homogeneous dimers in the membrane-like environment of SDS and that conformational stabilization of the peptide with a disulfide bond prevents the formation of heterogeneous mixtures of oligomers. Mass spectrometric (MS) studies in the presence of dodecyl maltoside (DDM) further confirm the formation of stable noncovalent dimers. Circular dichroism (CD) spectroscopy establishes that AβC18C33 adopts a β-sheet conformation in detergent solutions and supports a model in which the intramolecular disulfide bond induces β-hairpin folding and dimer formation in lipid environments. Thioflavin T (ThT) fluorescence assays and transmission electron microscopy (TEM) studies indicate that AβC18C33 does not undergo fibril formation in aqueous buffer solutions and demonstrate that the intramolecular disulfide bond prevents fibril formation. The recently published NMR structure of an Aβ42 tetramer (PDB: 6RHY) provides a working model for the AβC18C33 dimer, in which two β-hairpins assemble through hydrogen bonding to form a four-stranded antiparallel β-sheet. It is anticipated that AβC18C33 will serve as a stable, nonfibrilizing, and noncovalent Aβ dimer model for amyloid and Alzheimer's disease research.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Stan Yoo
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Benjamin B. Katz
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr., Lethbridge, Alberta, Canada T1K 3M4
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr., Lethbridge, Alberta, Canada T1K 3M4
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Adam G. Kreutzer
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States,Corresponding Authors: James S. Nowick – Department of Chemistry, University of California, Irvine, California 92697-2025, United States; Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-2025, United States. , Adam G. Kreutzer – Department of Chemistry, University of California, Irvine, California 92697-2025, United States.
| | - James S. Nowick
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States,Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California 92697-2025, United States,Corresponding Authors: James S. Nowick – Department of Chemistry, University of California, Irvine, California 92697-2025, United States; Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-2025, United States. , Adam G. Kreutzer – Department of Chemistry, University of California, Irvine, California 92697-2025, United States.
| |
Collapse
|
10
|
Oren O, Taube R, Papo N. Amyloid β structural polymorphism, associated toxicity and therapeutic strategies. Cell Mol Life Sci 2021; 78:7185-7198. [PMID: 34643743 PMCID: PMC11072899 DOI: 10.1007/s00018-021-03954-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
A review of the multidisciplinary scientific literature reveals a large variety of amyloid-β (Aβ) oligomeric species, differing in molecular weight, conformation and morphology. These species, which may assemble via either on- or off-aggregation pathways, exhibit differences in stability, function and neurotoxicity, according to different experimental settings. The conformations of the different Aβ species are stabilized by intra- and inter-molecular hydrogen bonds and by electrostatic and hydrophobic interactions, all depending on the chemical and physical environment (e.g., solvent, ions, pH) and interactions with other molecules, such as lipids and proteins. This complexity and the lack of a complete understanding of the relationship between the different Aβ species and their toxicity is currently dictating the nature of the inhibitor (or inducer)-based approaches that are under development for interfering with (or inducing) the formation of specific species and Aβ oligomerization, and for interfering with the associated downstream neurotoxic effects. Here, we review the principles that underlie the involvement of different Aβ oligomeric species in neurodegeneration, both in vitro and in preclinical studies. In addition, we provide an overview of the existing inhibitors (or inducers) of Aβ oligomerization that serve as potential therapeutics for neurodegenerative diseases. The review, which covers the exciting studies that have been published in the past few years, comprises three main parts: 1) on- and off-fibrillar assembly mechanisms and Aβ structural polymorphism; 2) interactions of Aβ with other molecules and cell components that dictate the Aβ aggregation pathway; and 3) targeting the on-fibrillar Aβ assembly pathway as a therapeutic approach.
Collapse
Affiliation(s)
- Ofek Oren
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
- Department of Biotechnology Engineering, Avram and Stella Goldstein-Goren, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Niv Papo
- Department of Biotechnology Engineering, Avram and Stella Goldstein-Goren, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
11
|
Dasmeh P, Wagner A. Yeast Proteins may Reversibly Aggregate like Amphiphilic Molecules. J Mol Biol 2021; 434:167352. [PMID: 34774567 DOI: 10.1016/j.jmb.2021.167352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/18/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022]
Abstract
More than a hundred proteins in yeast reversibly aggregate and phase-separate in response to various stressors, such as nutrient depletion and heat shock. We know little about the protein sequence and structural features behind this ability, which has not been characterized on a proteome-wide level. To identify the distinctive features of aggregation-prone protein regions, we apply machine learning algorithms to genome-scale limited proteolysis-mass spectrometry (LiP-MS) data from yeast proteins. LiP-MS data reveals that 96 proteins show significant structural changes upon heat shock. We find that in these proteins the propensity to phase separate cannot be solely driven by disordered regions, because their aggregation-prone regions (APRs) are not significantly disordered. Instead, the phase separation of these proteins requires contributions from both disordered and structured regions. APRs are significantly enriched in aliphatic residues and depleted in positively charged amino acids. Aggregator proteins with longer APRs show a greater propensity to aggregate, a relationship that can be explained by equilibrium statistical thermodynamics. Altogether, our observations suggest that proteome-wide reversible protein aggregation is mediated by sequence-encoded properties. We propose that aggregating proteins resemble supra-molecular amphiphiles, where APRs are the hydrophobic parts, and non-APRs are the hydrophilic parts.
Collapse
Affiliation(s)
- Pouria Dasmeh
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA; Swiss Institute of Bioinformatics (SIB), Switzerland.
| | - Andreas Wagner
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland; The Santa Fe Institute, Santa Fe, NM, USA; Swiss Institute of Bioinformatics (SIB), Switzerland; Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
12
|
Rice LJ, Ecroyd H, van Oijen AM. Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches. Comput Struct Biotechnol J 2021; 19:4711-4724. [PMID: 34504664 PMCID: PMC8405898 DOI: 10.1016/j.csbj.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
The aggregation of proteins into insoluble filamentous amyloid fibrils is a pathological hallmark of neurodegenerative diseases that include Parkinson's disease and Alzheimer's disease. Since the identification of amyloid fibrils and their association with disease, there has been much work to describe the process by which fibrils form and interact with other proteins. However, due to the dynamic nature of fibril formation and the transient and heterogeneous nature of the intermediates produced, it can be challenging to examine these processes using techniques that rely on traditional ensemble-based measurements. Single-molecule approaches overcome these limitations as rare and short-lived species within a population can be individually studied. Fluorescence-based single-molecule methods have proven to be particularly useful for the study of amyloid fibril formation. In this review, we discuss the use of different experimental single-molecule fluorescence microscopy approaches to study amyloid fibrils and their interaction with other proteins, in particular molecular chaperones. We highlight the mechanistic insights these single-molecule techniques have already provided in our understanding of how fibrils form, and comment on their potential future use in studying amyloid fibrils and their intermediates.
Collapse
Affiliation(s)
- Lauren J. Rice
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Antoine M. van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
13
|
Toward the equilibrium and kinetics of amyloid peptide self-assembly. Curr Opin Struct Biol 2021; 70:87-98. [PMID: 34153659 DOI: 10.1016/j.sbi.2021.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 01/28/2023]
Abstract
Several devastating human diseases are linked to peptide self-assembly, but our understanding their onset and progression is not settled. This is a sign of the complexity of the aggregation process, which is prevented, catalyzed, or retarded by numerous factors in body fluids and cells, varying in time and space. Biophysical studies of pure peptide solutions contribute insights into the underlying steps in the process and quantitative parameters relating to rate constants (energy barriers) and equilibrium constants (population distributions). This requires methods to quantify the concentration of at least one species in the process. Translation to an in vivo situation poses an enormous challenge, and the effects of selected components (bottom up) or entire body fluids (top down) need to be quantified.
