1
|
Basu A, Samhita L. Context-dependent fitness benefits of antibiotic resistance mutations. Proc Biol Sci 2024; 291:20241071. [PMID: 39043246 PMCID: PMC11265866 DOI: 10.1098/rspb.2024.1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Affiliation(s)
- Aabeer Basu
- Ashoka University, Rajiv Gandhi Education City, Sonipat 131029, Haryana, India
| | - Laasya Samhita
- Ashoka University, Rajiv Gandhi Education City, Sonipat 131029, Haryana, India
| |
Collapse
|
2
|
Byun KH, Kim HJ. Survival strategies of Listeria monocytogenes to environmental hostile stress: biofilm formation and stress responses. Food Sci Biotechnol 2023; 32:1631-1651. [PMID: 37780599 PMCID: PMC10533466 DOI: 10.1007/s10068-023-01427-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Listeria monocytogenes is a critical foodborne pathogen that causes listeriosis and threatens public health. This pathogenic microorganism forms a transmission cycle in nature, food industry, and humans, expanding the areas of contamination among them and influencing food safety. L. monocytogenes forms biofilms to protect itself and promotes survival through stress responses to the various stresses (e.g., temperature, pH, and antimicrobial agents) that may be inflicted during food processing. Biofilms and mechanisms of resistance to hostile external or general stresses allow L. monocytogenes to survive despite a variety of efforts to ensure food safety. The current review article focuses on biofilm formation, resistance mechanisms through biofilms, and external specific or general stress responses of L. monocytogenes to help understand the unexpected survival rates of this bacterium; it also proposes the use of obstacle technology to effectively cope with it in the food industry.
Collapse
Affiliation(s)
- Kye-Hwan Byun
- Food Safety and Distribution Research Group, Korea Food Research Institute, Jeollabuk-Do, Wanju, 55365 Republic of Korea
| | - Hyun Jung Kim
- Food Safety and Distribution Research Group, Korea Food Research Institute, Jeollabuk-Do, Wanju, 55365 Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon, 34113 Republic of Korea
| |
Collapse
|
3
|
Jeje O, Ewunkem AJ, Jeffers-Francis LK, Graves JL. Serving Two Masters: Effect of Escherichia coli Dual Resistance on Antibiotic Susceptibility. Antibiotics (Basel) 2023; 12:antibiotics12030603. [PMID: 36978471 PMCID: PMC10044975 DOI: 10.3390/antibiotics12030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The prevalence of multidrug-resistant bacteria and their increased pathogenicity has led to a growing interest in metallic antimicrobial materials and bacteriophages as potential alternatives to conventional antibiotics. This study examines how resistance to excess iron (III) influences the evolution of bacteriophage resistance in the bacterium Escherichia coli. We utilized experimental evolution in E. coli to test the effect of the evolution of phage T7 resistance on populations resistant to excess iron (III) and populations without excess iron resistance. Phage resistance evolved rapidly in both groups. Dual-resistant (iron (III)/phage) populations were compared to their controls (excess iron (III)-resistant, phage-resistant, no resistance to either) for their performance against each stressor, excess iron (III) and phage; and correlated resistances to excess iron (II), gallium (III), silver (I) and conventional antibiotics. Excess iron (III)/phage-resistant populations demonstrated superior 24 h growth compared to all other populations when exposed to increasing concentrations of iron (II, III), gallium (III), ampicillin, and tetracycline. No differences in 24 h growth were shown between excess iron (III)/phage-resistant and excess iron (III)-resistant populations in chloramphenicol, sulfonamide, and silver (I). The genomic analysis identified selective sweeps in the iron (III) resistant (rpoB, rpoC, yegB, yeaG), phage-resistant (clpX →/→ lon, uvaB, yeaG, fliR, gatT, ypjF, waaC, rpoC, pgi, and yjbH) and iron (III)/phage resistant populations (rcsA, hldE, rpoB, and waaC). E. coli selected for resistance to both excess iron (III) and T7 phage showed some evidence of a synergistic effect on various components of fitness. Dual selection resulted in correlated resistances to ionic metals {iron (II), gallium (III), and silver (I)} and several conventional antibiotics. There is a likelihood that this sort of combination antimicrobial treatment may result in bacterial variants with multiple resistances.
Collapse
Affiliation(s)
- Olusola Jeje
- Biology Department, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Akamu J Ewunkem
- Department of Biological Sciences, Winston Salem State University, 601 S Martin Luther King Jr Drive, Winston Salem, NC 27110, USA
| | - Liesl K Jeffers-Francis
- Biology Department, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Joseph L Graves
- Biology Department, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
4
|
Herrmann JA, Koprowska A, Winters TJ, Villanueva N, Nikityuk VD, Pek F, Reis EM, Dominguez CZ, Davis D, McPherson E, Rocco SR, Recendez C, Difuntorum SM, Faeth K, Lopez MD, Awwad HM, Ghobashy RA, Cappiello L, Neidle EL, Quiñones-Soto S, Reams AB. Gene amplification mutations originate prior to selective stress in Acinetobacter baylyi. G3 (BETHESDA, MD.) 2023; 13:jkac327. [PMID: 36504387 PMCID: PMC9997567 DOI: 10.1093/g3journal/jkac327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The controversial theory of adaptive amplification states gene amplification mutations are induced by selective environments where they are enriched due to the stress caused by growth restriction on unadapted cells. We tested this theory with three independent assays using an Acinetobacter baylyi model system that exclusively selects for cat gene amplification mutants. Our results demonstrate all cat gene amplification mutant colonies arise through a multistep process. While the late steps occur during selection exposure, these mutants derive from low-level amplification mutant cells that form before growth-inhibiting selection is imposed. During selection, these partial mutants undergo multiple secondary steps generating higher amplification over several days to multiple weeks to eventually form visible high-copy amplification colonies. Based on these findings, amplification in this Acinetobacter system can be explained by a natural selection process that does not require a stress response. These findings have fundamental implications to understanding the role of growth-limiting selective environments on cancer development. We suggest duplication mutations encompassing growth factor genes may serve as new genomic biomarkers to facilitate early cancer detection and treatment, before high-copy amplification is attained.
Collapse
Affiliation(s)
- Jennifer A Herrmann
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Agata Koprowska
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Tesa J Winters
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Nancy Villanueva
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Victoria D Nikityuk
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Feini Pek
- Department of Mathematics and Statistics, California State University, Sacramento, CA 95819-6051, USA
| | - Elizabeth M Reis
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Constancia Z Dominguez
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Daniel Davis
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Eric McPherson
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Staci R Rocco
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Cynthia Recendez
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Shyla M Difuntorum
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Kelly Faeth
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Mario D Lopez
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Habeeba M Awwad
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Rola A Ghobashy
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Lauren Cappiello
- Department of Mathematics and Statistics, California State University, Sacramento, CA 95819-6051, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| | - Semarhy Quiñones-Soto
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Andrew B Reams
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| |
Collapse
|
5
|
Cohen Y, Hershberg R. Rapid Adaptation Often Occurs through Mutations to the Most Highly Conserved Positions of the RNA Polymerase Core Enzyme. Genome Biol Evol 2022; 14:evac105. [PMID: 35876137 PMCID: PMC9459352 DOI: 10.1093/gbe/evac105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations to the genes encoding the RNA polymerase core enzyme (RNAPC) and additional housekeeping regulatory genes were found to be involved in adaptation, in the context of numerous evolutionary experiments, in which bacteria were exposed to diverse selective pressures. This provides a conundrum, as the housekeeping genes that were so often mutated in response to these diverse selective pressures tend to be among the genes that are most conserved in their sequences across the bacterial phylogeny. In order to further examine this apparent discrepancy, we characterized the precise positions of the RNAPC involved in adaptation to a large variety of selective pressures. We found that RNAPC lab adaptations tended to occur at positions displaying traits associated with higher selective constraint. Specifically, compared to other RNAPC positions, positions involved in adaptation tended to be more conserved in their sequences within bacteria, were more often located within defined protein domains, and were located closer to the complex's active site. Higher sequence conservation was also found for resource exhaustion adaptations occurring within additional housekeeping genes. Combined, our results demonstrate that the positions that change most readily in response to well-defined selective pressures exerted in lab environments are often also those that evolve most slowly in nature.
Collapse
Affiliation(s)
- Yasmin Cohen
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
6
|
Environmental dependence of competitive fitness in rifampin-resistant
rpoB
mutants of
Bacillus subtilis. Appl Environ Microbiol 2022; 88:e0242221. [DOI: 10.1128/aem.02422-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase (RNAP) is a highly conserved macromolecular machine that contributes to the flow of genetic information from genotype to phenotype. In
Bacillus subtilis
, mutations in the
rpoB
gene encoding the β-subunit of RNAP have been shown to alter a number of global phenotypes including growth, utilization of unusual nutrient sources, sporulation, germination, and production of secondary metabolites. In addition, the spectrum of mutations in
rpoB
leading to rifampin resistance (Rif
R
) can change dramatically depending upon the environment to which
B. subtilis
cells or spores are exposed. Rif
R
rpoB
mutations have historically been associated with slower growth and reduced fitness; however, these assessments of fitness were conducted on limited collections of mutants in rich laboratory media that poorly reflect natural environments typically inhabited by
B. subtilis
. Using a novel, deep-sequencing approach in addition to traditional measurements of growth rate, lag time, and pairwise competitions, we demonstrated the competitive advantage of specific
rpoB
alleles differs depending on the growth environment in which they are determined.
IMPORTANCE
Microbial resistance to antibiotics is a growing threat to public health across the world. Historically, resistance to antibiotics has been associated with reduced fitness. A growing body of evidence indicates that resistance to rifampin, a frontline antibiotic used to treat mycobacterial and biofilm-associated infections, may increase fitness given an appropriate environment even in the absence of the selective antibiotic. Here we experimentally confirm this phenomenon by directly comparing the fitness of multiple rifampin-resistant mutants of
Bacillus subtilis
in rich LB medium and an asparagine minimal medium. Our research demonstrates that the fitness cost of rifampin resistance can vary greatly depending upon the environment. This has important implications for understanding how microbes develop antimicrobial resistance in the absence of antibiotic selection.
