1
|
Nishimura A, Tanahashi R, Takagi H. The Yeast F-Box Protein Met30 Regulates Proline Utilization Independently of Transceptor Can1 Under Nutrient-Rich Conditions. Microorganisms 2024; 12:2510. [PMID: 39770713 PMCID: PMC11679997 DOI: 10.3390/microorganisms12122510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Proline is the most abundant amino acid in wine and beer, largely due to the limited utilization of proline by the yeast Saccharomyces cerevisiae during fermentation. Previous studies have shown that the arginine transporter Can1 plays a role in regulating proline utilization by acting as a transceptor, combining the functions of both a transporter and a receptor for basic amino acids. However, the CAN1-disrupted strains have exhibited the inhibition of proline utilization under nutrient-rich conditions, indicating that additional factors beyond basic amino acids contribute to the inhibition of proline utilization. Here, we used the parent strain with the CAN1 deletion to derive mutants that can utilize proline even under nutrient-rich conditions. A genomic analysis revealed a mutation in the MET30 gene, which encodes an F-box subunit of the SCF ubiquitin ligase complex, that causes reduced Met30 function. Importantly, we found that Met30 and Can1 independently regulate proline utilization. Our screening showed that the Met30-dependent inhibition of proline utilization occurs when ammonium ions, methionine or cysteine, and another amino acid (especially threonine or isoleucine) are present simultaneously. The present data offer new insights into the regulation of proline metabolism.
Collapse
Affiliation(s)
- Akira Nishimura
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan;
| | - Ryoya Tanahashi
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan;
- Department of Food Science and Technology, University of California Davis, One Shields Ave., Davis, CA 95616, USA
| | - Hiroshi Takagi
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan;
| |
Collapse
|
2
|
Advani D, Kumar P. Uncovering Cell Cycle Dysregulations and Associated Mechanisms in Cancer and Neurodegenerative Disorders: A Glimpse of Hope for Repurposed Drugs. Mol Neurobiol 2024; 61:8600-8630. [PMID: 38532240 DOI: 10.1007/s12035-024-04130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The cell cycle is the sequence of events orchestrated by a complex network of cell cycle proteins. Unlike normal cells, mature neurons subsist in a quiescent state of the cell cycle, and aberrant cell cycle activation triggers neuronal death accompanied by neurodegeneration. The periodicity of cell cycle events is choreographed by various mechanisms, including DNA damage repair, oxidative stress, neurotrophin activity, and ubiquitin-mediated degradation. Given the relevance of cell cycle processes in cancer and neurodegeneration, this review delineates the overlapping cell cycle events, signaling pathways, and mechanisms associated with cell cycle aberrations in cancer and the major neurodegenerative disorders. We suggest that dysregulation of some common fundamental signaling processes triggers anomalous cell cycle activation in cancer cells and neurons. We discussed the possible use of cell cycle inhibitors for neurodegenerative disorders and described the associated challenges. We propose that a greater understanding of the common mechanisms driving cell cycle aberrations in cancer and neurodegenerative disorders will open a new avenue for the development of repurposed drugs.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
3
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Opposing Roles of FACT for Euchromatin and Heterochromatin in Yeast. Biomolecules 2023; 13:biom13020377. [PMID: 36830746 PMCID: PMC9953268 DOI: 10.3390/biom13020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
DNA is stored in the nucleus of a cell in a folded state; however, only the necessary genetic information is extracted from the required group of genes. The key to extracting genetic information is chromatin ambivalence. Depending on the chromosomal region, chromatin is characterized into low-density "euchromatin" and high-density "heterochromatin", with various factors being involved in its regulation. Here, we focus on chromatin regulation and gene expression by the yeast FACT complex, which functions in both euchromatin and heterochromatin. FACT is known as a histone H2A/H2B chaperone and was initially reported as an elongation factor associated with RNA polymerase II. In budding yeast, FACT activates promoter chromatin by interacting with the transcriptional activators SBF/MBF via the regulation of G1/S cell cycle genes. In fission yeast, FACT plays an important role in the formation of higher-order chromatin structures and transcriptional repression by binding to Swi6, an HP1 family protein, at heterochromatin. This FACT property, which refers to the alternate chromatin-regulation depending on the binding partner, is an interesting phenomenon. Further analysis of nucleosome regulation within heterochromatin is expected in future studies.
Collapse
|
5
|
Ghosh R, Biswas P, Das M, Pal S, Dam S. In silico analysis of a Skp1 protein homolog from the human pathogen E. histolytica. J Parasit Dis 2022; 46:998-1010. [PMID: 36457763 PMCID: PMC9606183 DOI: 10.1007/s12639-022-01523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/03/2022] [Indexed: 10/16/2022] Open
Abstract
SCF complex consisting of Skp1, Cullins, F-box proteins, is the largest family of E3 ubiquitin ligases that promotes ubiquitination of many substrate proteins and controls numerous cellular processes. Skp1 is an adapter protein that binds directly to the F-box proteins. In this study, we have presented the first comprehensive analysis of the presence of peptides or proteins in the human pathogen Entamoeba histolytica having homology to Skp1protein. The occurrence of other protein components of the SCF complex has been identified from protein-protein interaction network of EhSkp1A. Studying the role of Skp1protein in this pathogen would help to understand its unique chromosome segregation and cell division which are different from higher eukaryotes. Further, owing to the development of resistance over several drugs that are currently available, there is a growing need for a novel drug against E. histolytica. Proteins from ubiquitin-proteasome pathway have received attention as potential drug targets in other parasites. We have identified four homologs of Skp1 protein in E. histolytica strain HM-1: IMSS. Molecular docking study between EhSkp1A and an F-box/WD domain-containing protein (EhFBXW) shows that the F-box domain in the N-terminal region of EhFBXW interacts with EhSkp1A. Therefore, the results of the present study shall provide a stable foundation for further research on the cell cycle regulation of E. histolytica and this will help researchers to develop new drugs against this parasite. Supplementary Information The online version contains supplementary material available at 10.1007/s12639-022-01523-0.