Collapse
|
14
|
Danial JSH, Klenerman D. Single molecule imaging of protein aggregation in Dementia: Methods, insights and prospects. Neurobiol Dis 2021; 153:105327. [PMID: 33705938 PMCID: PMC8039184 DOI: 10.1016/j.nbd.2021.105327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/21/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The aggregation of misfolded proteins is a fundamental pathology in neurodegeneration which remains poorly understood due to its exceptional complexity and lack of appropriate characterization tools that can probe the role of the low concentrations of heterogeneous protein aggregates formed during the progression of the disease. In this review, we explain the principles underlying the operation of single molecule microscopy, an imaging method that can resolve molecules one-by-one, its application to imaging and characterizing individual protein aggregates in human samples and in vitro as well as the important questions in neurobiology this has answered and can answer.
Collapse
Affiliation(s)
- John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
15
|
Shoup D, Roth A, Thapa R, Puchalla J, Rye HS. Development and application of multicolor burst analysis spectroscopy. Biophys J 2021; 120:2192-2204. [PMID: 33831389 DOI: 10.1016/j.bpj.2021.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022] Open
Abstract
The formation and disassembly of macromolecular particles is a ubiquitous and essential feature of virtually all living organisms. Additionally, diseases are often associated with the accumulation and propagation of biologically active nanoparticles, like the formation of toxic protein aggregates in protein misfolding diseases and the growth of infectious viral particles. The heterogeneous and dynamic nature of biologically active particles can make them exceedingly challenging to study. The single-particle fluorescence technique known as burst analysis spectroscopy (BAS) was developed to facilitate real-time measurement of macromolecular particle distributions in the submicron range in a minimally perturbing, free-solution environment. Here, we develop a multicolor version of BAS and employ it to examine two problems in macromolecular assembly: 1) the extent of DNA packing heterogeneity in bacteriophage viral particles and 2) growth models of non-native protein aggregates. We show that multicolor BAS provides a powerful and flexible approach to studying hidden properties of important biological particles like viruses and protein aggregates.
Collapse
Affiliation(s)
- Daniel Shoup
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Andrew Roth
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Rajan Thapa
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Jason Puchalla
- Department of Physics, Princeton University, Princeton, New Jersey.
| | - Hays S Rye
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas.
| |
Collapse
|
16
|
Gomes GN, Levine ZA. Defining the Neuropathological Aggresome across in Silico, in Vitro, and ex Vivo Experiments. J Phys Chem B 2021; 125:1974-1996. [PMID: 33464098 PMCID: PMC8362740 DOI: 10.1021/acs.jpcb.0c09193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The loss of proteostasis over the life course is associated with a wide range of debilitating degenerative diseases and is a central hallmark of human aging. When left unchecked, proteins that are intrinsically disordered can pathologically aggregate into highly ordered fibrils, plaques, and tangles (termed amyloids), which are associated with countless disorders such as Alzheimer's disease, Parkinson's disease, type II diabetes, cancer, and even certain viral infections. However, despite significant advances in protein folding and solution biophysics techniques, determining the molecular cause of these conditions in humans has remained elusive. This has been due, in part, to recent discoveries showing that soluble protein oligomers, not insoluble fibrils or plaques, drive the majority of pathological processes. This has subsequently led researchers to focus instead on heterogeneous and often promiscuous protein oligomers. Unfortunately, significant gaps remain in how to prepare, model, experimentally corroborate, and extract amyloid oligomers relevant to human disease in a systematic manner. This Review will report on each of these techniques and their successes and shortcomings in an attempt to standardize comparisons between protein oligomers across disciplines, especially in the context of neurodegeneration. By standardizing multiple techniques and identifying their common overlap, a clearer picture of the soluble neuropathological aggresome can be constructed and used as a baseline for studying human disease and aging.
Collapse
Affiliation(s)
- Gregory-Neal Gomes
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Zachary A. Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
17
|
Single Molecule Characterization of Amyloid Oligomers. Molecules 2021; 26:molecules26040948. [PMID: 33670093 PMCID: PMC7916856 DOI: 10.3390/molecules26040948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The misfolding and aggregation of polypeptide chains into β-sheet-rich amyloid fibrils is associated with a wide range of neurodegenerative diseases. Growing evidence indicates that the oligomeric intermediates populated in the early stages of amyloid formation rather than the mature fibrils are responsible for the cytotoxicity and pathology and are potentially therapeutic targets. However, due to the low-populated, transient, and heterogeneous nature of amyloid oligomers, they are hard to characterize by conventional bulk methods. The development of single molecule approaches provides a powerful toolkit for investigating these oligomeric intermediates as well as the complex process of amyloid aggregation at molecular resolution. In this review, we present an overview of recent progress in characterizing the oligomerization of amyloid proteins by single molecule fluorescence techniques, including single-molecule Förster resonance energy transfer (smFRET), fluorescence correlation spectroscopy (FCS), single-molecule photobleaching and super-resolution optical imaging. We discuss how these techniques have been applied to investigate the different aspects of amyloid oligomers and facilitate understanding of the mechanism of amyloid aggregation.
Collapse
|
18
|
Thermodynamics of amyloid fibril formation from non-equilibrium experiments of growth and dissociation. Biophys Chem 2021; 271:106549. [PMID: 33578107 DOI: 10.1016/j.bpc.2021.106549] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Amyloid fibrils are ordered, non-covalent polymers of proteins that are linked to a range of diseases, as well as biological functions. Amyloid fibrils are often considered thermodynamically so stable that they appear to be irreversible, explaining why very few quantitative thermodynamic studies have been performed on amyloid fibrils, compared to the very large body of kinetic studies. Here we explore the thermodynamics of amyloid fibril formation by the protein PI3K-SH3, which forms amyloid fibrils under acidic conditions. We use quartz crystal microbalance (QCM) and develop novel temperature perturbation experiments based on differential scanning fluorimetry (DSF) to measure the temperature dependence of the fibril growth and dissociation rates, allowing us to quantitatively describe the thermodynamic stability of PI3K-SH3 amyloid fibrils between 10 and 75°C.
Collapse
|
19
|
Internalization of α-synuclein oligomers into SH-SY5Y cells. Biophys J 2021; 120:877-885. [PMID: 33515601 DOI: 10.1016/j.bpj.2020.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/09/2020] [Accepted: 12/30/2020] [Indexed: 11/20/2022] Open
Abstract
Aggregates of misfolded α-synuclein are a distinctive feature of Parkinson's disease. Small oligomers of α-synuclein are thought to be an important neurotoxic agent, and α-synuclein aggregates exhibit prion-like behavior, propagating misfolding between cells. α-Synuclein is internalized by both passive diffusion and active uptake mechanisms, but how uptake varies with the size of the oligomer is less clear. We explored how α-synuclein internalization into live SH-SY5Y cells varied with oligomer size by comparing the uptake of fluorescently labeled monomers to that of engineered tandem dimers and tetramers. We found that these α-synuclein constructs were internalized primarily through endocytosis. Oligomer size had little effect on their internalization pathway, whether they were added individually or together. Measurements of co-localization of the α-synuclein constructs with fluorescent markers for early endosomes and lysosomes showed that most of the α-synuclein entered endocytic compartments, in which they were probably degraded. Treatment of the cells with the Pitstop inhibitor suggested that most of the oligomers were internalized by the clathrin-mediated pathway.
