1
|
Ezine E, Lebbe C, Dumaz N. Unmasking the tumourigenic role of SIN1/MAPKAP1 in the mTOR complex 2. Clin Transl Med 2023; 13:e1464. [PMID: 37877351 PMCID: PMC10599286 DOI: 10.1002/ctm2.1464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Although the PI3K/AKT/mTOR pathway is one of the most altered pathways in human tumours, therapies targeting this pathway have shown numerous adverse effects due to positive feedback paradoxically activating upstream signaling nodes. The somewhat limited clinical efficacy of these inhibitors calls for the development of novel and more effective approaches for targeting the PI3K pathway for therapeutic benefit in cancer. MAIN BODY Recent studies have shown the central role of mTOR complex 2 (mTORC2) as a pro-tumourigenic factor of the PI3K/AKT/mTOR pathway in a number of cancers. SIN1/MAPKAP1 is a major partner of mTORC2, acting as a scaffold and responsible for the substrate specificity of the mTOR catalytic subunit. Its overexpression promotes the proliferation, invasion and metastasis of certain cancers whereas its inhibition decreases tumour growth in vitro and in vivo. It is also involved in epithelial-mesenchymal transition, stress response and lipogenesis. Moreover, the numerous interactions of SIN1 inside or outside mTORC2 connect it with other signaling pathways, which are often disrupted in human tumours such as Hippo, WNT, Notch and MAPK. CONCLUSION Therefore, SIN1's fundamental characteristics and numerous connexions with oncogenic pathways make it a particularly interesting therapeutic target. This review is an opportunity to highlight the tumourigenic role of SIN1 across many solid cancers and demonstrates the importance of targeting SIN1 with a specific therapy.
Collapse
Affiliation(s)
- Emilien Ezine
- INSERMU976Team 1Human Immunology Pathophysiology & Immunotherapy (HIPI)ParisFrance
- Département de DermatologieHôpital Saint LouisAP‐HPParisFrance
| | - Céleste Lebbe
- INSERMU976Team 1Human Immunology Pathophysiology & Immunotherapy (HIPI)ParisFrance
- Département de DermatologieHôpital Saint LouisAP‐HPParisFrance
- Université Paris CitéInstitut de Recherche Saint Louis (IRSL)ParisFrance
| | - Nicolas Dumaz
- INSERMU976Team 1Human Immunology Pathophysiology & Immunotherapy (HIPI)ParisFrance
- Université Paris CitéInstitut de Recherche Saint Louis (IRSL)ParisFrance
| |
Collapse
|
2
|
Liu M, Lin C, Huang Q, Jia J, Guo J, Jia R. SRSF3-Mediated Ki67 Exon 7-Inclusion Promotes Head and Neck Squamous Cell Carcinoma Progression via Repressing AKR1C2. Int J Mol Sci 2023; 24:ijms24043872. [PMID: 36835286 PMCID: PMC9959251 DOI: 10.3390/ijms24043872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Ki67 is a well-known proliferation marker with a large size of around 350 kDa, but its biological function remains largely unknown. The roles of Ki67 in tumor prognosis are still controversial. Ki67 has two isoforms generated by alternative splicing of exon 7. The roles and regulatory mechanisms of Ki67 isoforms in tumor progression are not clear. In the present study, we surprisingly find that the increased inclusion of Ki67 exon 7, not total Ki67 expression level, was significantly associated with poor prognosis in multiple cancer types, including head and neck squamous cell carcinoma (HNSCC). Importantly, the Ki67 exon 7-included isoform is required for HNSCC cell proliferation, cell cycle progression, cell migration, and tumorigenesis. Unexpectedly, Ki67 exon 7-included isoform is positively associated with intracellular reactive oxygen species (ROS) level. Mechanically, splicing factor SRSF3 could promote exon 7 inclusion via its two exonic splicing enhancers. RNA-seq revealed that aldo-keto reductase AKR1C2 is a novel tumor-suppressive gene targeted by Ki67 exon 7-included isoform in HNSCC cells. Our study illuminates that the inclusion of Ki67 exon 7 has important prognostic value in cancers and is essential for tumorigenesis. Our study also suggested a new SRSF3/Ki67/AKR1C2 regulatory axis during HNSCC tumor progression.
Collapse
Affiliation(s)
- Miaomiao Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Can Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qiwei Huang
- RNA Institute, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Virology and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Correspondence: (J.J.); (R.J.); Tel.: +86-27-87686215 (J.J.); +86-27-87686268 (R.J.)
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- RNA Institute, Wuhan University, Wuhan 430072, China
- Correspondence: (J.J.); (R.J.); Tel.: +86-27-87686215 (J.J.); +86-27-87686268 (R.J.)
| |
Collapse
|
3
|
Martinelli M, Aguilar G, Lee DS, Kromer A, Nguyen N, Wilkins BJ, Akimova T, Beier UH, Ghanem LR. The poly(C)-binding protein Pcbp2 is essential for CD4 + T cell activation and proliferation. iScience 2022; 26:105860. [PMID: 36632062 PMCID: PMC9826892 DOI: 10.1016/j.isci.2022.105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
The RNA-binding protein Pcbp2 is widely expressed in the innate and adaptive immune systems and is essential for mouse development. To determine whether Pcbp2 is required for CD4+ T cell development and function, we derived mice with conditional Pcbp2 deletion in CD4+ T cells and assessed their overall phenotype and proliferative responses to activating stimuli. We found that Pcbp2 is essential for T conventional cell (Tconv) proliferation, working through regulation of co-stimulatory signaling. Pcbp2 deficiency in the CD4+ lineage did not impact Treg abundance in vivo or function in vitro. In addition, our data demonstrate a clear association between Pcbp2 control of Runx1 exon 6 splicing in CD4+ T cells and a specific role for Pcbp2 in the maintenance of peripheral CD4+ lymphocyte population size. Last, we show that Pcbp2 function is required for optimal in vivo Tconv cell activation in a T cell adoptive transfer colitis model system.