Collapse
Affiliation(s)
- Raktim Ghosh
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| | - Pinaki Biswas
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| | - Moubonny Das
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| | - Suchetana Pal
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| |
Collapse
|
6
|
Gonzalez C, Akula S, Burleson M. The role of mediator subunit 12 in tumorigenesis and cancer therapeutics (Review). Oncol Lett 2022; 23:74. [PMID: 35111243 PMCID: PMC8771631 DOI: 10.3892/ol.2022.13194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Mediator complex subunit 12 (MED12) is a subunit of Mediator, a large multi-subunit protein complex that acts an important regulator of transcription. Specifically, MED12 is an integral part of the kinase module of Mediator along with MED13, CyclinC (CycC) and CDK8. Structural studies have indicated that MED12 makes a direct connection to CycC through a specific interface and thereby functions to create a link between MED13 and CycC-CDK8. Disruption of the MED12-CycC interface often leads to dysregulated CDK8 kinase activity, which has important physiological implications. For example, a number of studies have indicated that mutations within MED12 can lead to the formation of benign or malignant tumors, either as a result of MED12-CycC disruption or through distinct independent mechanisms. Furthermore, recent studies have indicated that the N-terminal portion of MED12 forms a direct connection to CDK8. Mutations within MED12 do not appear to disrupt the physical connection to CDK8, but rather abrogate CDK8 kinase activity. Thus, mutations in MED12 can cause disruption of CDK8 kinase activity through two separate mechanisms. The aim of the present review article was to discuss the MED12 mutational landscape in a variety of benign and malignant tumors, as well as the mechanistic basis behind tumorigenesis. Furthermore, the link between MED12 and drug resistance has also been discussed, as well as potential cancer therapeutics related to MED12-altered tumors.
Collapse
Affiliation(s)
- Cristian Gonzalez
- Department of Biology, University of The Incarnate Word, San Antonio, TX 78209, USA
| | - Shivani Akula
- Department of Chemistry, University of The Incarnate Word, San Antonio, TX 78209, USA
| | - Marieke Burleson
- Department of Biology, University of The Incarnate Word, San Antonio, TX 78209, USA
| |
Collapse
|
7
|
Hayashi H, Kishi T. A Set of Plasmid-Based Modules for Easy Switching of C-Terminal Epitope Tags in Saccharomyces cerevisiae. Microorganisms 2021; 9:2505. [PMID: 34946108 PMCID: PMC8707574 DOI: 10.3390/microorganisms9122505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Epitope tagging is a powerful strategy for analyzing the functions of targeted proteins. The use of this strategy has become more convenient with the development of the epitope switch, which is another type of epitope tagging designed to convert the previously tagged epitopes on the chromosome to other epitopes of interest. Various modules for C-terminal epitope switching have been developed and amplified using the one-step polymerase chain reaction (PCR) method before transformation. However, PCR amplification occasionally generates mutations that affect the fidelity of epitope switching. Here, we constructed several plasmids to isolate modules for epitope switching through digestion by restriction enzymes. The isolated modules contained DNA sequences for homologous recombination, various epitopes (13×Myc, 6×HA, GFP, Venus, YFP, mCherry, and CFP), and a transformation marker (Candida glabrata LEU2). The restriction enzyme-digested plasmids were used to directly transform the cells for epitope switching. We demonstrate the efficient and accurate switching of the MX6 module-based C-terminal tandem affinity purification tags to each aforementioned epitope. We believe that our plasmids can serve as powerful tools for the functional analysis of yeast proteins.
Collapse
Affiliation(s)
| | - Tsutomu Kishi
- College of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan;
| |
Collapse
|
8
|
Barberis M. Quantitative model of eukaryotic Cdk control through the Forkhead CONTROLLER. NPJ Syst Biol Appl 2021; 7:28. [PMID: 34117265 PMCID: PMC8196193 DOI: 10.1038/s41540-021-00187-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
In budding yeast, synchronization of waves of mitotic cyclins that activate the Cdk1 kinase occur through Forkhead transcription factors. These molecules act as controllers of their sequential order and may account for the separation in time of incompatible processes. Here, a Forkhead-mediated design principle underlying the quantitative model of Cdk control is proposed for budding yeast. This design rationalizes timing of cell division, through progressive and coordinated cyclin/Cdk-mediated phosphorylation of Forkhead, and autonomous cyclin/Cdk oscillations. A "clock unit" incorporating this design that regulates timing of cell division is proposed for both yeast and mammals, and has a DRIVER operating the incompatible processes that is instructed by multiple CLOCKS. TIMERS determine whether the clocks are active, whereas CONTROLLERS determine how quickly the clocks shall function depending on external MODULATORS. This "clock unit" may coordinate temporal waves of cyclin/Cdk concentration/activity in the eukaryotic cell cycle making the driver operate the incompatible processes, at separate times.
Collapse
Affiliation(s)
- Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, UK.
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Kimoto M, Hirao I. Genetic alphabet expansion technology by creating unnatural base pairs. Chem Soc Rev 2020; 49:7602-7626. [PMID: 33015699 DOI: 10.1039/d0cs00457j] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advancements in the creation of artificial extra base pairs (unnatural base pairs, UBPs) are opening the door to a new research area, xenobiology, and genetic alphabet expansion technologies. UBPs that function as third base pairs in replication, transcription, and/or translation enable the site-specific incorporation of novel components into DNA, RNA, and proteins. Here, we describe the UBPs developed by three research teams and their application in PCR-based diagnostics, high-affinity DNA aptamer generation, site-specific labeling of RNAs, semi-synthetic organism creation, and unnatural-amino-acid-containing protein synthesis.
