1
|
Jia F, Fu L. Roles of Ubiquitin Ligases and Deubiquitylases in Alzheimer's Disease. Mol Neurobiol 2025; 62:7747-7761. [PMID: 39932514 DOI: 10.1007/s12035-025-04739-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/02/2025] [Indexed: 05/15/2025]
Abstract
The mechanisms responsible for the accumulation of Aβ plaques and neurofibrillary tangles, composed of phosphorylated Tau protein, in Alzheimer's disease (AD) remain a mystery. Dysfunction of the ubiquitin-proteasome system (UPS) largely contributes to abnormal protein aggregation. A cascade of ubiquitinating enzymes promotes protein ubiquitination, while deubiquitylases (DUBs) regulate its reversal. Disruptions in ubiquitination and deubiquitination processes result in abnormal protein aggregation and the formation of inclusion bodies, ultimately leading to neuronal damage. Recent studies have highlighted the significant role of protein ubiquitination and deubiquitination in the pathogenesis of AD. E3 ubiquitin ligases, which facilitate protein ubiquitination, are beneficial for Aβ clearance, synaptic function, gap junction maintenance, mitophagy, and neuroinflammation. Conversely, DUBs, responsible for removing ubiquitin from substrate proteins, inhibit Aβ and Tau degradation while promoting neuroinflammation in neurons. This review provides a thorough overview of the involvement of E3 ubiquitin ligases and DUBs in AD, highlighting their diverse roles in aspects of pathophysiological processes.
Collapse
Affiliation(s)
- Fengju Jia
- School of Nursing, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
| | - Lin Fu
- School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao, 266072266071, China
| |
Collapse
|
2
|
Oh CK, Nakamura T, Zhang X, Lipton SA. Redox regulation, protein S-nitrosylation, and synapse loss in Alzheimer's and related dementias. Neuron 2024; 112:3823-3850. [PMID: 39515322 PMCID: PMC11624102 DOI: 10.1016/j.neuron.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Redox-mediated posttranslational modification, as exemplified by protein S-nitrosylation, modulates protein activity and function in both health and disease. Here, we review recent findings that show how normal aging, infection/inflammation, trauma, environmental toxins, and diseases associated with protein aggregation can each trigger excessive nitrosative stress, resulting in aberrant protein S-nitrosylation and hence dysfunctional protein networks. These redox reactions contribute to the etiology of multiple neurodegenerative disorders as well as systemic diseases. In the CNS, aberrant S-nitrosylation reactions of single proteins or, in many cases, interconnected networks of proteins lead to dysfunctional pathways affecting endoplasmic reticulum (ER) stress, inflammatory signaling, autophagy/mitophagy, the ubiquitin-proteasome system, transcriptional and enzymatic machinery, and mitochondrial metabolism. Aberrant protein S-nitrosylation and transnitrosylation (transfer of nitric oxide [NO]-related species from one protein to another) trigger protein aggregation, neuronal bioenergetic compromise, and microglial phagocytosis, all of which contribute to the synapse loss that underlies cognitive decline in Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Chang-Ki Oh
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xu Zhang
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Perlinska AP, Sikora M, Sulkowska JI. Everything AlphaFold tells us about protein knots. J Mol Biol 2024; 436:168715. [PMID: 39029890 DOI: 10.1016/j.jmb.2024.168715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Recent advances in Machine Learning methods in structural biology opened up new perspectives for protein analysis. Utilizing these methods allows us to go beyond the limitations of empirical research, and take advantage of the vast amount of generated data. We use a complete set of potentially knotted protein models identified in all high-quality predictions from the AlphaFold Database to search for any common trends that describe them. We show that the vast majority of knotted proteins have 31 knot and that the presence of knots is preferred in neither Bacteria, Eukaryota, or Archaea domains. On the contrary, the percentage of knotted proteins in any given proteome is around 0.4%, regardless of the taxonomical group. We also verified that the organism's living conditions do not impact the number of knotted proteins in its proteome, as previously expected. We did not encounter an organism without a single knotted protein. What is more, we found four universally present families of knotted proteins in Bacteria, consisting of SAM synthase, and TrmD, TrmH, and RsmE methyltransferases.
Collapse
Affiliation(s)
- Agata P Perlinska
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland
| | - Maciej Sikora
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland.
| |
Collapse
|
4
|
Qian J, Yang B, Wang S, Yuan S, Zhu W, Zhou Z, Zhang Y, Hu G. Drug Repurposing for COVID-19 by Constructing a Comorbidity Network with Central Nervous System Disorders. Int J Mol Sci 2024; 25:8917. [PMID: 39201608 PMCID: PMC11354300 DOI: 10.3390/ijms25168917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
In the post-COVID-19 era, treatment options for potential SARS-CoV-2 outbreaks remain limited. An increased incidence of central nervous system (CNS) disorders has been observed in long-term COVID-19 patients. Understanding the shared molecular mechanisms between these conditions may provide new insights for developing effective therapies. This study developed an integrative drug-repurposing framework for COVID-19, leveraging comorbidity data with CNS disorders, network-based modular analysis, and dynamic perturbation analysis to identify potential drug targets and candidates against SARS-CoV-2. We constructed a comorbidity network based on the literature and data collection, including COVID-19-related proteins and genes associated with Alzheimer's disease, Parkinson's disease, multiple sclerosis, and autism spectrum disorder. Functional module detection and annotation identified a module primarily involved in protein synthesis as a key target module, utilizing connectivity map drug perturbation data. Through the construction of a weighted drug-target network and dynamic network-based drug-repurposing analysis, ubiquitin-carboxy-terminal hydrolase L1 emerged as a potential drug target. Molecular dynamics simulations suggested pregnenolone and BRD-K87426499 as two drug candidates for COVID-19. This study introduces a dynamic-perturbation-network-based drug-repurposing approach to identify COVID-19 drug targets and candidates by incorporating the comorbidity conditions of CNS disorders.
Collapse
Affiliation(s)
- Jing Qian
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Bin Yang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Shuo Wang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Su Yuan
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Wenjing Zhu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Ziyun Zhou
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Yujuan Zhang
- Experimental Center of Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Zhang J, Xue M, Huang J, He S, Zhu L, Zhao X, Wang B, Jiang T, Zhang Y, Miao C, Zhou G. Deficiency of UCHL1 results in insufficient decidualization accompanied by impaired dNK modulation and eventually miscarriage. J Transl Med 2024; 22:478. [PMID: 38769534 PMCID: PMC11103838 DOI: 10.1186/s12967-024-05253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Miscarriage is a frustrating complication of pregnancy that is common among women of reproductive age. Insufficient decidualization which not only impairs embryo implantation but disturbs fetomaternal immune-tolerance, has been widely regarded as a major cause of miscarriage; however, the underlying mechanisms resulting in decidual impairment are largely unknown. METHODS With informed consent, decidual tissue from patients with spontaneous abortion or normal pregnant women was collected to detect the expression profile of UCHL1. Human endometrial stromal cells (HESCs) were used to explore the roles of UCHL1 in decidualization and dNK modulation, as well as the mechanisms involved. C57/BL6 female mice (7-10 weeks old) were used to construct pregnancy model or artificially induced decidualization model to evaluate the effect of UCHL1 on mice decidualization and pregnancy outcome. RESULTS The Ubiquitin C-terminal hydrolase L1 (UCHL1), as a deubiquitinating enzyme, was significantly downregulated in decidua from patients with miscarriage, along with impaired decidualization and decreased dNKs. Blockage of UCHL1 led to insufficient decidualization and resultant decreased expression of cytokines CXCL12, IL-15, TGF-β which were critical for generation of decidual NK cells (dNKs), whereas UCHL1 overexpression enhanced decidualization accompanied by increase in dNKs. Mechanistically, the promotion of UCHL1 on decidualization was dependent on its deubiquitinating activity, and intervention of UCHL1 inhibited the activation of JAK2/STAT3 signaling pathway, resulting in aberrant decidualization and decreased production of cytokines associated with dNKs modulation. Furthermore, we found that inhibition of UCHL1 also disrupted the decidualization in mice and eventually caused adverse pregnancy outcome. CONCLUSIONS UCHL1 plays significant roles in decidualization and dNKs modulation during pregnancy in both humans and mice. Its deficiency indicates a poor pregnancy outcome due to defective decidualization, making UCHL1 a potential target for the diagnosis and treatment of miscarriage.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Mingxing Xue
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jiefang Huang
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Shan He
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lingqiao Zhu
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xiaonan Zhao
- Institutes for Translational Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Bei Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Tingwang Jiang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China
| | - Yanyun Zhang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Guoqiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, 68 South Haiyu Road, Changshu, 215500, China.
- Gusu College, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Kim H. Regulation of Med1 protein by overexpression of BAP1 in breast cancer cells. Mol Cell Oncol 2024; 11:2347827. [PMID: 38708315 PMCID: PMC11067983 DOI: 10.1080/23723556.2024.2347827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Med1 binds to a nuclear receptor and regulates transcription. Elevated Med1 protein expression promotes cancer growth in hormone-dependent breast and prostate cancers. Med1 protein expression was investigated by deubiquitinating enzymes (DUBs) overexpression in breast cancer cell lines. Various DNA constructs of SRT-DUBs were overexpressed in the MCF7 cell line, and Med1 protein expression was investigated by western blotting. The cell growth and in vitro invasion assay were performed in BRCA1-associated protein 1 (BAP1) wild type and mutant (C91A) overexpressed cells. Ubiquitination of the Med1 protein was observed, and Med1 protein expression and transcriptional activity were verified by various DUBs overexpressed. Although Med1 protein expression increased upon the overexpression of BAP1, it was not affected by the overexpression of BAP1 mutant (C91A). BAP1 was increased by the E2 treatment, which has an important effect on the breast cancer growth, and cell growth was decreased by BAP1 C91A overexpression. However, metastatic capacities were decreased by BAP1. In addition, the binding between the Med1 and the BAP1 protein was observed. These data suggested that BAP1 regulated Med1 protein expression in breast cancer cells and involved in cancer cell growth and metastasis by binding to Med1 protein.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| |
Collapse
|
7
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
8
|
Mi Z, Ma J, Zeh DJ, Rose ME, Henchir JJ, Liu H, Ma X, Cao G, Dixon CE, Graham SH. Systemic treatment with ubiquitin carboxy terminal hydrolase L1 TAT protein ameliorates axonal injury and reduces functional deficits after traumatic brain injury in mice. Exp Neurol 2024; 373:114650. [PMID: 38092186 PMCID: PMC10939891 DOI: 10.1016/j.expneurol.2023.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Traumatic brain injury (TBI) is often associated with axonal injury that leads to significant motor and cognitive deficits. Ubiquitin carboxy terminal hydrolase L1 (UCHL1) is highly expressed in neurons and loss of its activity plays an important role in the pathogenesis of TBI. Fusion protein was constructed containing wild type (WT) UCHL1 and the HIV trans-activator of transcription capsid protein transduction domain (TAT-UCHL1) that facilitates transport of the protein into neurons after systemic administration. Additional mutant proteins bearing cysteine to alanine UCHL1 mutations at cysteine 152 (C152A TAT-UCHL1) that prevents nitric oxide and reactive lipid binding of C152, and at cysteine 220 (C220A TAT-UCHL1) that inhibits farnesylation of the C220 site were also constructed. WT, C152A, and C220A TAT-UCHL1 proteins administered to mice systemically after controlled cortical impact (CCI) were detectable in brain at 1 h, 4 h and 24 h after CCI by immunoblot. Mice treated with C152A or WT TAT-UCHL1 decreased axonal injury detected by NF200 immunohistochemistry 24 h after CCI, but C220A TAT-UCHL1 treatment had no significant effect. Further study indicated that WT TAT-UCHL1 treatment administered 24 h after CCI alleviated axonal injury as detected by SMI32 immunoreactivity 7 d after CCI, improved motor and cognitive deficits, reduced accumulation of total and K48-linked poly-Ub proteins, and attenuated the increase of the autophagy marker Beclin-1. These results suggest that UCHL1 activity contributes to the pathogenesis of white matter injury, and that restoration of UCHL1 activity by systemic treatment with WT TAT-UCHL1 after CCI may improve motor and cognitive deficits. These results also suggest that farnesylation of the C220 site may be required for the protective effects of UCHL1.