Collapse
Affiliation(s)
- Massimo Martinelli
- Division of Gastroenterology, Hepatology and Nutrition Division, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples 80131, Italy
| | - Gabrielle Aguilar
- Division of Gastroenterology, Hepatology and Nutrition Division, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David S.M. Lee
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA,Institute for Biomedical Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Kromer
- Division of Gastroenterology, Hepatology and Nutrition Division, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nhu Nguyen
- Division of Gastroenterology, Hepatology and Nutrition Division, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Benjamin J. Wilkins
- Division of Anatomic Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tatiana Akimova
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ulf H. Beier
- Division of Nephrology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Louis R. Ghanem
- Division of Gastroenterology, Hepatology and Nutrition Division, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA,Corresponding author
| |
Collapse
|
4
|
Endosomal mTORC2 Is Required for Phosphoinositide-Dependent AKT Activation in Platelet-Derived Growth Factor-Stimulated Glioma Cells. Cancers (Basel) 2021; 13:cancers13102405. [PMID: 34065746 PMCID: PMC8157044 DOI: 10.3390/cancers13102405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The full activation of AKT, which is necessary for cell physiological changes, is achieved through the phosphorylation of Thr308 and Ser473 in human AKT. Here, we have addressed how AKT activation at early endosomes occurs during growth factor stimulation and how mTORC2 is recruited into endosomes and associated with AKT. The explanation comes from the discovery of three important events: (1) the physical association of mSIN and Rictor, critical components for mTORC2 assembly and activity, with early endosomes; (2) the control of the recruitment of mSIN to endosomes by PtdIns(3,4)P2; and (3) the PtdIns(3,4)P2-mediated endosomal AKT activation through phosphorylation at Ser473 to control a subset of AKT substrates. Abstract The serine/threonine kinase AKT is a major effector during phosphatidylinositol 3-kinase (PI3K)-driven cell signal transduction in response to extracellular stimuli. AKT activation mechanisms have been extensively studied; however, the mechanism underlying target of rapamycin complex 2 (mTORC2) phosphorylation of AKT at Ser473 in the cellular endomembrane system remains to be elucidated. Here, we demonstrate that endocytosis is required for AKT activation through phosphorylation at Ser473 via mTORC2 using platelet-derived growth factor-stimulated U87MG glioma cells. mTORC2 components are localized to early endosomes during growth factor activation, and the association of mTORC2 with early endosomes is responsible for the local activation of AKT, which is critical for specific signal transduction through glycogen synthase kinase-3 beta and forkhead box O1/O3 phosphorylation. Furthermore, endosomal phosphoinositide, represented by PtdIns(3,4)P2, provides a binding platform for mTORC2 to phosphorylate AKT Ser473 in endosomes through mammalian Sty1/Spc1-interacting protein (mSIN), a pleckstrin homology domain-containing protein, and is dispensable for AKT phosphorylation at Thr308. This PtdIns(3,4)P2-mediated endosomal AKT activation provides a means to integrate PI3K activated by diverse stimuli to mTORC2 assembly. These early endosomal events induced by endocytosis, together with the previously identified AKT activation by PtdIns(3,4,5)P3, contribute to the strengthening of the transduction of AKT signaling through phosphoinositide.
Collapse
|
5
|
Lee EJ, Neppl RL. Influence of Age on Skeletal Muscle Hypertrophy and Atrophy Signaling: Established Paradigms and Unexpected Links. Genes (Basel) 2021; 12:genes12050688. [PMID: 34063658 PMCID: PMC8147613 DOI: 10.3390/genes12050688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle atrophy in an inevitable occurrence with advancing age, and a consequence of disease including cancer. Muscle atrophy in the elderly is managed by a regimen of resistance exercise and increased protein intake. Understanding the signaling that regulates muscle mass may identify potential therapeutic targets for the prevention and reversal of muscle atrophy in metabolic and neuromuscular diseases. This review covers the major anabolic and catabolic pathways that regulate skeletal muscle mass, with a focus on recent progress and potential new players.
Collapse
|
6
|
Guo DA, Wei WL, Wu SF, Li ZW, Li HJ, Qu H, Yao CL, Zhang JQ, Li JY, Zhang GL, Wu WY. Exploration of bioactive constituents and immunoregulatory mechanisms of a hanshi-yufei formulation for treating COVID-19. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_45_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
7
|
Guo DA, Wei WL, Wu SF, Li ZW, Li HJ, Qu H, Yao CL, Zhang JQ, Li JY, Zhang GL, Wu WY. Exploration of bioactive constituents and immunoregulatory mechanisms of a Hanshi-Yufei formulation for treating COVID-19. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/2311-8571.321975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
8
|
Walker NM, Mazzoni SM, Vittal R, Fingar DC, Lama VN. c-Jun N-terminal kinase (JNK)-mediated induction of mSin1 expression and mTORC2 activation in mesenchymal cells during fibrosis. J Biol Chem 2018; 293:17229-17239. [PMID: 30217824 DOI: 10.1074/jbc.ra118.003926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/06/2018] [Indexed: 02/03/2023] Open
Abstract
Mammalian target of rapamycin complex 2 (mTORC2) has been shown to regulate mTORC1/4E-BP1/eIF4E signaling and collagen I expression in mesenchymal cells (MCs) during fibrotic activation. Here we investigated the regulation of the mTORC2 binding partner mammalian stress-activated protein kinase-interacting protein 1 (mSin1) in MCs derived from human lung allografts and identified a novel role for mSin1 during fibrosis. mSin1 was identified as a common downstream target of key fibrotic pathways, and its expression was increased in MCs in response to pro-fibrotic mediators: lysophosphatidic acid (LPA), transforming growth factor β, and interleukin 13. Fibrotic MCs had higher mSin1 protein levels than nonfibrotic MCs, and siRNA-mediated silencing of mSIN1 inhibited collagen I expression and mTORC1/2 activity in these cells. Autocrine LPA signaling contributed to constitutive up-regulation of mSin1 in fibrotic MCs, and mSin1 was decreased because of LPA receptor 1 siRNA treatment. We identified c-Jun N-terminal kinase (JNK) as a key intermediary in mSin1 up-regulation by the pro-fibrotic mediators, as pharmacological and siRNA-mediated inhibition of JNK prevented the LPA-induced mSin1 increase. Proteasomal inhibition rescued mSin1 levels after JNK inhibition in LPA-treated MCs, and the decrease in mSin1 ubiquitination in response to LPA was counteracted by JNK inhibitors. Constitutive JNK1 overexpression induced mSin1 expression and could drive mTORC2 and mTORC1 activation and collagen I expression in nonfibrotic MCs, effects that were reversed by siRNA-mediated mSIN1 silencing. These results indicate that LPA stabilizes mSin1 protein expression via JNK signaling by blocking its proteasomal degradation and identify the LPA/JNK/mSin1/mTORC/collagen I pathway as critical for fibrotic activation of MCs.