Collapse
|
7
|
Rodríguez-Beltrán É, López GD, Anzola JM, Rodríguez-Castillo JG, Carazzone C, Murcia MI. Heterogeneous fitness landscape cues, pknG low expression, and phthiocerol dimycocerosate low production of Mycobacterium tuberculosis ATCC25618 rpoB S450L in enriched broth. Tuberculosis (Edinb) 2021; 132:102156. [PMID: 34891037 DOI: 10.1016/j.tube.2021.102156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Multidrug-resistant tuberculosis (isoniazid/rifampin[RIF]-resistant TB) ravages developing countries. Fitness is critical in clinical outcomes. Previous studies on RIF-resistant TB (RR-TB) showed competitive fitness gains and losses, with rpoB-S450L as the most isolated/fit mutation. This study measured virulence/resistance genes, phthiocerol dimycocerosate (PDIM) levels and their relationship with rpoB S450L ATCC25618 RR-TB strain fitness. After obtaining 10 different RR-TB GenoType MTBDRplus 2.0-genotyped isolates (with nontyped, S441, H445 and S450 positions), only one S450L isolate (R9, rpoB-S450L ATCC 25618, RR 1 μg/mL) was observed, with H445Y being the most common. A competitive fitness in vitro assay with wild-type (wt) ATCC 25618: R9 1:1 in 50 mL Middlebrook 7H9/OADC was performed, and generation time (G) in vitro and relative fitness were obtained. mRNA and PDIM were extracted on log and stationary phases. Fitness decreased in rpoB S450L and H445Y strains, with heterogeneous fitness cues in three biological replicas of rpoB-S450L: one high and two low fitness replicas. S450L strain had significant pknG increase. Compared with S450L, wt-rpoB showed increased polyketide synthase ppsA expression and high PDIM peak measured by HPLC-MS in log phase compared to S450L. This contrasts with previously increased PDIM in other RR-TB isolates.
Collapse
Affiliation(s)
- Édgar Rodríguez-Beltrán
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, CR 1 18A-12, Bogotá, D.C, 111711, Colombia
| | - Juan Manuel Anzola
- Corpogen, CR 4 20-41, Bogotá, D.C, 110311, Colombia; Universidad Central, CR 5 21-38, Bogotá, D.C, 110311, Colombia
| | - Juan Germán Rodríguez-Castillo
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, CR 1 18A-12, Bogotá, D.C, 111711, Colombia
| | - Martha I Murcia
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia.
| |
Collapse
|
8
|
Patel V, Matange N. Adaptation and compensation in a bacterial gene regulatory network evolving under antibiotic selection. eLife 2021; 10:70931. [PMID: 34591012 PMCID: PMC8483737 DOI: 10.7554/elife.70931] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Gene regulatory networks allow organisms to generate coordinated responses to environmental challenges. In bacteria, regulatory networks are re-wired and re-purposed during evolution, though the relationship between selection pressures and evolutionary change is poorly understood. In this study, we discover that the early evolutionary response of Escherichia coli to the antibiotic trimethoprim involves derepression of PhoPQ signaling, an Mg2+-sensitive two-component system, by inactivation of the MgrB feedback-regulatory protein. We report that derepression of PhoPQ confers trimethoprim-tolerance to E. coli by hitherto unrecognized transcriptional upregulation of dihydrofolate reductase (DHFR), target of trimethoprim. As a result, mutations in mgrB precede and facilitate the evolution of drug resistance. Using laboratory evolution, genome sequencing, and mutation re-construction, we show that populations of E. coli challenged with trimethoprim are faced with the evolutionary ‘choice’ of transitioning from tolerant to resistant by mutations in DHFR, or compensating for the fitness costs of PhoPQ derepression by inactivating the RpoS sigma factor, itself a PhoPQ-target. Outcomes at this evolutionary branch-point are determined by the strength of antibiotic selection, such that high pressures favor resistance, while low pressures favor cost compensation. Our results relate evolutionary changes in bacterial gene regulatory networks to strength of selection and provide mechanistic evidence to substantiate this link.
Collapse
Affiliation(s)
- Vishwa Patel
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, The Maharaja Sayajirao University of Baroda, Vadodara, India.,Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Nishad Matange
- Indian Institute of Science Education and Research (IISER), Pune, India
| |
Collapse
|
9
|
Gutiérrez R, Ram Y, Berman J, Carstens Marques de Sousa K, Nachum-Biala Y, Britzi M, Elad D, Glaser G, Covo S, Harrus S. Adaptive resistance mutations at supra-inhibitory concentrations independent of SOS mutagenesis. Mol Biol Evol 2021; 38:4095-4115. [PMID: 34175952 PMCID: PMC8476149 DOI: 10.1093/molbev/msab196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emergence of resistant bacteria during antimicrobial treatment is one of the most critical and universal health threats. It is known that several stress-induced mutagenesis and heteroresistance mechanisms can enhance microbial adaptation to antibiotics. Here, we demonstrate that the pathogen Bartonella can undergo stress-induced mutagenesis despite the fact it lacks error-prone polymerases, the rpoS gene and functional UV-induced mutagenesis. We demonstrate that Bartonella acquire de novo single mutations during rifampicin exposure at suprainhibitory concentrations at a much higher rate than expected from spontaneous fluctuations. This is while exhibiting a minimal heteroresistance capacity. The emerged resistant mutants acquired a single rpoB mutation, whereas no other mutations were found in their whole genome. Interestingly, the emergence of resistance in Bartonella occurred only during gradual exposure to the antibiotic, indicating that Bartonella sense and react to the changing environment. Using a mathematical model, we demonstrated that, to reproduce the experimental results, mutation rates should be transiently increased over 1,000-folds, and a larger population size or greater heteroresistance capacity is required. RNA expression analysis suggests that the increased mutation rate is due to downregulation of key DNA repair genes (mutS, mutY, and recA), associated with DNA breaks caused by massive prophage inductions. These results provide new evidence of the hazard of antibiotic overuse in medicine and agriculture.
Collapse
Affiliation(s)
- Ricardo Gutiérrez
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.,The Center for Research in Tropical Diseases, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.,School of Computer Science, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Judith Berman
- Shmunis School of Biomedicine and Cancer, Faculty of Life Sciences, Tel Aviv University, Tel Aviv University, Ramat Aviv, Israel
| | | | - Yaarit Nachum-Biala
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Malka Britzi
- The National Residue Control Laboratory, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Daniel Elad
- Department of Clinical Bacteriology and Mycology, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Gad Glaser
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shimon Harrus
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
10
|
Dawson D, Rasmussen D, Peng X, Lanzas C. Inferring environmental transmission using phylodynamics: a case-study using simulated evolution of an enteric pathogen. J R Soc Interface 2021; 18:20210041. [PMID: 34102084 DOI: 10.1098/rsif.2021.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Indirect (environmental) and direct (host-host) transmission pathways cannot easily be distinguished when they co-occur in epidemics, particularly when they occur on similar time scales. Phylodynamic reconstruction is a potential approach to this problem that combines epidemiological information (temporal, spatial information) with pathogen whole-genome sequencing data to infer transmission trees of epidemics. However, factors such as differences in mutation and transmission rates between host and non-host environments may obscure phylogenetic inference from these methods. In this study, we used a network-based transmission model that explicitly models pathogen evolution to simulate epidemics with both direct and indirect transmission. Epidemics were simulated according to factorial combinations of direct/indirect transmission proportions, host mutation rates and conditions of environmental pathogen growth. Transmission trees were then reconstructed using the phylodynamic approach SCOTTI (structured coalescent transmission tree inference) and evaluated. We found that although insufficient diversity sets a lower bound on when accurate phylodynamic inferences can be made, transmission routes and assumed pathogen lifestyle affected pathogen population structure and subsequently influenced both reconstruction success and the likelihood of direct versus indirect pathways being reconstructed. We conclude that prior knowledge of the likely ecology and population structure of pathogens in host and non-host environments is critical to fully using phylodynamic techniques.
Collapse
Affiliation(s)
- Daniel Dawson
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - David Rasmussen
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Xinxia Peng
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Cristina Lanzas
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
11
|
Balbontín R, Frazão N, Gordo I. DNA Breaks-Mediated Fitness Cost Reveals RNase HI as a New Target for Selectively Eliminating Antibiotic-Resistant Bacteria. Mol Biol Evol 2021; 38:3220-3234. [PMID: 33830249 PMCID: PMC8321526 DOI: 10.1093/molbev/msab093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance often generates defects in bacterial growth called fitness cost. Understanding the causes of this cost is of paramount importance, as it is one of the main determinants of the prevalence of resistances upon reducing antibiotics use. Here we show that the fitness costs of antibiotic resistance mutations that affect transcription and translation in Escherichia coli strongly correlate with DNA breaks, which are generated via transcription–translation uncoupling, increased formation of RNA–DNA hybrids (R-loops), and elevated replication–transcription conflicts. We also demonstrated that the mechanisms generating DNA breaks are repeatedly targeted by compensatory evolution, and that DNA breaks and the cost of resistance can be increased by targeting the RNase HI, which specifically degrades R-loops. We further show that the DNA damage and thus the fitness cost caused by lack of RNase HI function drive resistant clones to extinction in populations with high initial frequency of resistance, both in laboratory conditions and in a mouse model of gut colonization. Thus, RNase HI provides a target specific against resistant bacteria, which we validate using a repurposed drug. In summary, we revealed key mechanisms underlying the fitness cost of antibiotic resistance mutations that can be exploited to specifically eliminate resistant bacteria.
