1
|
Heymann JB. Structural Studies of Bacteriophage Φ6 and Its Transformations during Its Life Cycle. Viruses 2023; 15:2404. [PMID: 38140645 PMCID: PMC10747372 DOI: 10.3390/v15122404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
From the first isolation of the cystovirus bacteriophage Φ6 from Pseudomonas syringae 50 years ago, we have progressed to a better understanding of the structure and transformations of many parts of the virion. The three-layered virion, encapsulating the tripartite double-stranded RNA (dsRNA) genome, breaches the cell envelope upon infection, generates its own transcripts, and coopts the bacterial machinery to produce its proteins. The generation of a new virion starts with a procapsid with a contracted shape, followed by the packaging of single-stranded RNA segments with concurrent expansion of the capsid, and finally replication to reconstitute the dsRNA genome. The outer two layers are then added, and the fully formed virion released by cell lysis. Most of the procapsid structure, composed of the proteins P1, P2, P4, and P7 is now known, as well as its transformations to the mature, packaged nucleocapsid. The outer two layers are less well-studied. One additional study investigated the binding of the host protein YajQ to the infecting nucleocapsid, where it enhances the transcription of the large RNA segment that codes for the capsid proteins. Finally, I relate the structural aspects of bacteriophage Φ6 to those of other dsRNA viruses, noting the similarities and differences.
Collapse
Affiliation(s)
- J. Bernard Heymann
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA; ; Tel.: +1-301-846-6924
- National Cryo-EM Program, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| |
Collapse
|
2
|
Gottlieb P, Alimova A. Discovery and Classification of the φ6 Bacteriophage: An Historical Review. Viruses 2023; 15:1308. [PMID: 37376608 DOI: 10.3390/v15061308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The year 2023 marks the fiftieth anniversary of the discovery of the bacteriophage φ6. The review provides a look back on the initial discovery and classification of the lipid-containing and segmented double-stranded RNA (dsRNA) genome-containing bacteriophage-the first identified cystovirus. The historical discussion describes, for the most part, the first 10 years of the research employing contemporary mutation techniques, biochemical, and structural analysis to describe the basic outline of the virus replication mechanisms and structure. The physical nature of φ6 was initially controversial as it was the first bacteriophage found that contained segmented dsRNA, resulting in a series of early publications that defined the unusual genomic quality. The technology and methods utilized in the initial research (crude by current standards) meant that the first studies were quite time-consuming, hence the lengthy period covered by this review. Yet when the data were accepted, the relationship to the reoviruses was apparent, launching great interest in cystoviruses, research that continues to this day.
Collapse
Affiliation(s)
- Paul Gottlieb
- Department of Molecular, Cellular and Biomedical Sciences, The City University of New York School of Medicine, New York, NY 10031, USA
| | - Aleksandra Alimova
- Department of Molecular, Cellular and Biomedical Sciences, The City University of New York School of Medicine, New York, NY 10031, USA
| |
Collapse
|
3
|
Gottlieb P, Alimova A. RNA Packaging in the Cystovirus Bacteriophages: Dynamic Interactions during Capsid Maturation. Int J Mol Sci 2022; 23:ijms23052677. [PMID: 35269819 PMCID: PMC8910881 DOI: 10.3390/ijms23052677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
The bacteriophage family Cystoviridae consists of a single genus, Cystovirus, that is lipid-containing with three double-stranded RNA (ds-RNA) genome segments. With regard to the segmented dsRNA genome, they resemble the family Reoviridae. Therefore, the Cystoviruses have long served as a simple model for reovirus assembly. This review focuses on important developments in the study of the RNA packaging and replication mechanisms, emphasizing the structural conformations and dynamic changes during maturation of the five proteins required for viral RNA synthesis, P1, P2, P4, P7, and P8. Together these proteins constitute the procapsid/polymerase complex (PC) and nucleocapsid (NC) of the Cystoviruses. During viral assembly and RNA packaging, the five proteins must function in a coordinated fashion as the PC and NC undergo expansion with significant position translation. The review emphasizes this facet of the viral assembly process and speculates on areas suggestive of additional research efforts.