Collapse
Affiliation(s)
- Natalie M Walker
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Serina M Mazzoni
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Ragini Vittal
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | - Diane C Fingar
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-0360
| | - Vibha N Lama
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| |
Collapse
|
9
|
Poly(rC)-Binding Protein 2 Regulates Hippo Signaling To Control Growth in Breast Epithelial Cells. Mol Cell Biol 2016; 36:2121-31. [PMID: 27215387 DOI: 10.1128/mcb.00104-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/15/2016] [Indexed: 01/09/2023] Open
Abstract
Poly(rC)-binding proteins (PCBPs) are multifunctional adapters that mediate interactions between nucleic acids, iron cofactors, and other proteins, affecting the fates and activities of the components of these interactions. Here, we show that PCBP2 forms a complex with the Hippo pathway components Salvador (Sav1), Mst1, Mst2, and Lats1 in human cells and mouse tissues. Hippo is a kinase cascade that functions to phosphorylate and inactivate the transcriptional coactivators YAP and TAZ, which control cell growth and proliferation. PCBP2 specifically interacts with the scaffold protein Sav1 and prevents proteolytic cleavage of the Mst1 kinase, resulting in increased signaling through Hippo and suppressed activity of YAP and TAZ. Human breast epithelial cells lacking PCBP2 exhibit impaired proteasomal degradation of TAZ. They accumulate TAZ in both the nucleus and the cytosol, increase expression of YAP and TAZ connective tissue growth factor (CTGF) and Cyr61 target genes, and exhibit anchorage-independent growth. Thus, PCBP2 can function as a component of the Hippo complex, enhancing signaling, suppressing activity of YAP and TAZ, and altering the growth characteristics of cells.
Collapse
|
10
|
Yanatori I, Richardson DR, Imada K, Kishi F. Iron Export through the Transporter Ferroportin 1 Is Modulated by the Iron Chaperone PCBP2. J Biol Chem 2016; 291:17303-18. [PMID: 27302059 DOI: 10.1074/jbc.m116.721936] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Indexed: 12/15/2022] Open
Abstract
Ferroportin 1 (FPN1) is an iron export protein found in mammals. FPN1 is important for the export of iron across the basolateral membrane of absorptive enterocytes and across the plasma membrane of macrophages. The expression of FPN1 is regulated by hepcidin, which binds to FPN1 and then induces its degradation. Previously, we demonstrated that divalent metal transporter 1 (DMT1) interacts with the intracellular iron chaperone protein poly(rC)-binding protein 2 (PCBP2). Subsequently, PCBP2 receives iron from DMT1 and then disengages from the transporter. In this study, we investigated the function of PCBP2 in iron export. Mammalian genomes encode four PCBPs (i.e. PCBP1-4). Here, for the first time, we demonstrated using both yeast and mammalian cells that PCBP2, but not PCBP1, PCBP3, or PCBP4, binds with FPN1. Importantly, iron-loaded, but not iron-depleted, PCBP2 interacts with FPN1. The PCBP2-binding domain of FPN1 was identified in its C-terminal cytoplasmic region. The silencing of PCBP2 expression suppressed FPN1-dependent iron export from cells. These results suggest that FPN1 exports iron received from the iron chaperone PCBP2. Therefore, it was found that PCBP2 modulates cellular iron export, which is an important physiological process.
Collapse
Affiliation(s)
- Izumi Yanatori
- From the Department of Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan and
| | - Des R Richardson
- the Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kiyoshi Imada
- From the Department of Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan and
| | - Fumio Kishi
- From the Department of Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan and
| |
Collapse
|
11
|
Ren C, Zhang J, Yan W, Zhang Y, Chen X. RNA-binding Protein PCBP2 Regulates p73 Expression and p73-dependent Antioxidant Defense. J Biol Chem 2016; 291:9629-37. [PMID: 26907686 DOI: 10.1074/jbc.m115.712125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 11/06/2022] Open
Abstract
TAp73, a member of the p53 family tumor suppressors, plays a critical rule in tumor suppression and neuronal development. However, how p73 activity is controlled at the posttranscriptional level is not well understood. Here, we showed that TAp73 activity is regulated by RNA-binding protein PCBP2. Specifically, we found that knockdown or knock-out of PCBP2 reduces, whereas ectopic expression of PCBP2 increases, TAp73 expression. We also showed that PCBP2 is necessary for p73 mRNA stability via the CU-rich elements in p73 3'-UTR. To uncover the biological relevance of PCBP2-regulated TAp73 expression, we showed that ectopic expression of PCBP2 inhibits, whereas knockdown or knock-out of PCBP2 increases, the production of reactive oxygen species (ROS) in a TAp73-dependent manner. Additionally, we found that glutaminase 2 (GLS2), a modulator of p73-dependent antioxidant defense, is also involved in PCBP2-regulated ROS production. Moreover, we generated PCBP2-deficient mice and primary mouse embryonic fibroblasts (MEFs) and showed that loss of PCBP2 leads to decreased p73 expression and, subsequently, increased ROS production and accelerated cellular senescence. Together, our data suggest that PCBP2 regulates p73 expression via mRNA stability and p73-dependent biological function in ROS production and cellular senescence.
Collapse
Affiliation(s)
- Cong Ren
- From the Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, California 95616
| | - Jin Zhang
- From the Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, California 95616
| | - Wensheng Yan
- From the Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, California 95616
| | - Yanhong Zhang
- From the Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, California 95616
| | - Xinbin Chen
- From the Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, California 95616
| |
Collapse
|
12
|
Gelfand BD, Wright CB, Kim Y, Yasuma T, Yasuma R, Li S, Fowler BJ, Bastos-Carvalho A, Kerur N, Uittenbogaard A, Han YS, Lou D, Kleinman ME, McDonald WH, Núñez G, Georgel P, Dunaief JL, Ambati J. Iron Toxicity in the Retina Requires Alu RNA and the NLRP3 Inflammasome. Cell Rep 2015; 11:1686-93. [PMID: 26074074 DOI: 10.1016/j.celrep.2015.05.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/23/2015] [Accepted: 05/08/2015] [Indexed: 12/16/2022] Open
Abstract
Excess iron induces tissue damage and is implicated in age-related macular degeneration (AMD). Iron toxicity is widely attributed to hydroxyl radical formation through Fenton's reaction. We report that excess iron, but not other Fenton catalytic metals, induces activation of the NLRP3 inflammasome, a pathway also implicated in AMD. Additionally, iron-induced degeneration of the retinal pigmented epithelium (RPE) is suppressed in mice lacking inflammasome components caspase-1/11 or Nlrp3 or by inhibition of caspase-1. Iron overload increases abundance of RNAs transcribed from short interspersed nuclear elements (SINEs): Alu RNAs and the rodent equivalent B1 and B2 RNAs, which are inflammasome agonists. Targeting Alu or B2 RNA prevents iron-induced inflammasome activation and RPE degeneration. Iron-induced SINE RNA accumulation is due to suppression of DICER1 via sequestration of the co-factor poly(C)-binding protein 2 (PCBP2). These findings reveal an unexpected mechanism of iron toxicity, with implications for AMD and neurodegenerative diseases associated with excess iron.