Collapse
|
20
|
Cawood EE, Karamanos TK, Wilson AJ, Radford SE. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophys Chem 2021; 268:106505. [PMID: 33220582 PMCID: PMC8188297 DOI: 10.1016/j.bpc.2020.106505] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
Oligomers which form during amyloid fibril assembly are considered to be key contributors towards amyloid disease. However, understanding how such intermediates form, their structure, and mechanisms of toxicity presents significant challenges due to their transient and heterogeneous nature. Here, we discuss two different strategies for addressing these challenges: use of (1) methods capable of detecting lowly-populated species within complex mixtures, such as NMR, single particle methods (including fluorescence and force spectroscopy), and mass spectrometry; and (2) chemical and biological tools to bias the amyloid energy landscape towards specific oligomeric states. While the former methods are well suited to following the kinetics of amyloid assembly and obtaining low-resolution structural information, the latter are capable of producing oligomer samples for high-resolution structural studies and inferring structure-toxicity relationships. Together, these different approaches should enable a clearer picture to be gained of the nature and role of oligomeric intermediates in amyloid formation and disease.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
21
|
Single-molecule studies of amyloid proteins: from biophysical properties to diagnostic perspectives. Q Rev Biophys 2020; 53:e12. [PMID: 33148356 DOI: 10.1017/s0033583520000086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In neurodegenerative diseases, a wide range of amyloid proteins or peptides such as amyloid-beta and α-synuclein fail to keep native functional conformations, followed by misfolding and self-assembling into a diverse array of aggregates. The aggregates further exert toxicity leading to the dysfunction, degeneration and loss of cells in the affected organs. Due to the disordered structure of the amyloid proteins, endogenous molecules, such as lipids, are prone to interact with amyloid proteins at a low concentration and influence amyloid cytotoxicity. The heterogeneity of amyloid proteinscomplicates the understanding of the amyloid cytotoxicity when relying only on conventional bulk and ensemble techniques. As complementary tools, single-molecule techniques (SMTs) provide novel insights into the different subpopulations of a heterogeneous amyloid mixture as well as the cytotoxicity, in particular as involved in lipid membranes. This review focuses on the recent advances of a series of SMTs, including single-molecule fluorescence imaging, single-molecule force spectroscopy and single-nanopore electrical recording, for the understanding of the amyloid molecular mechanism. The working principles, benefits and limitations of each technique are discussed and compared in amyloid protein related studies.. We also discuss why SMTs show great potential and are worthy of further investigation with feasibility studies as diagnostic tools of neurodegenerative diseases and which limitations are to be addressed.
Collapse
|
22
|
Das A, Gupta A, Hong Y, Carver JA, Maiti S. A Spectroscopic Marker for Structural Transitions Associated with Amyloid-β Aggregation. Biochemistry 2020; 59:1813-1822. [PMID: 32329604 DOI: 10.1021/acs.biochem.0c00113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An amyloid aggregate evolves through a series of intermediates that have different secondary structures and intra- and intermolecular contacts. The structural parameters of these intermediates are important determinants of their toxicity. For example, the early oligomeric species of the amyloid-β (Aβ) peptide have been implicated as the most cytotoxic species in Alzheimer's disease but are difficult to identify because of their dynamic and transitory nature. Conventional aggregation monitors such as the fluorescent dye thioflavin T report on only the overall transition of the soluble species to the final amyloid fibrillar aggregated state. Here, we show that the fluorescent dye bis(triphenylphosphonium) tetraphenylethene (TPE-TPP) identifies at least three distinct aggregation intermediates of Aβ. Some atomic-level features of these intermediates are known from solid state nuclear magnetic resonance spectroscopy. Hence, the TPE-TPP fluorescence data may be interpreted in terms of these Aβ structural transitions. Steady state fluorescence and lifetime characteristics of TPE-TPP distinguish between the small oligomeric species (emission wavelength maximum, λmax = 465 nm; average fluorescence lifetime, τFl measured at 420 nm = 3.58 ± 0.04 ns), the intermediate species (λmax = 452 nm; τFl = 3.00 ± 0.03 ns), and the fibrils (λmax = 406 nm; τFl = 5.19 ± 0.08 ns). Thus, TPE-TPP provides a ready diagnostic for differentiating between the various, including the toxic, Aβ aggregates and potentially can be utilized to screen for amyloid aggregation inhibitors.
Collapse
Affiliation(s)
- Anirban Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Ankur Gupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
23
|
Bielec K, Bubak G, Kalwarczyk T, Holyst R. Analysis of Brightness of a Single Fluorophore for Quantitative Characterization of Biochemical Reactions. J Phys Chem B 2020; 124:1941-1948. [PMID: 32059107 PMCID: PMC7497653 DOI: 10.1021/acs.jpcb.0c00770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Intrinsic
molecular brightness (MB) is a number of emitted photons
per second per molecule. When a substrate labeled by a fluorophore
and a second unlabeled substrate form a complex in solution, the MB
of the fluorophore changes. Here we use this change to determine the equilibrium constant (K) for the formation of the complex at pM concentrations.
To illustrate this method, we used a reaction of DNA hybridization,
where only one of the strands was fluorescently labeled. We determined K at the substrate concentrations from 80 pM to 30 nM. We
validated this method against Förster resonance energy transfer
(FRET). This method is much simpler than FRET as it requires only
one fluorophore in the complex with a very small (a f̃ew percent)
change in MB.
Collapse
Affiliation(s)
- Krzysztof Bielec
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Grzegorz Bubak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz Kalwarczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Robert Holyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
24
|
Munari F, D'Onofrio M, Assfalg M. Solution NMR insights into dynamic supramolecular assemblies of disordered amyloidogenic proteins. Arch Biochem Biophys 2020; 683:108304. [PMID: 32097611 DOI: 10.1016/j.abb.2020.108304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
Abstract
The extraordinary flexibility and structural heterogeneity of intrinsically disordered proteins (IDP) make them functionally versatile molecules. We have now begun to better understand their fundamental role in biology, however many aspects of their behaviour remain difficult to grasp experimentally. This is especially true for the intermolecular interactions which lead to the formation of transient or highly dynamic supramolecular self-assemblies, such as oligomers, aggregation intermediates and biomolecular condensates. Both the emerging functions and pathogenicity of these structures have stimulated great efforts to develop methodologies capable of providing useful insights. Significant progress in solution NMR spectroscopy has made this technique one of the most powerful to describe structural and dynamic features of IDPs within such assemblies at atomic resolution. Here, we review the most recent works that have illuminated key aspects of IDP assemblies and contributed significant advancements towards our understanding of the complex conformational landscape of prototypical disease-associated proteins. We also include a primer on some of the fundamental and innovative NMR methods being used in the discussed studies.
Collapse
Affiliation(s)
- Francesca Munari
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
25
|
Ma W, Tribet C, Guyot S, Zanchi D. Tannin-controlled micelles and fibrils of κ-casein. J Chem Phys 2020; 151:245103. [PMID: 31893889 DOI: 10.1063/1.5128057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Effects of green tea tannin epigallocatechin-gallate (EGCG) on thermal-stress-induced amyloid fibril formation of reduced carboxymethylated bovine milk protein κ-casein were studied by dynamical light scattering and small angle X-ray scattering (SAXS). Two populations of aggregates, micelles, and fibrils dominated the time evolution of light scattering intensity and of effective hydrodynamic diameter. SAXS experiments allowed us to resolve micelles and fibrils so that the time dependence of the scattering profile revealed the structural evolution of the two populations. The low-Q scattering intensity prior to an expected increase in time due to fibril growth shows an intriguing rapid decrease, which is interpreted as the release of monomers from micelles. This phenomenon, observed both in the absence and in the presence of EGCG, indicates that under thermal stress free conditions, native monomers are converted to amyloid-prone monomers that do not form micelles. The consumption of free native monomers results in a release of native monomers from micelles because only native proteins participate in micelle-monomer (quasi)equilibrium. This release is reversible, indicating also that native-to-amyloid-prone monomer conversion is reversible as well. We show that EGCG does not bind to protein in fibrils, neither does it affect/prevent the proamyloid conversion of monomers. EGCG hinders the addition of monomers to growing fibrils. These facts allowed us to propose the kinetics model for EGCG-controlled amyloid aggregation of micellar proteins. Therein, we introduced the growth-rate inhibition function, which quantitatively accounts for the effect of EGCG on the fibril growth at any degree of thermal stress.