Collapse
Affiliation(s)
| | | | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
12
|
Cutugno L, Mc Cafferty J, Pané-Farré J, O’Byrne C, Boyd A. rpoB mutations conferring rifampicin-resistance affect growth, stress response and motility in Vibrio vulnificus. MICROBIOLOGY (READING, ENGLAND) 2020; 166:1160-1170. [PMID: 33186092 PMCID: PMC7819355 DOI: 10.1099/mic.0.000991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
Rifampicin is a broad-spectrum antibiotic that binds to the bacterial RNA polymerase (RNAP), compromising DNA transcription. Rifampicin resistance is common in several microorganisms and it is typically caused by point mutations in the gene encoding the β subunit of RNA polymerase, rpoB. Different rpoB mutations are responsible for various levels of rifampicin resistance and for a range of secondary effects. rpoB mutations conferring rifampicin resistance have been shown to be responsible for severe effects on transcription, cell fitness, bacterial stress response and virulence. Such effects have never been investigated in the marine pathogen Vibrio vulnificus, even though rifampicin-resistant strains of V. vulnificus have been isolated previously. Moreover, spontaneous rifampicin-resistant strains of V. vulnificus have an important role in conjugation and mutagenesis protocols, with poor consideration of the effects of rpoB mutations. In this work, effects on growth, stress response and virulence of V. vulnificus were investigated using a set of nine spontaneous rifampicin-resistant derivatives of V. vulnificus CMCP6. Three different mutations (Q513K, S522L and H526Y) were identified with varying incidence rates. These three mutant types each showed high resistance to rifampicin [minimal inhibitory concentration (MIC) >800 µg ml-1], but different secondary effects. The strains carrying the mutation H526Y had a growth advantage in rich medium but had severely reduced salt stress tolerance in the presence of high NaCl concentrations as well as a significant reduction in ethanol stress resistance. Strains possessing the S522L mutation had reduced growth rate and overall biomass accumulation in rich medium. Furthermore, investigation of virulence characteristics demonstrated that all the rifampicin-resistant strains showed compromised motility when compared with the wild-type, but no major effects on exoenzyme production were observed. These findings reveal a wide range of secondary effects of rpoB mutations and indicate that rifampicin resistance is not an appropriate selectable marker for studies that aim to investigate phenotypic behaviour in this organism.
Collapse
Affiliation(s)
- Laura Cutugno
- Discipline of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jennifer Mc Cafferty
- Discipline of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jan Pané-Farré
- Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
- Center for Synthetic Microbiology (SYNMIKRO) & Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, C07, 35043 Marburg, Germany
| | - Conor O’Byrne
- Discipline of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aoife Boyd
- Discipline of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
13
|
Khawbung JL, Nath D, Chakraborty S. Drug resistant Tuberculosis: A review. Comp Immunol Microbiol Infect Dis 2020; 74:101574. [PMID: 33249329 DOI: 10.1016/j.cimid.2020.101574] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) was announced as a global emergency in 1993. There was an alarming counter attack of TB worldwide. However, when it was known that TB can be cured completely, the general public became ignorant towards the infection. The pathogenic organism Mycobacterium tuberculosis continuously evolved to resist the antagonist drugs. This has led to the outbreak of resistant strain that gave rise to "Multi Drug Resistant-Tuberculosis" and "Extensively Drug Resistant Tuberculosis" that can still be cured with a lower success rate. While the mechanism of resistance proceeds further, it ultimately causes unmanageable totally drug resistant TB (TDR-TB). Studying the molecular mechanisms underlying the resistance to drugs would help us grasp the genetics and pathophysiology of the disease. In this review, we present the molecular mechanisms behind Mycobacterium tolerance to drugs and their approach towards the development of multi-drug resistant, extremely drug resistant and totally drug resistant TB.
Collapse
Affiliation(s)
| | - Durbba Nath
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
14
|
Radial Expansion Facilitates the Maintenance of Double Antibiotic Resistances. Antimicrob Agents Chemother 2020; 64:AAC.00668-20. [PMID: 32540973 DOI: 10.1128/aac.00668-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022] Open
Abstract
Most microbes live in spatially confined subpopulations. Under spatial structure conditions, the efficacy of natural selection is often reduced (relative to homogeneous conditions) due to the increased importance of genetic drift and local competition. Additionally, under spatial structure conditions, the fittest genotype may not always be the one with better access to the heterogeneous distribution of nutrients. The effect of radial expansion may be particularly relevant for the elimination of antibiotic resistance mutations, as their dynamics within bacterial populations are strongly dependent on their growth rate. Here, we use Escherichia coli to systematically compare the allele frequency of streptomycin, rifampin, and fluoroquinolone single and double resistance mutants after 24 h of coexistence with a susceptible strain under radial expansion (local competition) and homogeneous (global competition) conditions. We show that there is a significant effect of structure on the maintenance of double resistances which is not observed for single resistances. Radial expansion also facilitates the persistence of double resistances when competing against their single counterparts. Importantly, we found that spatial structure reduces the rate of compensation of the double mutant RpsLK43T RpoBH526Y and that a strongly compensatory mutation in homogeneous conditions becomes deleterious under spatial structure conditions. Overall, our results unravel the importance of spatial structure for facilitating the maintenance and accumulation of multiple resistances over time and for determining the identity of compensatory mutations.
Collapse
|
15
|
Krishna A, Liu B, Peacock SJ, Wigneshweraraj S. The prevalence and implications of single nucleotide polymorphisms in genes encoding the RNA polymerase of clinical isolates of Staphylococcus aureus. Microbiologyopen 2020; 9:e1058. [PMID: 32419302 PMCID: PMC7349150 DOI: 10.1002/mbo3.1058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 01/22/2023] Open
Abstract
Central to the regulation of bacterial gene expression is the multisubunit enzyme RNA polymerase (RNAP), which is responsible for catalyzing transcription. As all adaptive processes are underpinned by changes in gene expression, the RNAP can be considered the major mediator of any adaptive response in the bacterial cell. In bacterial pathogens, theoretically, single nucleotide polymorphisms (SNPs) in genes that encode subunits of the RNAP and associated factors could mediate adaptation and confer a selective advantage to cope with biotic and abiotic stresses. We investigated this possibility by undertaking a systematic survey of SNPs in genes encoding the RNAP and associated factors in a collection of 1,429 methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates. We present evidence for the existence of several, hitherto unreported, nonsynonymous SNPs in genes encoding the RNAP and associated factors of MRSA ST22 clinical isolates and propose that the acquisition of amino acid substitutions in the RNAP could represent an adaptive strategy that contributes to the pathogenic success of MRSA.
Collapse
Affiliation(s)
- Aishwarya Krishna
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUK
| | - Bing Liu
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUK
| | - Sharon J. Peacock
- Department of MedicineAddenbrooke's HospitalUniversity of CambridgeCambridgeUK
- Cambridge University Hospitals NHS Foundation TrustCambridgeUK
- Wellcome Trust Sanger InstituteCambridgeUK
- London School of Hygiene and Tropical MedicineLondonUK
| | | |
Collapse
|
16
|
Abstract
Until now, bacterial cells facing nutrient deprivation were shown to enter dormancy as a strategy to survive prolonged stress, with the most established examples being sporulation, stationary phase, and persistence. Here, we uncovered an opposing strategy for long-term bacterial survival, in which mutant subpopulations cope with a challenging niche by proliferating rather than by stalling division. We show that this feature stems from mutations in genes disturbing the capability of the cells to differentiate into a quiescent state, enabling them to divide under restrictive conditions. Our study challenges the dogma of bacterial aging by highlighting an additional survival strategy resembling that of cancerous cells in animal organs. Bacteria in nature are known to survive for long periods under restricting conditions, mainly by reducing their growth rate and metabolic activity. Here, we uncover a novel strategy utilized by bacterial cells to resist aging by propagating rather than halting division. Bacterial aging was monitored by inspecting colonies of the Gram-positive soil bacterium Bacillus subtilis, which is capable of differentiating into various cell types under nutrient exhaustion. We revealed that after days of incubation, rejuvenating subpopulations, arrayed over the mother colony, emerged. These subpopulations were found to harbor mutations in a variety of genes, restricting the ability of the cells to differentiate. Surprisingly, even mutations that are not classically designated to developmental pathways, concluded in differentiation deficiency, indicating that multiple paths can reach this same outcome. We provide evidence that the evolved mutants continue to divide under conditions that favor entry into quiescence, hence becoming abundant within the aging population. The occurrence of such nondifferentiating mutants could impact bacterial population dynamics in natural niches.
Collapse
|
17
|
Fernandez-Garcia L, Kim JS, Tomas M, Wood TK. Toxins of toxin/antitoxin systems are inactivated primarily through promoter mutations. J Appl Microbiol 2019; 127:1859-1868. [PMID: 31429177 DOI: 10.1111/jam.14414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 11/27/2022]
Abstract
AIMS Given the extreme toxicity of some of the toxins of toxin-antitoxin (TA) systems, we were curious how the cell silences toxins, if the antitoxin is inactivated or independent toxins are obtained via horizontal gene transfer. METHODS AND RESULTS Growth curves of Escherichia coli K12 BW25113 harbouring plasmid pCA24N to produce RalR, MqsR, GhoT or Hha toxins, showed toxin inactivation after 3 h. Sequencing plasmids from these cultures revealed toxin inactivation occurred primarily due to consistent deletions in the promoter. The lack of mutation in the structural genes was corroborated by a bioinformatics analysis of 1000 E. coli genomes which showed both conservation and little variability in the four toxin genes. For those strains that lacked a mutation in the plasmid, single nucleotide polymorphism analysis was performed to identify that chromosomal mutations iraM and mhpR inactivate the toxins GhoT and MqsR/GhoT respectively. CONCLUSION We find that the RalR (type I), MqsR (type II), GhoT (type V) and Hha (type VII) toxins are inactivated primarily by a mutation that inactivates the toxin promoter or via the chromosomal mutations iraM and mhpR. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates toxins of TA systems may be inactivated by mutations that primarily affect the toxin gene promoter instead of the toxin structural gene.