Collapse
Affiliation(s)
- Bradley D Gelfand
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA; Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40536, USA; Department of Microbiology, Immunology, and Human Genetics, University of Kentucky, Lexington, KY 40536, USA.
| | - Charles B Wright
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Younghee Kim
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Tetsuhiro Yasuma
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Reo Yasuma
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Shengjian Li
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Benjamin J Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA; Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Ana Bastos-Carvalho
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Nagaraj Kerur
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Annette Uittenbogaard
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Youn Seon Han
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Dingyuan Lou
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Mark E Kleinman
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - W Hayes McDonald
- Proteomics Laboratory, Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37205, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Philippe Georgel
- INSERM UMR_S 1109, Fédération de Médecine Translationnelle (FMTS), Université de Strasbourg, Strasbourg 67085, France
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jayakrishna Ambati
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA; Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
13
|
Cellular STAT3 functions via PCBP2 to restrain Epstein-Barr Virus lytic activation in B lymphocytes. J Virol 2015; 89:5002-11. [PMID: 25717101 DOI: 10.1128/jvi.00121-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/13/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED A major hurdle to killing Epstein-Barr virus (EBV)-infected tumor cells using oncolytic therapy is the presence of a substantial fraction of EBV-infected cells that does not support the lytic phase of EBV despite exposure to lytic cycle-promoting agents. To determine the mechanism(s) underlying this refractory state, we developed a strategy to separate lytic from refractory EBV-positive (EBV(+)) cells. By examining the cellular transcriptome in separated cells, we previously discovered that high levels of host STAT3 (signal transducer and activator of transcription 3) curtail the susceptibility of latently infected cells to lytic cycle activation signals. The goals of the present study were 2-fold: (i) to determine the mechanism of STAT3-mediated resistance to lytic activation and (ii) to exploit our findings to enhance susceptibility to lytic activation. We therefore analyzed our microarray data set, cellular proteomes of separated lytic and refractory cells, and a publically available STAT3 chromatin immunoprecipitation sequencing (ChIP-Seq) data set to identify cellular PCBP2 [poly(C)-binding protein 2], an RNA-binding protein, as a transcriptional target of STAT3 in refractory cells. Using Burkitt lymphoma cells and EBV(+) cell lines from patients with hypomorphic STAT3 mutations, we demonstrate that single cells expressing high levels of PCBP2 are refractory to spontaneous and induced EBV lytic activation, STAT3 functions via cellular PCBP2 to regulate lytic susceptibility, and suppression of PCBP2 levels is sufficient to increase the number of EBV lytic cells. We expect that these findings and the genome-wide resources that they provide will accelerate our understanding of a longstanding mystery in EBV biology and guide efforts to improve oncolytic therapy for EBV-associated cancers. IMPORTANCE Most humans are infected with Epstein-Barr virus (EBV), a cancer-causing virus. While EBV generally persists silently in B lymphocytes, periodic lytic (re)activation of latent virus is central to its life cycle and to most EBV-related diseases. However, a substantial fraction of EBV-infected B cells and tumor cells in a population is refractory to lytic activation. This resistance to lytic activation directly and profoundly impacts viral persistence and the effectiveness of oncolytic therapy for EBV(+) cancers. To identify the mechanisms that underlie susceptibility to EBV lytic activation, we used host gene and protein expression profiling of separated lytic and refractory cells. We find that STAT3, a transcription factor overactive in many cancers, regulates PCBP2, a protein important in RNA biogenesis, to regulate susceptibility to lytic cycle activation signals. These findings advance our understanding of EBV persistence and provide important leads on devising methods to improve viral oncolytic therapies.
Collapse
|
14
|
Dumortier JG, David NB. The TORC2 component, Sin1, controls migration of anterior mesendoderm during zebrafish gastrulation. PLoS One 2015; 10:e0118474. [PMID: 25710382 PMCID: PMC4339552 DOI: 10.1371/journal.pone.0118474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/18/2015] [Indexed: 12/19/2022] Open
Abstract
TORC2 is a serine-threonine kinase complex conserved through evolution that recently emerged as a new regulator of actin dynamics and cell migration. However, knockout in mice of its core components Sin1 and Rictor is embryonic lethal, which has limited in vivo analyses. Here, we analysed TORC2 function during early zebrafish development, using a morpholino-mediated loss of function of sin1. Sin1 appears required during gastrulation for migration of the prechordal plate, the anterior most mesoderm. In absence of Sin1, cells migrate both slower and less persistently, which can be correlated to a reduction in actin-rich protrusions and a randomisation of the remaining protrusions. These results demonstrate that, as established in vitro, the TORC2 component Sin1 controls actin dynamics and cell migration in vivo. We furthermore establish that Sin1 is required for protrusion formation downstream of PI3K, and is acting upstream of the GTPase Rac1, since expression of an activated form of Rac1 is sufficient to rescue sin1 loss of function.