Collapse
Affiliation(s)
- Wei Ma
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, F-75005 Paris, France
| | - Christophe Tribet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, F-75005 Paris, France
| | - Sylvain Guyot
- INRA UR1268 BIA-Polyphenols, Reactivity, Processes, F-35653 Le Rheu, France
| | - Dražen Zanchi
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, F-75005 Paris, France
| |
Collapse
|
26
|
Whiten DR, Cox D, Horrocks MH, Taylor CG, De S, Flagmeier P, Tosatto L, Kumita JR, Ecroyd H, Dobson CM, Klenerman D, Wilson MR. Single-Molecule Characterization of the Interactions between Extracellular Chaperones and Toxic α-Synuclein Oligomers. Cell Rep 2019; 23:3492-3500. [PMID: 29924993 PMCID: PMC6024880 DOI: 10.1016/j.celrep.2018.05.074] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/26/2018] [Accepted: 05/22/2018] [Indexed: 12/28/2022] Open
Abstract
The aberrant aggregation of α-synuclein is associated with several human diseases, collectively termed the α-synucleinopathies, which includes Parkinson’s disease. The progression of these diseases is, in part, mediated by extracellular α-synuclein oligomers that may exert effects through several mechanisms, including prion-like transfer, direct cytotoxicity, and pro-inflammatory actions. In this study, we show that two abundant extracellular chaperones, clusterin and α2-macroglobulin, directly bind to exposed hydrophobic regions on the surface of α-synuclein oligomers. Using single-molecule fluorescence techniques, we found that clusterin, unlike α2-macroglobulin, exhibits differential binding to α-synuclein oligomers that may be related to structural differences between two previously described forms of αS oligomers. The binding of both chaperones reduces the ability of the oligomers to permeabilize lipid membranes and prevents an oligomer-induced increase in ROS production in cultured neuronal cells. Taken together, these data suggest a neuroprotective role for extracellular chaperones in suppressing the toxicity associated with α-synuclein oligomers. Two extracellular chaperones directly bind to α-synuclein oligomers The binding is mediated by hydrophobicity on the oligomer surface Bound chaperones significantly attenuate the toxicity of α-synuclein oligomers
Collapse
Affiliation(s)
- Daniel R Whiten
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Dezerae Cox
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Mathew H Horrocks
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Christopher G Taylor
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Suman De
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Patrick Flagmeier
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Laura Tosatto
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Janet R Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK.
| | - Mark R Wilson
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong 2522, NSW, Australia.
| |
Collapse
|
27
|
Hashemi M, Zhang Y, Lv Z, Lyubchenko YL. Spontaneous self-assembly of amyloid β (1-40) into dimers. NANOSCALE ADVANCES 2019; 1:3892-3899. [PMID: 36132110 PMCID: PMC9417245 DOI: 10.1039/c9na00380k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/16/2019] [Indexed: 05/17/2023]
Abstract
The self-assembly and fibrillation of amyloid β (Aβ) proteins is the neuropathological hallmark of Alzheimer's disease. However, the molecular mechanism of how disordered monomers assemble into aggregates remains largely unknown. In this work, we characterize the assembly of Aβ (1-40) monomers into dimers using long-time molecular dynamics simulations. Upon interaction, the monomers undergo conformational transitions, accompanied by change of the structure, leading to the formation of a stable dimer. The dimers are stabilized by interactions in the N-terminal region (residues 5-12), in the central hydrophobic region (residues 16-23), and in the C-terminal region (residues 30-40); with inter-peptide interactions focused around the N- and C-termini. The dimers do not contain long β-strands that are usually found in fibrils.
Collapse
Affiliation(s)
- Mohtadin Hashemi
- Department of Pharmaceutical Sciences, 986025 Nebraska Medical Center, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yuliang Zhang
- Department of Pharmaceutical Sciences, 986025 Nebraska Medical Center, University of Nebraska Medical Center Omaha NE 68198 USA
- Biology and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Zhengjian Lv
- Department of Pharmaceutical Sciences, 986025 Nebraska Medical Center, University of Nebraska Medical Center Omaha NE 68198 USA
- Bruker Nano Surfaces Division 112 Robin Hill Road Goleta, Santa Barbara CA 93117 USA
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, 986025 Nebraska Medical Center, University of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
28
|
Ye Y, Klenerman D, Finley D. N-Terminal Ubiquitination of Amyloidogenic Proteins Triggers Removal of Their Oligomers by the Proteasome Holoenzyme. J Mol Biol 2019; 432:585-596. [PMID: 31518613 PMCID: PMC6990400 DOI: 10.1016/j.jmb.2019.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022]
Abstract
Aggregation of amyloidogenic proteins is an abnormal biological process implicated in neurodegenerative disorders. Whereas the aggregation process of amyloid-forming proteins has been studied extensively, the mechanism of aggregate removal is poorly understood. We recently demonstrated that proteasomes could fragment filamentous aggregates into smaller entities, restricting aggregate size [1]. Here, we show in vitro that UBE2W can modify the N-terminus of both α-synuclein and a tau tetra-repeat domain with a single ubiquitin. We demonstrate that an engineered N-terminal ubiquitin modification changes the aggregation process of both proteins, resulting in the formation of structurally distinct aggregates. Single-molecule approaches further reveal that the proteasome can target soluble oligomers assembled from ubiquitin-modified proteins independently of its peptidase activity, consistent with our recently reported fibril-fragmenting activity. Based on these results, we propose that proteasomes are able to target oligomers assembled from N-terminally ubiquitinated proteins. Our data suggest a possible disassembly mechanism by which N-terminal ubiquitination and the proteasome may together impede aggregate formation. Amyloid proteins α-synuclein and tauK18 can be ubiquitinated by UBE2W. N-terminal ubiquitin modification on amyloid proteins delays aggregation. Proteasomes can remove N-terminal ubiquitin-modified oligomers. Proteasomes remove oligomers primarily by enabling their dissociation.
Collapse
Affiliation(s)
- Yu Ye
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; UK Dementia Research Institute at Imperial College London, London W12 0NN, UK.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; UK Dementia Research Institute at the University of Cambridge, Cambridge CB2 0XY, UK
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Xi W, Vanderford EK, Liao Q, Hansmann UHE. Stability of Aβ-fibril fragments in the presence of fatty acids. Protein Sci 2019; 28:1973-1981. [PMID: 31461191 DOI: 10.1002/pro.3719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/10/2019] [Accepted: 08/22/2019] [Indexed: 11/07/2022]
Abstract
We consider the effect of lauric acid on the stability of various fibril-like assemblies of Aβ peptides. For this purpose, we have performed molecular dynamics simulations of these assemblies either in complex with lauric acid or without presence of the ligand. While we do not observe a stabilizing effect on Aβ40 -fibrils, we find that addition of lauric acid strengthens the stability of fibrils built from the triple-stranded S-shaped Aβ42 -peptides considered to be more toxic. Or results may help to understand how the specifics of the brain-environment modulate amyloid formation and propagation.
Collapse
Affiliation(s)
- Wenhui Xi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Elliott K Vanderford
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Qinxin Liao
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
30
|
Röder C, Vettore N, Mangels LN, Gremer L, Ravelli RBG, Willbold D, Hoyer W, Buell AK, Schröder GF. Atomic structure of PI3-kinase SH3 amyloid fibrils by cryo-electron microscopy. Nat Commun 2019; 10:3754. [PMID: 31434882 PMCID: PMC6704188 DOI: 10.1038/s41467-019-11320-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
High resolution structural information on amyloid fibrils is crucial for the understanding of their formation mechanisms and for the rational design of amyloid inhibitors in the context of protein misfolding diseases. The Src-homology 3 domain of phosphatidyl-inositol-3-kinase (PI3K-SH3) is a model amyloid system that plays a pivotal role in our basic understanding of protein misfolding and aggregation. Here, we present the atomic model of the PI3K-SH3 amyloid fibril with a resolution determined to 3.4 Å by cryo-electron microscopy (cryo-EM). The fibril is composed of two intertwined protofilaments that create an interface spanning 13 residues from each monomer. The model comprises residues 1-77 out of 86 amino acids in total, with the missing residues located in the highly flexible C-terminus. The fibril structure allows us to rationalise the effects of chemically conservative point mutations as well as of the previously reported sequence perturbations on PI3K-SH3 fibril formation and growth.