Collapse
Affiliation(s)
- Michiko Kimoto
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore.
| | | |
Collapse
|
10
|
CDK8 Regulates Insulin Secretion and Mediates Postnatal and Stress-Induced Expression of Neuropeptides in Pancreatic β Cells. Cell Rep 2020; 28:2892-2904.e7. [PMID: 31509750 DOI: 10.1016/j.celrep.2019.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/26/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) contribute to vital cellular processes including cell cycle regulation. Loss of CDKs is associated with impaired insulin secretion and β cell survival; however, the function of CDK8 in β cells remains elusive. Here, we report that genetic ablation of Cdk8 improves glucose tolerance by increasing insulin secretion. We identify OSBPL3 as a CDK8-dependent phosphoprotein, which acts as a negative regulator of insulin secretion in response to glucose. We also show that embryonic gene silencing of neuropeptide Y in β cells is compromised in Cdk8-null mice, leading to continued expression into adulthood. Cdk8 ablation in β cells aggravates apoptosis and induces de novo expression of neuropeptides upon oxidative stress. Moreover, pancreatic islets exposed to stress display augmented apoptosis in the presence of these same neuropeptides. Our results reveal critical roles for CDK8 in β cell function and survival during metabolic stress that are in part mediated through de novo expression of neuropeptides.
Collapse
|
11
|
Yarrington RM, Yu Y, Yan C, Bai L, Stillman DJ. A Role for Mediator Core in Limiting Coactivator Recruitment in Saccharomyces cerevisiae. Genetics 2020; 215:407-420. [PMID: 32327563 PMCID: PMC7268993 DOI: 10.1534/genetics.120.303254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/21/2020] [Indexed: 01/12/2023] Open
Abstract
Mediator is an essential, multisubunit complex that functions as a transcriptional coactivator in yeast and other eukaryotic organisms. Mediator has four conserved modules, Head, Middle, Tail, and Kinase, and has been implicated in nearly all aspects of gene regulation. The Tail module has been shown to recruit the Mediator complex to the enhancer or upstream activating sequence (UAS) regions of genes via interactions with transcription factors, and the Kinase module facilitates the transition of Mediator from the UAS/enhancer to the preinitiation complex via protein phosphorylation. Here, we analyze expression of the Saccharomyces cerevisiaeHO gene using a sin4 Mediator Tail mutation that separates the Tail module from the rest of the complex; the sin4 mutation permits independent recruitment of the Tail module to promoters without the rest of Mediator. Significant increases in recruitment of the SWI/SNF and SAGA coactivators to the HO promoter UAS were observed in a sin4 mutant, along with increased gene activation. These results are consistent with recent studies that have suggested that the Kinase module functions negatively to inhibit activation by the Tail. However, we found that Kinase module mutations did not mimic the effect of a sin4 mutation on HO expression. This suggests that at HO the core Mediator complex (Middle and Head modules) must play a role in limiting Tail binding to the promoter UAS and gene activation. We propose that the core Mediator complex helps modulate Mediator binding to the UAS regions of genes to limit coactivator recruitment and ensure proper regulation of gene transcription.
Collapse
Affiliation(s)
- Robert M Yarrington
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Yaxin Yu
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Chao Yan
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Lu Bai
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| |
Collapse
|
12
|
Xie B, Becker E, Stuparevic I, Wery M, Szachnowski U, Morillon A, Primig M. The anti-cancer drug 5-fluorouracil affects cell cycle regulators and potential regulatory long non-coding RNAs in yeast. RNA Biol 2019; 16:727-741. [PMID: 30760080 PMCID: PMC6546400 DOI: 10.1080/15476286.2019.1581596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/16/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022] Open
Abstract
5-fluorouracil (5-FU) was isolated as an inhibitor of thymidylate synthase, which is important for DNA synthesis. The drug was later found to also affect the conserved 3'-5' exoribonuclease EXOSC10/Rrp6, a catalytic subunit of the RNA exosome that degrades and processes protein-coding and non-coding transcripts. Work on 5-FU's cytotoxicity has been focused on mRNAs and non-coding transcripts such as rRNAs, tRNAs and snoRNAs. However, the effect of 5-FU on long non-coding RNAs (lncRNAs), which include regulatory transcripts important for cell growth and differentiation, is poorly understood. RNA profiling of synchronized 5-FU treated yeast cells and protein assays reveal that the drug specifically inhibits a set of cell cycle regulated genes involved in mitotic division, by decreasing levels of the paralogous Swi5 and Ace2 transcriptional activators. We also observe widespread accumulation of different lncRNA types in treated cells, which are typically present at high levels in a strain lacking EXOSC10/Rrp6. 5-FU responsive lncRNAs include potential regulatory antisense transcripts that form double-stranded RNAs (dsRNAs) with overlapping sense mRNAs. Some of these transcripts encode proteins important for cell growth and division, such as the transcription factor Ace2, and the RNA exosome subunit EXOSC6/Mtr3. In addition to revealing a transcriptional effect of 5-FU action via DNA binding regulators involved in cell cycle progression, our results have implications for the function of putative regulatory lncRNAs in 5-FU mediated cytotoxicity. The data raise the intriguing possibility that the drug deregulates lncRNAs/dsRNAs involved in controlling eukaryotic cell division, thereby highlighting a new class of promising therapeutical targets.