Collapse
Affiliation(s)
- L Fernandez-Garcia
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA.,Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - J-S Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Yuseong-gu, Daejeon, South Korea
| | - M Tomas
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Yuseong-gu, Daejeon, South Korea
| | - T K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
18
|
Maudsdotter L, Ushijima Y, Morikawa K. Fitness of Spontaneous Rifampicin-Resistant Staphylococcus aureus Isolates in a Biofilm Environment. Front Microbiol 2019; 10:988. [PMID: 31134027 PMCID: PMC6514104 DOI: 10.3389/fmicb.2019.00988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/18/2019] [Indexed: 11/25/2022] Open
Abstract
Biofilms of S. aureus accumulate cells resistant to the antibiotic rifampicin. We show here that the accumulation of rifampicin resistant mutants (RifR) in biofilms is not equable but rather is a local event, suggesting that the growth of a few locally emerged mutants is responsible for this. Competition assays demonstrated that, compared to wild-type bacteria, the isolated RifR mutants have a growth advantage in biofilms, but not in planktonic culture. To gain insight into the mechanism of the growth advantage, we tested the involvement of the two-component systems (TCS) that sense and respond to environmental changes. We found that a deletion of SrrAB or NreBC has a drastic effect on the growth advantage of RifR mutants, suggesting the importance of oxygen/respiration responses. All six of the RifR isolates tested showed increased resistance to at least one of the common stresses found in the biofilm environment (i.e., oxidative, nitric acid, and organic acid stress). The RifR mutants also had a growth advantage in a biofilm flow model, which highlights the physiological relevance of our findings.
Collapse
Affiliation(s)
- Lisa Maudsdotter
- Department of Biomedical Science, University of Tsukuba, Tsukuba, Japan
| | - Yuri Ushijima
- Department of Biomedical Science, University of Tsukuba, Tsukuba, Japan
| | - Kazuya Morikawa
- Department of Biomedical Science, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
19
|
Szafrańska AK, Junker V, Steglich M, Nübel U. Rapid cell division of Staphylococcus aureus during colonization of the human nose. BMC Genomics 2019; 20:229. [PMID: 30894139 PMCID: PMC6425579 DOI: 10.1186/s12864-019-5604-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human population. Little is known about the dynamics of asymptomatic colonization and the occasional transition to infectious disease. RESULTS In this study, we inferred that S. aureus cells replicate every one to three hours on average while colonizing the human nose, based on two independent lines of genomic evidence. First, we collected nasal swab samples from human subjects, extracted and sequenced metagenomic DNA, and analyzed the distribution of sequencing coverage along the staphylococcal chromosome. Calibration of this data by comparison to a laboratory culture enabled measuring S. aureus cell division rates in nasal samples. Second, we applied mutation accumulation experiments paired with genome sequencing to measure spontaneous mutation rates at a genome scale. Relating these mutation rates to annual evolutionary rates confirmed that nasal S. aureus continuously pass several thousand cell divisions per year when averaged over large, globally distributed populations and over many years, corresponding to generation times of less than two hours. CONCLUSIONS The cell division rates we determined were higher than the fastest documented rates during fulminant disease progression (in a mouse model of systemic infection) and much higher than those previously measured in expectorated sputum from cystic fibrosis patients. This paper supplies absolute in-vivo generation times for an important bacterial commensal, indicating that colonization of the human upper respiratory tract is characterized by a highly dynamic equilibrium between bacterial growth and removal.
Collapse
Affiliation(s)
- Anna K Szafrańska
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany.,German Center for Infection Research (DZIF), Braunschweig site, Germany
| | - Vera Junker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Matthias Steglich
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany.,German Center for Infection Research (DZIF), Braunschweig site, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany. .,German Center for Infection Research (DZIF), Braunschweig site, Germany. .,Braunschweig Integrated Centre of Systems Biology (BRICS), Technical University Braunschweig, Braunschweig, Germany.
| |
Collapse
|
20
|
Rai N, Huynh L, Kim M, Tagkopoulos I. Population collapse and adaptive rescue during long‐term chemostat fermentation. Biotechnol Bioeng 2019; 116:693-703. [DOI: 10.1002/bit.26898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/02/2018] [Accepted: 12/06/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Navneet Rai
- UC Davis Genome Center, University of California Davis California
- Department of Computer Science University of California Davis California
| | - Linh Huynh
- UC Davis Genome Center, University of California Davis California
- Department of Computer Science University of California Davis California
| | - Minseung Kim
- UC Davis Genome Center, University of California Davis California
- Department of Computer Science University of California Davis California
| | - Ilias Tagkopoulos
- UC Davis Genome Center, University of California Davis California
- Department of Computer Science University of California Davis California
| |
Collapse
|
21
|
Lin W, Zeng J, Wan K, Lv L, Guo L, Li X, Yu X. Reduction of the fitness cost of antibiotic resistance caused by chromosomal mutations under poor nutrient conditions. ENVIRONMENT INTERNATIONAL 2018; 120:63-71. [PMID: 30064056 DOI: 10.1016/j.envint.2018.07.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
The prevalence of antibiotic resistance in drinking water system is pressing public health risk. Antibiotic resistance conferred by chromosomal mutations often produces fitness cost, which may affect its spread and persistence. In this study, the rifampin-resistant strains were competed with their wild-type counterparts at different nutrient levels. It was observed that the ratio of the absolute number between resistant and wild-type cells quickly decreased under rich nutrient conditions, but it slowly reduced or remained stable in the poor nutrient medium. This finding suggested that poor nutrient conditions resulted in the reduction of fitness cost of antibiotic resistance, i.e. the resistant bacteria became more competitive. Implying mechanisms analysis found that the differences of metabolic activity between wild-type and rifampin-resistant strains was significant smaller (P < 0.05) at low nutrient levels. Additionally, distinguishable large colony size rifampin-resistant strains were observed during competition assay. DNA sequencing of RNA polymerase subunit genes further revealed that these colonies could be adaptive mutants from wild-type strain in rpoB gene. To our knowledge, this is the first study to reveal that the oligotrophic conditions facilitate the persistence of antibiotic resistance in drinking water by reducing the fitness cost of the resistant strains.
Collapse
Affiliation(s)
- Wenfang Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zeng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Lv
- Institute of Quality and Standard for Agricultural products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lizheng Guo
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
22
|
Selection and Plasmid Transfer Underlie Adaptive Mutation in Escherichia coli. Genetics 2018; 210:821-841. [PMID: 30194073 DOI: 10.1534/genetics.118.301347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/30/2018] [Indexed: 11/18/2022] Open
Abstract
In the Cairns-Foster adaptive mutation system, a +1 lac frameshift mutant of Escherichia coli is plated on lactose medium, where the nondividing population gives rise to Lac+ revertant colonies during a week under selection. Reversion requires the mutant lac allele to be located on a conjugative F'lac plasmid that also encodes the error-prone DNA polymerase, DinB. Rare plated cells with multiple copies of the mutant F'lac plasmid initiate the clones that develop into revertants under selection. These initiator cells arise before plating, and their extra lac copies allow them to divide on lactose and produce identical F'lac-bearing daughter cells that can mate with each other. DNA breaks can form during plasmid transfer and their recombinational repair can initiate rolling-circle replication of the recipient plasmid. This replication is mutagenic because the amplified plasmid encodes the error-prone DinB polymerase. A new model proposes that Lac+ revertants arise during mutagenic over-replication of the F'lac plasmid under selection. This mutagenesis is focused on the plasmid because the cell chromosome replicates very little. The outer membrane protein OmpA is essential for reversion under selection. OmpA helps cells conserve energy and may stabilize the long-term mating pairs that produce revertants.
Collapse
|
23
|
Death and population dynamics affect mutation rate estimates and evolvability under stress in bacteria. PLoS Biol 2018; 16:e2005056. [PMID: 29750784 PMCID: PMC5966242 DOI: 10.1371/journal.pbio.2005056] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/23/2018] [Accepted: 04/12/2018] [Indexed: 11/29/2022] Open
Abstract
The stress-induced mutagenesis hypothesis postulates that in response to stress, bacteria increase their genome-wide mutation rate, in turn increasing the chances that a descendant is able to better withstand the stress. This has implications for antibiotic treatment: exposure to subinhibitory doses of antibiotics has been reported to increase bacterial mutation rates and thus probably the rate at which resistance mutations appear and lead to treatment failure. More generally, the hypothesis posits that stress increases evolvability (the ability of a population to generate adaptive genetic diversity) and thus accelerates evolution. Measuring mutation rates under stress, however, is problematic, because existing methods assume there is no death. Yet subinhibitory stress levels may induce a substantial death rate. Death events need to be compensated by extra replication to reach a given population size, thus providing more opportunities to acquire mutations. We show that ignoring death leads to a systematic overestimation of mutation rates under stress. We developed a system based on plasmid segregation that allows us to measure death and division rates simultaneously in bacterial populations. Using this system, we found that a substantial death rate occurs at the tested subinhibitory concentrations previously reported to increase mutation rate. Taking this death rate into account lowers and sometimes removes the signal for stress-induced mutagenesis. Moreover, even when antibiotics increase mutation rate, we show that subinhibitory treatments do not increase genetic diversity and evolvability, again because of effects of the antibiotics on population dynamics. We conclude that antibiotic-induced mutagenesis is overestimated because of death and that understanding evolvability under stress requires accounting for the effects of stress on population dynamics as much as on mutation rate. Our goal here is dual: we show that population dynamics and, in particular, the numbers of cell divisions are crucial but neglected parameters in the evolvability of a population, and we provide experimental and computational tools and methods to study evolvability under stress, leading to a reassessment of the magnitude and significance of the stress-induced mutagenesis paradigm. The effect of environmental stress on bacterial mutagenesis has been a paradigm-shift discovery. Recent developments include evidence that various antibiotics increase mutation rates in bacteria when used at subinhibitory concentrations. It is therefore suggested that such treatments promote resistance evolution because they increase the generation of genetic variation on which natural selection can act. However, existing methods to compute mutation rate neglect the effect of stress on death and population dynamics. Developing new experimental and computational tools, we find that taking death into account significantly lowers the signal for stress-induced mutagenesis. Moreover, we show that treatments that increase mutation rate do not always lead to increased genetic diversity, which questions the standard paradigm of increased evolvability under stress.