Collapse
|
4
|
Zhong Q, Yang L, Li L, Shen W, Li Y, Xu H, Zhong Z, Chen M, Le S. Transcriptomic Analysis Reveals the Dependency of Pseudomonas aeruginosa Genes for Double-Stranded RNA Bacteriophage phiYY Infection Cycle. iScience 2020; 23:101437. [PMID: 32827855 PMCID: PMC7452160 DOI: 10.1016/j.isci.2020.101437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteriophage phiYY is currently the only double-stranded RNA (dsRNA) phage that infects Pseudomonas aeruginosa and is a potential candidate for phage therapy. Here we applied RNA-seq to investigate the lytic cycle of phiYY infecting P. aeruginosa strain PAO1r. About 12.45% (651/5,229) of the host genes were determined to be differentially expressed genes. Moreover, oxidative stress response genes katB and ahpB are upregulated 64- to 128-fold after phage infection, and the single deletion of each gene blocked phiYY infection, indicating that phiYY is extremely sensitive to oxidative stress. On the contrary, another upregulated gene PA0800 might constrain phage infection, because the deletion of PA0800 resulted in a 3.5-fold increase of the efficiency of plating. Our study highlights a complicated dsRNA phage-phage global interaction and raises new questions toward the host defense mechanisms against dsRNA phage and dsRNA phage-encoded hijacking mechanisms.
Collapse
Affiliation(s)
- Qiu Zhong
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
- Department of Clinical Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing 400038, China
| | - Lan Yang
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Linlin Li
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Wei Shen
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yang Li
- Medical Center of Trauma and War Injury, Daping Hospital, Army Medical University, Chongqing 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injuries, Army Medical University, Chongqing 400038, China
| | - Huan Xu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Zhuojun Zhong
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injuries, Army Medical University, Chongqing 400038, China
| | - Shuai Le
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| |
Collapse
|
5
|
Han S, Shen D, Wang Y, Chou S, Gomelsky M, Gao Y, Qian G. A YajQ-LysR-like, cyclic di-GMP-dependent system regulating biosynthesis of an antifungal antibiotic in a crop-protecting bacterium, Lysobacter enzymogenes. MOLECULAR PLANT PATHOLOGY 2020; 21:218-229. [PMID: 31747123 PMCID: PMC6988422 DOI: 10.1111/mpp.12890] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
YajQ, a binding protein of the universal bacterial second messenger cyclic di-GMP (c-di-GMP), affects virulence in several bacterial pathogens, including Xanthomonas campestris. In this bacterium, YajQ interacts with the transcription factor LysR. Upon c-di-GMP binding, the whole c-di-GMP-YajQ-LysR complex is found to dissociate from DNA, resulting in virulence gene regulation. Here, we identify a YajQ-LysR-like system in the bacterial biocontrol agent Lysobacter enzymogenes OH11 that secretes an antifungal antibiotic, heat-stable antifungal factor (HSAF) against crop fungal pathogens. We show that the YajQ homologue, CdgL (c-di-GMP receptor interacting with LysR) affects expression of the HSAF biosynthesis operon by interacting with the transcription activator LysR. The CdgL-LysR interaction enhances the apparent affinity of LysR to the promoter region upstream of the HSAF biosynthesis operon, which increases operon expression. Unlike the homologues CdgL (YajQ)-LysR system in X. campestris, we show that c-di-GMP binding to CdgL seems to weaken CdgL-LysR interactions and promote the release of CdgL from the LysR-DNA complex, which leads to decreased expression. Together, this study takes the YajQ-LysR-like system from bacterial pathogens to a crop-protecting bacterium that is able to regulate antifungal HSAF biosynthesis via disassembly of the c-di-GMP receptor-transcription activator complex.