Collapse
Affiliation(s)
- Bingning Xie
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
| | - Emmanuelle Becker
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
- Univ Rennes, Inria, CNRS, IRISA F-35000, Rennes, France
| | - Igor Stuparevic
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL UniversityCNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - Ugo Szachnowski
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL UniversityCNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL UniversityCNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
| |
Collapse
|
13
|
Nonaka M, Kishi T. Marker-free insertion of a series of C-terminal epitopes based on the 50:50 method in Saccharomyces cerevisiae. J GEN APPL MICROBIOL 2018; 64:99-102. [PMID: 29491249 DOI: 10.2323/jgam.2017.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Systematic approaches to identify E3 ligase substrates. Biochem J 2017; 473:4083-4101. [PMID: 27834739 PMCID: PMC5103871 DOI: 10.1042/bcj20160719] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022]
Abstract
Protein ubiquitylation is a widespread post-translational modification, regulating cellular signalling with many outcomes, such as protein degradation, endocytosis, cell cycle progression, DNA repair and transcription. E3 ligases are a critical component of the ubiquitin proteasome system (UPS), determining the substrate specificity of the cascade by the covalent attachment of ubiquitin to substrate proteins. Currently, there are over 600 putative E3 ligases, but many are poorly characterized, particularly with respect to individual protein substrates. Here, we highlight systematic approaches to identify and validate UPS targets and discuss how they are underpinning rapid advances in our understanding of the biochemistry and biology of the UPS. The integration of novel tools, model systems and methods for target identification is driving significant interest in drug development, targeting various aspects of UPS function and advancing the understanding of a diverse range of disease processes.
Collapse
|
15
|
Benanti JA. Create, activate, destroy, repeat: Cdk1 controls proliferation by limiting transcription factor activity. Curr Genet 2015; 62:271-6. [PMID: 26590602 DOI: 10.1007/s00294-015-0535-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 02/05/2023]
Abstract
Progression through the cell cycle is controlled by a network of transcription factors that coordinate gene expression with cell-cycle events. One transcriptional activator in this network in budding yeast is the forkhead protein Hcm1, which controls the expression of genes that are transcribed during S-phase. Hcm1 activity is coordinated with the cell cycle via its regulation by cyclin-dependent kinase (Cdk1), which both activates Hcm1 and targets it for degradation, through phosphorylation of distinct sites. The mechanisms controlling the differential phosphorylation timing of the activating and destabilizing phosphosites are not clear. However, a recent study shows that the phosphatase calcineurin specifically removes activating phosphates from Hcm1 when cells are exposed to environmental stress, thus extinguishing its activity and slowing proliferation under unfavorable growth conditions. This regulatory mechanism, whereby a phosphatase actively alters the distribution of phosphosites on a cell cycle-regulatory transcription factor to elicit a change in cellular proliferation, adds an additional layer of complexity to the regulatory network controlling the cell cycle. Furthermore, this regulatory paradigm is likely to be a conserved mode of phosphoregulation that controls the cell cycle in diverse systems.
Collapse
Affiliation(s)
- Jennifer A Benanti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
16
|
Li M, Tian L, Ren H, Chen X, Wang Y, Ge J, Wu S, Sun Y, Liu M, Xiao H. MicroRNA-101 is a potential prognostic indicator of laryngeal squamous cell carcinoma and modulates CDK8. J Transl Med 2015; 13:271. [PMID: 26286725 PMCID: PMC4545549 DOI: 10.1186/s12967-015-0626-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/03/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Various microRNAs (miRNAs) negatively modulate genes that are involved in cellular proliferation, differentiation, invasion, and apoptosis. In many types of cancer, the expression profiles of these miRNAs are altered. Recently, miR-101 was identified as a tumour suppressor and was found to be expressed at low levels in various types of tumours, including prostate, breast, endometrium, and bladder cancers. However, the function(s) of miR-101 in laryngeal carcinoma remain unknown. METHODS The expression levels of miR-101 in laryngeal squamous cell carcinoma (LSCC) tissues and cells were detected by qPCR. Cell proliferation, migration, cell cycle, and apoptosis assay were applied to assess the function(s) of miR-101 in vitro. Nude mice subcutaneous tumour model was used to perform in vivo study. Moreover, we identified Cyclin-dependent kinase 8 (CDK8) as the target of miR-101 by a luciferase assay. The possible downstream effectors of CDK8 were investigated in Wnt/β-catenin signaling pathway. Changes of CDK8, β-catenin, and cyclin D1 protein levels were analyzed by western blotting and immunohistochemical staining. The prognostic effect of miR-101 was evaluated using the Kaplan-Meier method. RESULTS Expression of miR-101 was down-regulated in the LSCC tissues compared with the adjacent normal tissues. Furthermore, downregulation of miR-101 correlated with T3-4 tumour grade, lymph node metastasis, and an advanced clinical stage in the LSCC patients examined (P < 0.05). The low level of miR-101 expression was associated with poor prognosis (P < 0.05). CDK8 was identified as the target gene of miR-101 by luciferase reporter assay. Moreover, we showed that up-regulation of miR-101 expression suppressed humen LSCC Hep-2 cells proliferation and migration, and induced cell-cycle arrest. Increased expression of miR-101 induced cells apoptosis both in vitro and in vivo. Correspondingly, exogenous expression of miR-101 significantly reduced the growth of tumour in a LSCC xenograft model. Furthermore, the miR-101 level was inversely correlated with levels of CDK8, β-catenin, and cyclin D1 in western blotting assay and immunohistochemical staining assay. CONCLUSIONS These results indicate that miR-101 is a potent tumour repressor that directly represses CDK8 expression. Thus, detection and targeting of miR-101 may represent a novel diagnostic and therapeutic strategy for LSCC patients.