Collapse
Affiliation(s)
- Christine Röder
- Institute of Complex Systems, Structural Biochemistry (ICS-6) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Nicola Vettore
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Lena N Mangels
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Complex Systems, Structural Biochemistry (ICS-6) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Raimond B G Ravelli
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Complex Systems, Structural Biochemistry (ICS-6) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Alexander K Buell
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark.
| | - Gunnar F Schröder
- Institute of Complex Systems, Structural Biochemistry (ICS-6) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany.
- Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
31
|
Morel B, Conejero-Lara F. Early mechanisms of amyloid fibril nucleation in model and disease-related proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140264. [PMID: 31437584 DOI: 10.1016/j.bbapap.2019.140264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Protein amyloid aggregation is a hallmark in neuropathologies and other diseases of tremendous impact such as Alzheimer's or Parkinson's diseases. During the last decade, it has become increasingly evident that neuronal death is mainly induced by proteinaceous oligomers rather than the mature amyloid fibrils. Therefore, the earliest molecular events occurring during the amyloid aggregation cascade represent a growing interest of study. Important breakthroughs have been achieved using experimental data from different proteins, used as models, as well as systems related to diseases. Here, we summarize the structural properties of amyloid oligomeric and fibrillar aggregates and review the recent advances on how biophysical techniques can be combined with quantitative kinetic analysis and theoretical models to study the detailed mechanism of oligomer formation and nucleation of fibrils. These insights into the mechanism of early oligomerization and amyloid nucleation are of relevant interest in drug discovery and in the design of preventive strategies against neurodegenerative diseases.
Collapse
Affiliation(s)
- Bertrand Morel
- Departamento de Química Física e Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain.
| | - Francisco Conejero-Lara
- Departamento de Química Física e Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
32
|
Churchill CDM, Healey MA, Preto J, Tuszynski JA, Woodside MT. Probing the Basis of α-Synuclein Aggregation by Comparing Simulations to Single-Molecule Experiments. Biophys J 2019; 117:1125-1135. [PMID: 31477241 DOI: 10.1016/j.bpj.2019.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/21/2019] [Accepted: 08/12/2019] [Indexed: 11/29/2022] Open
Abstract
Intrinsically disordered proteins often play an important role in protein aggregation. However, it is challenging to determine the structures and interactions that drive the early stages of aggregation because they are transient and obscured in a heterogeneous mixture of disordered states. Even computational methods are limited because the lack of ordered structure makes it difficult to ensure that the relevant conformations are sampled. We address these challenges by integrating atomistic simulations with high-resolution single-molecule measurements reported previously, using the measurements to help discern which parts of the disordered ensemble of structures in the simulations are most probable while using the simulations to identify residues and interactions that are important for oligomer stability. This approach was applied to α-synuclein, an intrinsically disordered protein that aggregates in the context of Parkinson's disease. We simulated single-molecule pulling experiments on dimers, the minimal oligomer, and compared them to force spectroscopy measurements. Force-extension curves were simulated starting from a set of 66 structures with substantial structured content selected from the ensemble of dimer structures generated at zero force via Monte Carlo simulations. The pattern of contour length changes as the structures unfolded through intermediate states was compared to the results from optical trapping measurements on the same dimer to discern likely structures occurring in the measurements. Simulated pulling curves were generally consistent with experimental data but with a larger number of transient intermediates. We identified an ensemble of β-rich dimer structures consistent with the experimental data from which dimer interfaces could be deduced. These results suggest specific druggable targets in the structural motifs of α-synuclein that may help prevent the earliest steps of oligomerization.
Collapse
Affiliation(s)
| | - Mark A Healey
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Jordane Preto
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada; Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
33
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
34
|
Feng L, Watanabe H, Molino P, Wallace GG, Phung SL, Uchihashi T, Higgins MJ. Dynamics of Inter-Molecular Interactions Between Single Aβ42 Oligomeric and Aggregate Species by High-Speed Atomic Force Microscopy. J Mol Biol 2019; 431:2687-2699. [DOI: 10.1016/j.jmb.2019.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/12/2019] [Accepted: 04/29/2019] [Indexed: 01/29/2023]
|
35
|
Sengupta I, Udgaonkar J. Monitoring site-specific conformational changes in real-time reveals a misfolding mechanism of the prion protein. eLife 2019; 8:44698. [PMID: 31232689 PMCID: PMC6590988 DOI: 10.7554/elife.44698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/11/2019] [Indexed: 11/25/2022] Open
Abstract
During pathological aggregation, proteins undergo remarkable conformational re-arrangements to anomalously assemble into a heterogeneous collection of misfolded multimers, ranging from soluble oligomers to insoluble amyloid fibrils. Inspired by fluorescence resonance energy transfer (FRET) measurements of protein folding, an experimental strategy to study site-specific misfolding kinetics during aggregation, by effectively suppressing contributions from inter-molecular FRET, is described. Specifically, the kinetics of conformational changes across different secondary and tertiary structural segments of the mouse prion protein (moPrP) were monitored independently, after the monomeric units transformed into large oligomers OL, which subsequently disaggregated reversibly into small oligomers OS at pH 4. The sequence segments spanning helices α2 and α3 underwent a compaction during the formation of OL and elongation into β-sheets during the formation of OS. The β1-α1-β2 and α2-α3 subdomains were separated, and the helix α1 was unfolded to varying extents in both OL and OS.
Collapse
Affiliation(s)
- Ishita Sengupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Jayant Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
36
|
Shah A, Chao J, Legido-Quigley C, Chang RCC. Oxyresveratrol exerts ATF4- and Grp78-mediated neuroprotection against endoplasmic reticulum stress in experimental Parkinson's disease. Nutr Neurosci 2019; 24:181-196. [PMID: 31100053 DOI: 10.1080/1028415x.2019.1613764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: Endoplasmic reticulum (ER) stress is one of the key mechanisms contributing to Parkinson's disease (PD) pathology. Pathways triggered by ER stress are protective at early stages and initiate apoptosis when the damage is extensive. Methods: We have previously reported that oxyresveratrol rescues cells from oxidative stress and apoptosis in a cell culture model of PD. The aim of this study was to investigate whether the neuroprotective mechanism of oxyresveratrol extends to PD-associated ER stress. For this purpose, we employed two cellular models; to induce severe ER stress, Mes23.5 cells were treated with 6-hydroxydopamine (6-OHDA) and for ER stress driven by chaperones, human neuroblastoma cells were stably transfected to overexpress familial mutants of α-synuclein (α-syn). Results: Our results indicate that oxyresveratrol exhibits distinct modes of protection in both models. In the 6-OHDA model, it inhibited the transcription of activating transcription factor 4 (ATF4), which controls the fate of pro-apoptotic proteins. On the other hand, in the α-syn model, oxyresveratrol suppressed mutant A30P oligomer formation, thereby facilitating a reduction of the ER-chaperone, 78-kDa glucose-regulated protein (Grp78). Discussion: In summary, oxyresveratrol is protective against ER stress induced by two different triggers of PD. Owing to its wide range of defense mechanisms, oxyresveratrol is an ideal candidate for a multifactorial disease like PD.