Collapse
Affiliation(s)
- Zhiping Mi
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jie Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis J Zeh
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marie E Rose
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeremy J Henchir
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Hao Liu
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| | - Xiecheng Ma
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Guodong Cao
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - C Edward Dixon
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Steven H Graham
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Dellar ER, Vendrell I, Talbot K, Kessler BM, Fischer R, Turner MR, Thompson AG. Data-independent acquisition proteomics of cerebrospinal fluid implicates endoplasmic reticulum and inflammatory mechanisms in amyotrophic lateral sclerosis. J Neurochem 2024; 168:115-127. [PMID: 38087504 PMCID: PMC10952667 DOI: 10.1111/jnc.16030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024]
Abstract
While unbiased proteomics of human cerebrospinal fluid (CSF) has been used successfully to identify biomarkers of amyotrophic lateral sclerosis (ALS), high-abundance proteins mask the presence of lower abundance proteins that may have diagnostic and prognostic value. However, developments in mass spectrometry (MS) proteomic data acquisition methods offer improved protein depth. In this study, MS with library-free data-independent acquisition (DIA) was used to compare the CSF proteome of people with ALS (n = 40), healthy (n = 15) and disease (n = 8) controls. Quantified protein groups were subsequently correlated with clinical variables. Univariate analysis identified 7 proteins, all significantly upregulated in ALS versus healthy controls, and 9 with altered abundance in ALS versus disease controls (FDR < 0.1). Elevated chitotriosidase-1 (CHIT1) was common to both comparisons and was proportional to ALS disability progression rate (Pearson r = 0.41, FDR-adjusted p = 0.035) but not overall survival. Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1; upregulated in ALS versus healthy controls) was proportional to disability progression rate (Pearson r = 0.53, FDR-adjusted p = 0.003) and survival (Kaplan Meier log-rank p = 0.013) but not independently in multivariate proportional hazards models. Weighted correlation network analysis was used to identify functionally relevant modules of proteins. One module, enriched for inflammatory functions, was associated with age at symptom onset (Pearson r = 0.58, FDR-adjusted p = 0.005) and survival (Hazard Ratio = 1.78, FDR = 0.065), and a second module, enriched for endoplasmic reticulum proteins, was negatively correlated with disability progression rate (r = -0.42, FDR-adjusted p = 0.109). DIA acquisition methodology therefore strengthened the biomarker candidacy of CHIT1 and UCHL1 in ALS, while additionally highlighted inflammatory and endoplasmic reticulum proteins as novel sources of prognostic biomarkers.
Collapse
Affiliation(s)
| | - Iolanda Vendrell
- Centre for Medicines Discovery, Nuffield Department of Medicine, Target Discovery InstituteUniversity of OxfordOxfordUK
- Nuffield Department of Medicine, Chinese Academy of Medical Sciences Oxford InstituteUniversity of OxfordOxfordUK
| | - Kevin Talbot
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Benedikt M. Kessler
- Centre for Medicines Discovery, Nuffield Department of Medicine, Target Discovery InstituteUniversity of OxfordOxfordUK
- Nuffield Department of Medicine, Chinese Academy of Medical Sciences Oxford InstituteUniversity of OxfordOxfordUK
| | - Roman Fischer
- Centre for Medicines Discovery, Nuffield Department of Medicine, Target Discovery InstituteUniversity of OxfordOxfordUK
- Nuffield Department of Medicine, Chinese Academy of Medical Sciences Oxford InstituteUniversity of OxfordOxfordUK
| | - Martin R. Turner
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | | |
Collapse
|
10
|
Buneeva O, Medvedev A. Ubiquitin Carboxyl-Terminal Hydrolase L1 and Its Role in Parkinson's Disease. Int J Mol Sci 2024; 25:1303. [PMID: 38279302 PMCID: PMC10816476 DOI: 10.3390/ijms25021303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), also known as Parkinson's disease protein 5, is a highly expressed protein in the brain. It plays an important role in the ubiquitin-proteasome system (UPS), where it acts as a deubiquitinase (DUB) enzyme. Being the smallest member of the UCH family of DUBs, it catalyzes the reaction of ubiquitin precursor processing and the cleavage of ubiquitinated protein remnants, thus maintaining the level of ubiquitin monomers in the brain cells. UCHL1 mutants, containing amino acid substitutions, influence catalytic activity and its aggregability. Some of them protect cells and transgenic mice in toxin-induced Parkinson's disease (PD) models. Studies of putative protein partners of UCHL1 revealed about sixty individual proteins located in all major compartments of the cell: nucleus, cytoplasm, endoplasmic reticulum, plasma membrane, mitochondria, and peroxisomes. These include proteins related to the development of PD, such as alpha-synuclein, amyloid-beta precursor protein, ubiquitin-protein ligase parkin, and heat shock proteins. In the context of the catalytic paradigm, the importance of these interactions is not clear. However, there is increasing understanding that UCHL1 exhibits various effects in a catalytically independent manner through protein-protein interactions. Since this protein represents up to 5% of the soluble protein in the brain, PD-related changes in its structure will have profound effects on the proteomes/interactomes in which it is involved. Growing evidence is accumulating that the role of UCHL1 in PD is obviously determined by a balance of canonic catalytic activity and numerous activity-independent protein-protein interactions, which still need better characterization.
Collapse
Affiliation(s)
| | - Alexei Medvedev
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia;
| |
Collapse
|
11
|
Mi Z, Graham SH. Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury. Ageing Res Rev 2023; 86:101856. [PMID: 36681249 PMCID: PMC9992267 DOI: 10.1016/j.arr.2023.101856] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
UCHL1 is a multifunctional protein expressed at high concentrations in neurons in the brain and spinal cord. UCHL1 plays important roles in regulating the level of cellular free ubiquitin and redox state as well as the degradation of select proteins. This review focuses on the potential role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury and recovery. Subjects addressed in the review include 1) Normal physiological functions of UCHL1. 2) Posttranslational modification sites and splice variants that alter the function of UCHL1 and mouse models with mutations and deletions of UCHL1. 3) The hypothesized role and pathogenic mechanisms of UCHL1 in neurodegenerative diseases and brain injury. 4) Potential therapeutic strategies targeting UCHL1 in these disorders.
Collapse
Affiliation(s)
- Zhiping Mi
- Departments of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, United States.
| | - Steven H Graham
- Departments of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, United States.
| |
Collapse
|
12
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
13
|
Nielsen PYØ, Okarmus J, Meyer M. Role of Deubiquitinases in Parkinson's Disease-Therapeutic Perspectives. Cells 2023; 12:651. [PMID: 36831318 PMCID: PMC9954239 DOI: 10.3390/cells12040651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that has been associated with mitochondrial dysfunction, oxidative stress, and defects in mitophagy as well as α-synuclein-positive inclusions, termed Lewy bodies (LBs), which are a common pathological hallmark in PD. Mitophagy is a process that maintains cellular health by eliminating dysfunctional mitochondria, and it is triggered by ubiquitination of mitochondrial-associated proteins-e.g., through the PINK1/Parkin pathway-which results in engulfment by the autophagosome and degradation in lysosomes. Deubiquitinating enzymes (DUBs) can regulate this process at several levels by deubiquitinating mitochondrial substrates and other targets in the mitophagic pathway, such as Parkin. Moreover, DUBs can affect α-synuclein aggregation through regulation of degradative pathways, deubiquitination of α-synuclein itself, and/or via co-localization with α-synuclein in inclusions. DUBs with a known association to PD are described in this paper, along with their function. Of interest, DUBs could be useful as novel therapeutic targets against PD through regulation of PD-associated defects.
Collapse
Affiliation(s)
- Pernille Y. Ø. Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
14
|
Bouron A, Aubry L, Loreth D, Fauvarque MO, Meyer-Schwesinger C. Role of the deubiquitinating enzyme UCH-L1 in mitochondrial function. Front Cell Neurosci 2023; 17:1149954. [PMID: 37032833 PMCID: PMC10076731 DOI: 10.3389/fncel.2023.1149954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, Inserm, CEA, UA13, BGE, Grenoble, France
- *Correspondence: Alexandre Bouron
| | - Laurence Aubry
- Université Grenoble Alpes, Inserm, CEA, UA13, BGE, Grenoble, France
| | - Desirée Loreth
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Sharma A, Wüllner U, Schmidt-Wolf IGH, Maciaczyk J. Marginalizing the genomic architecture to identify crosstalk across cancer and neurodegeneration. Front Mol Neurosci 2023; 16:1155177. [PMID: 36923654 PMCID: PMC10008880 DOI: 10.3389/fnmol.2023.1155177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Affiliation(s)
- Amit Sharma
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Ullrich Wüllner
- Department of Neurology, University Hospital of Bonn, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Jarek Maciaczyk
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany.,Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Wang Z, Zhang H, Li Y, Chen Y, Tang X, Zhao J, Yu F, Wang H, Xiao J, Liu J, Zhang X, Sun L, Xie Q, Wang X. Isoprenylation modification is required for HIPP1-mediated powdery mildew resistance in wheat. PLANT, CELL & ENVIRONMENT 2023; 46:288-305. [PMID: 36319595 DOI: 10.1111/pce.14479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/09/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Powdery mildew (Pm), caused by Blumeria graminis f.sp. tritici (Bgt), is one of the most important wheat diseases. Heavy-metal-associated isoprenylated plant protein (HIPP1) has been proved playing important roles in response to biotic and a biotic stress. In present study, we proved HIPP1-V from Haynalidia villosa is a positive regulator in Pm resistance. HIPP1-V was rapidly induced by Bgt. Transiently or stably heterologous overexpressing HIPP1-V in wheat suppressed the haustorium formation and enhanced Pm resistance. HIPP1-V isoprenylation was critical for plasma membrane (PM) localization, interaction with E3-ligase CMPG1-V and function in Pm resistance. Bgt infection recruited the isoprenylated HIPP1-V and CMPG1s on PM; blocking the HIPP1 isoprenylation reduced such recruitment and compromised the resistance of OE-CMPG1-V and OE-HIPP1-V. Overexpressing HIPP1-VC148G could not enhance Pm resistance. These indicated the Pm resistance was dependent on HIPP1-V's isoprenylation. DGEs related to the ROS and SA pathways were remarkably enriched in OE-HIPP1-V, revealing their involvement in Pm resistance. Our results provide evidence on the important role of protein isoprenylation in plant defense.