Collapse
Affiliation(s)
- MingHua Li
- Services of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 148, Bao jian Road, Harbin, 150081, People's Republic of China.
| | - LinLi Tian
- Services of Laryngology, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 148, Bao jian Road, Harbin, 150081, People's Republic of China.
| | - Hui Ren
- The First Clinical Hospital Affiliated to Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - XiaoXue Chen
- Services of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 148, Bao jian Road, Harbin, 150081, People's Republic of China.
| | - Yu Wang
- Services of Laryngology, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 148, Bao jian Road, Harbin, 150081, People's Republic of China.
| | - JingChun Ge
- Services of Laryngology, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 148, Bao jian Road, Harbin, 150081, People's Republic of China.
| | - ShuLiang Wu
- The Human Anatomy and Histoembryology Department, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - YaNan Sun
- Services of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 148, Bao jian Road, Harbin, 150081, People's Republic of China.
| | - Ming Liu
- Services of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 148, Bao jian Road, Harbin, 150081, People's Republic of China.
| | - Hui Xiao
- Services of Laryngology, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 148, Bao jian Road, Harbin, 150081, People's Republic of China.
| |
Collapse
|
17
|
Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 2015; 50:393-426. [PMID: 26182352 DOI: 10.3109/10409238.2015.1064854] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.
Collapse
Affiliation(s)
- Alison D Clark
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Marieke Oldenbroek
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Thomas G Boyer
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
18
|
Sajman J, Zenvirth D, Nitzan M, Margalit H, Simpson-Lavy KJ, Reiss Y, Cohen I, Ravid T, Brandeis M. Degradation of Ndd1 by APC/C(Cdh1) generates a feed forward loop that times mitotic protein accumulation. Nat Commun 2015; 6:7075. [PMID: 25959309 DOI: 10.1038/ncomms8075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 03/31/2015] [Indexed: 01/07/2023] Open
Abstract
Ndd1 activates the Mcm1-Fkh2 transcription factor to transcribe mitotic regulators. The anaphase-promoting complex/cyclosome activated by Cdh1 (APC/C(Cdh1)) mediates the degradation of proteins throughout G1. Here we show that the APC/C(Cdh1) ubiquitinates Ndd1 and mediates its degradation, and that APC/C(Cdh1) activity suppresses accumulation of Ndd1 targets. We confirm putative Ndd1 targets and identify novel ones, many of them APC/C(Cdh1) substrates. The APC/C(Cdh1) thus regulates these proteins in a dual manner—both pretranscriptionally and post-translationally, forming a multi-layered feedforward loop (FFL). We predict by mathematical modelling and verify experimentally that this FFL introduces a lag between APC/C(Cdh1) inactivation at the end of G1 and accumulation of genes transcribed by Ndd1 in G2. This regulation generates two classes of APC/C(Cdh1) substrates, early ones that accumulate in S and late ones that accumulate in G2. Our results show how the dual state APC/C(Cdh1) activity is converted into multiple outputs by interactions between its substrates.
Collapse
Affiliation(s)
- Julia Sajman
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Drora Zenvirth
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Mor Nitzan
- 1] The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel [2] The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Hanah Margalit
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Kobi J Simpson-Lavy
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yuval Reiss
- 1] The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel [2] The Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem,, Jerusalem 9190401, Israel
| | - Itamar Cohen
- The Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem,, Jerusalem 9190401, Israel
| | - Tommer Ravid
- The Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem,, Jerusalem 9190401, Israel
| | - Michael Brandeis
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
19
|
Oshiro S, Takagi H. The transcriptional activator Pog1 controls cell cycle, and its phosphorylated form is downregulated by the ubiquitin ligase Dma2 in Saccharomyces cerevisiae. FEMS Yeast Res 2014; 14:1015-27. [PMID: 25073408 DOI: 10.1111/1567-1364.12190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/25/2014] [Accepted: 07/27/2014] [Indexed: 11/28/2022] Open
Abstract
The POG1 gene in Saccharomyces cerevisiae is suggested to encode the transcriptional activator that promotes growth in the presence of a mating pheromone. We previously showed that the overexpression of POG1 conferred tolerance to high concentrations of LiCl and sugar on laboratory and baker's yeast strains, respectively. Here, the overexpression of POG1 was shown to induce cell cycle delay at the G1 phase and morphological abnormality. In addition, by yeast two-hybrid screening, the really interesting new gene (RING)-type ubiquitin ligase Dma2, which is involved in cell cycle regulation, was identified as the protein interacting with Pog1. The gene mutation and deletion analysis revealed that the interaction between Pog1 and Dma2 requires the phosphorylation of Thr253 in Pog1 and the forkhead-associated domain in Dma2. The phosphorylation status of Pog1 changed along with progression of the cell cycle. Interestingly, our results showed that Pog1 might be ubiquitinated by Dma2, but a dephosphorylation-mimic mutation in POG1 increased the cellular Pog1 level possibly due to the failure of ubiquitination. Furthermore, growth of the dma1/2-disrupted strain was greatly inhibited by the overexpression of POG1. These results suggest that Pog1 controls the cell cycle and its phosphorylated form is downregulated by Dma2.
Collapse
Affiliation(s)
- Satoshi Oshiro
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | |
Collapse
|
20
|
Wang L, Tripurani SK, Wanna W, Rexroad CE, Yao J. Cloning and characterization of a novel oocyte-specific gene encoding an F-Box protein in rainbow trout (Oncorhynchus mykiss). Reprod Biol Endocrinol 2013; 11:86. [PMID: 24007267 PMCID: PMC3846697 DOI: 10.1186/1477-7827-11-86] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oocyte-specific genes play critical roles in oogenesis, folliculogenesis and early embryonic development. The objectives of this study were to characterize the expression of a novel oocyte-specific gene encoding an F-box protein during ovarian development in rainbow trout, and identify its potential interacting partners in rainbow trout oocytes. METHODS Through analysis of expressed sequence tags (ESTs) from a rainbow trout oocyte cDNA library, a novel transcript represented by ESTs only from the oocyte library was identified. The complete cDNA sequence for the novel gene (named fbxoo) was obtained by assembling sequences from an EST clone and a 5'RACE product. The expression and localization of fbxoo mRNA and protein in ovaries of different developmental stages were analyzed by quantitative real time PCR, immunoblotting, in situ hybridization and immunohistochemistry. Identification of Fbxoo binding proteins was performed by yeast two-hybrid screening. RESULTS fbxoo mRNA is specifically expressed in mature oocytes as revealed by tissue distribution analysis. The fbxoo cDNA sequence is 1,996 bp in length containing an open reading frame, which encodes a predicted protein of 514 amino acids. The novel protein sequence does not match any known protein sequences in the NCBI database. However, a search of the Pfam protein database revealed that the protein contains an F-box motif at the N-terminus, indicating that Fbxoo is a new member of the F-box protein family. The expression of fbxoo mRNA and protein is high in ovaries at early pre-vitellogenesis stage, and both fbxoo mRNA and protein are predominantly expressed in early pre-vitellogenic oocytes. Several proteins including tissue inhibitor of metalloproteinase 2 (Timp2) were identified as potential Fbxoo protein binding partners. CONCLUSIONS Results suggest that the novel oocyte-specific F-box protein may play an important role in early oocyte development by regulating other critical proteins involved in oogenesis in rainbow trout.