Collapse
Affiliation(s)
- Sen Han
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests)Nanjing Agricultural UniversityNanjing210095P.R. China
| | - Danyu Shen
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests)Nanjing Agricultural UniversityNanjing210095P.R. China
| | - Yu‐Chuan Wang
- Institute of Biochemistry, and NCHU Agricultural Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Shan‐Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Mark Gomelsky
- Department of Molecular BiologyUniversity of WyomingLaramieWyoming82071USA
| | - Yong‐Gui Gao
- School of Biological SciencesNanyang Technological University60 Nanyang DriveSingapore637551Singapore
| | - Guoliang Qian
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests)Nanjing Agricultural UniversityNanjing210095P.R. China
| |
Collapse
|
6
|
Erban T, Zitek J, Bodrinova M, Talacko P, Bartos M, Hrabak J. Comprehensive proteomic analysis of exoproteins expressed by ERIC I, II, III and IV Paenibacillus larvae genotypes reveals a wide range of virulence factors. Virulence 2019; 10:363-375. [PMID: 30957692 PMCID: PMC6527061 DOI: 10.1080/21505594.2019.1603133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 11/12/2022] Open
Abstract
American foulbrood is a quarantine disease of the honeybee Apis mellifera L. in many countries and contributes greatly to colony losses. We performed a label-free proteomics study of exoprotein fractions produced in vitro by Paenibacillus larvae reference strains of the ERIC I-IV genotypes. A quantitative comparison was performed of previous studied protein-based virulence factors and many newly identified putative virulence factors. Among the multiple proteases identified, key virulence factors included the microbial collagenase ColA and immune inhibitor A (InhA, an analog of the Bacillus thuringiensis protein InhA). Both of these virulence factors were detected in ERICs II-IV but were absent from ERIC I. Furthermore, the different S-layer proteins and polysaccharide deacetylases prevailed in ERICs II-IV. Thus, the expression patterns of these virulence factors corresponded with the different speeds at which honeybee larvae are known to be killed by ERICs II-IV compared to ERIC I. In addition, putative novel toxin-like proteins were identified, including vegetative insecticidal protein Vip1, a mosquitocidal toxin, and epsilon-toxin type B, which exhibit similarity to homologs present in Bacillus thuringiensis or Lysinibacillus sphaericus. Furthermore, a putative bacteriocin similar to Lactococcin 972 was identified in all assayed genotypes. It appears that P. larvae shares virulence factors similar to those of the Bacillus cereus group. Overall, the results provide novel information regarding P. larvae virulence potential, and a comprehensive exoprotein comparison of all four ERICs was performed for the first time. The identification of novel virulence factors can explain differences in the virulence of isolates.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Justyna Zitek
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
- Department of Parasitology, Faculty of Science, Charles University, Prague 2, Czechia
| | - Miroslava Bodrinova
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Milan Bartos
- BioVendor – Laboratorni medicina a.s., Brno, Czechia
| | - Jaroslav Hrabak
- Laboratory of Antibiotic Resistance and Applications of Mass Spectrometry in Microbiology, Biomedical Center and Institute of Microbiology, Faculty of Medicine in Plzen, Charles University, Plzen, Czechia
| |
Collapse
|
7
|
Alphonse S, Ghose R. Cystoviral RNA-directed RNA polymerases: Regulation of RNA synthesis on multiple time and length scales. Virus Res 2017; 234:135-152. [PMID: 28104452 PMCID: PMC5476504 DOI: 10.1016/j.virusres.2017.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
Abstract
Role of the RNA polymerase in the cystoviral life-cycle. Spatio-temporal regulation of RNA synthesis in cystoviruses. Emerging role of conformational dynamics in polymerase function.
P2, an RNA-directed RNA polymerase (RdRP), is encoded on the largest of the three segments of the double-stranded RNA genome of cystoviruses. P2 performs the dual tasks of replication and transcription de novo on single-stranded RNA templates, and plays a critical role in the viral life-cycle. Work over the last few decades has yielded a wealth of biochemical and structural information on the functional regulation of P2, on its role in the spatiotemporal regulation of RNA synthesis and its variability across the Cystoviridae family. These range from atomic resolution snapshots of P2 trapped in functionally significant states, in complex with catalytic/structural metal ions, polynucleotide templates and substrate nucleoside triphosphates, to P2 in the context of viral capsids providing structural insight into the assembly of supramolecular complexes and regulatory interactions therein. They include in vitro biochemical studies using P2 purified to homogeneity and in vivo studies utilizing infectious core particles. Recent advances in experimental techniques have also allowed access to the temporal dimension and enabled the characterization of dynamics of P2 on the sub-nanosecond to millisecond timescale through measurements of nuclear spin relaxation in solution and single molecule studies of transcription from seconds to minutes. Below we summarize the most significant results that provide critical insight into the role of P2 in regulating RNA synthesis in cystoviruses.
Collapse
Affiliation(s)
- Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, United States.