Collapse
Affiliation(s)
- Zongkuan Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Heng Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yingbo Li
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yiming Chen
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Xiong Tang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Jia Zhao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Feifei Yu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Haiyan Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Jin Xiao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Jia Liu
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Xu Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Li Sun
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Jeong A, Auger SA, Maity S, Fredriksen K, Zhong R, Li L, Distefano MD. In Vivo Prenylomic Profiling in the Brain of a Transgenic Mouse Model of Alzheimer's Disease Reveals Increased Prenylation of a Key Set of Proteins. ACS Chem Biol 2022; 17:2863-2876. [PMID: 36109170 PMCID: PMC9799064 DOI: 10.1021/acschembio.2c00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dysregulation of protein prenylation has been implicated in many diseases, including Alzheimer's disease (AD). Prenylomic analysis, the combination of metabolic incorporation of an isoprenoid analogue (C15AlkOPP) into prenylated proteins with a bottom-up proteomic analysis, has allowed the identification of prenylated proteins in various cellular models. Here, transgenic AD mice were administered with C15AlkOPP through intracerebroventricular (ICV) infusion over 13 days. Using prenylomic analysis, 36 prenylated proteins were enriched in the brains of AD mice. Importantly, the prenylated forms of 15 proteins were consistently upregulated in AD mice compared to nontransgenic wild-type controls. These results highlight the power of this in vivo metabolic labeling approach to identify multiple post-translationally modified proteins that may serve as potential therapeutic targets for a disease that has proved refractory to treatment thus far. Moreover, this method should be applicable to many other types of protein modifications, significantly broadening its scope.
Collapse
Affiliation(s)
- Angela Jeong
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | | - Sanjay Maity
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | | - Rui Zhong
- University of Minnesota, Minneapolis, MN, 55455 USA
| | - Ling Li
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | |
Collapse
|
18
|
Cuddy LK, Alia AO, Salvo MA, Chandra S, Grammatopoulos TN, Justman CJ, Lansbury PT, Mazzulli JR, Vassar R. Farnesyltransferase inhibitor LNK-754 attenuates axonal dystrophy and reduces amyloid pathology in mice. Mol Neurodegener 2022; 17:54. [PMID: 35987691 PMCID: PMC9392365 DOI: 10.1186/s13024-022-00561-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/11/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Amyloid plaque deposition and axonal degeneration are early events in AD pathogenesis. Aβ disrupts microtubules in presynaptic dystrophic neurites, resulting in the accumulation of impaired endolysosomal and autophagic organelles transporting β-site amyloid precursor protein cleaving enzyme (BACE1). Consequently, dystrophic neurites generate Aβ42 and significantly contribute to plaque deposition. Farnesyltransferase inhibitors (FTIs) have recently been investigated for repositioning toward the treatment of neurodegenerative disorders and block the action of farnesyltransferase (FTase) to catalyze farnesylation, a post-translational modification that regulates proteins involved in lysosome function and microtubule stability. In postmortem AD brains, FTase and its downstream signaling are upregulated. However, the impact of FTIs on amyloid pathology and dystrophic neurites is unknown. METHODS We tested the effects of the FTIs LNK-754 and lonafarnib in the 5XFAD mouse model of amyloid pathology. RESULTS In 2-month-old 5XFAD mice treated chronically for 3 months, LNK-754 reduced amyloid plaque burden, tau hyperphosphorylation, and attenuated the accumulation of BACE1 and LAMP1 in dystrophic neurites. In 5-month-old 5XFAD mice treated acutely for 3 weeks, LNK-754 reduced dystrophic neurite size and LysoTracker-Green accumulation in the absence of effects on Aβ deposits. Acute treatment with LNK-754 improved memory and learning deficits in hAPP/PS1 amyloid mice. In contrast to LNK-754, lonafarnib treatment was less effective at reducing plaques, tau hyperphosphorylation and dystrophic neurites, which could have resulted from reduced potency against FTase compared to LNK-754. We investigated the effects of FTIs on axonal trafficking of endolysosomal organelles and found that lonafarnib and LNK-754 enhanced retrograde axonal transport in primary neurons, indicating FTIs could support the maturation of axonal late endosomes into lysosomes. Furthermore, FTI treatment increased levels of LAMP1 in mouse primary neurons and in the brains of 5XFAD mice, demonstrating that FTIs stimulated the biogenesis of endolysosomal organelles. CONCLUSIONS We show new data to suggest that LNK-754 promoted the axonal trafficking and function of endolysosomal compartments, which we hypothesize decreased axonal dystrophy, reduced BACE1 accumulation and inhibited amyloid deposition in 5XFAD mice. Our results agree with previous work identifying FTase as a therapeutic target for treating proteinopathies and could have important therapeutic implications in treating AD.
Collapse
Affiliation(s)
- Leah K. Cuddy
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Alia O. Alia
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Miranda A. Salvo
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Sidhanth Chandra
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | | | | | - Peter T. Lansbury
- Bial Biotech, Cambridge, MA 02139 USA
- Department of Neurology, Harvard Medical School, Cambridge, MA 02139 USA
| | - Joseph R. Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Robert Vassar
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
19
|
Estavoyer B, Messmer C, Echbicheb M, Rudd CE, Milot E, Affar EB. Mechanisms orchestrating the enzymatic activity and cellular functions of deubiquitinases. J Biol Chem 2022; 298:102198. [PMID: 35764170 PMCID: PMC9356280 DOI: 10.1016/j.jbc.2022.102198] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Deubiquitinases (DUBs) are required for the reverse reaction of ubiquitination and act as major regulators of ubiquitin signaling processes. Emerging evidence suggests that these enzymes are regulated at multiple levels in order to ensure proper and timely substrate targeting and to prevent the adverse consequences of promiscuous deubiquitination. The importance of DUB regulation is highlighted by disease-associated mutations that inhibit or activate DUBs, deregulating their ability to coordinate cellular processes. Here, we describe the diverse mechanisms governing protein stability, enzymatic activity, and function of DUBs. In particular, we outline how DUBs are regulated by their protein domains and interacting partners. Intramolecular interactions can promote protein stability of DUBs, influence their subcellular localization, and/or modulate their enzymatic activity. Remarkably, these intramolecular interactions can induce self-deubiquitination to counteract DUB ubiquitination by cognate E3 ubiquitin ligases. In addition to intramolecular interactions, DUBs can also oligomerize and interact with a wide variety of cellular proteins, thereby forming obligate or facultative complexes that regulate their enzymatic activity and function. The importance of signaling and post-translational modifications in the integrated control of DUB function will also be discussed. While several DUBs are described with respect to the multiple layers of their regulation, the tumor suppressor BAP1 will be outlined as a model enzyme whose localization, stability, enzymatic activity, and substrate recognition are highly orchestrated by interacting partners and post-translational modifications.
Collapse
Affiliation(s)
- Benjamin Estavoyer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Clémence Messmer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Mohamed Echbicheb
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Christopher E Rudd
- Laboratory for Cell Signaling in Immunotherapy, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - Eric Milot
- Laboratory for Malignant Hematopoiesis and Epigenetic Regulation of Gene Expression, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - El Bachir Affar
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada.
| |
Collapse
|
20
|
Kobayashi E, Kondo S, Dochi H, Moriyama-Kita M, Hirai N, Komori T, Ueno T, Nakanishi Y, Hatano M, Endo K, Sugimoto H, Wakisaka N, Yoshizaki T. Protein Farnesylation on Nasopharyngeal Carcinoma, Molecular Background and Its Potential as a Therapeutic Target. Cancers (Basel) 2022; 14:cancers14122826. [PMID: 35740492 PMCID: PMC9220992 DOI: 10.3390/cancers14122826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is distinguished from other head and neck carcinomas by the association of its carcinogenesis with the Epstein–Barr virus. It is highly metastatic, and a novel therapeutic modality for metastatic nasopharyngeal carcinoma is keenly awaited. Protein farnesylation is a C-terminal lipid modification of proteins and was initially investigated as a key process in activating the RAS oncoprotein through its association with the cellular membrane structure. Since then, more and more evidence has accumulated to indicate that proteins other than RAS are also farnesylated and have significant roles in carcinogenesis. This review delineates molecular pathogenesis through protein farnesylation in the context of nasopharyngeal carcinoma and discusses the potential of farnesylation as a therapeutic target. Abstract Nasopharyngeal carcinoma (NPC) is one of the Epstein–Barr virus (EBV)-associated malignancies. NPC is highly metastatic compared to other head and neck carcinomas, and evidence has shown that the metastatic features of NPC are involved in EBV infection. The prognosis of advanced cases, especially those with distant metastasis, is still poor despite advancements in molecular research and its application to clinical settings. Thus, further advancement in basic and clinical research that may lead to novel therapeutic modalities is needed. Farnesylation is a lipid modification in the C-terminus of proteins. It enables proteins to attach to the lipid bilayer structure of cellular membranes. Farnesylation was initially identified as a key process of membrane association and activation of the RAS oncoprotein. Farnesylation is thus expected to be an ideal therapeutic target in anti-RAS therapy. Additionally, more and more molecular evidence has been reported, showing that proteins other than RAS are also farnesylated and have significant roles in cancer progression. However, although several clinical trials have been conducted in cancers with high rates of ras gene mutation, such as pancreatic carcinomas, the results were less favorable than anticipated. In contrast, favorable outcomes were reported in the results of a phase II trial on head and neck carcinoma. In this review, we provide an overview of the molecular pathogenesis of NPC in terms of the process of farnesylation and discuss the potential of anti-farnesylation therapy in the treatment of NPC.