Collapse
Affiliation(s)
- Julien G. Dumortier
- INSERM U1024, Paris, France
- CNRS UMR 8197, Paris, France
- IBENS, Institut de Biologie de l’Ecole Normale Supérieure, Paris, France
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United-Kingdom
| | - Nicolas B. David
- INSERM U1024, Paris, France
- CNRS UMR 8197, Paris, France
- IBENS, Institut de Biologie de l’Ecole Normale Supérieure, Paris, France
- * E-mail:
| |
Collapse
|
15
|
Abstract
DMT1 (divalent metal transporter 1) is the main iron importer found in animals, and ferrous iron is taken up by cells via DMT1. Once ferrous iron reaches the cytosol, it is subjected to subcellular distribution and delivered to various sites where iron is required for a variety of biochemical reactions in the cell. Until now, the mechanism connecting the transporter and cytosolic distribution had not been clarified. In the present study, we have identified PCBP2 [poly(rC)-binding protein 2] as a DMT1-binding protein. The N-terminal cytoplasmic region of DMT1 is the binding domain for PCBP2. An interaction between DMT1 and PCBP1, which is known to be a paralogue of PCBP2, could not be demonstrated in vivo or in vitro. Iron uptake and subsequent ferritin expression were suppressed by either DMT1 or PCBP2 knockdown. Iron-associated DMT1 could interact with PCBP2 in vitro, whereas iron-chelated DMT1 could not. These results indicate that ferrous iron imported by DMT1 is transferred directly to PCBP2. Moreover, we demonstrated that PCBP2 could bind to ferroportin, which exports ferrous iron out of the cell. These findings suggest that PCBP2 can transfer ferrous iron from DMT1 to the appropriate intracellular sites or ferroportin and could function as an iron chaperone.
Collapse
|
16
|
MAPKAP1 rs10118570 polymorphism is associated with anti-infection and anti-hepatic fibrogenesis in schistosomiasis japonica. PLoS One 2014; 9:e105995. [PMID: 25153992 PMCID: PMC4143368 DOI: 10.1371/journal.pone.0105995] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/25/2014] [Indexed: 12/14/2022] Open
Abstract
Chronic infection with Schistosoma japonicum is an important cause of hepatic fibrosis (HF). Human 9q33.3 is one of the most important loci for stress-related diseases. We examined the potential associations of 43 single-nucleotide polymorphisms (SNPs) with S. japonicum infection and HF in epidemic region in China. We identified a SNP (rs10118570 GG in mitogen-activated protein kinase associated protein 1, MAPKAP1) contributes to anti-infection (adjusted OR = 0.35) and anti-fibrogenesis (adjusted RR = 0.44) in the discovery study. Replicative and combined studies showed consistent protective quality for this genotype (replicative: adjusted OR = 0.37 for anti-infection, and adjusted RR = 0.40 for anti-fibrogenesis; Combined: adjusted OR = 0.45 for anti-infection, and adjusted RR = 0.42 for anti-fibrogenesis). Univariate and multivariate analysis in the discovery, replicative and combined studies, suggested that durations (years), splenomegaly, serum ALB and rs10118570 were independent predictors influencing the fibrogenesis. The analysis of gene-gene interaction showed rs10118570 functions independently. We conclude that MAPKAP1 may represent a novel anti-infection and anti-fibrogenesis genomic locus in chronic schistosomiasis japonica. And rs10118570 may be a potential biomarker and target for the treatment of this life-threatening ancient disease.
Collapse
|
17
|
Kaur S, Kroczynska B, Sharma B, Sassano A, Arslan AD, Majchrzak-Kita B, Stein BL, McMahon B, Altman JK, Su B, Calogero RA, Fish EN, Platanias LC. Critical roles for Rictor/Sin1 complexes in interferon-dependent gene transcription and generation of antiproliferative responses. J Biol Chem 2014; 289:6581-6591. [PMID: 24469448 DOI: 10.1074/jbc.m113.537852] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We provide evidence that type I IFN-induced STAT activation is diminished in cells with targeted disruption of the Rictor gene, whose protein product is a key element of mTOR complex 2. Our studies show that transient or stable knockdown of Rictor or Sin1 results in defects in activation of elements of the STAT pathway and reduced STAT-DNA binding complexes. This leads to decreased expression of several IFN-inducible genes that mediate important biological functions. Our studies also demonstrate that Rictor and Sin1 play essential roles in the generation of the suppressive effects of IFNα on malignant erythroid precursors from patients with myeloproliferative neoplasms. Altogether, these findings provide evidence for critical functions for Rictor/Sin1 complexes in type I IFN signaling and the generation of type I IFN antineoplastic responses.
Collapse
Affiliation(s)
- Surinder Kaur
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Barbara Kroczynska
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Bhumika Sharma
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Antonella Sassano
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Ahmet Dirim Arslan
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Beata Majchrzak-Kita
- Toronto Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| | - Brady L Stein
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Brandon McMahon
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Jessica K Altman
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Bing Su
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Raffaele A Calogero
- Department of Biotechnology and Health Sciences, University of Turin, 8 Turin, Italy
| | - Eleanor N Fish
- Toronto Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612.
| |
Collapse
|
18
|
Yang H, Lowenson JD, Clarke S, Zubarev RA. Brain proteomics supports the role of glutamate metabolism and suggests other metabolic alterations in protein l-isoaspartyl methyltransferase (PIMT)-knockout mice. J Proteome Res 2013; 12:4566-76. [PMID: 23947766 DOI: 10.1021/pr400688r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein l-isoaspartyl methyltransferase (PIMT) repairs the isoaspartyl residues (isoAsp) that originate from asparagine deamidation and aspartic acid (Asp) isomerization to Asp residues. Deletion of the gene encoding PIMT in mice (Pcmt1) leads to isoAsp accumulation in all tissues measured, especially in the brain. These PIMT-knockout (PIMT-KO) mice have perturbed glutamate metabolism and die prematurely of epileptic seizures. To elucidate the role of PIMT further, brain proteomes of PIMT-KO mice and controls were analyzed. The isoAsp levels from two of the detected 67 isoAsp sites (residue 98 from calmodulin and 68 from glyceraldehyde-3-phosphate dehydrogenase) were quantified and found to be significantly increased in PIMT-KO mice (p < 0.01). Additionally, the abundance of at least 151 out of the 1017 quantified proteins was found to be altered in PIMT-KO mouse brains. Gene ontology analysis revealed that many down-regulated proteins are involved in cellular amino acid biosynthesis. For example, the serine synthesis pathway was suppressed, possibly leading to reduced serine production in PIMT-KO mice. Additionally, the abundances of enzymes in the glutamate-glutamine cycle were altered toward the accumulation of glutamate. These findings support the involvement of PIMT in glutamate metabolism and suggest that the absence of PIMT also affects other processes involving amino acid synthesis and metabolism.