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, United States; Graduate Programs in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, United States; Graduate Programs in Chemistry, The Graduate Center of CUNY, New York, NY 10016, United States; Graduate Programs in Physics, The Graduate Center of CUNY, New York, NY 10016, United States.
| |
Collapse
|
8
|
Wu Y, Huang P, Xiong G, Maser E. Identification and isolation of a regulator protein for 3,17β-HSD expressional regulation in Comamonas testosteroni. Chem Biol Interact 2015; 234:197-204. [PMID: 25446854 DOI: 10.1016/j.cbi.2014.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 11/16/2022]
Abstract
Comamonas testosteroni (C. testosteroni) is able to catabolize a variety of steroids and polycyclic aromatic hydrocarbons. 3,17β-Hydroxysteroid dehydrogenase (3,17β-HSD) from C. testosteroni is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. It is an inducible and key enzyme in steroid degradation. Elucidating the mechanism of 3,17β-HSD gene (βhsd) regulation may help us to generate prospective C. testosteroni mutants for bioremediation. The genome of C. testosteroni ATCC11996 was sequenced in our previous work. Upon examining the genome with bioinformatics tools, a gene (brp) coding for a regulator protein (BRP) for 3,17β-HSD expression was found upstream of the βhsd gene. A Blast search revealed high identities to a nucleotide binding protein with unknown function in other bacteria. Two potential promoters and two repeat sequences (RS, 16 bp), spaced to each other by 1661 bp, were also found upstream of the βhsd gene C. testosteroni. The brp gene was cloned into plasmid pK18 and pET-15b, expressed in Escherichia coli, and the recombinant BRP protein was purified on a Ni-column. In addition, a brp gene knock-out mutant of C. testosteroni was prepared. These knock-out mutants showed an enhanced expression of both the βhsd gene and the hsdA gene (the latter coding for 3α-HSD/CR) in the presence of testosterone. To characterize the BRP functional DNA domain, different fragments of the βhsd upstream regulatory region were tested in a cotransformation system. Our data reveal that the βhsd gene undergoes complex regulation involving the two promoters, a loop structure via the two repeat sequences, and the steroid testosterone. Furthermore, a proximal repressor gene for βhsd expression, phaR, had been identified in our previous investigations. The exact interplay between all these factors will be determined in future experiments.
Collapse
Affiliation(s)
- Yin Wu
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School, Schleswig-Holstein, Kiel, Germany
| | - Pu Huang
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, 310058 Hangzhou, China
| | - Guangming Xiong
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School, Schleswig-Holstein, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School, Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
9
|
Virus evolution toward limited dependence on nonessential functions of the host: the case of bacteriophage SPP1. J Virol 2014; 89:2875-83. [PMID: 25540376 DOI: 10.1128/jvi.03540-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED All viruses are obligate intracellular parasites and depend on certain host cell functions for multiplication. However, the extent of such dependence and the exact nature of the functions provided by the host cell remain poorly understood. Here, we investigated if nonessential Bacillus subtilis genes are necessary for multiplication of bacteriophage SPP1. Screening of a collection of 2,514 single-gene knockouts of nonessential B. subtilis genes yielded only a few genes necessary for efficient SPP1 propagation. Among these were genes belonging to the yuk operon, which codes for the Esat-6-like secretion system, including the SPP1 receptor protein YueB. In addition, we found that SPP1 multiplication was negatively affected by the absence of two other genes, putB and efp. The gene efp encodes elongation factor P, which enhances ribosome activity by alleviating translational stalling during the synthesis of polyproline-containing proteins. PutB is an enzyme involved in the proline degradation pathway that is required for infection in the post-exponential growth phase of B. subtilis, when the bacterium undergoes a complex genetic reprogramming. The putB knockout shortens significantly the window of opportunity for SPP1 infection during the host cell life cycle. This window is a critical parameter for competitive phage multiplication in the soil environment, where B. subtilis rarely meets conditions for exponential growth. Our results in combination with those reported for other virus-host systems suggest that bacterial viruses have evolved toward limited dependence on nonessential host functions. IMPORTANCE A successful viral infection largely depends on the ability of the virus to hijack cellular machineries and to redirect the flow of building blocks and energy resources toward viral progeny production. However, the specific virus-host interactions underlying this fundamental transformation are poorly understood. Here, we report on the first systematic analysis of virus-host cross talk during bacteriophage infection in Gram-positive bacteria. We show that lytic bacteriophage SPP1 is remarkably independent of nonessential genes of its host, Bacillus subtilis, with only a few cellular genes being necessary for efficient phage propagation. We hypothesize that such limited dependence of the virus on its host results from a constant "evolutionary arms race" and might be much more widespread than currently thought.