Collapse
|
21
|
Kumar N, Goel N. Recent development of imidazole derivatives as potential anticancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Cancer, one of the key health problems globally, is a group of related diseases that share a number of characteristics primarily the uncontrolled growth and invasive to surrounding tissues. Chemotherapy is one of the ways for the treatment of cancer which uses one or more anticancer agents as per chemotherapy regimen. Limitations of most anticancer drugs due to a variety of reasons such as serious side effects, drug resistance, lack of sensitivity and efficacy etc. generate the necessity towards the designing of novel anticancer lead molecules. In this regard, the synthesis of biologically active heterocyclic molecules is an appealing research area. Among heterocyclic compounds, nitrogen containing heterocyclic molecules has fascinated tremendous consideration due to broad range of pharmaceutical activity. Imidazoles, extensively present in natural products as well as synthetic molecules, have two nitrogen atoms, and are five membered heterocyclic rings. Because of their countless physiological and pharmacological characteristics, medicinal chemists are enthused to design and synthesize new imidazole derivatives with improved pharmacodynamic and pharmacokinetic properties. The aim of this present chapter is to discuss the synthesis, chemistry, pharmacological activity, and scope of imidazole-based molecules in anticancer drug development. Finally, we have discussed the current challenges and future perspectives of imidazole-based derivatives in anticancer drug development.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Indore , Madhya Pradesh 453552 , India
| | - Nidhi Goel
- Department of Chemistry , Institute of Science, Banaras Hindu University , Varanasi , Uttar Pradesh 221005 , India
| |
Collapse
|
22
|
Deubiquitinating enzymes (DUBs): decipher underlying basis of neurodegenerative diseases. Mol Psychiatry 2022; 27:259-268. [PMID: 34285347 DOI: 10.1038/s41380-021-01233-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by the aggregation of neurotoxic proteins in the central nervous system. Aberrant protein accumulation in NDs is largely caused by the dysfunction of the two principal protein catabolism pathways, the ubiquitin-proteasome system (UPS), and the autophagy-lysosomal pathway (ALP). The two protein quality control pathways are bridged by ubiquitination, a post-translational modification that can induce protein degradation via both the UPS and the ALP. Perturbed ubiquitination leads to the formation of toxic aggregates and inclusion bodies that are deleterious to neurons. Ubiquitination is promoted by a cascade of ubiquitinating enzymes and counter-regulated by deubiquitinating enzymes (DUBs). As fine-tuning regulators of ubiquitination and protein degradation, DUBs modulate the stability of ND-associated pathogenic proteins including amyloid β protein, Tau, and α-synuclein. Besides, DUBs also influence ND-associated mitophagy, protein secretion, and neuroinflammation. Given the various and critical functions of DUBs in NDs, DUBs may become potential therapeutic targets for NDs.
Collapse
|
23
|
Shi Y, Fu L, Yang J, Carroll KS. Wittig reagents for chemoselective sulfenic acid ligation enables global site stoichiometry analysis and redox-controlled mitochondrial targeting. Nat Chem 2021; 13:1140-1150. [PMID: 34531572 DOI: 10.1038/s41557-021-00767-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/05/2021] [Indexed: 02/02/2023]
Abstract
Triphenylphosphonium ylides, known as Wittig reagents, are one of the most commonly used tools in synthetic chemistry. Despite their considerable versatility, Wittig reagents have not yet been explored for their utility in biological applications. Here we introduce a chemoselective ligation reaction that harnesses the reactivity of Wittig reagents and the unique chemical properties of sulfenic acid, a pivotal post-translational cysteine modification in redox biology. The reaction, which generates a covalent bond between the ylide nucleophilic α-carbon and electrophilic γ-sulfur, is highly selective, rapid and affords robust labelling under a range of biocompatible reaction conditions, which includes in living cells. We highlight the broad utility of this conjugation method to enable site-specific proteome-wide stoichiometry analysis of S-sulfenylation and to visualize redox-dependent changes in mitochondrial cysteine oxidation and redox-triggered triphenylphosphonium generation for the controlled delivery of small molecules to mitochondria.
Collapse
Affiliation(s)
- Yunlong Shi
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing, China.,National Center for Protein Sciences-Beijing, Beijing, China.,Beijing Institute of Lifeomics, Beijing, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing, China. .,National Center for Protein Sciences-Beijing, Beijing, China. .,Beijing Institute of Lifeomics, Beijing, China.
| | - Kate S Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
24
|
Taghizadeh E, Gheibihayat SM, Taheri F, Afshani SM, Farahani N, Saberi A. LncRNAs as putative biomarkers and therapeutic targets for Parkinson's disease. Neurol Sci 2021; 42:4007-4015. [PMID: 34254198 DOI: 10.1007/s10072-021-05408-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/13/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is known as one of the most common degenerative disorders related to the damage of the central nervous system (CNS). This brain disorder is also characterized by the formation of Lewy bodies in the cytoplasm of the dopaminergic neurons in the substantia nigra pars compacta (SNc), which consequently leads to motor and non-motor symptoms. With regard to the growing trend in the number of cases with PD and its effects on individuals, families, and communities, immediate treatments together with diagnostic methods are required. In this respect, long non-coding ribonucleic acids (lncRNAs) represent a large class of ncRNAs with more than 200 nucleotides in length, playing key roles in some important processes including gene expression, cell differentiation, genomic imprinting, apoptosis, and cell cycle. They are highly expressed in the CNS and previous studies have further reported that the expression profile of lncRNAs is disrupted in human diseases such as neurodegenerative disorders. Since the levels of some lncRNAs change over time in the brains of patients with PD, a number of previous studies have examined their potentials as biomarkers for this brain disorder. Therefore, the main purpose of this study was to review the advances in the related literature on lncRNAs as diagnostic, therapeutic, and prognostic biomarkers for PD.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Seyed Mohammad Gheibihayat
- Department of Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Forough Taheri
- Islamic Azad University (Shahrekord Branch), Shahrekord, Iran
| | - Seyed Mohammadreza Afshani
- Department of Cardiology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
25
|
Wang Y, Wang F. Post-Translational Modifications of Deubiquitinating Enzymes: Expanding the Ubiquitin Code. Front Pharmacol 2021; 12:685011. [PMID: 34177595 PMCID: PMC8224227 DOI: 10.3389/fphar.2021.685011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications such as ubiquitination play important regulatory roles in several biological processes in eukaryotes. This process could be reversed by deubiquitinating enzymes (DUBs), which remove conjugated ubiquitin molecules from target substrates. Owing to their role as essential enzymes in regulating all ubiquitin-related processes, the abundance, localization, and catalytic activity of DUBs are tightly regulated. Dysregulation of DUBs can cause dramatic physiological consequences and a variety of disorders such as cancer, and neurodegenerative and inflammatory diseases. Multiple factors, such as transcription and translation of associated genes, and the presence of accessory domains, binding proteins, and inhibitors have been implicated in several aspects of DUB regulation. Beyond this level of regulation, emerging studies show that the function of DUBs can be regulated by a variety of post-translational modifications, which significantly affect the abundance, localization, and catalytic activity of DUBs. The most extensively studied post-translational modification of DUBs is phosphorylation. Besides phosphorylation, ubiquitination, SUMOylation, acetylation, oxidation, and hydroxylation are also reported in DUBs. In this review, we summarize the current knowledge on the regulatory effects of post-translational modifications of DUBs.
Collapse
Affiliation(s)
- Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
26
|
Pinto MJ, Tomé D, Almeida RD. The Ubiquitinated Axon: Local Control of Axon Development and Function by Ubiquitin. J Neurosci 2021; 41:2796-2813. [PMID: 33789876 PMCID: PMC8018891 DOI: 10.1523/jneurosci.2251-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 02/01/2023] Open
Abstract
Ubiquitin tagging sets protein fate. With a wide range of possible patterns and reversibility, ubiquitination can assume many shapes to meet specific demands of a particular cell across time and space. In neurons, unique cells with functionally distinct axons and dendrites harboring dynamic synapses, the ubiquitin code is exploited at the height of its power. Indeed, wide expression of ubiquitination and proteasome machinery at synapses, a diverse brain ubiquitome, and the existence of ubiquitin-related neurodevelopmental diseases support a fundamental role of ubiquitin signaling in the developing and mature brain. While special attention has been given to dendritic ubiquitin-dependent control, how axonal biology is governed by this small but versatile molecule has been considerably less discussed. Herein, we set out to explore the ubiquitin-mediated spatiotemporal control of an axon's lifetime: from its differentiation and growth through presynaptic formation, function, and pruning.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Diogo Tomé
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
27
|
Maresca A, Carelli V. Molecular Mechanisms behind Inherited Neurodegeneration of the Optic Nerve. Biomolecules 2021; 11:496. [PMID: 33806088 PMCID: PMC8064499 DOI: 10.3390/biom11040496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
Inherited neurodegeneration of the optic nerve is a paradigm in neurology, as many forms of isolated or syndromic optic atrophy are encountered in clinical practice. The retinal ganglion cells originate the axons that form the optic nerve. They are particularly vulnerable to mitochondrial dysfunction, as they present a peculiar cellular architecture, with axons that are not myelinated for a long intra-retinal segment, thus, very energy dependent. The genetic landscape of causative mutations and genes greatly enlarged in the last decade, pointing to common pathways. These mostly imply mitochondrial dysfunction, which leads to a similar outcome in terms of neurodegeneration. We here critically review these pathways, which include (1) complex I-related oxidative phosphorylation (OXPHOS) dysfunction, (2) mitochondrial dynamics, and (3) endoplasmic reticulum-mitochondrial inter-organellar crosstalk. These major pathogenic mechanisms are in turn interconnected and represent the target for therapeutic strategies. Thus, their deep understanding is the basis to set and test new effective therapies, an urgent unmet need for these patients. New tools are now available to capture all interlinked mechanistic intricacies for the pathogenesis of optic nerve neurodegeneration, casting hope for innovative therapies to be rapidly transferred into the clinic and effectively cure inherited optic neuropathies.
Collapse
Affiliation(s)
- Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| |
Collapse
|
28
|
Sian-Hulsmann J, Riederer P. The Nigral Coup in Parkinson's Disease by α-Synuclein and Its Associated Rebels. Cells 2021; 10:598. [PMID: 33803185 PMCID: PMC8000327 DOI: 10.3390/cells10030598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
The risk of Parkinson's disease increases with age. However, the etiology of the illness remains obscure. It appears highly likely that the neurodegenerative processes involve an array of elements that influence each other. In addition, genetic, endogenous, or exogenous toxins need to be considered as viable partners to the cellular degeneration. There is compelling evidence that indicate the key involvement of modified α-synuclein (Lewy bodies) at the very core of the pathogenesis of the disease. The accumulation of misfolded α-synuclein may be a consequence of some genetic defect or/and a failure of the protein clearance system. Importantly, α-synuclein pathology appears to be a common denominator for many cellular deleterious events such as oxidative stress, mitochondrial dysfunction, dopamine synaptic dysregulation, iron dyshomeostasis, and neuroinflammation. These factors probably employ a common apoptotic/or autophagic route in the final stages to execute cell death. The misfolded α-synuclein inclusions skillfully trigger or navigate these processes and thus amplify the dopamine neuron fatalities. Although the process of neuroinflammation may represent a secondary event, nevertheless, it executes a fundamental role in neurodegeneration. Some viral infections produce parkinsonism and exhibit similar characteristic neuropathological changes such as a modest brain dopamine deficit and α-synuclein pathology. Thus, viral infections may heighten the risk of developing PD. Alternatively, α-synuclein pathology may induce a dysfunctional immune system. Thus, sporadic Parkinson's disease is caused by multifactorial trigger factors and metabolic disturbances, which need to be considered for the development of potential drugs in the disorder.