Collapse
Affiliation(s)
- Anuri Shah
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, People's Republic of China.,Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Jianfei Chao
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, People's Republic of China
| | - Cristina Legido-Quigley
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, People's Republic of China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong S.A.R, People's Republic of China
| |
Collapse
|
37
|
De S, Wirthensohn DC, Flagmeier P, Hughes C, Aprile FA, Ruggeri FS, Whiten DR, Emin D, Xia Z, Varela JA, Sormanni P, Kundel F, Knowles TPJ, Dobson CM, Bryant C, Vendruscolo M, Klenerman D. Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms. Nat Commun 2019; 10:1541. [PMID: 30948723 PMCID: PMC6449370 DOI: 10.1038/s41467-019-09477-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/13/2019] [Indexed: 01/20/2023] Open
Abstract
Protein aggregation is a complex process resulting in the formation of heterogeneous mixtures of aggregate populations that are closely linked to neurodegenerative conditions, such as Alzheimer's disease. Here, we find that soluble aggregates formed at different stages of the aggregation process of amyloid beta (Aβ42) induce the disruption of lipid bilayers and an inflammatory response to different extents. Further, by using gradient ultracentrifugation assay, we show that the smaller aggregates are those most potent at inducing membrane permeability and most effectively inhibited by antibodies binding to the C-terminal region of Aβ42. By contrast, we find that the larger soluble aggregates are those most effective at causing an inflammatory response in microglia cells and more effectively inhibited by antibodies targeting the N-terminal region of Aβ42. These findings suggest that different toxic mechanisms driven by different soluble aggregated species of Aβ42 may contribute to the onset and progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Suman De
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - David C Wirthensohn
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Patrick Flagmeier
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Craig Hughes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Francesco A Aprile
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Francesco S Ruggeri
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Daniel R Whiten
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Derya Emin
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Zengjie Xia
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Juan A Varela
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Pietro Sormanni
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Franziska Kundel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 1HE, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- UK Dementia Research Institute, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
38
|
An Expanded Conformation of an Antibody Fab Region by X-Ray Scattering, Molecular Dynamics, and smFRET Identifies an Aggregation Mechanism. J Mol Biol 2019; 431:1409-1425. [PMID: 30776431 DOI: 10.1016/j.jmb.2019.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 11/20/2022]
Abstract
Protein aggregation is the underlying cause of many diseases, and also limits the usefulness of many natural and engineered proteins in biotechnology. Better mechanistic understanding and characterization of aggregation-prone states is needed to guide protein engineering, formulation, and drug-targeting strategies that prevent aggregation. While several final aggregated states-notably amyloids-have been characterized structurally, very little is known about the native structural conformers that initiate aggregation. We used a novel combination of small-angle x-ray scattering (SAXS), atomistic molecular dynamic simulations, single-molecule Förster resonance energy transfer, and aggregation-prone region predictions, to characterize structural changes in a native humanized Fab A33 antibody fragment, that correlated with the experimental aggregation kinetics. SAXS revealed increases in the native state radius of gyration, Rg, of 2.2% to 4.1%, at pH 5.5 and below, concomitant with accelerated aggregation. In a cutting-edge approach, we fitted the SAXS data to full MD simulations from the same conditions and located the conformational changes in the native state to the constant domain of the light chain (CL). This CL displacement was independently confirmed using single-molecule Förster resonance energy transfer measurements with two dual-labeled Fabs. These conformational changes were also found to increase the solvent exposure of a predicted APR, suggesting a likely mechanism through which they promote aggregation. Our findings provide a means by which aggregation-prone conformational states can be readily determined experimentally, and thus potentially used to guide protein engineering, or ligand binding strategies, with the aim of stabilizing the protein against aggregation.
Collapse
|
39
|
Li X, Dong C, Hoffmann M, Garen CR, Cortez LM, Petersen NO, Woodside MT. Early stages of aggregation of engineered α-synuclein monomers and oligomers in solution. Sci Rep 2019; 9:1734. [PMID: 30741954 PMCID: PMC6370846 DOI: 10.1038/s41598-018-37584-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022] Open
Abstract
α-Synuclein is a protein that aggregates as amyloid fibrils in the brains of patients with Parkinson's disease and dementia with Lewy bodies. Small oligomers of α-synuclein are neurotoxic and are thought to be closely associated with disease. Whereas α-synuclein fibrillization and fibril morphologies have been studied extensively with various methods, the earliest stages of aggregation and the properties of oligomeric intermediates are less well understood because few methods are able to detect and characterize early-stage aggregates. We used fluorescence spectroscopy to investigate the early stages of aggregation by studying pairwise interactions between α-synuclein monomers, as well as between engineered tandem oligomers of various sizes (dimers, tetramers, and octamers). The hydrodynamic radii of these engineered α-synuclein species were first determined by fluorescence correlation spectroscopy and dynamic light scattering. The rate of pairwise aggregation between different species was then monitored using dual-color fluorescence cross-correlation spectroscopy, measuring the extent of association between species labelled with different dyes at various time points during the early aggregation process. The aggregation rate and extent increased with tandem oligomer size. Self-association of the tandem oligomers was found to be the preferred pathway to form larger aggregates: interactions between oligomers occurred faster and to a greater extent than interactions between oligomers and monomers, indicating that the oligomers were not as efficient in seeding further aggregation by addition of monomers. These results suggest that oligomer-oligomer interactions may play an important role in driving aggregation during its early stages.
Collapse
Affiliation(s)
- Xi Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.,Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Chunhua Dong
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.,Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Marion Hoffmann
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Craig R Garen
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Leonardo M Cortez
- Division of Neurology, Department of Medicine, Centre for Prions and Protein Folding Diseases, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
40
|
Imaging individual protein aggregates to follow aggregation and determine the role of aggregates in neurodegenerative disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:870-878. [PMID: 30611780 PMCID: PMC6676340 DOI: 10.1016/j.bbapap.2018.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/06/2018] [Accepted: 12/29/2018] [Indexed: 01/07/2023]
Abstract
Protein aggregates play a key role in the initiation and spreading of neurodegenerative disease but have been difficult to study due to their low abundance and heterogeneity, in both size and structure. Fluorescence based methods capable of detecting and characterising single aggregates have recently been developed and can be used to measure many important aggregate properties, and can be combined with sensitive assays to measure aggregate toxicity. Here we review these methods and discuss recent examples of their application to determine the molecular mechanism of aggregation and the detection of aggregates in cells and cerebrospinal fluid. The further development of these methods and their application to the aggregates present in humans has the potential to solve a major problem in the field and allow the identification of the key toxic species that should be targeted in therapies. Individual protein aggregates can be imaged using fluorescence imaging. Ultra-sensitive assays have been developed to measure aggregate toxicity. The aggregation mechanism of proteins can be determined. Experiments can be performed in cells or human cerebrospinal fluid. These methods can potentially identify the toxic aggregates that cause neurodegenerative disease.
Collapse
|
41
|
How Fluorescent Tags Modify Oligomer Size Distributions of the Alzheimer Peptide. Biophys J 2018; 116:227-238. [PMID: 30638607 PMCID: PMC6350010 DOI: 10.1016/j.bpj.2018.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/14/2018] [Accepted: 12/03/2018] [Indexed: 11/30/2022] Open
Abstract
Within the complex aggregation process of amyloidogenic peptides into fibrils, early stages of aggregation play a central role and reveal fundamental properties of the underlying mechanism of aggregation. In particular, low-molecular-weight aggregates of the Alzheimer amyloid-β peptide (Aβ) have attracted increasing interest because of their role in cytotoxicity and neuronal apoptosis, typical of aggregation-related diseases. One of the main techniques used to characterize oligomeric stages is fluorescence spectroscopy. To this end, Aβ peptide chains are functionalized with fluorescent tags, often covalently bound to the disordered N-terminus region of the peptide, with the assumption that functionalization and presence of the fluorophore will not modify the process of self-assembly nor the final fibrillar structure. In this investigation, we systematically study the effects of four of the most commonly used fluorophores on the aggregation of Aβ (1–40). Time-resolved and single-molecule fluorescence spectroscopy have been chosen to monitor the oligomer populations at different fibrillation times, and transmission electron microscopy, atomic force microscopy and x-ray diffraction to investigate the structure of mature fibrils. Although the structures of the fibrils were only slightly affected by the fluorescent tags, the sizes of the detected oligomeric species varied significantly depending on the chosen fluorophore. In particular, we relate the presence of high-molecular-weight oligomers of Aβ (1–40) (as found for the fluorophores HiLyte 647 and Atto 655) to net-attractive, hydrophobic fluorophore-peptide interactions, which are weak in the case of HiLyte 488 and Atto 488. The latter leads for Aβ (1–40) to low-molecular-weight oligomers only, which is in contrast to Aβ (1–42). The disease-relevant peptide Aβ (1–42) displays high-molecular-weight oligomers even in the absence of significant attractive fluorophore-peptide interactions. Hence, our findings reveal the potentially high impact of the properties of fluorophores on transient aggregates, which needs to be included in the interpretation of experimental data of oligomers of fluorescently labeled peptides.