Collapse
Affiliation(s)
- Lei Wang
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Swamy K Tripurani
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Warapond Wanna
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
- Current address: Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat-Yai Songkhla 90112, Thailand
| | - Caird E Rexroad
- National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
21
|
Emerging roles of Cdk8 in cell cycle control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:916-20. [DOI: 10.1016/j.bbagrm.2013.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/12/2022]
|
22
|
Rubinstein A, Hazan O, Chor B, Pinter RY, Kassir Y. The effective application of a discrete transition model to explore cell-cycle regulation in yeast. BMC Res Notes 2013; 6:311. [PMID: 23915717 PMCID: PMC3750494 DOI: 10.1186/1756-0500-6-311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/31/2013] [Indexed: 11/15/2022] Open
Abstract
Background Bench biologists often do not take part in the development of computational models for their systems, and therefore, they frequently employ them as “black-boxes”. Our aim was to construct and test a model that does not depend on the availability of quantitative data, and can be directly used without a need for intensive computational background. Results We present a discrete transition model. We used cell-cycle in budding yeast as a paradigm for a complex network, demonstrating phenomena such as sequential protein expression and activity, and cell-cycle oscillation. The structure of the network was validated by its response to computational perturbations such as mutations, and its response to mating-pheromone or nitrogen depletion. The model has a strong predicative capability, demonstrating how the activity of a specific transcription factor, Hcm1, is regulated, and what determines commitment of cells to enter and complete the cell-cycle. Conclusion The model presented herein is intuitive, yet is expressive enough to elucidate the intrinsic structure and qualitative behavior of large and complex regulatory networks. Moreover our model allowed us to examine multiple hypotheses in a simple and intuitive manner, giving rise to testable predictions. This methodology can be easily integrated as a useful approach for the study of networks, enriching experimental biology with computational insights.
Collapse
Affiliation(s)
- Amir Rubinstein
- School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Swaney DL, Beltrao P, Starita L, Guo A, Rush J, Fields S, Krogan NJ, Villén J. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 2013; 10:676-82. [PMID: 23749301 DOI: 10.1038/nmeth.2519] [Citation(s) in RCA: 480] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 05/02/2013] [Indexed: 12/17/2022]
Abstract
Cross-talk between different types of post-translational modifications on the same protein molecule adds specificity and combinatorial logic to signal processing, but it has not been characterized on a large-scale basis. We developed two methods to identify protein isoforms that are both phosphorylated and ubiquitylated in the yeast Saccharomyces cerevisiae, identifying 466 proteins with 2,100 phosphorylation sites co-occurring with 2,189 ubiquitylation sites. We applied these methods quantitatively to identify phosphorylation sites that regulate protein degradation via the ubiquitin-proteasome system. Our results demonstrate that distinct phosphorylation sites are often used in conjunction with ubiquitylation and that these sites are more highly conserved than the entire set of phosphorylation sites. Finally, we investigated how the phosphorylation machinery can be regulated by ubiquitylation. We found evidence for novel regulatory mechanisms of kinases and 14-3-3 scaffold proteins via proteasome-independent ubiquitylation.
Collapse
Affiliation(s)
- Danielle L Swaney
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
26
|
Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 2012; 192:319-60. [PMID: 23028185 PMCID: PMC3454868 DOI: 10.1534/genetics.112.140467] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/28/2012] [Indexed: 12/14/2022] Open
Abstract
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Helle D. Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
27
|
Barberis M. Sic1 as a timer of Clb cyclin waves in the yeast cell cycle--design principle of not just an inhibitor. FEBS J 2012; 279:3386-410. [PMID: 22356687 DOI: 10.1111/j.1742-4658.2012.08542.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cellular systems biology aims to uncover design principles that describe the properties of biological networks through interaction of their components in space and time. The cell cycle is a complex system regulated by molecules that are integrated into functional modules to ensure genome integrity and faithful cell division. In budding yeast, cyclin-dependent kinases (Cdk1/Clb) drive cell cycle progression, being activated and inactivated in a precise temporal sequence. In this module, which we refer to as the 'Clb module', different Cdk1/Clb complexes are regulated to generate waves of Clb activity, a functional property of cell cycle control. The inhibitor Sic1 plays a critical role in the Clb module by binding to and blocking Cdk1/Clb activity, ultimately setting the timing of DNA replication and mitosis. Fifteen years of research subsequent to the identification of Sic1 have lead to the development of an integrative approach that addresses its role in regulating the Clb module. Sic1 is an intrinsically disordered protein and achieves its inhibitory function by cooperative binding, where different structural regions stretch on the Cdk1/Clb surface. Moreover, Sic1 promotes S phase entry, facilitating Cdk1/Clb5 nuclear transport, and therefore revealing a double function of inhibitor/activator that rationalizes a mechanism to prevent precocious DNA replication. Interestingly, the investigation of Clb temporal dynamics by mathematical modelling and experimental validation provides evidence that Sic1 acts as a timer to coordinate oscillations of Clb cyclin waves. Here we review these findings, focusing on the design principle underlying the Clb module, which highlights the role of Sic1 in regulating phase-specific Cdk1/Clb activities.