Collapse
Affiliation(s)
- Jeswinder Sian-Hulsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, 00100 Nairobi, Kenya
| | - Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy Margarete-Hoeppel-Platz 1, University Hospital Wuerzburg, 97080 Wuerzburg, Germany;
- Department Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000 Odense, Denmark
| |
Collapse
|
29
|
Mi Z, Liu H, Rose ME, Ma X, Reay DP, Ma J, Henchir J, Dixon CE, Graham SH. Abolishing UCHL1's hydrolase activity exacerbates TBI-induced axonal injury and neuronal death in mice. Exp Neurol 2020; 336:113524. [PMID: 33159930 DOI: 10.1016/j.expneurol.2020.113524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 01/13/2023]
Abstract
Ubiquitin (Ub) C-terminal hydrolase L1 (UCHL1) is a multifunctional protein that is expressed in neurons throughout brain at high levels. UCHL1 deletion is associated with axonal degeneration, progressive sensory motor ataxia, and premature death in mice. UCHL1 has been hypothesized to play a role in the pathogenesis of neurodegenerative diseases and recovery after neuronal injury. UCHL1 hydrolyzes Ub from polyubiquitinated (poly-Ub) proteins, but also may ligate Ub to select neuronal proteins, and interact with cytoskeletal proteins. These and other mechanisms have been hypothesized to underlie UCHL1's role in neurodegeneration and response to brain injury. A UCHL1 knockin mouse containing a C90A mutation (C90A) devoid of hydrolase activity was constructed. The C90A mouse did not develop the sensory and motor deficits, degeneration of the gracile nucleus and tract, or premature death as seen in UCHL1 deficient mice. C90A and wild type (WT) mice were subjected to the controlled cortical impact (CCI) model of traumatic brain injury (TBI), and cell death, axonal injury and behavioral outcome were assessed. C90A mice exhibited decreased spared tissue volume, greater loss of CA1 hippocampal neurons and greater axonal injury as detected using anti-amyloid precursor protein (APP) antibody and anti- non-phosphorylated neurofilament H (SMI-32) antibody immunohistochemistry after CCI compared to WT controls. Poly-Ub proteins and Beclin-1 were elevated after CCI in C90A mice compared to WT controls. Vestibular motor deficits assessed using the beam balance test resolved by day 5 after CCI in WT mice but not in C90A mice. These results suggest that the hydrolase activity of UCHL1 does not account for the progressive neurodegeneration and premature death seen in mice that do not express full length UCHL1. The hydrolase activity of UCHL1 contributes to the function of the ubiquitin proteasome pathway (UPP), ameliorates activation of autophagy, and improves motor recovery after CCI. Thus, UCHL1 hydrolase activity plays an important role in acute injury response after TBI.
Collapse
Affiliation(s)
- Zhiping Mi
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Hao Liu
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Marie E Rose
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Xiecheng Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurosurgery, University of Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, PA 15216, USA
| | - Daniel P Reay
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Jie Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Jeremy Henchir
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurosurgery, University of Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, PA 15216, USA
| | - C Edward Dixon
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurosurgery, University of Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, PA 15216, USA
| | - Steven H Graham
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA.
| |
Collapse
|
30
|
Qu W, Suazo KF, Liu W, Cheng S, Jeong A, Hottman D, Yuan LL, Distefano MD, Li L. Neuronal Protein Farnesylation Regulates Hippocampal Synaptic Plasticity and Cognitive Function. Mol Neurobiol 2020; 58:1128-1144. [PMID: 33098528 DOI: 10.1007/s12035-020-02169-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Protein prenylation is a post-translational lipid modification that governs a variety of important cellular signaling pathways, including those regulating synaptic functions and cognition in the nervous system. Two enzymes, farnesyltransferase (FT) and geranylgeranyltransferase type I (GGT), are essential for the prenylation process. Genetic reduction of FT or GGT ameliorates neuropathology but only FT haplodeficiency rescues cognitive function in transgenic mice of Alzheimer's disease. A follow-up study showed that systemic or forebrain neuron-specific deficiency of GGT leads to synaptic and cognitive deficits under physiological conditions. Whether FT plays different roles in shaping neuronal functions and cognition remains elusive. This study shows that in contrast to the detrimental effects of GGT reduction, systemic haplodeficiency of FT has little to no impact on hippocampal synaptic plasticity and cognition. However, forebrain neuron-specific FT deletion also leads to reduced synaptic plasticity, memory retention, and hippocampal dendritic spine density. Furthermore, a novel prenylomic analysis identifies distinct pools of prenylated proteins that are affected in the brain of forebrain neuron-specific FT and GGT knockout mice, respectively. Taken together, this study uncovers that physiological levels of FT and GGT in neurons are essential for normal synaptic/cognitive functions and that the prenylation status of specific signaling molecules regulates neuronal functions.
Collapse
Affiliation(s)
- Wenhui Qu
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wenfeng Liu
- Department of Experimental and Clinical Pharmacology, University of Minnesota, McGuire Translational Research Facility (MTRF) 4-208, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| | - Shaowu Cheng
- Department of Experimental and Clinical Pharmacology, University of Minnesota, McGuire Translational Research Facility (MTRF) 4-208, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, McGuire Translational Research Facility (MTRF) 4-208, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| | - David Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, McGuire Translational Research Facility (MTRF) 4-208, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| | - Li-Lian Yuan
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, 50312, USA
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ling Li
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA. .,Department of Experimental and Clinical Pharmacology, University of Minnesota, McGuire Translational Research Facility (MTRF) 4-208, 2001 6th Street SE, Minneapolis, MN, 55455, USA. .,Graduate Program in Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
31
|
Nawaz MS, Asghar R, Pervaiz N, Ali S, Hussain I, Xing P, Bao Y, Abbasi AA. Molecular evolutionary and structural analysis of human UCHL1 gene demonstrates the relevant role of intragenic epistasis in Parkinson's disease and other neurological disorders. BMC Evol Biol 2020; 20:130. [PMID: 33028204 PMCID: PMC7542113 DOI: 10.1186/s12862-020-01684-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/07/2020] [Indexed: 12/04/2022] Open
Abstract
Background Parkinson’s disease (PD) is the second most common neurodegenerative disorder. PD associated human UCHL1 (Ubiquitin C-terminal hydrolase L1) gene belongs to the family of deubiquitinases and is known to be highly expressed in neurons (1–2% in soluble form). Several functions of UCHL1 have been proposed including ubiquitin hydrolyze activity, ubiquitin ligase activity and stabilization of the mono-ubiquitin. Mutations in human UCHL1 gene have been associated with PD and other neurodegenerative disorders. The present study aims to decipher the sequence evolutionary pattern and structural dynamics of UCHL1. Furthermore, structural and interactional analysis of UCHL1 was performed to help elucidate the pathogenesis of PD. Results The phylogenetic tree topology suggests that the UCHL1 gene had originated in early gnathostome evolutionary history. Evolutionary rate analysis of orthologous sequences reveals strong purifying selection on UCHL1. Comparative structural analysis of UCHL1 pinpoints an important protein segment spanning amino acid residues 32 to 39 within secretion site with crucial implications in evolution and PD pathogenesis through a well known phenomenon called intragenic epistasis. Identified critical protein segment appears to play an indispensable role in protein stability, proper protein conformation as well as harboring critical interaction sites. Conclusions Conclusively, the critical protein segment of UCHL1 identified in the present study not only demonstrates the relevant role of intraprotein conformational epistasis in the pathophysiology of PD but also offers a novel therapeutic target for the disease.
Collapse
Affiliation(s)
- Muhammad Saqib Nawaz
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Razia Asghar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nashaiman Pervaiz
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shahid Ali
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Irfan Hussain
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Peiqi Xing
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Bao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
32
|
Cerqueira FM, von Stockum S, Giacomello M, Goliand I, Kakimoto P, Marchesan E, De Stefani D, Kowaltowski AJ, Ziviani E, Shirihai OS. A new target for an old DUB: UCH-L1 regulates mitofusin-2 levels, altering mitochondrial morphology, function and calcium uptake. Redox Biol 2020; 37:101676. [PMID: 32956978 PMCID: PMC7509235 DOI: 10.1016/j.redox.2020.101676] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
UCH-L1 is a deubiquitinating enzyme (DUB), highly abundant in neurons, with a sub-cellular localization dependent on its farnesylation state. Despite UCH-L1′s association with familial Parkinson's Disease (PD), the effects on mitochondrial bioenergetics and quality control remain unexplored. Here we investigated the role of UCHL-1 in mitochondrial dynamics and bioenergetics. We demonstrate that knock-down (KD) of UCH-L1 in different cell lines reduces the levels of the mitochondrial fusion protein Mitofusin-2, but not Mitofusin-1, resulting in mitochondrial enlargement and disruption of the tubular network. This was associated with lower tethering between mitochondria and the endoplasmic reticulum, consequently altering mitochondrial calcium uptake. Respiratory function was also altered, as UCH-L1 KD cells displayed higher proton leak and maximum respiratory capacity. Conversely, overexpression of UCH-L1 increased Mfn2 levels, an effect dramatically enhanced by the mutation of the farnesylation site (C220S), which drives UCH-L1 binding to membranes. These data indicate that the soluble cytosolic form of UCH-L1 regulates Mitofusin-2 levels and mitochondrial function. These effects are biologically conserved, since knock-down of the corresponding UCH-L1 ortholog in D. melanogaster reduces levels of the mitofusin ortholog Marf and also increases mitochondrial respiratory capacity. We thus show that Mfn-2 levels are directly affected by UCH-L1, demonstrating that the mitochondrial roles of DUBs go beyond controlling mitophagy rates.