Collapse
|
24
|
Bleuven C, Landry CR. Molecular and cellular bases of adaptation to a changing environment in microorganisms. Proc Biol Sci 2017; 283:rspb.2016.1458. [PMID: 27798299 DOI: 10.1098/rspb.2016.1458] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/04/2016] [Indexed: 12/27/2022] Open
Abstract
Environmental heterogeneity constitutes an evolutionary challenge for organisms. While evolutionary dynamics under variable conditions has been explored for decades, we still know relatively little about the cellular and molecular mechanisms involved. It is of paramount importance to examine these molecular bases because they may play an important role in shaping the course of evolution. In this review, we examine the diversity of adaptive mechanisms in the face of environmental changes. We exploit the recent literature on microbial systems because those have benefited the most from the recent emergence of genetic engineering and experimental evolution followed by genome sequencing. We identify four emerging trends: (i) an adaptive molecular change in a pathway often results in fitness trade-off in alternative environments but the effects are dependent on a mutation's genetic background; (ii) adaptive changes often modify transcriptional and signalling pathways; (iii) several adaptive changes may occur within the same molecular pathway but be associated with pleiotropy of different signs across environments; (iv) because of their large associated costs, macromolecular changes such as gene amplification and aneuploidy may be a rapid mechanism of adaptation in the short-term only. The course of adaptation in a variable environment, therefore, depends on the complexity of the environment but also on the molecular relationships among the genes involved and between the genes and the phenotypes under selection.
Collapse
Affiliation(s)
- Clara Bleuven
- Département de Biologie, Université Laval, Québec, Québec, Canada .,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Québec, Canada
| | - Christian R Landry
- Département de Biologie, Université Laval, Québec, Québec, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,Big Data Research Center, Université Laval, Québec, Québec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Québec, Canada
| |
Collapse
|
25
|
Moreau PL. Rapid evolution of acetic acid-detoxifying Escherichia coli under phosphate starvation conditions requires activation of the cryptic PhnE permease and induction of translesion synthesis DNA polymerases. FEMS Microbiol Lett 2017; 364:2982872. [PMID: 28199639 DOI: 10.1093/femsle/fnx031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/05/2017] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli incubated in phosphate-limiting minimal medium dies during prolonged incubation as a result of the production of acetic acid. Variants that consume acetic acid generally sweep through the population after three serial cultures. Evolvability may primarily result from induction of the potentially mutagenic LexA DNA damage response or from growth of preexisting mutants. Cells starved of phosphate induce the LexA regulon through a unique mechanism based on an increase in the internal pH at the approach of the stationary phase. Evolved cells resume growth on phosphorylated products as a result of the activation of the cryptic PhnE permease. Here, it is shown that first PhnE-expressing revertants swept through starved populations independently of the expression of the LexA regulon. Induction of the LexA regulon and especially of the translesion synthesis DNA polymerases Pol IV and Pol V was, however, absolutely required for the ultimate evolution of acetic acid-detoxifying mutant strains. Both growth under selection and induction of translesion synthesis DNA polymerases are therefore required for adaptive evolution under phosphate starvation conditions.
Collapse
|
26
|
Avrani S, Bolotin E, Katz S, Hershberg R. Rapid Genetic Adaptation during the First Four Months of Survival under Resource Exhaustion. Mol Biol Evol 2017; 34:1758-1769. [PMID: 28369614 PMCID: PMC5455981 DOI: 10.1093/molbev/msx118] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Many bacteria, including the model bacterium Escherichia coli can survive for years within spent media, following resource exhaustion. We carried out evolutionary experiments, followed by whole genome sequencing of hundreds of evolved clones to study the dynamics by which E. coli adapts during the first 4 months of survival under resource exhaustion. Our results reveal that bacteria evolving under resource exhaustion are subject to intense selection, manifesting in rapid mutation accumulation, enrichment in functional mutation categories and extremely convergent adaptation. In the most striking example of convergent adaptation, we found that across five independent populations adaptation to conditions of resource exhaustion occurs through mutations to the three same specific positions of the RNA polymerase core enzyme. Mutations to these three sites are strongly antagonistically pleiotropic, in that they sharply reduce exponential growth rates in fresh media. Such antagonistically pleiotropic mutations, combined with the accumulation of additional mutations, severely reduce the ability of bacteria surviving under resource exhaustion to grow exponentially in fresh media. We further demonstrate that the three positions at which these resource exhaustion mutations occur are conserved for the ancestral E. coli allele, across bacterial phyla, with the exception of nonculturable bacteria that carry the resource exhaustion allele at one of these positions, at very high frequencies. Finally, our results demonstrate that adaptation to resource exhaustion is not limited by mutational input and that bacteria are able to rapidly adapt under resource exhaustion in a temporally precise manner through allele frequency fluctuations.
Collapse
Affiliation(s)
- Sarit Avrani
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Evolutionary and Environmental Biology, The Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Evgeni Bolotin
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sophia Katz
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
27
|
Krašovec R, Richards H, Gifford DR, Hatcher C, Faulkner KJ, Belavkin RV, Channon A, Aston E, McBain AJ, Knight CG. Spontaneous mutation rate is a plastic trait associated with population density across domains of life. PLoS Biol 2017; 15:e2002731. [PMID: 28837573 PMCID: PMC5570273 DOI: 10.1371/journal.pbio.2002731] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022] Open
Abstract
Rates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium. It is unknown how widespread this association is, whether it varies among organisms, and what molecular mechanisms of mutagenesis or repair are required for this mutation-rate plasticity. Here, we address all 3 questions. We identify a strong negative association between mutation rate and population density across 70 years of published literature, comprising hundreds of mutation rates estimated using phenotypic markers of mutation (fluctuation tests) from all domains of life and viruses. We test this relationship experimentally, determining that there is indeed density-associated mutation-rate plasticity (DAMP) at multiple loci in both eukaryotes and bacteria, with up to 23-fold lower mutation rates at higher population densities. We find that the degree of plasticity varies, even among closely related organisms. Nonetheless, in each domain tested, DAMP requires proteins scavenging the mutagenic oxidised nucleotide 8-oxo-dGTP. This implies that phenotypic markers give a more precise view of mutation rate than previously believed: having accounted for other known factors affecting mutation rate, controlling for population density can reduce variation in mutation-rate estimates by 93%. Widespread DAMP, which we manipulate genetically in disparate organisms, also provides a novel trait to use in the fight against the evolution of antimicrobial resistance. Such a prevalent environmental association and conserved mechanism suggest that mutation has varied plastically with population density since the early origins of life.
Collapse
Affiliation(s)
- Rok Krašovec
- Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Huw Richards
- Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Danna R. Gifford
- Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Charlie Hatcher
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Katy J. Faulkner
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Roman V. Belavkin
- School of Engineering and Information Sciences, Middlesex University, London, United Kingdom
| | - Alastair Channon
- School of Computing and Mathematics, Keele University, Keele, United Kingdom
| | - Elizabeth Aston
- School of Computing and Mathematics, Keele University, Keele, United Kingdom
| | - Andrew J. McBain
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Christopher G. Knight
- Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
28
|
|
29
|
Maharjan RP, Ferenci T. A shifting mutational landscape in 6 nutritional states: Stress-induced mutagenesis as a series of distinct stress input-mutation output relationships. PLoS Biol 2017; 15:e2001477. [PMID: 28594817 PMCID: PMC5464527 DOI: 10.1371/journal.pbio.2001477] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/15/2017] [Indexed: 12/16/2022] Open
Abstract
Environmental stresses increase genetic variation in bacteria, plants, and human cancer cells. The linkage between various environments and mutational outcomes has not been systematically investigated, however. Here, we established the influence of nutritional stresses commonly found in the biosphere (carbon, phosphate, nitrogen, oxygen, or iron limitation) on both the rate and spectrum of mutations in Escherichia coli. We found that each limitation was associated with a remarkably distinct mutational profile. Overall mutation rates were not always elevated, and nitrogen, iron, and oxygen limitation resulted in major spectral changes but no net increase in rate. Our results thus suggest that stress-induced mutagenesis is a diverse series of stress input-mutation output linkages that is distinct in every condition. Environment-specific spectra resulted in the differential emergence of traits needing particular mutations in these settings. Mutations requiring transpositions were highest under iron and oxygen limitation, whereas base-pair substitutions and indels were highest under phosphate limitation. The unexpected diversity of input-output effects explains some important phenomena in the mutational biases of evolving genomes. The prevalence of bacterial insertion sequence transpositions in the mammalian gut or in anaerobically stored cultures is due to environmentally determined mutation availability. Likewise, the much-discussed genomic bias towards transition base substitutions in evolving genomes can now be explained as an environment-specific output. Altogether, our conclusion is that environments influence genetic variation as well as selection.
Collapse
Affiliation(s)
- Ram P. Maharjan
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Ferenci
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Cho J, Carr AN, Whitworth L, Johnson B, Wilson KS. MazEF toxin-antitoxin proteins alter Escherichia coli cell morphology and infrastructure during persister formation and regrowth. Microbiology (Reading) 2017; 163:308-321. [DOI: 10.1099/mic.0.000436] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Junho Cho
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Anita Nicole Carr
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lisa Whitworth
- Microscopy Laboratory, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brent Johnson
- Microscopy Laboratory, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kevin Scott Wilson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
31
|
Mutational Consequences of Ciprofloxacin in Escherichia coli. Antimicrob Agents Chemother 2016; 60:6165-72. [PMID: 27480851 DOI: 10.1128/aac.01415-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
We examined the mutagenic specificity of the widely used antibiotic ciprofloxacin (CPR), which displays weak to moderate mutagenic activity in several bacteria and generates short in-frame deletions in rpoB in Staphylococcus aureus To determine the spectrum of mutations in a system where any gene knockout would result in a recovered mutant, including frameshifts and both short and long deletions, we examined CPR-induced mutations in the thymidylate synthase-encoding thyA gene. Here, any mutation resulting in loss of thymidylate synthase activity generates trimethoprim (Trm) resistance. We found that deletions and insertions in all three reading frames predominated in the spectrum. They tend to be short deletions and cluster in two regions, one being a GC-rich region with potential extensive secondary structures. We also exploited the well-characterized rpoB-Rif(r) system in Escherichia coli to determine that cells grown in the presence of sublethal doses of CPR not only induced short in-frame deletions in rpoB, but also generated base substitution mutations resulting from induction of the SOS system. Some of the specific point mutations prominent in the spectrum of a strain that overproduces the dinB-encoded Pol IV were also present after growth in CPR. However, these mutations disappeared in CPR-treated dinB mutants, whereas the deletions remained. Moreover, CPR-induced deletions also occurred in a strain lacking all three SOS-induced polymerases. We discuss the implications of these findings for the consequences of overuse of CPR and other antibiotics.