Collapse
|
10
|
An SQ, Caly DL, McCarthy Y, Murdoch SL, Ward J, Febrer M, Dow JM, Ryan RP. Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence. PLoS Pathog 2014; 10:e1004429. [PMID: 25329577 PMCID: PMC4199771 DOI: 10.1371/journal.ppat.1004429] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/28/2014] [Indexed: 01/14/2023] Open
Abstract
Bis-(3′,5′) cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc). This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (Kd∼2 µM). Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence. Cyclic di-GMP is a bacterial second messenger that acts to regulate a wide range of functions including those that contribute to the virulence of pathogens. Our knowledge of the different actions and receptors for this nucleotide is far from complete. An understanding of the action of these elements may be key to interference with the processes they control. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris. This analysis identified XC_3703, a protein of the YajQ family that was able to bind cyclic di-GMP with high affinity. Mutation of XC_3703 led to reduced virulence of X. campestris to plants and alteration in biofilm formation. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence and raise the possibility that other members of the YajQ family, which occur widely in bacteria, also act in cyclic di-GMP signalling pathways.
Collapse
Affiliation(s)
- Shi-qi An
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Delphine L. Caly
- School of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Yvonne McCarthy
- School of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Sarah L. Murdoch
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Joseph Ward
- Genomic Sequencing Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Melanie Febrer
- Genomic Sequencing Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - J. Maxwell Dow
- School of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Robert P. Ryan
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Abstract
Bacteriophage Φ6 contains three double-stranded RNA (dsRNA) genomic segments, L, M, and S. The RNA is located inside a core particle composed of multiple copies of a major structural protein, an RNA-dependent RNA polymerase, a hexameric NTPase, and an auxiliary protein. The virion RNA polymerase in the core particle transcribes segments M and S in vitro. Segment L is transcribed poorly because its transcript starts with GU instead of GG found on segments S and M. Transcription in vivo is modified by the binding of host protein YajQ to the outside the core particle so that segment L is transcribed well. This mechanism is the determinant of the temporal control of gene expression in Φ6. Mutants of Φ6 have been isolated that are independent of YajQ for transcription of segment L. The mutations are found in the gene of the viral polymerase or the major capsid protein or both. These mutants are capable of transcribing segment L with the GU start or GA or GC. The same is found to be true when YajQ is added to wild-type particles. Minus-strand synthesis has restrictions that are different from that of plus-strand synthesis, and YajQ or mutations to independence do not modify minus-strand synthesis behavior. Purified polymerase P2 is able to transcribe dsRNA, but transcription behavior of segment L by both wild-type and mutant polymerases is different from that seen in capsid structures. Adding YajQ to purified polymerase does not change its transcription specificity.
Collapse
|
12
|
Bradshaw E, Saalbach G, McArthur M. Proteomic survey of the Streptomyces coelicolor nucleoid. J Proteomics 2013; 83:37-46. [PMID: 23523638 PMCID: PMC3784963 DOI: 10.1016/j.jprot.2013.02.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/17/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Nucleoid-associated proteins (NAPs) are small, highly abundant transcriptional regulators with low sequence specificity which are involved in multiple DNA-related processes including gene expression, DNA protection, recombination/repair and nucleoid structuring. Through these functions they are able to regulate important phenotypic properties including virulence, secondary metabolism and stress resistance. However the set of NAPs known within the Actinobacteria is small and incomplete. The missing proteins are likely to be key regulators of virulence in pathogens such as Mycobacterium tuberculosis and also of development and secondary metabolism in industrially-important species such as Streptomyces. Here, we use label-free LC–MS/MS to systematically search for novel NAPs in isolated nucleoids of the model actinomycete Streptomyces coelicolor. Based on the criteria of high abundance (emPAI score) and predicted DNA-binding ability (DNAbinder score) we identified a set of 24 proteins with a high predicted likelihood of being NAPs. The approach was deemed successful as the set included known major NAPs HupA, HupS, sIHF and Lsr2 as well as the global transcriptional regulators BldD and CRP and the pleiotropic response regulator AfsQ1. It also included a number of proteins whose functions are not yet known from recognisable classes of transcription factor (SCO2140, SCO4493, SCO1839, SCO1210, SCO5405, SCO4229, SCO3198) or from uncharacterised protein families (SCO5783, SCO5592, SCO3793, SCO6482) which comprise a valuable set of candidates for further study. Biological significance In this paper we establish a robust protocol for preparing S. coelicolor nucleoids for mass spectrometric analysis and develop a workflow for identifying novel nucleoid-associated proteins (NAPs) by combining LC–MS/MS with a bioinformatical analysis. The nucleoid-associated proteins of many species are known to be key regulators of virulence, stress tolerance and global patterns of gene expression. Identifying the “missing” nucleoid proteins of S. coelicolor is likely to have important implications for manipulating the production of secondary metabolites such as antibiotics. Candidate NAPs were identified. Several of these are highly conserved in clinically important species such as Mycobacterium and in many commercially important species such as Salinispora and Micromonospora which represent a vital source of novel drugs such as antibiotics, antifungals and anticancer agents. Streptomyces coelicolor was grown in liquid culture to late vegetative phase. Whole nucleoids were isolated by sucrose gradient sedimentation. Proteins attached to the nucleoids were identified by label-free LC–MS/MS. A list of high-abundance DNA-binding proteins was generated, representing likely NAPs.