Collapse
Affiliation(s)
- Fernanda M Cerqueira
- Obesity Research Center, Molecular Medicine, Boston University School of Medicine, Boston, MA, 02111, USA; National Institute for Biotechnology in the Negev, Ben Gurion University, Beer-Sheva, 8410501, Israel; Department of Biology, University of Padua, Padua, 35121, Italy
| | | | - Marta Giacomello
- Department of Biology, University of Padua, Padua, 35121, Italy; Department of Biomedical Sciences, University of Padua, 35121, Italy
| | - Inna Goliand
- National Institute for Biotechnology in the Negev, Ben Gurion University, Beer-Sheva, 8410501, Israel
| | - Pamela Kakimoto
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Elena Marchesan
- Department of Biology, University of Padua, Padua, 35121, Italy
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padua, 35121, Italy
| | - Alicia J Kowaltowski
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Elena Ziviani
- Department of Biology, University of Padua, Padua, 35121, Italy
| | - Orian S Shirihai
- Obesity Research Center, Molecular Medicine, Boston University School of Medicine, Boston, MA, 02111, USA; UCLA Section of Endocrinology, Department of Medicine, David Geffen School of Medicine, UCLA, CA, 9095-7073, USA.
| |
Collapse
|
33
|
Lim KH, Joo JY, Baek KH. The potential roles of deubiquitinating enzymes in brain diseases. Ageing Res Rev 2020; 61:101088. [PMID: 32470641 DOI: 10.1016/j.arr.2020.101088] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Most proteins undergo posttranslational modification such as acetylation, methylation, phosphorylation, biotinylation, and ubiquitination to regulate various cellular processes. Ubiquitin-targeted proteins from the ubiquitin-proteasome system (UPS) are degraded by 26S proteasome, along with this, deubiquitinating enzymes (DUBs) have specific activity against the UPS through detaching of ubiquitin on ubiquitin-targeted proteins. Balancing between protein expression and degradation through interplay between the UPS and DUBs is important to maintain cell homeostasis, and abnormal expression and elongation of proteins lead to diverse diseases such as cancer, diabetes, and autoimmune response. Therefore, development of DUB inhibitors as therapeutic targets has been challenging. In addition, understanding of the roles of DUBs in neurodegeneration, specifically brain diseases, has emerged gradually. This review highlights recent studies on the molecular mechanisms for DUBs, and discusses potential therapeutic targets for DUBs in cases of brain diseases.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Choeomdan-Ro 61, Daegu 41068, Republic of Korea.
| | - Jae-Yeol Joo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Choeomdan-Ro 61, Daegu 41068, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| |
Collapse
|
34
|
Regulation of Deubiquitinating Enzymes by Post-Translational Modifications. Int J Mol Sci 2020; 21:ijms21114028. [PMID: 32512887 PMCID: PMC7312083 DOI: 10.3390/ijms21114028] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023] Open
Abstract
Ubiquitination and deubiquitination play a critical role in all aspects of cellular processes, and the enzymes involved are tightly regulated by multiple factors including posttranslational modifications like most other proteins. Dysfunction or misregulation of these enzymes could have dramatic physiological consequences, sometimes leading to diseases. Therefore, it is important to have a clear understanding of these regulatory processes. Here, we have reviewed the posttranslational modifications of deubiquitinating enzymes and their consequences on the catalytic activity, stability, abundance, localization, and interaction with the partner proteins.
Collapse
|
35
|
Sharma A, Liu H, Tobar-Tosse F, Chand Dakal T, Ludwig M, Holz FG, Loeffler KU, Wüllner U, Herwig-Carl MC. Ubiquitin Carboxyl-Terminal Hydrolases (UCHs): Potential Mediators for Cancer and Neurodegeneration. Int J Mol Sci 2020; 21:ijms21113910. [PMID: 32486284 PMCID: PMC7312489 DOI: 10.3390/ijms21113910] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence suggests an inverse association between cancer and neurodegenerative diseases (NDD). Although phenotypically different, both diseases display a significant imbalance in the ubiquitination/deubiquitination processes. Therefore, we particularly investigated the expression of ubiquitin C-terminal hydrolases (UCHs: UCH-L1, UCH-L3, UCH-L5 and BAP1), a subfamily of deubiquitinating enzymes (DUBs), using publically available datasets (GTEx, TCGA) and observed altered expression of UCH-L1, UCH-L3, UCH-L5 in 17 cancer types. Interestingly, UCH-L1 (known to be enriched in neurons and interacting with the Parkinson’s disease-associated protein α-synuclein) appeared to be a prognostic indicator of unfavorable outcome in endometrial and urothelial cancer, while increased expression of UCH-L3 and UCH-L5 was associated with poor survival in liver and thyroid cancer, respectively. In normal tissues, UCH-L1 was found to be strongly expressed in the cerebral cortex and hypothalamus, while UCH-L3 expression was somewhat higher in the testis. The occurrence of mutation rates in UCHs also suggests that BAP1 and UCH-L5 may play a more dominant role in cancers than UCH-L1 and UCH-L3. We also characterized the functional context and configuration of the repeat elements in the promoter of DUBs genes and found that UCHs are highly discriminatory for catabolic function and are mainly enriched with LINE/CR1 repeats. Regarding the thesis of an inverse association between cancer and NDD, we observed that among all DUBs, UCHs are the one most involved in both entities. Considering a putative therapeutic potential based on presumed common mechanisms, it will be useful to determine whether other DUBs can compensate for the loss of UCH activity under physiological conditions. However, experimental evidence is required to substantiate this argument.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Ophthalmology, University Hospital Bonn, 53127 Bonn, Germany; (A.S.); (F.G.H.); (K.U.L.)
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China;
| | - Fabian Tobar-Tosse
- Department of Basic Health Sciences, Pontificia Universidad Javeriana Cali, 760031 Cali, Colombia.;
| | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Rajasthan 313001, India;
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital of Bonn, 53127 Bonn, Germany;
| | - Frank G. Holz
- Department of Ophthalmology, University Hospital Bonn, 53127 Bonn, Germany; (A.S.); (F.G.H.); (K.U.L.)
| | - Karin U. Loeffler
- Department of Ophthalmology, University Hospital Bonn, 53127 Bonn, Germany; (A.S.); (F.G.H.); (K.U.L.)
| | - Ullrich Wüllner
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Martina C. Herwig-Carl
- Department of Ophthalmology, University Hospital Bonn, 53127 Bonn, Germany; (A.S.); (F.G.H.); (K.U.L.)
- Correspondence: ; Tel.: +49-(0)228-287-15505
| |
Collapse
|
36
|
Hussain S, Bedekovics T, Ali A, Zaid O, May DG, Roux KJ, Galardy PJ. A cysteine near the C-terminus of UCH-L1 is dispensable for catalytic activity but is required to promote AKT phosphorylation, eIF4F assembly, and malignant B-cell survival. Cell Death Discov 2019; 5:152. [PMID: 31839994 PMCID: PMC6904616 DOI: 10.1038/s41420-019-0231-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/24/2019] [Accepted: 11/18/2019] [Indexed: 12/26/2022] Open
Abstract
The enzyme UCH-L1 is a neuro-endocrine and germinal center B-cell marker that contributes to the development and aggressive behavior of mature B-cell malignancies. While mutations in this enzyme have been associated with Parkinson's disease, relatively little is known about the molecular features associated with the biochemical activities of UCH-L1. Here we use a survival-based complementation assay and site-directed mutagenesis and identify a novel role for the C-terminus of UCH-L1 in supporting cell survival. The C220 residue is required for UCH-L1 to promote the assembly of mTOR complex 2 and phosphorylation of the pro-survival kinase AKT. While this residue was previously described as a potential farnesylation site, destruction of the putative CAAX motif by adding a C-terminal epitope tag did not interfere with cell survival, indicating an alternate mechanism. We used proximity-based proteomics comparing the proteomes of wild-type and C220S UCH-L1 and identified a selective loss of association with RNA-binding proteins including components of the translation initiation machinery. As a consequence, the C220S mutant did not promote the assembly of the eIF4F complex. These data identify a novel role for the C-terminus of UCH-L1 in supporting pro-survival and metabolic activities in malignant B-cells. This finding may lead to the development of therapeutics with selective activity towards malignancy that potentially avoid neuronal toxicities.
Collapse
Affiliation(s)
- Sajjad Hussain
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Tibor Bedekovics
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Asma Ali
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Omar Zaid
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Danielle G. May
- Enabling Technology Group, Sanford Research, Sioux Falls, SD 57104 USA
| | - Kyle J. Roux
- Enabling Technology Group, Sanford Research, Sioux Falls, SD 57104 USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105 USA
| | - Paul J. Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905 USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA
- Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
37
|
Zhu S, Wuolikainen A, Wu J, Öhman A, Wingsle G, Moritz T, Andersen PM, Forsgren L, Trupp M. Targeted Multiple Reaction Monitoring Analysis of CSF Identifies UCHL1 and GPNMB as Candidate Biomarkers for ALS. J Mol Neurosci 2019; 69:643-657. [PMID: 31721001 PMCID: PMC6858390 DOI: 10.1007/s12031-019-01411-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
The neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) share some common molecular deficits including disruption of protein homeostasis leading to disease-specific protein aggregation. While insoluble protein aggregates are the defining pathological confirmation of diagnosis, patient stratification based on early molecular etiologies may identify distinct subgroups within a clinical diagnosis that would respond differently in therapeutic development programs. We are developing targeted multiple reaction monitoring (MRM) mass spectrometry methods to rigorously quantify CSF proteins from known disease genes involved in lysosomal, ubiquitin-proteasomal, and autophagy pathways. Analysis of CSF from 21 PD, 21 ALS, and 25 control patients, rigorously matched for gender, age, and age of sample, revealed significant changes in peptide levels between PD, ALS, and control. In patients with PD, levels of two peptides for chromogranin B (CHGB, secretogranin 1) were significantly reduced. In CSF of patients with ALS, levels of two peptides from ubiquitin carboxy-terminal hydrolase like protein 1 (UCHL1) and one peptide each for glycoprotein non-metastatic melanoma protein B (GPNMB) and cathepsin D (CTSD) were all increased. Analysis of patients with ALS separated into two groups based on length of survival after CSF sampling revealed that the increases in GPNMB and UCHL1 were specific for short-lived ALS patients. While analysis of additional cohorts is required to validate these candidate biomarkers, this study suggests methods for stratification of ALS patients for clinical trials and identifies targets for drug efficacy measurements during therapeutic development.