Collapse
|
42
|
Kjaergaard M, Dear AJ, Kundel F, Qamar S, Meisl G, Knowles TPJ, Klenerman D. Oligomer Diversity during the Aggregation of the Repeat Region of Tau. ACS Chem Neurosci 2018; 9:3060-3071. [PMID: 29953200 PMCID: PMC6302314 DOI: 10.1021/acschemneuro.8b00250] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
![]()
The
molecular mechanism of protein aggregation is of both fundamental
and clinical importance as amyloid aggregates are linked to a number
of neurodegenerative disorders. Such protein aggregates include macroscopic
insoluble fibrils as well as small soluble oligomeric species. Time-dependent
resolution of these species is prerequisite for a detailed quantitative
understanding of protein aggregation; this remains challenging due
to the lack of methods for detecting and characterizing transient
and heterogeneous protein oligomers. Here we have used single molecule
fluorescence techniques combined with mechanistic modeling to study
the heparin-induced aggregation of the repeat region of tau, which
forms the core region of neurofibrillary tangles found in Alzheimer’s
disease. We distinguish several subpopulations of oligomers with different
stability and follow their evolution during aggregation reactions
as a function of temperature and concentration. Employment of techniques
from chemical kinetics reveals that the two largest populations are
structurally distinct from fibrils and are both kinetically and thermodynamically
unstable. The first population is in rapid exchange with monomers
and held together by electrostatic interactions; the second is kinetically
more stable, dominates at later times, and is probably off-pathway
to fibril formation. These more stable oligomers may contribute to
other oligomer induced effects in the cellular environment, for example,
by overloading protein quality control systems. We also show that
the shortest growing filaments remain suspended in aqueous buffer
and thus comprise a third, smaller population of transient oligomers
with cross-β structure. Overall our data show that a diverse
population of oligomers of different structures and half-lives are
formed during the aggregation reaction with the great majority of
oligomers formed not going on to form fibrils.
Collapse
Affiliation(s)
- Magnus Kjaergaard
- Department of Chemistry, Cambridge University, Lensfield Rd, Cambridge CB2 1EW, United Kingdom
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| | - Alexander J. Dear
- Department of Chemistry, Cambridge University, Lensfield Rd, Cambridge CB2 1EW, United Kingdom
| | - Franziska Kundel
- Department of Chemistry, Cambridge University, Lensfield Rd, Cambridge CB2 1EW, United Kingdom
| | - Seema Qamar
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Georg Meisl
- Department of Chemistry, Cambridge University, Lensfield Rd, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P. J. Knowles
- Department of Chemistry, Cambridge University, Lensfield Rd, Cambridge CB2 1EW, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - David Klenerman
- Department of Chemistry, Cambridge University, Lensfield Rd, Cambridge CB2 1EW, United Kingdom
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
43
|
Sang J, Meisl G, Thackray AM, Hong L, Ponjavic A, Knowles TPJ, Bujdoso R, Klenerman D. Direct Observation of Murine Prion Protein Replication in Vitro. J Am Chem Soc 2018; 140:14789-14798. [PMID: 30351023 PMCID: PMC6225343 DOI: 10.1021/jacs.8b08311] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Prions are believed to propagate when an assembly of prion protein (PrP) enters a cell and replicates to produce two or more fibrils, leading to an exponential increase in PrP aggregate number with time. However, the molecular basis of this process has not yet been established in detail. Here, we use single-aggregate imaging to study fibril fragmentation and elongation of individual murine PrP aggregates from seeded aggregation in vitro. We found that PrP elongation occurs via a structural conversion from a PK-sensitive to PK-resistant conformer. Fibril fragmentation was found to be length-dependent and resulted in the formation of PK-sensitive fragments. Measurement of the rate constants for these processes also allowed us to predict a simple spreading model for aggregate propagation through the brain, assuming that doubling of the aggregate number is rate-limiting. In contrast, while α-synuclein aggregated by the same mechanism, it showed significantly slower elongation and fragmentation rate constants than PrP, leading to much slower replication rate. Overall, our study shows that fibril elongation with fragmentation are key molecular processes in PrP and α-synuclein aggregate replication, an important concept in prion biology, and also establishes a simple framework to start to determine the main factors that control the rate of prion and prion-like spreading in animals.
Collapse
Affiliation(s)
- Jason
C. Sang
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.
| | - Georg Meisl
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.
| | - Alana M. Thackray
- Department
of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, U.K.
| | - Liu Hong
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.,Zhou
Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, PR China
| | - Aleks Ponjavic
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.
| | - Tuomas P. J. Knowles
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.,Cavendish
Laboratory, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Raymond Bujdoso
- Department
of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, U.K.
| | - David Klenerman
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.,
| |
Collapse
|
44
|
Dear AJ, Šarić A, Michaels TCT, Dobson CM, Knowles TPJ. Statistical Mechanics of Globular Oligomer Formation by Protein Molecules. J Phys Chem B 2018; 122:11721-11730. [PMID: 30336667 DOI: 10.1021/acs.jpcb.8b07805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The misfolding and aggregation of proteins into linear fibrils is widespread in human biology, for example, in connection with amyloid formation and the pathology of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The oligomeric species that are formed in the early stages of protein aggregation are of great interest, having been linked with the cellular toxicity associated with these conditions. However, these species are not characterized in any detail experimentally, and their properties are not well understood. Many of these species have been found to have approximately spherical morphology and to be held together by hydrophobic interactions. We present here an analytical statistical mechanical model of globular oligomer formation from simple idealized amphiphilic protein monomers and show that this correlates well with Monte Carlo simulations of oligomer formation. We identify the controlling parameters of the model, which are closely related to simple quantities that may be fitted directly from experiment. We predict that globular oligomers are unlikely to form at equilibrium in many polypeptide systems but instead form transiently in the early stages of amyloid formation. We contrast the globular model of oligomer formation to a well-established model of linear oligomer formation, highlighting how the differing ensemble properties of linear and globular oligomers offer a potential strategy for characterizing oligomers from experimental measurements.
Collapse
Affiliation(s)
- Alexander J Dear
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems , University College London , Gower Street , London WC1E 6BT , U.K
| | - Thomas C T Michaels
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Cavendish Laboratory, Department of Physics , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K
| |
Collapse
|
45
|
Aviolat H, Nominé Y, Gioria S, Bonhoure A, Hoffmann D, Ruhlmann C, Nierengarten H, Ruffenach F, Villa P, Trottier Y, Klein FAC. SynAggreg: A Multifunctional High-Throughput Technology for Precision Study of Amyloid Aggregation and Systematic Discovery of Synergistic Inhibitor Compounds. J Mol Biol 2018; 430:5257-5279. [PMID: 30266595 DOI: 10.1016/j.jmb.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022]
Abstract
Numerous proteins can coalesce into amyloid self-assemblies, which are responsible for a class of diseases called amyloidoses, but which can also fulfill important biological functions and are of great interest for biotechnology. Amyloid aggregation is a complex multi-step process, poorly prone to detailed structural studies. Therefore, small molecules interacting with amyloids are often used as tools to probe the amyloid aggregation pathway and in some cases to treat amyloidoses as they prevent pathogenic protein aggregation. Here, we report on SynAggreg, an in vitro high-throughput (HT) platform dedicated to the precision study of amyloid aggregation and the effect of modulator compounds. SynAggreg relies on an accurate bi-fluorescent amyloid-tracer readout that overcomes some limitations of existing HT methods. It allows addressing diverse aspects of aggregation modulation that are critical for pathomechanistic studies, such as the specificity of compounds toward various amyloids and their effects on aggregation kinetics, as well as the co-assembly propensity of distinct amyloids and the influence of prion-like seeding on self-assembly. Furthermore, SynAggreg is the first HT technology that integrates tailored methodology to systematically identify synergistic compound combinations-an emerging strategy to improve fatal amyloidoses by targeting multiple steps of the aggregation pathway. To this end, we apply analytical combinatorial scores to rank the inhibition efficiency of couples of compounds and to readily detect synergism. Finally, the SynAggreg platform should be suited for the characterization of a broad class of amyloids, whether of interest for drug development purposes, for fundamental research on amyloid functions, or for biotechnological applications.