Collapse
|
13
|
|
14
|
Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011; 75:610-35. [PMID: 22126996 PMCID: PMC3232739 DOI: 10.1128/mmbr.00011-11] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prokaryotes, bacteria and archaea, are the most abundant cellular organisms among those sharing the planet Earth with human beings (among others). However, numerous ecological studies have revealed that it is actually prokaryotic viruses that predominate on our planet and outnumber their hosts by at least an order of magnitude. An understanding of how this viral domain is organized and what are the mechanisms governing its evolution is therefore of great interest and importance. The vast majority of characterized prokaryotic viruses belong to the order Caudovirales, double-stranded DNA (dsDNA) bacteriophages with tails. Consequently, these viruses have been studied (and reviewed) extensively from both genomic and functional perspectives. However, albeit numerous, tailed phages represent only a minor fraction of the prokaryotic virus diversity. Therefore, the knowledge which has been generated for this viral system does not offer a comprehensive view of the prokaryotic virosphere. In this review, we discuss all families of bacterial and archaeal viruses that contain more than one characterized member and for which evolutionary conclusions can be attempted by use of comparative genomic analysis. We focus on the molecular mechanisms of their genome evolution as well as on the relationships between different viral groups and plasmids. It becomes clear that evolutionary mechanisms shaping the genomes of prokaryotic viruses vary between different families and depend on the type of the nucleic acid, characteristics of the virion structure, as well as the mode of the life cycle. We also point out that horizontal gene transfer is not equally prevalent in different virus families and is not uniformly unrestricted for diverse viral functions.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, 25 rue du Dr. Roux, 75015 Paris, France.
| | | | | | | |
Collapse
|
15
|
Nemecek D, Cheng N, Qiao J, Mindich L, Steven AC, Heymann JB. Stepwise expansion of the bacteriophage ϕ6 procapsid: possible packaging intermediates. J Mol Biol 2011; 414:260-71. [PMID: 22019738 DOI: 10.1016/j.jmb.2011.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/30/2011] [Accepted: 10/05/2011] [Indexed: 12/31/2022]
Abstract
The initial assembly product of bacteriophage ϕ6, the procapsid, undergoes major structural transformation during the sequential packaging of its three segments of single-stranded RNA. The procapsid, a compact icosahedrally symmetric particle with deeply recessed vertices, expands to the spherical mature capsid, increasing the volume available to accommodate the genome by 2.5-fold. It has been proposed that expansion and packaging are linked, with each stage in expansion presenting a binding site for a particular RNA segment. To investigate procapsid transformability, we induced expansion by acidification, heating, and elevated salt concentration. Cryo-electron microscopy reconstructions after all three treatments yielded the same partially expanded particle. Analysis by cryo-electron tomography showed that all vertices of a given capsid were either in a compact or an expanded state, indicating a highly cooperative transition. To benchmark the mature capsid, we analyzed filled (in vivo packaged) capsids. When these particles were induced to release their RNA, they reverted to the same intermediate state as expanded procapsids (intermediate 1) or to a second, further expanded state (intermediate 2). This partial reversibility of expansion suggests that the mature spherical capsid conformation is obtained only when sufficient outward pressure is exerted by packaged RNA. The observation of two intermediates is consistent with the proposed three-step packaging process. The model is further supported by the observation that a mutant capable of packaging the second RNA segment without previously packaging the first segment has enhanced susceptibility for switching spontaneously from the procapsid to the first intermediate state.