Collapse
Affiliation(s)
- Matteo Barberis
- Institute for Biology, Theoretical Biophysics, Humboldt University Berlin, Germany.
| |
Collapse
|
28
|
Taberner FJ, Quilis I, Sendra J, Bañó MC, Igual JC. Regulation of cell cycle transcription factor Swi5 by karyopherin Msn5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:959-70. [PMID: 22374135 DOI: 10.1016/j.bbamcr.2012.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/20/2012] [Accepted: 02/13/2012] [Indexed: 01/06/2023]
Abstract
Inactivation of S. cerevisiae β-karyopherin Msn5 causes hypersensitivity to the overexpression of mitotic cyclin Clb2 and aggravates growth defects of many mutant strains in mitotic exit, suggesting a connection between Msn5 and mitotic exit. We determined that Msn5 controlled subcellular localization of the mitotic exit transcription factor Swi5, since it was required for Swi5 nuclear export. Msn5 physically interacted with the N-terminal end of Swi5. Inactivation of Msn5 caused a severe reduction in cellular levels of Swi5 protein. This effect occurred by a post-transcriptional mechanism, since SWI5 mRNA levels were not affected. The reduced amount of Swi5 in msn5 mutant cells was not due to an increased protein degradation rate, but to a defect in Swi5 synthesis. Despite the change in localization and protein level, Swi5-regulated transcription was not defective in the msn5 mutant strain. However, a high level of Swi5 was toxic in the absence of Msn5. This deleterious effect was eliminated when Swi5 nuclear import was abrogated, suggesting that nuclear export by Msn5 is important for cell physiology, because it prevents toxic Swi5 nuclear accumulation.
Collapse
|
29
|
Schreiber G, Barberis M, Scolari S, Klaus C, Herrmann A, Klipp E. Unraveling interactions of cell cycle-regulating proteins Sic1 and B-type cyclins in living yeast cells: a FLIM-FRET approach. FASEB J 2011; 26:546-54. [PMID: 22002907 DOI: 10.1096/fj.11-192518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sic1, cyclin-dependent kinase inhibitor of budding yeast, is synthesized in anaphase and largely degraded at the S-phase onset to regulate timing of DNA synthesis. Sic1 interacts with phase-specific B-type cyclin (Clb)-kinase (Cdk1) complexes, central regulators in cell cycle control. Its appearance is timed to mediate reduction in kinase activities at appropriate stages. Clbs are unstable proteins with extremely short half-lives. Interactions of Sic1 with Clbs have been detected both in vitro and in vivo by high-throughput genome-wide screenings. Furthermore, we have recently shown that Sic1 regulates waves of Clbs, acting as a timer in their appearance, thus controlling Cdk1-Clbs activation. The molecular mechanism is not yet fully understood but is hypothesized to occur via stoichiometric binding of Sic1 to Cdk1-Clb complexes. Using Förster resonance energy transfer (FRET) via fluorescence lifetime imaging microscopy (FLIM), we showed association of Sic1 to Clb cyclins in living yeast cells. This finding is consistent with the notion that inhibition of kinase activity can occur over the whole cell cycle progression despite variable Sic1 levels. Specifically, Sic1/Clb3 interaction was observed for the first time, and Sic1/Clb2 and Sic1/Clb5 pairs were confirmed, but no Sic1/Clb4 interaction was found, which suggests that, despite high functional homology between Clbs, only some of them can target Sic1 function in vivo.
Collapse
Affiliation(s)
- Gabriele Schreiber
- Theoretical Biophysics, Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
30
|
New insight into the role of the Cdc34 ubiquitin-conjugating enzyme in cell cycle regulation via Ace2 and Sic1. Genetics 2010; 187:701-15. [PMID: 21196523 DOI: 10.1534/genetics.110.125302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Cdc34 ubiquitin-conjugating enzyme plays a central role in progression of the cell cycle. Through analysis of the phenotype of a mutant missing a highly conserved sequence motif within the catalytic domain of Cdc34, we discovered previously unrecognized levels of regulation of the Ace2 transcription factor and the cyclin-dependent protein kinase inhibitor Sic1. In cells carrying the Cdc34(tm) mutation, which alters the conserved sequence, the cyclin-dependent protein kinase inhibitor Sic1, an SCF(Cdc4) substrate, has a shorter half-life, while the cyclin Cln1, an SCF(Grr1) substrate, has a longer half-life than in wild-type cells. Expression of the SIC1 gene cluster, which is regulated by Swi5 and Ace2 transcription factors, is induced in CDC34(tm) cells. Levels of Swi5, Ace2, and the SCF(Grr1) targets Cln1 and Cln2 are elevated in Cdc34(tm) cells, and loss of Grr1 causes an increase in Ace2 levels. Sic1 levels are similar in CDC34(tm) ace2Δ and wild-type cells, explaining a paradoxical increase in the steady-state level of Sic1 protein despite its reduced half-life. A screen for mutations that interact with CDC34(tm) uncovered novel regulators of Sic1, including genes encoding the polyubiquitin chain receptors Rad23 and Rpn10.