Collapse
Affiliation(s)
- Hongqian Yang
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Scheeles väg 2, SE-17 177 Stockholm, Sweden
| | | | | | | |
Collapse
|
19
|
αCP Poly(C) binding proteins act as global regulators of alternative polyadenylation. Mol Cell Biol 2013; 33:2560-73. [PMID: 23629627 DOI: 10.1128/mcb.01380-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have previously demonstrated that the KH-domain protein αCP binds to a 3' untranslated region (3'UTR) C-rich motif of the nascent human alpha-globin (hα-globin) transcript and enhances the efficiency of 3' processing. Here we assess the genome-wide impact of αCP RNA-protein (RNP) complexes on 3' processing with a specific focus on its role in alternative polyadenylation (APA) site utilization. The major isoforms of αCP were acutely depleted from a human hematopoietic cell line, and the impact on mRNA representation and poly(A) site utilization was determined by direct RNA sequencing (DRS). Bioinformatic analysis revealed 357 significant alterations in poly(A) site utilization that could be specifically linked to the αCP depletion. These APA events correlated strongly with the presence of C-rich sequences in close proximity to the impacted poly(A) addition sites. The most significant linkage was the presence of a C-rich motif within a window 30 to 40 bases 5' to poly(A) signals (AAUAAA) that were repressed upon αCP depletion. This linkage is consistent with a general role for αCPs as enhancers of 3' processing. These findings predict a role for αCPs in posttranscriptional control pathways that can alter the coding potential and/or levels of expression of subsets of mRNAs in the mammalian transcriptome.
Collapse
|
20
|
Han W, Xin Z, Zhao Z, Bao W, Lin X, Yin B, Zhao J, Yuan J, Qiang B, Peng X. RNA-binding protein PCBP2 modulates glioma growth by regulating FHL3. J Clin Invest 2013; 123:2103-18. [PMID: 23585479 DOI: 10.1172/jci61820] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/07/2013] [Indexed: 02/01/2023] Open
Abstract
PCBP2 is a member of the poly(C)-binding protein (PCBP) family, which plays an important role in posttranscriptional and translational regulation by interacting with single-stranded poly(C) motifs in target mRNAs. Several PCBP family members have been reported to be involved in human malignancies. Here, we show that PCBP2 is upregulated in human glioma tissues and cell lines. Knockdown of PCBP2 inhibited glioma growth in vitro and in vivo through inhibition of cell-cycle progression and induction of caspase-3-mediated apoptosis. Thirty-five mRNAs were identified as putative PCBP2 targets/interactors using RIP-ChIP protein-RNA interaction arrays in a human glioma cell line, T98G. Four-and-a-half LIM domain 3 (FHL3) mRNA was downregulated in human gliomas and was identified as a PCBP2 target. Knockdown of PCBP2 enhanced the expression of FHL3 by stabilizing its mRNA. Overexpression of FHL3 attenuated cell growth and induced apoptosis. This study establishes a link between PCBP2 and FHL3 proteins and identifies a new pathway for regulating glioma progression.
Collapse
Affiliation(s)
- Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Palusa S, Ndaluka C, Bowen RA, Wilusz CJ, Wilusz J. The 3' untranslated region of the rabies virus glycoprotein mRNA specifically interacts with cellular PCBP2 protein and promotes transcript stability. PLoS One 2012; 7:e33561. [PMID: 22438951 PMCID: PMC3306424 DOI: 10.1371/journal.pone.0033561] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/14/2012] [Indexed: 12/25/2022] Open
Abstract
Viral polymerase entry and pausing at intergenic junctions is predicted to lead to a defined polarity in the levels of rhabdovirus gene expression. Interestingly, we observed that the rabies virus glycoprotein mRNA is differentially over-expressed based on this model relative to other transcripts during infection of 293T cells. During infection, the rabies virus glycoprotein mRNA also selectively interacts with the cellular poly(rC)-binding protein 2 (PCBP2), a factor known to influence mRNA stability. Reporter assays performed both in electroporated cells and in a cell-free RNA decay system indicate that the conserved portion of the 3' UTR of the rabies virus glycoprotein mRNA contains an RNA stability element. PCBP2 specifically interacts with reporter transcripts containing this 72 base 3' UTR sequence. Furthermore, the PCBP2 interaction is directly associated with the stability of reporter transcripts. Therefore, we conclude that PCBP2 specifically and selectively interacts with the rabies virus glycoprotein mRNA and that this interaction may contribute to the post-transcriptional regulation of glycoprotein expression.
Collapse
Affiliation(s)
- Saiprasad Palusa
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Christina Ndaluka
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Carol J. Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
In metazoans, TOR is an essential protein that functions as a master regulator of cellular growth and proliferation. Over the past decade, there has been an explosion of information about this critical master kinase, ranging from the composition of the TOR protein complex to its ability to act as an integrator of numerous extracellular signals. Unfortunately, this plethora of information has also raised numerous questions regarding TOR function. Currently, the prevailing view is that mammalian TOR (mTOR) exists in at least two molecular complexes, mTORC1 and mTORC2, which are largely defined by the presence of either RAPTOR or RICTOR. However, additional co-factors have been identified for each complex, and their importance in mediating mTOR signals has been incompletely elucidated. Similarly, there are differences in mTOR function that reflect the tissue of origin. In this review, we present an alternative view to mTOR complex formation and function, which envisions mTOR regulation and signal propagation as a reflection of cell type- and basal state-dependent conditions. The re-interpretation of mTOR biology in this framework may facilitate the design of therapies most likely to effectively inhibit this central regulator of cell behavior.