Collapse
|
32
|
Rifampin Resistance rpoB Alleles or Multicopy Thioredoxin/Thioredoxin Reductase Suppresses the Lethality of Disruption of the Global Stress Regulator spx in Staphylococcus aureus. J Bacteriol 2016; 198:2719-31. [PMID: 27432833 DOI: 10.1128/jb.00261-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/14/2016] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Staphylococcus aureus is capable of causing a remarkable spectrum of disease, ranging from mild skin eruptions to life-threatening infections. The survival and pathogenic potential of S. aureus depend partly on its ability to sense and respond to changes in its environment. Spx is a thiol/oxidative stress sensor that interacts with the C-terminal domain of the RNA polymerase RpoA subunit, leading to changes in gene expression that help sustain viability under various conditions. Using genetic and deep-sequencing methods, we show that spx is essential in S. aureus and that a previously reported Δspx strain harbored suppressor mutations that allowed it to grow without spx One of these mutations is a single missense mutation in rpoB (a P-to-L change at position 519 encoded by rpoB [rpoB-P519L]) that conferred high-level resistance to rifampin. This mutation alone was found to be sufficient to bypass the requirement for spx The generation of rifampin resistance libraries led to the discovery of an additional rpoB mutation, R484H, which supported strains with the spx disruption. Other rifampin resistance mutations either failed to support the Δspx mutant or were recovered at unexpectedly low frequencies in genetic transduction experiments. The amino acid residues encoded by rpoB-P519L and -R484H map in close spatial proximity and comprise a highly conserved region of RpoB. We also discovered that multicopy expression of either trxA (encoding thioredoxin) or trxB (encoding thioredoxin reductase) supports strains with the deletion of spx Our results reveal intriguing properties, especially of RNA polymerase, that compensate for the loss of an essential gene that is a key mediator of diverse processes in S. aureus, including redox and thiol homeostasis, antibiotic resistance, growth, and metabolism. IMPORTANCE The survival and pathogenicity of S. aureus depend on complex genetic programs. An objective for combating this insidious organism entails dissecting genetic regulatory circuits and discovering promising new targets for therapeutic intervention. In this study, we discovered that Spx, an RNA polymerase-interacting stress regulator implicated in many stress responses in S. aureus, including responses to oxidative and cell wall antibiotics, is essential. We describe two mechanisms that suppress the lethality of spx disruption. One mechanism highlights how only certain rifampin resistance-encoding alleles of RpoB confer new properties on RNA polymerase, with important mechanistic implications. We describe additional stress conditions where the loss of spx is deleterious, thereby highlighting Spx as a multifaceted regulator and attractive drug discovery target.
Collapse
|
33
|
Yosef I, Edgar R, Levy A, Amitai G, Sorek R, Munitz A, Qimron U. Natural selection underlies apparent stress-induced mutagenesis in a bacteriophage infection model. Nat Microbiol 2016; 1:16047. [DOI: 10.1038/nmicrobiol.2016.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/11/2016] [Indexed: 11/09/2022]
|
34
|
Steenackers HP, Parijs I, Dubey A, Foster KR, Vanderleyden J. Experimental evolution in biofilm populations. FEMS Microbiol Rev 2016; 40:373-97. [PMID: 26895713 PMCID: PMC4852284 DOI: 10.1093/femsre/fuw002] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2016] [Indexed: 12/19/2022] Open
Abstract
Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. This review paper provides an overview of (i) the different experimental models used to study biofilm evolution, (ii) the vast amount of diversification observed during biofilm evolution (including potential causes and consequences) and (iii) recent insights in how growth in biofilms can lead to the evolution of cooperative phenotypes.
Collapse
Affiliation(s)
- Hans P Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven 3001, Belgium
| | - Ilse Parijs
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven 3001, Belgium
| | | | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3QU, UK
| | - Jozef Vanderleyden
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
35
|
Colicchio R, Pagliuca C, Pastore G, Cicatiello AG, Pagliarulo C, Talà A, Scaglione E, Sammartino JC, Bucci C, Alifano P, Salvatore P. Fitness Cost of Rifampin Resistance in Neisseria meningitidis: In Vitro Study of Mechanisms Associated with rpoB H553Y Mutation. Antimicrob Agents Chemother 2015; 59:7637-49. [PMID: 26416867 PMCID: PMC4649176 DOI: 10.1128/aac.01746-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/23/2015] [Indexed: 12/14/2022] Open
Abstract
Rifampin chemoprophylaxis against Neisseria meningitidis infections led to the onset of rifampin resistance in clinical isolates harboring point mutations in the rpoB gene, coding for the RNA polymerase β chain. These resistant strains are rare in medical practice, suggesting their decreased fitness in the human host. In this study, we isolated rifampin-resistant rpoB mutants from hypervirulent serogroup C strain 93/4286 and analyzed their different properties, including the ability to grow/survive in different culture media and in differentiated THP-1 human monocytes and to compete with the wild-type strain in vitro. Our results demonstrate that different rpoB mutations (H553Y, H553R, and S549F) may have different effects, ranging from low- to high-cost effects, on bacterial fitness in vitro. Moreover, we found that the S549F mutation confers temperature sensitivity, possibly explaining why it is observed very rarely in clinical isolates. Comparative high-throughput RNA sequencing analysis of bacteria grown in chemically defined medium demonstrated that the low-cost H553Y substitution resulted in global transcriptional changes that functionally mimic the stringent response. Interestingly, many virulence-associated genes, including those coding for meningococcal type IV pili, porin A, adhesins/invasins, IgA protease, two-partner secretion system HrpA/HrpB, enzymes involved in resistance to oxidative injury, lipooligosaccharide sialylation, and capsular polysaccharide biosynthesis, were downregulated in the H553Y mutant compared to their level of expression in the wild-type strain. These data might account for the reduced capacity of this mutant to grow/survive in differentiated THP-1 cells and explain the rarity of H553Y mutants among clinical isolates.
Collapse
Affiliation(s)
- Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy SDN-Foundation, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy Ceinge Advanced Biotechnologies, Naples, Italy
| | - Gabiria Pastore
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | | | - Caterina Pagliarulo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - Josè Camilla Sammartino
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy Ceinge Advanced Biotechnologies, Naples, Italy
| |
Collapse
|
36
|
Abstract
Early research on the origins and mechanisms of mutation led to the establishment of the dogma that, in the absence of external forces, spontaneous mutation rates are constant. However, recent results from a variety of experimental systems suggest that mutation rates can increase in response to selective pressures. This chapter summarizes data demonstrating that,under stressful conditions, Escherichia coli and Salmonella can increase the likelihood of beneficial mutations by modulating their potential for genetic change.Several experimental systems used to study stress-induced mutagenesis are discussed, with special emphasison the Foster-Cairns system for "adaptive mutation" in E. coli and Salmonella. Examples from other model systems are given to illustrate that stress-induced mutagenesis is a natural and general phenomenon that is not confined to enteric bacteria. Finally, some of the controversy in the field of stress-induced mutagenesis is summarized and discussed, and a perspective on the current state of the field is provided.
Collapse
|
37
|
Abstract
The classical experiments of Luria and Delbrück showed convincingly that mutations exist before selection and do not contribute to the creation of mutations when selection is lethal. In contrast, when nonlethal selections are used,measuring mutation rates and separating the effects of mutation and selection are difficult and require methods to fully exclude growth after selection has been applied. Although many claims of stress-induced mutagenesis have been made, it is difficult to exclude the influence of growth under nonlethal selection conditions in accounting for the observed increases in mutant frequency. Instead, for many of the studied experimental systems the increase in mutant frequency can be explainedbetter by the ability of selection to detect small differences in growth rate caused by common small effect mutations. A verycommon mutant class,found in response to many different types of selective regimensin which increased gene dosage can resolve the problem, is gene amplification. In the well-studiedlac system of Cairns and Foster, the apparent increase in Lac+revertants can be explained by high-level amplification of the lac operon and the increased probability for a reversion mutation to occur in any one of the amplified copies. The associated increase in general mutation rate observed in revertant cells in that system is an artifact caused by the coincidental co-amplification of the nearby dinB gene (encoding the error-prone DNA polymerase IV) on the particular plasmid used for these experiments. Apart from the lac system, similar gene amplification processes have been described for adaptation to toxic drugs, growth in host cells, and various nutrient limitations.
Collapse
|
38
|
Moura de Sousa J, Sousa A, Bourgard C, Gordo I. Potential for adaptation overrides cost of resistance. Future Microbiol 2015; 10:1415-31. [PMID: 26343510 DOI: 10.2217/fmb.15.61] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIM To investigate the cost of antibiotic resistance versus the potential for resistant clones to adapt in maintaining polymorphism for resistance. MATERIALS & METHODS Experimental evolution of Escherichia coli carrying different resistance alleles was performed under an environment devoid of antibiotics and evolutionary parameters estimated from their frequencies along time. RESULTS & CONCLUSION Costly resistance mutations were found to coexist with lower cost resistances for hundreds of generations, contrary to the hypothesis that the cost of a resistance dictates its extinction. Estimated evolutionary parameters for the different resistance backgrounds suggest a higher adaptive potential of clones with costly antibiotic resistance mutations, overriding their initial cost of resistance and allowing their maintenance in the absence of drugs.