Collapse
Affiliation(s)
- Daniel Nemecek
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Pseudomonas species and their bacteriophages have been studied intensely since the beginning of the 20th century, due to their ubiquitous nature, and medical and ecological importance. Here, we summarize recent molecular research performed on Pseudomonas phages by reviewing findings on individual phage genera. While large phage collections are stored and characterized worldwide, the limits of their genomic diversity are becoming more and more apparent. Although this article emphasizes the biological background and molecular characteristics of these phages, special attention is given to emerging studies in coevolutionary and in therapeutic settings.
Collapse
Affiliation(s)
- Pieter-Jan Ceyssens
- Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, bus 2462, B-3001 Leuven, Belgium
| | | |
Collapse
|
17
|
Qiao J, Qiao X, Sun Y, Mindich L. Role of host protein glutaredoxin 3 in the control of transcription during bacteriophage Phi2954 infection. Proc Natl Acad Sci U S A 2010; 107:6000-4. [PMID: 20231437 PMCID: PMC2851929 DOI: 10.1073/pnas.1000383107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage Phi2954 contains three dsRNA genomic segments, designated L, M, and S. The RNA is located inside a core particle composed of multiple copies of a major structural protein, an RNA-dependent RNA polymerase, a hexameric NTPase, and an auxiliary protein. The core particle is covered by a shell of protein P8, and this structure is enclosed within a lipid-containing membrane. We have found that normal infection of the host Pseudomonas syringae is dependent on the action of a host protein, glutaredoxin 3 (GrxC). GrxC removes the P8 shell from the infecting particle and binds to the inner core. Removal of P8 activates the transcription of segments S and M, whereas binding of GrxC to the core particle activates the transcription of segment L. The differences in transcription behavior are due to the preference of the polymerase for G as the first base of the transcript. Transcripts of segments S and M begin with GCAA, whereas those of segment L begin with ACAA. The binding of GrxC to the particle results in changes in polymerase activity. Mutations resulting in independence of GrxC are found in the gene for protein P1, the major structural protein of the inner core particle.
Collapse
Affiliation(s)
- Jian Qiao
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Xueying Qiao
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Yang Sun
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Leonard Mindich
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| |
Collapse
|
18
|
Qiao X, Sun Y, Qiao J, Di Sanzo F, Mindich L. Characterization of Phi2954, a newly isolated bacteriophage containing three dsRNA genomic segments. BMC Microbiol 2010; 10:55. [PMID: 20170499 PMCID: PMC2834669 DOI: 10.1186/1471-2180-10-55] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/19/2010] [Indexed: 11/18/2022] Open
Abstract
Background Bacteriophage Φ12 is a member of the Cystoviridae and is distinct from Φ6, the first member of that family. We have recently isolated a number of related phages and five showed high similarity to Φ12 in the amino acid sequences of several proteins. Bacteriophage Φ2954 is a member of this group. Results Φ2954 was isolated from radish leaves and was found to have a genome of three segments of double-stranded RNA (dsRNA), placing it in the Cystoviridae. The base sequences for many of the genes and for the segment termini were similar but not identical to those of bacteriophage Φ12. However, the host specificity was for the type IV pili of Pseudomonas syringae HB10Y rather than for the rough LPS to which Φ12 attaches. Reverse genetics techniques enabled the production of infectious phage from cDNA copies of the genome. Phage were constructed with one, two or three genomic segments. Phage were also produced with altered transcriptional regulation. Although the pac sequences of Φ2954 show no similarity to those of Φ12, segment M of Φ2954 could be acquired by Φ12 resulting in a change of host specificity. Conclusions We have isolated a new member of the bacteriophage family Cystoviridae and find that although it shows similarity to other members of the family, it has unique properties that help to elucidate viral strategies for genomic packaging and gene expression.