Collapse
Affiliation(s)
- Jason D Weber
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
23
|
Liaubet L, Lobjois V, Faraut T, Tircazes A, Benne F, Iannuccelli N, Pires J, Glénisson J, Robic A, Le Roy P, Sancristobal M, Cherel P. Genetic variability of transcript abundance in pig peri-mortem skeletal muscle: eQTL localized genes involved in stress response, cell death, muscle disorders and metabolism. BMC Genomics 2011; 12:548. [PMID: 22053791 PMCID: PMC3239847 DOI: 10.1186/1471-2164-12-548] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 11/04/2011] [Indexed: 01/03/2023] Open
Abstract
Background The genetics of transcript-level variation is an exciting field that has recently given rise to many studies. Genetical genomics studies have mainly focused on cell lines, blood cells or adipose tissues, from human clinical samples or mice inbred lines. Few eQTL studies have focused on animal tissues sampled from outbred populations to reflect natural genetic variation of gene expression levels in animals. In this work, we analyzed gene expression in a whole tissue, pig skeletal muscle sampled from individuals from a half sib F2 family shortly after slaughtering. Results QTL detection on transcriptome measurements was performed on a family structured population. The analysis identified 335 eQTLs affecting the expression of 272 transcripts. The ontologic annotation of these eQTLs revealed an over-representation of genes encoding proteins involved in processes that are expected to be induced during muscle development and metabolism, cell morphology, assembly and organization and also in stress response and apoptosis. A gene functional network approach was used to evidence existing biological relationships between all the genes whose expression levels are influenced by eQTLs. eQTLs localization revealed a significant clustered organization of about half the genes located on segments of chromosome 1, 2, 10, 13, 16, and 18. Finally, the combined expression and genetic approaches pointed to putative cis-drivers of gene expression programs in skeletal muscle as COQ4 (SSC1), LOC100513192 (SSC18) where both the gene transcription unit and the eQTL affecting its expression level were shown to be localized in the same genomic region. This suggests cis-causing genetic polymorphims affecting gene expression levels, with (e.g. COQ4) or without (e.g. LOC100513192) potential pleiotropic effects that affect the expression of other genes (cluster of trans-eQTLs). Conclusion Genetic analysis of transcription levels revealed dependence among molecular phenotypes as being affected by variation at the same loci. We observed the genetic variation of molecular phenotypes in a specific situation of cellular stress thus contributing to a better description of muscle physiologic response. In turn, this suggests that large amounts of genetic variation, mediated through transcriptional networks, can drive transient cell response phenotypes and contribute to organismal adaptative potential.
Collapse
Affiliation(s)
- Laurence Liaubet
- Laboratoire de Génétique Cellulaire, INRA UMR444, Chemin de Borde Rouge, F-31326 Castanet-Tolosan, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Xin Z, Han W, Zhao Z, Xia Q, Yin B, Yuan J, Peng X. PCBP2 enhances the antiviral activity of IFN-α against HCV by stabilizing the mRNA of STAT1 and STAT2. PLoS One 2011; 6:e25419. [PMID: 22022391 PMCID: PMC3191149 DOI: 10.1371/journal.pone.0025419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 09/03/2011] [Indexed: 11/28/2022] Open
Abstract
Interferon-α (IFN-α) is a natural choice for the treatment of hepatitis C, but half of the chronically infected individuals do not achieve sustained clearance of hepatitis C virus (HCV) during treatment with IFN-α alone. The virus can impair IFN-α signaling and cellular factors that have an effect on the viral life cycles. We found that the protein PCBP2 is down-regulated in HCV-replicon containing cells (R1b). However, the effects and mechanisms of PCBP2 on HCV are unclear. To determine the effect of PCBP2 on HCV, overexpression and knockdown of PCBP2 were performed in R1b cells. Interestingly, we found that PCBP2 can facilitate the antiviral activity of IFN-α against HCV, although the RNA level of HCV was unaffected by either the overexpression or absence of PCBP2 in R1b cells. RIP-qRT-PCR and RNA half-life further revealed that PCBP2 stabilizes the mRNA of STAT1 and STAT2 through binding the 3′Untranslated Region (UTR) of these two molecules, which are pivotal for the IFN-α anti-HCV effect. RNA pull-down assay confirmed that there were binding sites located in the C-rich tracts in the 3′UTR of their mRNAs. Stabilization of mRNA by PCBP2 leads to the increased protein expression of STAT1 and STAT2 and a consistent increase of phosphorylated STAT1 and STAT2. These effects, in turn, enhance the antiviral effect of IFN-α. These findings indicate that PCBP2 may play an important role in the IFN-α response against HCV and may benefit the HCV clinical therapy.
Collapse
Affiliation(s)
- Zhongshuai Xin
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The mechanistic (or mammalian) target of rapamycin (mTOR), an evolutionarily conserved protein kinase, orchestrates cellular responses to growth, metabolic and stress signals. mTOR processes various extracellular and intracellular inputs as part of two mTOR protein complexes, mTORC1 or mTORC2. The mTORCs have numerous cellular targets but members of a family of protein kinases, the protein kinase (PK)A/PKG/PKC (AGC) family are the best characterized direct mTOR substrates. The AGC kinases control multiple cellular functions and deregulation of many members of this family underlies numerous pathological conditions. mTOR phosphorylates conserved motifs in these kinases to allosterically augment their activity, influence substrate specificity, and promote protein maturation and stability. Activation of AGC kinases in turn triggers the phosphorylation of diverse, often overlapping, targets that ultimately control cellular response to a wide spectrum of stimuli. This review will highlight recent findings on how mTOR regulates AGC kinases and how mTOR activity is feedback regulated by these kinases. We will discuss how this regulation can modulate downstream targets in the mTOR pathway that could account for the varied cellular functions of mTOR.
Collapse
Affiliation(s)
- Bing Su
- Department of Immunobiology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
26
|
Holmes B, Artinian N, Anderson L, Martin J, Masri J, Cloninger C, Bernath A, Bashir T, Benavides-Serrato A, Gera J. Protor-2 interacts with tristetraprolin to regulate mRNA stability during stress. Cell Signal 2011; 24:309-15. [PMID: 21964062 DOI: 10.1016/j.cellsig.2011.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/12/2011] [Indexed: 01/12/2023]
Abstract
The A/U-rich RNA-binding protein tristetraprolin (TTP) is an mRNA destabilizing factor which plays a role in the regulated turnover of many transcripts encoding proteins involved in immune function and cell growth control. TTP also plays a role in stress-induced destabilization of mRNAs. Here we report the interaction of TTP with a component of the mTORC2 kinase, Protor-2 (PRR5-L, protein Q6MZQ0/FLJ14213/CAE45978). Protor-2 is structurally similar to human PRR5 and has been demonstrated to bind mTORC2 via Rictor and/or Sin1 and may signal downstream events promoting apoptosis. Protor-2 dissociates from mTORC2 upon hyperactivation of the kinase and is not required for mTORC2 integrity or activity. We identified Protor-2 in a yeast two-hybrid screen as a TTP interactor using the C-terminal mRNA decay domain of TTP as bait. The interaction of Protor-2 with TTP was also confirmed in vivo in co-immunoprecipitation experiments and Protor-2 was also detected in immunoprecipitates of Rictor. Protor-2 was shown to stimulate TTP-mediated mRNA turnover of several TTP-associated mRNAs (TNF-α, GM-CSF, IL-3 and COX-2) in Jurkat cells when overexpressed while the half-lives of transcripts which do not decay via a TTP-mediated mechanism were unaffected. Knockdown of Protor-2 via RNAi inhibited TTP-mediated mRNA turnover of these TTP-associated mRNAs and inhibited association of TTP with cytoplasmic stress granules (SG) or mRNA processing bodies (P-bodies) following induction of the integrated stress response. These results suggest that Protor-2 associates with TTP to accelerate TTP-mediated mRNA turnover and functionally links the control of TTP-regulated mRNA stability to mTORC2 activity.