Collapse
|
31
|
Liu C, Choe V, Rao H. Genome-wide approaches to systematically identify substrates of the ubiquitin-proteasome pathway. Trends Biotechnol 2010; 28:461-7. [PMID: 20637515 DOI: 10.1016/j.tibtech.2010.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/03/2010] [Accepted: 06/11/2010] [Indexed: 01/23/2023]
Abstract
The ubiquitin-proteasome system handles the majority of controlled proteolysis in eukaryotes. Defects in the ubiquitin-proteasome system have been implicated in diseases ranging from cancers to neurodegenerative disorders. However, the precise role of ubiquitin-proteasome-mediated degradation in health and disease is far from clear. A major challenge is to link specific substrates directly to a particular degradation pathway. Here, we review genome-wide approaches that have been developed in recent years to comprehensively identify ubiquitylated substrates of a particular pathway. Components of the ubiquitin-proteasome system are attractive drug targets, as illustrated by the efficacy of some proteasome inhibitors in the treatment of multiple myeloma. Information that has emerged from these studies could reveal novel drug targets and strategies for treating human diseases.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Biotechnology, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | |
Collapse
|
32
|
Mimura S, Yamaguchi T, Ishii S, Noro E, Katsura T, Obuse C, Kamura T. Cul8/Rtt101 forms a variety of protein complexes that regulate DNA damage response and transcriptional silencing. J Biol Chem 2010; 285:9858-9867. [PMID: 20139071 DOI: 10.1074/jbc.m109.082107] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The budding yeast, Saccharomyces cerevisiae, has three cullin proteins, which act as platforms for Cullin-based E3 ubiquitin ligases. Genetic evidence indicates that Cul8, together with Mms1, Mms22, and Esc4, is involved in the repair of DNA damage that can occur during DNA replication. Cul8 is thought to form a complex with these proteins, but the composition and the function of Cul8-based E3 ubiquitin ligases remain largely uncharacterized. Herein, we report a comprehensive biochemical analysis of Cul8 complexes. Cul8 was found to form a Cul8-Mms1-Mms22-Esc4 complex under physiological conditions, with Mms1 bridging Cul8 and Mms22 and Mms22 bridging Mms1 and Esc4. Domain analysis demonstrated that the N-terminal region of Mms1 and the C-terminal region of Mms22 are required for the Mms1-Mms22 interaction, whereas the N-terminal region of Mms22 is required for the Mms22-Esc4 interaction. We also found other Cul8-Mms1-binding proteins Ctf4, Esc2, and Orc5 using yeast two-hybrid screening. Esc4 and Ctf4 bound to Mms22 directly and bound to Cul8-Mms1 in the presence of Mms22, whereas Esc2 and Orc5 interacted with both Cul8 and Mms1, independently. We found that Cul8, Mms1, and Mms22 participated in the regulation of transcriptional silencing of yeast telomeres. These results suggest that Cul8-Mms1, as part of various protein complexes, is involved in the regulation of chromatin metabolism.
Collapse
Affiliation(s)
- Satoru Mimura
- Division of Biological Science, Graduate School of Science, Nagoya University Chikusa-ku, Nagoya 464-8602
| | - Tsuyoshi Yamaguchi
- Division of Biological Science, Graduate School of Science, Nagoya University Chikusa-ku, Nagoya 464-8602
| | - Satoru Ishii
- Division of Biological Science, Graduate School of Science, Nagoya University Chikusa-ku, Nagoya 464-8602
| | - Emiko Noro
- Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Sapporo, Hokkaido 001-0021, Japan
| | - Tomoya Katsura
- Division of Biological Science, Graduate School of Science, Nagoya University Chikusa-ku, Nagoya 464-8602
| | - Chikashi Obuse
- Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Sapporo, Hokkaido 001-0021, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University Chikusa-ku, Nagoya 464-8602.
| |
Collapse
|
33
|
SCF(Dia2) regulates DNA replication forks during S-phase in budding yeast. EMBO J 2009; 28:3693-705. [PMID: 19910927 DOI: 10.1038/emboj.2009.320] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 09/23/2009] [Indexed: 11/08/2022] Open
Abstract
Dia2 is an F-box protein, which is involved in the regulation of DNA replication in the budding yeast Saccharomyces cerevisiae. The function of Dia2, however, remains largely unknown. In this study, we report that Dia2 is associated with the replication fork and regulates replication fork progression. Using modified yeast two-hybrid screening, we have identified components of the replisome (Mrc1, Ctf4 and Mcm2), as Dia2-binding proteins. Mrc1 and Ctf4 were ubiquitinated by SCF(Dia2) both in vivo and in vitro. Domain analysis of Dia2 revealed that the leucine-rich repeat motif was indispensable for the regulation of replisome progression, whereas the tetratricopeptide repeat (TPR) motif was involved in the interaction with replisome components. In addition, the TPR motif was shown to be involved in Dia2 stability; deleting the TPR stabilized Dia2, mimicking the effect of DNA damage. ChIP-on-chip analysis illustrated that Dia2 localizes to the replication fork and regulates fork progression on hydroxyurea treatment. These results demonstrate that Dia2 is involved in the regulation of replisome activity through a direct interaction with replisome components.
Collapse
|
34
|
FACT and Asf1 regulate nucleosome dynamics and coactivator binding at the HO promoter. Mol Cell 2009; 34:405-15. [PMID: 19481521 DOI: 10.1016/j.molcel.2009.04.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/10/2009] [Accepted: 04/09/2009] [Indexed: 11/23/2022]
Abstract
Transcriptional activators and coactivators overcome repression by chromatin, but regulation of chromatin disassembly and coactivator binding to promoters is poorly understood. Activation of the yeast HO gene follows the sequential binding of both sequence-specific DNA-binding proteins and coactivators during the cell cycle. Here, we show that the nucleosome disassembly occurs in waves both along the length of the promoter and during the cell cycle. Different chromatin modifiers are required for chromatin disassembly at different regions of the promoter, with Swi/Snf, the FACT chromatin reorganizer, and the Asf1 histone chaperone each required for nucleosome eviction at distinct promoter regions. FACT and Asf1 both bind to upstream elements of the HO promoter well before the gene is transcribed. The Swi/Snf, SAGA, and Mediator coactivators bind first to the far upstream promoter region and subsequently to a promoter proximal region, and FACT and Asf1 are both required for this coactivator re-recruitment.
Collapse
|
35
|
|