Collapse
Affiliation(s)
- Xueying Qiao
- Department of Microbiology, The Public Health Research Institute Center, UMDNJ, Newark NJ, USA
| | | | | | | | | |
Collapse
|
19
|
Interaction of a host protein with core complexes of bacteriophage phi6 to control transcription. J Virol 2010; 84:4821-5. [PMID: 20164238 DOI: 10.1128/jvi.00026-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophages of the family Cystoviridae have genomes consisting of three double-stranded RNA (dsRNA) segments, L, S, and M, packaged within a polyhedral capsid along with RNA polymerase. Transcription of genomic segment L is activated by the interaction of host protein YajQ with the capsid structure. Segment L codes for the proteins of the inner capsid, which are expressed early in infection. Green fluorescent protein (GFP) fusions with YajQ produce uniform fluorescence in uninfected cells and in cells infected with viruses not dependent on YajQ. Punctate fluorescence develops when cells are infected with YajQ-dependent viruses. It appears that the host protein binds to the infecting particles and remains with them during the entire infection period.
Collapse
|
20
|
Wei H, Cheng RH, Berriman J, Rice WJ, Stokes DL, Katz A, Morgan DG, Gottlieb P. Three-dimensional structure of the enveloped bacteriophage phi12: an incomplete T = 13 lattice is superposed on an enclosed T = 1 shell. PLoS One 2009; 4:e6850. [PMID: 19727406 PMCID: PMC2733035 DOI: 10.1371/journal.pone.0006850] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 08/03/2009] [Indexed: 11/19/2022] Open
Abstract
Background Bacteriophage φ12 is a member of the Cystoviridae, a unique group of lipid containing membrane enveloped bacteriophages that infect the bacterial plant pathogen Pseudomonas syringae pv. phaseolicola. The genomes of the virus species contain three double-stranded (dsRNA) segments, and the virus capsid itself is organized in multiple protein shells. The segmented dsRNA genome, the multi-layered arrangement of the capsid and the overall viral replication scheme make the Cystoviridae similar to the Reoviridae. Methodology/Principal Findings We present structural studies of cystovirus φ12 obtained using cryo-electron microscopy and image processing techniques. We have collected images of isolated φ12 virions and generated reconstructions of both the entire particles and the polymerase complex (PC). We find that in the nucleocapsid (NC), the φ12 P8 protein is organized on an incomplete T = 13 icosahedral lattice where the symmetry axes of the T = 13 layer and the enclosed T = 1 layer of the PC superpose. This is the same general protein-component organization found in φ6 NC's but the detailed structure of the entire φ12 P8 layer is distinct from that found in the best classified cystovirus species φ6. In the reconstruction of the NC, the P8 layer includes protein density surrounding the hexamers of P4 that sit at the 5-fold vertices of the icosahedral lattice. We believe these novel features correspond to dimers of protein P7. Conclusions/Significance In conclusion, we have determined that the φ12 NC surface is composed of an incomplete T = 13 P8 layer forming a net-like configuration. The significance of this finding in regard to cystovirus assembly is that vacancies in the lattice could have the potential to accommodate additional viral proteins that are required for RNA packaging and synthesis.
Collapse
Affiliation(s)
- Hui Wei
- Department of Microbiology and Immunology, Sophie Davis School of Biomedical Education, The City College of New York (CCNY), New York, New York, United States of America
| | - R. Holland Cheng
- Department of Cellular and Molecular Biology, University of California at Davis, Davis, California, United States of America
| | - John Berriman
- The New York Structural Biology Center, New York, New York, United States of America
| | - William J. Rice
- The New York Structural Biology Center, New York, New York, United States of America
| | - David L. Stokes
- Structural Biology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
- The New York Structural Biology Center, New York, New York, United States of America
| | - A. Katz
- Institute for Ultrafast Spectroscopy and Lasers, The City College of New York, New York, New York, United States of America
| | - David Gene Morgan
- Nanoscience Center, Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Paul Gottlieb
- Department of Microbiology and Immunology, Sophie Davis School of Biomedical Education, The City College of New York (CCNY), New York, New York, United States of America
- Institute for Ultrafast Spectroscopy and Lasers, The City College of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
In this issue of Structure, Lu et al. (2008) report results of structural and functional analysis of rotavirus RNA-dependent RNA polymerase, VP1. Based on their analyses of VP1 in RNA free and bound forms, the authors propose a mechanism for coordinated genome packaging and replication.
Collapse
|