Collapse
Affiliation(s)
| | - Ana Sousa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, Portugal
| | - Catarina Bourgard
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, Portugal
| |
Collapse
|
39
|
Hershberg R. Mutation--The Engine of Evolution: Studying Mutation and Its Role in the Evolution of Bacteria. Cold Spring Harb Perspect Biol 2015; 7:a018077. [PMID: 26330518 DOI: 10.1101/cshperspect.a018077] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mutation is the engine of evolution in that it generates the genetic variation on which the evolutionary process depends. To understand the evolutionary process we must therefore characterize the rates and patterns of mutation. Starting with the seminal Luria and Delbruck fluctuation experiments in 1943, studies utilizing a variety of approaches have revealed much about mutation rates and patterns and about how these may vary between different bacterial strains and species along the chromosome and between different growth conditions. This work provides a critical overview of the results and conclusions drawn from these studies, of the debate surrounding some of these conclusions, and of the challenges faced when studying mutation and its role in bacterial evolution.
Collapse
Affiliation(s)
- Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
40
|
Miotto P, Cirillo DM, Migliori GB. Drug resistance in Mycobacterium tuberculosis: molecular mechanisms challenging fluoroquinolones and pyrazinamide effectiveness. Chest 2015; 147:1135-1143. [PMID: 25846529 DOI: 10.1378/chest.14-1286] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Physicians are more and more often challenged by difficult-to-treat cases of TB. They include patients infected by strains of Mycobacterium tuberculosis that are resistant to at least isoniazid and rifampicin (multidrug-resistant TB) or to at least one fluoroquinolone (FQ) and one injectable, second-line anti-TB drug in addition to isoniazid and rifampicin (extensively drug-resistant TB). The drug treatment of these cases is very long, toxic, and expensive, and, unfortunately, the proportion of unsatisfactory outcomes is still considerably high. Although FQs and pyrazinamide (PZA) are backbone drugs in the available anti-TB regimens, several uncertainties remain about their mechanisms of action and even more remain about the mechanisms leading to drug resistance. From a clinical point of view, a better understanding of the genetic basis of drug resistance will aid (1) clinicians to provide quality clinical management to both drug-susceptible and drug-resistant TB cases (while preventing emergence of further resistance), and (2) developers of new molecular-based diagnostic assays to better direct their research efforts toward a new generation of sensitive, specific, cheap, and easy-to-use point-of-care diagnostics. In this review we provide an update on the molecular mechanisms leading to FQ- and PZA-resistance in M tuberculosis.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Battista Migliori
- WHO Collaborating Centre for TB and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy.
| |
Collapse
|
41
|
A source of artifact in the lacZ reversion assay in Escherichia coli. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 784-785:23-30. [PMID: 26046973 DOI: 10.1016/j.mrgentox.2015.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/06/2015] [Accepted: 04/15/2015] [Indexed: 11/20/2022]
Abstract
The lacZ reversion assay in Escherichia coli measures point mutations that occur by specific base substitutions and frameshift mutations. The tester strains cannot use lactose as a carbon source (Lac(-)), and revertants are easily detected by growth on lactose medium (Lac(+)). Six strains identify the six possible base substitutions, and five strains measure +G, -G, -CG, +A and -A frameshifts. Strong mutagens give dose-dependent increases in numbers of revertants per plate and revertant frequencies. Testing compounds that are arguably nonmutagens or weakly mutagenic, we often noted statistically significant dose-dependent increases in revertant frequency that were not accompanied by an absolute increase in numbers of revertants. The increase in frequency was wholly ascribable to a declining number of viable cells owing to toxicity. Analysis of the conditions revealed that the frequency of spontaneous revertants is higher when there are fewer viable cells per plate. The phenomenon resembles "adaptive" or "stress" mutagenesis, whereby lactose revertants accumulate in Lac(-) bacteria under starvation conditions in the absence of catabolite repression. Adaptive mutation is observed after long incubation and might be expected to be irrelevant in a standard assay using 48-h incubation. However, we found that elevated revertant frequencies occur under typical assay conditions when the bacterial lawn is thin, and this can cause increases in revertant frequency that mimic chemical mutagenesis when treatments are toxic but not mutagenic. Responses that resemble chemical mutagenesis were observed in the absence of mutagenic treatment in strains that revert by different frameshift mutations. The magnitude of the artifact is affected by cell density, dilution, culture age, incubation time, catabolite repression and the age and composition of media. Although the specific reversion assay is effective for quickly distinguishing classes of mutations induced by potent mutagens, its utility for discerning effects of weak mutagens may be compromised by the artifact.
Collapse
|
42
|
Field W, Hershberg R. Alarmingly High Segregation Frequencies of Quinolone Resistance Alleles within Human and Animal Microbiomes Are Not Explained by Direct Clinical Antibiotic Exposure. Genome Biol Evol 2015; 7:1743-57. [PMID: 26019163 PMCID: PMC4494058 DOI: 10.1093/gbe/evv102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antibiotic resistance poses a major threat to human health. It is therefore important to characterize the frequency of resistance within natural bacterial environments. Many studies have focused on characterizing the frequencies with which horizontally acquired resistance genes segregate within natural bacterial populations. Yet, very little is currently understood regarding the frequency of segregation of resistance alleles occurring within the housekeeping targets of antibiotics. We surveyed a large number of metagenomic datasets extracted from a large variety of host-associated and non host-associated environments for such alleles conferring resistance to three groups of broad spectrum antibiotics: streptomycin, rifamycins, and quinolones. We find notable segregation frequencies of resistance alleles occurring within the target genes of each of the three antibiotics, with quinolone resistance alleles being the most frequent and rifamycin resistance alleles being the least frequent. Resistance allele frequencies varied greatly between different phyla and as a function of environment. The frequency of quinolone resistance alleles was especially high within host-associated environments, where it averaged an alarming ∼40%. Within host-associated environments, resistance to quinolones was most often conferred by a specific resistance allele. High frequencies of quinolone resistance alleles were also found within hosts that were not directly treated with antibiotics. Therefore, the high segregation frequency of quinolone resistance alleles occurring within the housekeeping targets of antibiotics in host-associated environments does not seem to be the sole result of clinical antibiotic usage.
Collapse
Affiliation(s)
- Wesley Field
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
43
|
Vogwill T, Kojadinovic M, Furió V, MacLean RC. Testing the role of genetic background in parallel evolution using the comparative experimental evolution of antibiotic resistance. Mol Biol Evol 2014; 31:3314-23. [PMID: 25228081 PMCID: PMC4245821 DOI: 10.1093/molbev/msu262] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Parallel evolution is the independent evolution of the same phenotype or genotype in response to the same selection pressure. There are examples of parallel molecular evolution across divergent genetic backgrounds, suggesting that genetic background may not play an important role in determining the outcome of adaptation. Here, we measure the influence of genetic background on phenotypic and molecular adaptation by combining experimental evolution with comparative analysis. We selected for resistance to the antibiotic rifampicin in eight strains of bacteria from the genus Pseudomonas using a short term selection experiment. Adaptation occurred by 47 mutations at conserved sites in rpoB, the target of rifampicin, and due to the high diversity of possible mutations the probability of within-strain parallel evolution was low. The probability of between-strain parallel evolution was only marginally lower, because different strains substituted similar rpoB mutations. In contrast, we found that more than 30% of the phenotypic variation in the growth rate of evolved clones was attributable to among-strain differences. Parallel molecular evolution across strains resulted in divergent phenotypic evolution because rpoB mutations had different effects on growth rate in different strains. This study shows that genetic divergence between strains constrains parallel phenotypic evolution, but had little detectable impact on the molecular basis of adaptation in this system.
Collapse
Affiliation(s)
- Tom Vogwill
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Mila Kojadinovic
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, IMM, Marseille, France
| | - Victoria Furió
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Acetate availability and utilization supports the growth of mutant sub-populations on aging bacterial colonies. PLoS One 2014; 9:e109255. [PMID: 25275605 PMCID: PMC4183559 DOI: 10.1371/journal.pone.0109255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/08/2014] [Indexed: 11/19/2022] Open
Abstract
When bacterial colonies age most cells enter a stationary phase, but sub-populations of mutant bacteria can continue to grow and accumulate. These sub-populations include bacteria with mutations in rpoB (RNA polymerase β-subunit) or rpoS (RNA polymerase stress-response sigma factor). Here we have identified acetate as a nutrient present in the aging colonies that is utilized by these mutant subpopulations to support their continued growth. Proteome analysis of aging colonies showed that several proteins involved in acetate conversion and utilization were upregulated during aging. Acetate is known to be excreted during the exponential growth phase but can be imported later during the transition to stationary phase and converted to acetyl-CoA. Acetyl-CoA is used in multiple processes, including feeding into the TCA cycle, generating ATP via the glyoxylate shunt, as a source of acetyl groups for protein modification, and to support fatty acid biosynthesis. We showed that deletion of acs (encodes acetyl-CoA synthetase; converts acetate into acetyl-CoA) significantly reduced the accumulation of rpoB and rpoS mutant subpopulations on aging colonies. Measurement of radioactive acetate uptake showed that the rate of conversion decreased in aging wild-type colonies, was maintained at a constant level in the rpoB mutant, and significantly increased in the aging rpoS mutant. Finally, we showed that the growth of subpopulations on aging colonies was greatly enhanced if the aging colony itself was unable to utilize acetate, leaving more acetate available for mutant subpopulations to use. Accordingly, the data show that the accumulation of subpopulations of rpoB and rpoS mutants on aging colonies is supported by the availability in the aging colony of acetate, and by the ability of the subpopulation cells to convert the acetate to acetyl-CoA.
Collapse
|
45
|
Hall AR, Angst DC, Schiessl KT, Ackermann M. Costs of antibiotic resistance - separating trait effects and selective effects. Evol Appl 2014; 8:261-72. [PMID: 25861384 PMCID: PMC4380920 DOI: 10.1111/eva.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/06/2014] [Indexed: 12/26/2022] Open
Abstract
Antibiotic resistance can impair bacterial growth or competitive ability in the absence of antibiotics, frequently referred to as a ‘cost’ of resistance. Theory and experiments emphasize the importance of such effects for the distribution of resistance in pathogenic populations. However, recent work shows that costs of resistance are highly variable depending on environmental factors such as nutrient supply and population structure, as well as genetic factors including the mechanism of resistance and genetic background. Here, we suggest that such variation can be better understood by distinguishing between the effects of resistance mechanisms on individual traits such as growth rate or yield (‘trait effects’) and effects on genotype frequencies over time (‘selective effects’). We first give a brief overview of the biological basis of costs of resistance and how trait effects may translate to selective effects in different environmental conditions. We then review empirical evidence of genetic and environmental variation of both types of effects and how such variation may be understood by combining molecular microbiological information with concepts from evolution and ecology. Ultimately, disentangling different types of costs may permit the identification of interventions that maximize the cost of resistance and therefore accelerate its decline.