Collapse
Affiliation(s)
- Shaochun Zhu
- Department of Clinical Science, Neurosciences, Umeå University, Building 10, NUS, Umeå, Sweden
| | | | - Junfang Wu
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Anders Öhman
- Department of Clinical Science, Neurosciences, Umeå University, Building 10, NUS, Umeå, Sweden
| | - Gunnar Wingsle
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Building 10, NUS, Umeå, Sweden
| | - Lars Forsgren
- Department of Clinical Science, Neurosciences, Umeå University, Building 10, NUS, Umeå, Sweden
| | - Miles Trupp
- Department of Clinical Science, Neurosciences, Umeå University, Building 10, NUS, Umeå, Sweden.
| |
Collapse
|
38
|
Inhibition of UCH-L1 Deubiquitinating Activity with Two Forms of LDN-57444 Has Anti-Invasive Effects in Metastatic Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20153733. [PMID: 31370144 PMCID: PMC6696221 DOI: 10.3390/ijms20153733] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 01/28/2023] Open
Abstract
Normally ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed in the central nervous and reproductive systems of adults, but its de novo expression has been detected in many human cancers. There is a growing body of evidence that UCH-L1 de-ubiquitinating (DUB) activity plays a major pro-metastatic role in certain carcinomas. Here we tested anti-metastatic effects of the small-molecule inhibitor of UCH-L1 DUB activity, LDN-57444, in cell lines from advanced oral squamous cell carcinoma (OSCC) as well as invasive nasopharyngeal (NP) cell lines expressing the major pro-metastatic gene product of Epstein–Barr virus (EBV) tumor virus, LMP1. To overcome the limited aqueous solubility of LDN-57444 we developed a nanoparticle formulation of LDN-57444 by incorporation of the compound in polyoxazoline micellear nanoparticles (LDN-POx). LDN-POx nanoparticles were equal in effects as the native compound in vitro. Our results demonstrate that inhibition of UCH-L1 DUB activity with LDN or LDN-POx inhibits secretion of exosomes and reduces levels of the pro-metastatic factor in exosomal fractions. Both forms of UCH-L1 DUB inhibitor suppress motility of metastatic squamous carcinoma cells as well as nasopharyngeal cells expressing EBV pro-metastatic Latent membrane protein 1 (LMP1) in physiological assays. Moreover, treatment with LDN and LDN-POx resulted in reduced levels of pro-metastatic markers, a decrease of carcinoma cell adhesion, as well as inhibition of extra-cellular vesicle (ECV)-mediated transfer of viral invasive factor LMP1. We suggest that soluble inhibitors of UCH-L1 such as LDN-POx offer potential forms of treatment for invasive carcinomas including EBV-positive malignancies.
Collapse
|
39
|
Storck EM, Morales-Sanfrutos J, Serwa RA, Panyain N, Lanyon-Hogg T, Tolmachova T, Ventimiglia LN, Martin-Serrano J, Seabra MC, Wojciak-Stothard B, Tate EW. Dual chemical probes enable quantitative system-wide analysis of protein prenylation and prenylation dynamics. Nat Chem 2019; 11:552-561. [PMID: 30936521 PMCID: PMC6544531 DOI: 10.1038/s41557-019-0237-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Post-translational farnesylation or geranylgeranylation at a C-terminal cysteine residue regulates the localization and function of over 100 proteins, including the Ras isoforms, and is a therapeutic target in diseases including cancer and infection. Here, we report global and selective profiling of prenylated proteins in living cells enabled by the development of isoprenoid analogues YnF and YnGG in combination with quantitative chemical proteomics. Eighty prenylated proteins were identified in a single human cell line, 64 for the first time at endogenous abundance without metabolic perturbation. We further demonstrate that YnF and YnGG enable direct identification of post-translationally processed prenylated peptides, proteome-wide quantitative analysis of prenylation dynamics and alternative prenylation in response to four different prenyltransferase inhibitors, and quantification of defective Rab prenylation in a model of the retinal degenerative disease choroideremia.
Collapse
Affiliation(s)
- Elisabeth M Storck
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Julia Morales-Sanfrutos
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Remigiusz A Serwa
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Nattawadee Panyain
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Thomas Lanyon-Hogg
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Tanya Tolmachova
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Leandro N Ventimiglia
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Juan Martin-Serrano
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Miguel C Seabra
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Beata Wojciak-Stothard
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| |
Collapse
|
40
|
Ahmadi M, Suazo KF, Distefano MD. Optimization of Metabolic Labeling with Alkyne-Containing Isoprenoid Probes. Methods Mol Biol 2019; 2009:35-43. [PMID: 31152393 DOI: 10.1007/978-1-4939-9532-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein prenylation, found in eukaryotes, is a posttranslational modification in which one or two isoprenoid groups are added to the C terminus of selected proteins using either a farnesyl group or a geranylgeranyl group. Prenylation facilitates protein localization mainly to the plasma membrane where the prenylated proteins, including small GTPases, mediate signal transduction pathways. Changes in the level of prenylated proteins may serve a critical function in a variety of diseases. Metabolic labeling using modified isoprenoid probes followed by enrichment and proteomic analysis allows the identities and levels of prenylated proteins to be investigated. In this protocol, we illustrate how the conditions for metabolic labeling are optimized to maximize probe incorporation in HeLa cells through a combination of in-gel fluorescence and densitometric analysis.
Collapse
Affiliation(s)
- Mina Ahmadi
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
41
|
Kang SJ, Kim JS, Park SM. Ubiquitin C-terminal Hydrolase L1 Regulates Lipid Raft-dependent Endocytosis. Exp Neurobiol 2018; 27:377-386. [PMID: 30429647 PMCID: PMC6221840 DOI: 10.5607/en.2018.27.5.377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022] Open
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is highly expressed in neurons, and gathering evidence indicates that UCH-L1 may play pathogenic roles in many neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease (PD). Additionally, lipid rafts have attracted interest in neurodegeneration as playing a common role in many neurodegenerative diseases. In the present study, we demonstrated that UCH-L1 associates with lipid rafts as with other PD-associated gene products. In addition, UCH-L1 regulates lipid raft-dependent endocytosis and it is not dependent on the expression and degradation of caveolin-1 or flotillin-1. Finally, UCH-L1 regulates cell-to-cell transmission of α-synuclein. This study provides evidence that many PD-associated gene products share common signaling pathways to explain the pathogenesis of PD.
Collapse
Affiliation(s)
- Seo-Jun Kang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea.,BK21 plus program, Department of Biological Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Jin Soo Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea.,BK21 plus program, Department of Biological Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
42
|
Deubiquitinating Enzymes Related to Autophagy: New Therapeutic Opportunities? Cells 2018; 7:cells7080112. [PMID: 30126257 PMCID: PMC6116007 DOI: 10.3390/cells7080112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Autophagy is an evolutionary conserved catabolic process that allows for the degradation of intracellular components by lysosomes. This process can be triggered by nutrient deprivation, microbial infections or other challenges to promote cell survival under these stressed conditions. However, basal levels of autophagy are also crucial for the maintenance of proper cellular homeostasis by ensuring the selective removal of protein aggregates and dysfunctional organelles. A tight regulation of this process is essential for cellular survival and organismal health. Indeed, deregulation of autophagy is associated with a broad range of pathologies such as neuronal degeneration, inflammatory diseases, and cancer progression. Ubiquitination and deubiquitination of autophagy substrates, as well as components of the autophagic machinery, are critical regulatory mechanisms of autophagy. Here, we review the main evidence implicating deubiquitinating enzymes (DUBs) in the regulation of autophagy. We also discuss how they may constitute new therapeutic opportunities in the treatment of pathologies such as cancers, neurodegenerative diseases or infections.
Collapse
|
43
|
Choi JE, Lee JJ, Kang W, Kim HJ, Cho JH, Han PL, Lee KJ. Proteomic Analysis of Hippocampus in a Mouse Model of Depression Reveals Neuroprotective Function of Ubiquitin C-terminal Hydrolase L1 (UCH-L1) via Stress-induced Cysteine Oxidative Modifications. Mol Cell Proteomics 2018; 17:1803-1823. [PMID: 29959188 PMCID: PMC6126396 DOI: 10.1074/mcp.ra118.000835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/20/2018] [Indexed: 01/08/2023] Open
Abstract
Chronic physical restraint stress increases oxidative stress in the brain, and dysregulation of oxidative stress can be one of the causes of major depressive disorder. To understand the underlying mechanisms, we undertook a systematic proteomic analysis of hippocampus in a chronic restraint stress mouse model of depression. Combining two-dimensional gel electrophoresis (2D-PAGE) for protein separation with nanoUPLC-ESI-q-TOF tandem mass spectrometry, we identified sixty-three protein spots that changed in the hippocampus of mice subjected to chronic restraint stress. We identified and classified the proteins that changed after chronic stress, into three groups respectively functioning in neural plasticity, metabolic processes and protein aggregation. Of these, 5 proteins including ubiquitin C-terminal hydrolase L1 (UCH-L1), dihydropyrimidinase-related protein 2 (DPYL2), haloacid dehalogenase-like hydrolase domain-containing protein 2 (HDHD2), actin-related protein 2/3 complex subunit 5 (ARPC5) and peroxiredoxin-2 (PRDX2), showed pI shifts attributable to post-translational modifications. Further analysis indicated that UCH-L1 underwent differential oxidations of 2 cysteine residues following chronic stress. We investigated whether the oxidized form of UCH-L1 plays a role in stressed hippocampus, by comparing the effects of UCH-L1 and its Cys mutants on hippocampal cell line HT-22 in response to oxidative stress. This study demonstrated that UCH-L1 wild-type and cysteine to aspartic acid mutants, but not its cysteine to serine mutants, afforded neuroprotective effects against oxidative stress; there were no discernible differences between wild-type UCH-L1 and its mutants in the absence of oxidative stress. These findings suggest that cysteine oxidative modifications of UCH-L1 in the hippocampus play key roles in neuroprotection against oxidative stress caused in major depressive disorder.
Collapse
Affiliation(s)
- Jung-Eun Choi
- From the ‡College of Pharmacy and Graduate School of Pharmaceutical Sciences, and
| | - Jae-Jin Lee
- From the ‡College of Pharmacy and Graduate School of Pharmaceutical Sciences, and
| | - Wonmo Kang
- From the ‡College of Pharmacy and Graduate School of Pharmaceutical Sciences, and
| | - Hyun Jung Kim
- From the ‡College of Pharmacy and Graduate School of Pharmaceutical Sciences, and
| | - Jin-Hwan Cho
- From the ‡College of Pharmacy and Graduate School of Pharmaceutical Sciences, and
| | - Pyung-Lim Han
- §Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Korea 03760
| | - Kong-Joo Lee
- From the ‡College of Pharmacy and Graduate School of Pharmaceutical Sciences, and
| |
Collapse
|
44
|
Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol 2018; 53:279-310. [PMID: 29718780 PMCID: PMC6101676 DOI: 10.1080/10409238.2018.1458070] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate-isoprenoid-cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein-protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer's disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.