Collapse
Affiliation(s)
- Brent Holmes
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The mechanistic target of rapamycin (mTOR) plays a central role in cellular growth and metabolism. mTOR forms two distinct protein complexes, mTORC1 and mTORC2. Much is known about the regulation and functions of mTORC1 due to availability of a natural compound, rapamycin, that inhibits this complex. Studies that define mTORC2 cellular functions and signaling have lagged behind. The development of pharmacological inhibitors that block mTOR kinase activity, and thereby inhibit both mTOR complexes, along with availability of mice with genetic knockouts in mTOR complex components have now provided new insights on mTORC2 function and regulation. Since prolonged effects of rapamycin can also disrupt mTORC2, it is worth re-evaluating the contribution of this less-studied mTOR complex in cancer, metabolic disorders and aging. In this review, we focus on recent developments on mammalian mTORC2 signaling mechanisms and its cellular and tissue-specific functions.
Collapse
Affiliation(s)
- Won Jun Oh
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | |
Collapse
|
28
|
Meyer V, Minkwitz S, Schütze T, van den Hondel CAMJJ, Ram AFJ. The Aspergillus niger RmsA protein: A node in a genetic network? Commun Integr Biol 2011; 3:195-7. [PMID: 20585521 DOI: 10.4161/cib.3.2.10983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 12/17/2009] [Indexed: 11/19/2022] Open
Abstract
Many cells and organisms go through polarized growth phases during their life. Cell polarization is achieved by local accumulation of signaling molecules which guide the cytoskeleton and vesicular trafficking to specific parts of the cell and thus ensure polarity establishment and maintenance. Polarization of signaling molecules is also fundamental for the lifestyle of filamentous fungi such as Aspergillus niger and essential for their morphogenesis, development and survival under environmental stress conditions. Considerable advances in our understanding on the protagonists and processes mediating polarized growth in filamentous fungi have been made over the past years. However, how the interplay of different signaling pathways is coordinated has yet to be determined. We found that the A. niger RmsA protein is central for the polarization of actin at the hyphal tip but also of vital importance for the metabolism, viability and stress resistance of A. niger. This suggests that RmsA could occupy an important position in the global network of pathways that balance growth, morphogenesis and survival of A. niger.
Collapse
Affiliation(s)
- Vera Meyer
- Leiden University; Institute of Biology Leiden; Department Molecular Microbiology and Biotechnology; BE Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Kim JS, Chang JW, Yun HS, Yang KM, Hong EH, Kim DH, Um HD, Lee KH, Lee SJ, Hwang SG. Chloride intracellular channel 1 identified using proteomic analysis plays an important role in the radiosensitivity of HEp-2 cells via reactive oxygen species production. Proteomics 2010; 10:2589-604. [PMID: 20461716 DOI: 10.1002/pmic.200900523] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nature of the molecules underlying the radioresistance phenotype of laryngeal cancer cells remains to be established. We initially generated radioresistant laryngeal cancer cell lines from human HEp-2 cells with fractionated radiation. These RR-HEp-2 cells and isolated clones displayed more radioresistant and anti-apoptotic phenotypes than parental HEp-2 cells after radiation. Characteristics of RR-Hep-2 cell lines were confirmed by upregulation of radioresistance-related genes, such as epidermal growth factor receptor, Hsp90, and Bcl-xl. Subsequently, we examined proteome changes between HEp-2 and RR-HEp-2 cells and identified 16 proteins showing significantly altered expression levels. Interestingly, protein expression of chloride intracellular channel 1 (CLIC1) was markedly suppressed in RR-HEp-2 cells, compared with non-irradiated control cells. Suppression of CLIC1 with an indanyloxyacetic acid-94 or small interfering RNA led to radioresistance in HEp-2 cells by suppressing the radiation-induced cellular ROS level. However, ectopic overexpression of CLIC1 induced radiosensitivity in RR-HEp-2 cells via induction of ROS level after radiation, suggesting that the protein acts as a positive regulator of ROS production. Our results collectively indicate that suppression of CLIC1 contributes to acquisition of the radioresistance phenotype of laryngeal cancer cells via inhibition of ROS production, implying that this protein is an important candidate molecule for radiotherapy in radioresistant laryngeal cancer cells.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cloke B, Shah K, Kaneda H, Lavery S, Trew G, Fusi L, Higham J, Dina RE, Ghaem-Maghami S, Ellis P, Brosens JJ, Christian M. The poly(c)-binding protein-1 regulates expression of the androgen receptor. Endocrinology 2010; 151:3954-64. [PMID: 20519371 DOI: 10.1210/en.2009-1264] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The androgen receptor (AR) is a ligand-dependent transcription factor, expressed in male and female reproductive organs, and essential for normal reproduction in both sexes. The levels of AR are tightly controlled in androgen-responsive cells in which it plays a central role in the regulation of target gene expression. The AR is abundantly expressed in human endometrial stromal cells (HESCs), but levels decline markedly after differentiation into decidual cells in vivo and in primary cultures. Decidualization profoundly down-regulated AR protein levels with no discernible effect on either AR mRNA or protein stability, suggesting that loss of the receptor was a consequence of translational inhibition. Here we show that HESCs express three RNA-binding proteins, Hu antigen R and the poly(C)-binding proteins PCBP1 and PCBP2, that reportedly target the 3'-untranslated region of AR transcripts. Only PCBP1 expression was enhanced in secretory endometrium in vivo and in decidualizing HESCs. Furthermore, knockdown of PCBP1 in decidualizing cells was sufficient to restore AR protein levels, indicating that loss of the AR protein is primarily the consequence of a translational block. PCBP1 also blocked AR translation in a cell-free system, although this did not require binding to the 3'-untranslated region of the receptor mRNA. Furthermore, knockdown of PCBP1 in the prostate cancer LNCaP cell line also increased AR protein. Therefore, PCBP1 plays a major role in the dynamic expression of AR in both male and female androgen-responsive cells.
Collapse
Affiliation(s)
- Brianna Cloke
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|