Collapse
Affiliation(s)
- Hubert Aviolat
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France
| | - Yves Nominé
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France
| | - Sophie Gioria
- University of Strasbourg, Strasbourg, France; Integrative Biological Chemistry Platform of Strasbourg, Illkirch, France
| | - Anna Bonhoure
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France
| | - David Hoffmann
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France
| | - Christine Ruhlmann
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France
| | - Hélène Nierengarten
- University of Strasbourg, Strasbourg, France; Institut de Chimie de Strasbourg, UMR7177, Strasbourg, France
| | - Frank Ruffenach
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France
| | - Pascal Villa
- University of Strasbourg, Strasbourg, France; Integrative Biological Chemistry Platform of Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMS 3286, Illkirch, France
| | - Yvon Trottier
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France.
| | - Fabrice A C Klein
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; University of Strasbourg, Strasbourg, France.
| |
Collapse
|
46
|
Taylor C, Meisl G, Horrocks MH, Zetterberg H, Knowles TPJ, Klenerman D. Extrinsic Amyloid-Binding Dyes for Detection of Individual Protein Aggregates in Solution. Anal Chem 2018; 90:10385-10393. [PMID: 30059210 PMCID: PMC6127805 DOI: 10.1021/acs.analchem.8b02226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/30/2018] [Indexed: 01/23/2023]
Abstract
Protein aggregation is a key molecular feature underlying a wide array of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. To understand protein aggregation in molecular detail, it is crucial to be able to characterize the array of heterogeneous aggregates that are formed during the aggregation process. We present here a high-throughput method to detect single protein aggregates, in solution, from a label-free aggregation reaction, and we demonstrate the approach with the protein associated with Parkinson's disease, α-synuclein. The method combines single-molecule confocal microscopy with a range of amyloid-binding extrinsic dyes, including thioflavin T and pentameric formylthiophene acetic acid, and we show that we can observe aggregates at low picomolar concentrations. The detection of individual aggregates allows us to quantify their numbers. Furthermore, we show that this approach also allows us to gain structural insights from the emission intensity of the extrinsic dyes that are bound to aggregates. By analyzing the time evolution of the aggregate populations on a single-molecule level, we then estimate the fragmentation rate of aggregates, a key process that underlies the multiplication of pathological aggregates. We additionally demonstrate that the method permits the detection of these aggregates in biological samples. The capability to detect individual protein aggregates in solution opens up a range of new applications, including exploiting the potential of this method for high-throughput screening of human biofluids for disease diagnosis and early detection.
Collapse
Affiliation(s)
- Christopher
G. Taylor
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Georg Meisl
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Mathew H. Horrocks
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
- U.K.
Dementia Research Institute, University
of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Henrik Zetterberg
- Clinical
Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry,
Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal 413 45, Sweden
- Sobell
Department of Motor Neuroscience and Movement Disorders, UCL Institute
of Neurology, University College London, Queen Square, London WC1N 3BG, United
Kingdom
| | - Tuomas P. J. Knowles
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - David Klenerman
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- U.K.
Dementia Research Institute, University
of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
47
|
Choi H, Yoon T, Na S. Length-Dependent Manifestation of Vibration Modes Regulates a Specific Intermediate Morphology of Aβ17-42 in Different Environments. Chemphyschem 2018; 19:1643-1654. [PMID: 29575445 DOI: 10.1002/cphc.201800010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Indexed: 12/25/2022]
Abstract
Various cytotoxic mechanisms for neurodegenerative disease are induced by specific conformations of Aβ intermediates. The efforts to understand the diverse intermediate forms of amyloid oligomers have been focused on understanding the aggregation mechanism of specific morphologies for Aβ intermediates. However, these are still not easy tasks to be accomplished because the diverse conformations of Aβ intermediates can be altered during the aggregation process, even though the same Aβ monomers are present. Thus, efforts to reveal the conformational change mechanism could be a fundamental process to understand the formation of diverse Aβ intermediate conformations. Here, we evaluate the conformational characteristics of Aβ17-42 fibrillar oligomers in different environments according to the length. We observed that Aβ fibrillar oligomers optimize their inherent hydrogen bonds and configurational entropy to stabilize their structure according to the simulation time and their length increase. In addition, we revealed the role of the expressed vibration mode shape in the fibrillar oligomers' elongation and deformation processes. Our results suggest that limitations in amyloid oligomer growth and transformations of their morphologies can be regulated and controlled by modifying the vibration features.
Collapse
Affiliation(s)
- Hyunsung Choi
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Taeyoung Yoon
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
48
|
Xi W, Hansmann UHE. Conversion between parallel and antiparallel β-sheets in wild-type and Iowa mutant Aβ 40 fibrils. J Chem Phys 2018; 148:045103. [PMID: 29390821 DOI: 10.1063/1.5016166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Using a variant of Hamilton-replica-exchange, we study for wild type and Iowa mutant Aβ40 the conversion between fibrils with antiparallel β-sheets and such with parallel β-sheets. We show that wild type and mutant form distinct salt bridges that in turn stabilize different fibril organizations. The conversion between the two fibril forms leads to the release of small aggregates that in the Iowa mutant may shift the equilibrium from fibrils to more toxic oligomers.
Collapse
Affiliation(s)
- Wenhui Xi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
49
|
Brown J, Horrocks MH. A sticky situation: Aberrant protein-protein interactions in Parkinson's disease. Semin Cell Dev Biol 2018; 99:65-77. [PMID: 29738882 DOI: 10.1016/j.semcdb.2018.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/21/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
The aberrant aggregation of normally soluble proteins into amyloid fibrils is the pathological hallmark of several neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Understanding this process will be key to developing both diagnostic and therapeutic approaches for neurodegenerative diseases. Recent advances in biophysical techniques, coupled with kinetic analyses have enabled a thorough description of the key molecular steps involved in protein aggregation. In this review, we discuss these advances and how they have been applied to study the ability of one such protein, α-Synuclein, to form neurotoxic oligomers.
Collapse
Affiliation(s)
- James Brown
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney, NSW, 2032, Australia.
| | - Mathew H Horrocks
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
50
|
Lee YTC, Hsu STD. A Natively Monomeric Deubiquitinase UCH-L1 Forms Highly Dynamic but Defined Metastable Oligomeric Folding Intermediates. J Phys Chem Lett 2018; 9:2433-2437. [PMID: 29688017 DOI: 10.1021/acs.jpclett.8b00815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oligomerization of misfolded protein species is implicated in many human disorders. Here we showed by size-exclusion chromatography-coupled multiangle light scattering (SEC-MALS) and small-angle X-ray scattering (SEC-SAXS) that urea-induced folding intermediate of human ubiquitin C-terminal hydrolase, UCH-L1, can form well-defined dimers and tetramers under denaturing conditions despite being highly disordered. Introduction of a Parkinson disease-associated mutation, I93M, resulted in increased aggregation propensity and formation of irreversible precipitants in the presence of a moderate amount of urea. Since UCH-L1 exhibits highly populated partially unfolded forms under native conditions that resemble urea-induced folding intermediates, it is likely that these metastable dimers and tetramers can form under physiological conditions. Our findings highlighted the unique strength of integrated SEC-MALS/SAXS in quantitative analyses of the structure and dynamics of oligomeric folding intermediates that enabled us to extract information that is inaccessible to conventional biophysical techniques.
Collapse
Affiliation(s)
- Yun-Tzai Cloud Lee
- Institute of Biological Chemistry , Academia Sinica , Taipei 11529 , Taiwan
- Institute of Biochemical Sciences , National Taiwan University , Taipei 10617 , Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry , Academia Sinica , Taipei 11529 , Taiwan
- Institute of Biochemical Sciences , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|