Collapse
Affiliation(s)
- Angela Jeong
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
| | | | - W. Gibson Wood
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Mark D. Distefano
- Departments of Chemistry,University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
45
|
C-Terminal Farnesylation of UCH-L1 Plays a Role in Transport of Epstein-Barr Virus Primary Oncoprotein LMP1 to Exosomes. mSphere 2018; 3:mSphere00030-18. [PMID: 29435490 PMCID: PMC5806207 DOI: 10.1128/msphere.00030-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Exosomes are small vesicles that cells secrete into the extracellular space, and there is increasing evidence that they have pivotal roles in cell-to-cell communication in malignancy. It is reported also that EBV-associated malignant cells, including those derived from nasopharyngeal carcinoma (NPC) and B-cell lymphoma, secrete exosomes. These EBV-related exosomes may contain viral products such as latent membrane protein 1 (LMP1) and may contribute to cancer progression. The aim of this study was to investigate the mechanism by which those viral products are loaded in exosomes. In this study, we show for the first time that ubiquitin C-terminal hydrolase-L1 (UCH-L1) and its C-terminal farnesylation, a posttranslational lipid modification, contribute to this mechanism. Our results also suggest that inhibition of UCH-L1 farnesylation is a potential therapeutic target against cancer metastasis and invasion. Increasing evidence shows that exosomes are key regulators in cancer cell-to-cell communication. Several reports on Epstein-Barr virus (EBV)-related malignancies demonstrate that latent membrane protein 1 (LMP1) secreted by exosomes derived from EBV- or LMP1-positive cells can promote cancer progression and metastasis. However, the mechanism by which LMP1 is loaded into exosomes is still poorly understood. Here, we examined whether the process of LMP1 loading into exosomes is linked to the multifunctional molecule of the ubiquitin system—ubiquitin C-terminal hydrolase-L1 (UCH-L1). For the first time, we demonstrate that LMP1 is physically associated with UCH-L1 and that directing of LMP1 to exosomes is mediated by C-terminal farnesylation of UCH-L1. Additionally, we found that the FTI-277 farnesyltransferase inhibitor reduces motility- and anchorage-independent growth of EBV-positive cells in functional assays. On the basis of our results, we conclude that C-terminal farnesylation of UCH-L1 is one of the key mechanisms by which LMP1 is sorted to exosomes. We hypothesize that inhibition of farnesylation with specific small-molecule inhibitors blocks exosome-mediated transfer of prometastatic molecules such as LMP1 during cancer cell-to-cell communications and thereby impedes the process of cancer invasion. IMPORTANCE Exosomes are small vesicles that cells secrete into the extracellular space, and there is increasing evidence that they have pivotal roles in cell-to-cell communication in malignancy. It is reported also that EBV-associated malignant cells, including those derived from nasopharyngeal carcinoma (NPC) and B-cell lymphoma, secrete exosomes. These EBV-related exosomes may contain viral products such as latent membrane protein 1 (LMP1) and may contribute to cancer progression. The aim of this study was to investigate the mechanism by which those viral products are loaded in exosomes. In this study, we show for the first time that ubiquitin C-terminal hydrolase-L1 (UCH-L1) and its C-terminal farnesylation, a posttranslational lipid modification, contribute to this mechanism. Our results also suggest that inhibition of UCH-L1 farnesylation is a potential therapeutic target against cancer metastasis and invasion.
Collapse
|
46
|
Diaz-Rodriguez V, Hsu ET, Ganusova E, Werst ER, Becker JM, Hrycyna CA, Distefano MD. a-Factor Analogues Containing Alkyne- and Azide-Functionalized Isoprenoids Are Efficiently Enzymatically Processed and Retain Wild-Type Bioactivity. Bioconjug Chem 2017; 29:316-323. [PMID: 29188996 PMCID: PMC5824361 DOI: 10.1021/acs.bioconjchem.7b00648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Protein
prenylation is a post-translational modification that involves
the addition of one or two isoprenoid groups to the C-terminus of
selected proteins using either farnesyl diphosphate or geranylgeranyl
diphosphate. Three crucial enzymatic steps are involved in the processing
of prenylated proteins to yield the final mature product. The farnesylated
dodecapeptide, a-factor, is particularly useful for studies
of protein prenylation because it requires the identical three-step
process to generate the same C-terminal farnesylated cysteine methyl
ester substructure present in larger farnesylated proteins. Recently,
several groups have developed isoprenoid analogs bearing azide and
alkyne groups that can be used in metabolic labeling experiments.
Those compounds have proven useful for profiling prenylated proteins
and also show great promise as tools to study how the levels of prenylated
proteins vary in different disease models. Herein, we describe the
preparation and use of prenylated a-factor analogs, and
precursor peptides, to investigate two key questions. First, a-factor analogues containing modified isoprenoids were prepared
to evaluate whether the non-natural lipid group interferes with the
biological activity of the a-factor. Second, a-factor-derived precursor peptides were synthesized to evaluate whether
they can be efficiently processed by the yeast proteases Rce1 and
Ste24 as well as the yeast methyltransferase Ste14 to yield mature a-factor analogues. Taken together, the results reported here
indicate that metabolic labeling experiments with azide- and alkyne-functionalized
isoprenoids can yield prenylated products that are fully processed
and biologically functional. Overall, these observations suggest that
the isoprenoids studied here that incorporate bio-orthogonal functionality
can be used in metabolic labeling experiments without concern that
they will induce undesired physiological changes that may complicate
data interpretation.
Collapse
Affiliation(s)
- Veronica Diaz-Rodriguez
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Erh-Ting Hsu
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Elena Ganusova
- Department of Microbiology, University of Tennessee , Circle Park Drive, Knoxville, Tennessee 37996, United States
| | - Elena R Werst
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee , Circle Park Drive, Knoxville, Tennessee 37996, United States
| | - Christine A Hrycyna
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
47
|
Wang J, Liu Y, Chen T. Identification of key genes and pathways in Parkinson's disease through integrated analysis. Mol Med Rep 2017; 16:3769-3776. [PMID: 28765971 PMCID: PMC5646954 DOI: 10.3892/mmr.2017.7112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is a progressive, degene-rative neurological disease, typically characterized by tremors and muscle rigidity. The present study aimed to identify differe-ntially expressed genes (DEGs) between patients with PD and healthy patients, and clarify their association with additional biological processes that may regulate factors that lead to PD. An integrated analysis of publicly available Gene Expression Omnibus datasets of PD was performed. DEGs were identified between PD and normal blood samples. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses, as well as protein‑protein interaction (PPI) networks were used to predict the functions of identified DEGs. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was performed to validate the predicted expression levels of identified DEGs in whole blood samples obtained from patients with PD and normal healthy controls. A total of 292DEGs were identified between the PD and normal blood samples. Of these, 156 genes were significantly upregulated and 136 genes were significantly downregulated in PD samples following integrated analysis of four PD expression datasets. The 10 most upregulated and downregulated genes were used to construct a PPI network, where ubiquitin C‑terminal hydrolase L1 (UCHL1), 3‑phosphoinositide dependent protein kinase 1 (PDPK1) and protein kinase cAMP‑activated catalytic subunit β (PRKACB) demonstrated the highest connectivity in the network. DEGs were significantly enriched in amoebiasis, vascular smooth muscle contraction, and the Wnt and calcium signaling pathways. The expression levels of significant DEGs, UCHL1, PDPK1 and PRKACB were validated using RT‑qPCR analysis. The findings revealed that UCHL1 and PDPK1 were upregulated and PRKACB was downregulated in patients with PD when compared with normal healthy controls. In conclusion, the results indicate that the significant DEGs, including UCHL1, PDPK1 and PRKACB may be associated with the development of PD. In addition, these factors may be involved in various signaling pathways, including amoebiasis, vascular smooth muscle contraction and the Wnt and calcium signaling pathways.
Collapse
Affiliation(s)
- Jingru Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252004, P.R. China
| | - Yining Liu
- Department of Neurology, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252004, P.R. China
| | - Tuanzhi Chen
- Department of Neurology, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252004, P.R. China
| |
Collapse
|
48
|
Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J 2017; 473:2453-62. [PMID: 27515257 PMCID: PMC4980807 DOI: 10.1042/bcj20160082] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1–5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology.
Collapse
|
49
|
Leznicki P, Kulathu Y. Mechanisms of regulation and diversification of deubiquitylating enzyme function. J Cell Sci 2017; 130:1997-2006. [PMID: 28476940 DOI: 10.1242/jcs.201855] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Deubiquitylating (or deubiquitinating) enzymes (DUBs) are proteases that reverse protein ubiquitylation and therefore modulate the outcome of this post-translational modification. DUBs regulate a variety of intracellular processes, including protein turnover, signalling pathways and the DNA damage response. They have also been linked to a number of human diseases, such as cancer, and inflammatory and neurodegenerative disorders. Although we are beginning to better appreciate the role of DUBs in basic cell biology and their importance for human health, there are still many unknowns. Central among these is the conundrum of how the small number of ∼100 DUBs encoded in the human genome is capable of regulating the thousands of ubiquitin modification sites detected in human cells. This Commentary addresses the biological mechanisms employed to modulate and expand the functions of DUBs, and sets directions for future research aimed at elucidating the details of these fascinating processes.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Exploitation of the host cell ubiquitin machinery by microbial effector proteins' by Yi-Han Lin and Matthias P. Machner (J. Cell Sci.130, 1985-1996). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).
Collapse
Affiliation(s)
- Pawel Leznicki
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
50
|
Kumar R, Jangir DK, Verma G, Shekhar S, Hanpude P, Kumar S, Kumari R, Singh N, Sarovar Bhavesh N, Ranjan Jana N, Kanti Maiti T. S-nitrosylation of UCHL1 induces its structural instability and promotes α-synuclein aggregation. Sci Rep 2017; 7:44558. [PMID: 28300150 PMCID: PMC5353675 DOI: 10.1038/srep44558] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin C-terminal Hydrolase-1 (UCHL1) is a deubiquitinating enzyme, which plays a key role in Parkinson’s disease (PD). It is one of the most important proteins, which constitute Lewy body in PD patient. However, how this well folded highly soluble protein presents in this proteinaceous aggregate is still unclear. We report here that UCHL1 undergoes S-nitrosylation in vitro and rotenone induced PD mouse model. The preferential nitrosylation in the Cys 90, Cys 152 and Cys 220 has been observed which alters the catalytic activity and structural stability. We show here that nitrosylation induces structural instability and produces amorphous aggregate, which provides a nucleation to the native α-synuclein for faster aggregation. Our findings provide a new link between UCHL1-nitrosylation and PD pathology.
Collapse
Affiliation(s)
- Roshan Kumar
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India.,Manipal University, Manipal, Karnataka, 576104, India
| | - Deepak K Jangir
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India
| | - Garima Verma
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shashi Shekhar
- Molecular Neuroscience Laboratory, National Brain Research Centre (NBRC), Manesar, Gurgaon, 122051, India
| | - Pranita Hanpude
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India.,Manipal University, Manipal, Karnataka, 576104, India
| | - Sanjay Kumar
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India.,Manipal University, Manipal, Karnataka, 576104, India
| | - Raniki Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India
| | - Nirpendra Singh
- Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nihar Ranjan Jana
- Molecular Neuroscience Laboratory, National Brain Research Centre (NBRC), Manesar, Gurgaon, 122051, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India
| |
Collapse
|