Collapse
Affiliation(s)
- Alex R Hall
- Institute of Integrative Biology, ETH Zürich Zürich, Switzerland ; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| | - Daniel C Angst
- Institute of Integrative Biology, ETH Zürich Zürich, Switzerland ; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| | - Konstanze T Schiessl
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| |
Collapse
|
46
|
Koch A, Mizrahi V, Warner DF. The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin? Emerg Microbes Infect 2014; 3:e17. [PMID: 26038512 PMCID: PMC3975073 DOI: 10.1038/emi.2014.17] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/12/2013] [Accepted: 12/30/2013] [Indexed: 01/08/2023]
Abstract
The emergence of drug-resistant pathogens poses a major threat to public health. Although influenced by multiple factors, high-level resistance is often associated with mutations in target-encoding or related genes. The fitness cost of these mutations is, in turn, a key determinant of the spread of drug-resistant strains. Rifampicin (RIF) is a frontline anti-tuberculosis agent that targets the rpoB-encoded β subunit of the DNA-dependent RNA polymerase (RNAP). In Mycobacterium tuberculosis (Mtb), RIF resistance (RIF(R)) maps to mutations in rpoB that are likely to impact RNAP function and, therefore, the ability of the organism to cause disease. However, while numerous studies have assessed the impact of RIF(R) on key Mtb fitness indicators in vitro, the consequences of rpoB mutations for pathogenesis remain poorly understood. Here, we examine evidence from diverse bacterial systems indicating very specific effects of rpoB polymorphisms on cellular physiology, and consider these observations in the context of Mtb. In addition, we discuss the implications of these findings for the propagation of clinically relevant RIF(R) mutations. While our focus is on RIF, we also highlight results which suggest that drug-independent effects might apply to a broad range of resistance-associated mutations, especially in an obligate pathogen increasingly linked with multidrug resistance.
Collapse
Affiliation(s)
- Anastasia Koch
- Medical Research Council/National Health Laboratory Service/University of Cape Town Molecular Mycobacteriology Research Unit, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town , Cape Town 7701, South Africa
| | - Valerie Mizrahi
- Medical Research Council/National Health Laboratory Service/University of Cape Town Molecular Mycobacteriology Research Unit, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town , Cape Town 7701, South Africa
| | - Digby F Warner
- Medical Research Council/National Health Laboratory Service/University of Cape Town Molecular Mycobacteriology Research Unit, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town , Cape Town 7701, South Africa
| |
Collapse
|
47
|
Katz S, Hershberg R. Elevated mutagenesis does not explain the increased frequency of antibiotic resistant mutants in starved aging colonies. PLoS Genet 2013; 9:e1003968. [PMID: 24244205 PMCID: PMC3828146 DOI: 10.1371/journal.pgen.1003968] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 10/06/2013] [Indexed: 11/18/2022] Open
Abstract
The frequency of mutants resistant to the antibiotic rifampicin has been shown to increase in aging (starved), compared to young colonies of Eschierchia coli. These increases in resistance frequency occur in the absence of any antibiotic exposure, and similar increases have also been observed in response to additional growth limiting conditions. Understanding the causes of such increases in the frequency of resistance is important for understanding the dynamics of antibiotic resistance emergence and spread. Increased frequency of rifampicin resistant mutants in aging colonies is cited widely as evidence of stress-induced mutagenesis (SIM), a mechanism thought to allow bacteria to increase mutation rates upon exposure to growth-limiting stresses. At the same time it has been demonstrated that some rifampicin resistant mutants are relatively fitter in aging compared to young colonies, indicating that natural selection may also contribute to increased frequency of rifampicin resistance in aging colonies. Here, we demonstrate that the frequency of mutants resistant to both rifampicin and an additional antibiotic (nalidixic-acid) significantly increases in aging compared to young colonies of a lab strain of Escherichia coli. We then use whole genome sequencing to demonstrate conclusively that SIM cannot explain the observed magnitude of increased frequency of resistance to these two antibiotics. We further demonstrate that, as was previously shown for rifampicin resistance mutations, mutations conferring nalidixic acid resistance can also increase fitness in aging compared to young colonies. Our results show that increases in the frequency of antibiotic resistant mutants in aging colonies cannot be seen as evidence of SIM. Furthermore, they demonstrate that natural selection likely contributes to increases in the frequency of certain antibiotic resistance mutations, even when no selection is exerted due to the presence of antibiotics. Antibiotic resistance is one of the most pressing threats on human health worldwide. Such resistance has been increasing largely due to widespread antibiotic usage. However, it has also been noticed that under certain growth limiting conditions, there is an increase in resistance frequency that is independent of the presence of antibiotics. Such increases in antibiotic resistance frequency can greatly affect the dynamics of antibiotic resistance emergence and spread. Yet currently their causes are far from understood. Many assume that we observe more resistance mutations when growth is limited, because more mutations occur under such conditions. Here we use whole genome sequencing to show that increases in resistance frequency to two different antibiotics under starvation cannot be explained by increased mutagenesis. We further show that at least some of the increase in resistance frequency is likely to be explained by natural selection that favors certain resistance mutations conferring increased fitness under starvation. These results are intriguing as they demonstrate that positive selection may contribute to increases in the frequency of certain antibiotic resistance mutations, even in the absence of selection exerted by the presence of antibiotics.
Collapse
Affiliation(s)
- Sophia Katz
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
48
|
Gunka K, Stannek L, Care RA, Commichau FM. Selection-driven accumulation of suppressor mutants in bacillus subtilis: the apparent high mutation frequency of the cryptic gudB gene and the rapid clonal expansion of gudB(+) suppressors are due to growth under selection. PLoS One 2013; 8:e66120. [PMID: 23785476 PMCID: PMC3681913 DOI: 10.1371/journal.pone.0066120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/01/2013] [Indexed: 11/25/2022] Open
Abstract
Soil bacteria like Bacillus subtilis can cope with many growth conditions by adjusting gene expression and metabolic pathways. Alternatively, bacteria can spontaneously accumulate beneficial mutations or shape their genomes in response to stress. Recently, it has been observed that a B. subtilis mutant lacking the catabolically active glutamate dehydrogenase (GDH), RocG, mutates the cryptic gudBCR gene at a high frequency. The suppressor mutants express the active GDH GudB, which can fully replace the function of RocG. Interestingly, the cryptic gudBCR allele is stably inherited as long as the bacteria synthesize the functional GDH RocG. Competition experiments revealed that the presence of the cryptic gudBCR allele provides the bacteria with a selective growth advantage when glutamate is scarce. Moreover, the lack of exogenous glutamate is the driving force for the selection of mutants that have inactivated the active gudB gene. In contrast, two functional GDHs are beneficial for the cells when glutamate was available. Thus, the amount of GDH activity strongly affects fitness of the bacteria depending on the availability of exogenous glutamate. At a first glance the high mutation frequency of the cryptic gudBCR allele might be attributed to stress-induced adaptive mutagenesis. However, other loci on the chromosome that could be potentially mutated during growth under the selective pressure that is exerted on a GDH-deficient mutant remained unaffected. Moreover, we show that a GDH-proficient B. subtilis strain has a strong selective growth advantage in a glutamate-dependent manner. Thus, the emergence and rapid clonal expansion of the active gudB allele can be in fact explained by spontaneous mutation and growth under selection without an increase of the mutation rate. Moreover, this study shows that the selective pressure that is exerted on a maladapted bacterium strongly affects the apparent mutation frequency of mutational hot spots.
Collapse
Affiliation(s)
- Katrin Gunka
- Department of General Microbiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Lorena Stannek
- Department of General Microbiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Rachel A. Care
- Department of General Microbiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Fabian M. Commichau
- Department of General Microbiology, Georg-August-University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
49
|
Brandis G, Hughes D. Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. J Antimicrob Chemother 2013; 68:2493-7. [PMID: 23759506 DOI: 10.1093/jac/dkt224] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES The evolution of rifampicin resistance in Mycobacterium tuberculosis is a major threat to effective tuberculosis therapy. Much is known about the initial emergence of rifampicin resistance, but the further evolution of these resistant strains has only lately been subject to investigation. Although resistance can be caused by many different mutations in rpoB, among clinical M. tuberculosis isolates the mutation rpoB S531L is overwhelmingly the most frequently found. Clinical isolates with rpoB S531L frequently carry additional mutations in genes for RNA polymerase subunits, and it has been speculated that these are fitness-compensatory mutations, ameliorating the fitness cost of the primary resistance mutation. We tested this hypothesis using Salmonella as a model organism. METHODS We created the rpoB S531L mutation in Salmonella and then evolved independent lineages with selection for mutants with increased relative fitness. Relative fitness associated with putative compensatory mutations was measured after genetic reconstruction in isogenic strains. RESULTS Compensatory mutations were identified in genes coding for different subunits of RNA polymerase: rpoA, rpoB and rpoC. Genetic reconstructions demonstrated that each of these secondary mutations reduced the fitness cost of the rpoB S531L resistance mutation. CONCLUSIONS The compensatory mutations identified in Salmonella cluster in similar locations to the additional mutations found in M. tuberculosis isolates. These new data strongly support the idea that many of the previously identified rpoA, rpoB and rpoC mutations in rifampicin-resistant M. tuberculosis (rpoB S531L) are indeed fitness-compensatory mutations.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
50
|
Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli. Genetics 2013; 194:409-20. [PMID: 23589461 DOI: 10.1534/genetics.113.151837] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to <20% during long-term stationary phase. Pol IV transcription dominates as cells transition out of exponential phase into stationary phase and a burst of Pol V transcription is observed as cells transition from death phase to long-term stationary phase. These changes in alternative DNA polymerase transcription occur in the absence of SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution.
Collapse
|