1
|
Hogan V, Johnson WE. Unique Structure and Distinctive Properties of the Ancient and Ubiquitous Gamma-Type Envelope Glycoprotein. Viruses 2023; 15:v15020274. [PMID: 36851488 PMCID: PMC9967133 DOI: 10.3390/v15020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, Alpharetrovirus), murine leukemia virus (MLV, Gammaretrovirus) and human T-cell leukemia viruses (HTLV-I and HTLV-II, Deltaretrovirus) encode Envs that are structurally and functionally distinct from HIV Env. We refer to these as Gamma-type Envs. Gamma-type Envs are probably the most widespread retroviral Envs in nature. They are found in exogenous and endogenous retroviruses representing a broad spectrum of vertebrate hosts including amphibians, birds, reptiles, mammals and fish. In endogenous form, gamma-type Envs have been evolutionarily coopted numerous times, most notably as placental syncytins (e.g., human SYNC1 and SYNC2). Remarkably, gamma-type Envs are also found outside of the Retroviridae. Gp2 proteins of filoviruses (e.g., Ebolavirus) and snake arenaviruses in the genus Reptarenavirus are gamma-type Env homologs, products of ancient recombination events involving viruses of different Baltimore classes. Distinctive hallmarks of gamma-type Envs include a labile disulfide bond linking the surface and transmembrane subunits, a multi-stage attachment and fusion mechanism, a highly conserved (but poorly understood) "immunosuppressive domain", and activation by the viral protease during virion maturation. Here, we synthesize work from diverse retrovirus model systems to illustrate these distinctive properties and to highlight avenues for further exploration of gamma-type Env structure and function.
Collapse
|
2
|
Aiyer S, Swapna GVT, Ma LC, Liu G, Hao J, Chalmers G, Jacobs BC, Montelione GT, Roth MJ. A common binding motif in the ET domain of BRD3 forms polymorphic structural interfaces with host and viral proteins. Structure 2021; 29:886-898.e6. [PMID: 33592170 DOI: 10.1016/j.str.2021.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/23/2022]
Abstract
The extraterminal (ET) domain of BRD3 is conserved among BET proteins (BRD2, BRD3, BRD4), interacting with multiple host and viral protein-protein networks. Solution NMR structures of complexes formed between the BRD3 ET domain and either the 79-residue murine leukemia virus integrase (IN) C-terminal domain (IN329-408) or its 22-residue IN tail peptide (IN386-407) alone reveal similar intermolecular three-stranded β-sheet formations. 15N relaxation studies reveal a 10-residue linker region (IN379-388) tethering the SH3 domain (IN329-378) to the ET-binding motif (IN389-405):ET complex. This linker has restricted flexibility, affecting its potential range of orientations in the IN:nucleosome complex. The complex of the ET-binding peptide of the host NSD3 protein (NSD3148-184) and the BRD3 ET domain includes a similar three-stranded β-sheet interaction, but the orientation of the β hairpin is flipped compared with the two IN:ET complexes. These studies expand our understanding of molecular recognition polymorphism in complexes of ET-binding motifs with viral and host proteins.
Collapse
Affiliation(s)
- Sriram Aiyer
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - G V T Swapna
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Li-Chung Ma
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Gaohua Liu
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Jingzhou Hao
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Gordon Chalmers
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brian C Jacobs
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Gaetano T Montelione
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Monica J Roth
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
3
|
Wojdas E, Łopata K, Nowak R, Kimsa‐Dudek M, Łopata P, Mazurek U. Expression profile of human porcine endogenous retrovirus A receptors (HuPAR‐1, HuPAR‐2) and transcription factor activator protein‐2γ (TFAP‐2C) genes in infected human fibroblasts—Model in vitro. Xenotransplantation 2019; 26:e12541. [DOI: 10.1111/xen.12541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Emilia Wojdas
- Department of Molecular Biology, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
- Department of Community Pharmacy, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
| | - Krzysztof Łopata
- Department of Molecular Biology, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
| | - Roman Nowak
- Department of Molecular Biology, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
| | - Magdalena Kimsa‐Dudek
- Department of Molecular Biology, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
| | - Paweł Łopata
- AGH University of Science and Technology in Krakow Krakow Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
| |
Collapse
|
4
|
Łopata K, Wojdas E, Nowak R, Łopata P, Mazurek U. Porcine Endogenous Retrovirus (PERV) - Molecular Structure and Replication Strategy in the Context of Retroviral Infection Risk of Human Cells. Front Microbiol 2018; 9:730. [PMID: 29755422 PMCID: PMC5932395 DOI: 10.3389/fmicb.2018.00730] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/28/2018] [Indexed: 12/28/2022] Open
Abstract
The xenotransplantation of porcine tissues may help overcome the shortage of human organs for transplantation. However, there are some concerns about recipient safety because the risk of porcine endogenous retrovirus (PERV) transmission to human cells remains unknown. Although, to date, no PERV infections have been noted in vivo, the possibility of such infections has been confirmed in vitro. Better understanding of the structure and replication cycle of PERVs is a prerequisite for determining the risk of infection and planning PERV-detection strategies. This review presents the current state of knowledge about the structure and replication cycle of PERVs in the context of retroviral infection risk.
Collapse
Affiliation(s)
- Krzysztof Łopata
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Emilia Wojdas
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland.,Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Roman Nowak
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Paweł Łopata
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
5
|
Novel Feline Leukemia Virus Interference Group Based on the env Gene. J Virol 2016; 90:4832-4837. [PMID: 26889025 DOI: 10.1128/jvi.03229-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 02/03/2016] [Indexed: 12/30/2022] Open
Abstract
Feline leukemia virus (FeLV) subgroups have emerged in infected cats via the mutation or recombination of the env gene of subgroup A FeLV (FeLV-A), the primary virus. We report the isolation and characterization of a novel env gene, TG35-2, and report that the TG35-2 pseudotype can be categorized as a novel FeLV subgroup. The TG35-2 envelope protein displays strong sequence identity to FeLV-A Env, suggesting that selection pressure in cats causes novel FeLV subgroups to emerge.
Collapse
|
6
|
Directed Molecular Evolution of an Engineered Gammaretroviral Envelope Protein with Dual Receptor Use Shows Stable Maintenance of Both Receptor Specificities. J Virol 2016; 90:1647-56. [PMID: 26608314 DOI: 10.1128/jvi.02013-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/19/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We have previously reported the construction of a murine leukemia virus-based replication-competent gammaretrovirus (SL3-AP) capable of utilizing the human G protein-coupled receptor APJ (hAPJ) as its entry receptor and its natural receptor, the murine Xpr1 receptor, with equal affinities. The apelin receptor has previously been shown to function as a coreceptor for HIV-1, and thus, adaptation of the viral vector to this receptor is of significant interest. Here, we report the molecular evolution of the SL3-AP envelope protein when the virus is cultured in cells harboring either the Xpr1 or the hAPJ receptor. Interestingly, the dual receptor affinity is maintained even after 10 passages in these cells. At the same time, the chimeric viral envelope protein evolves in a distinct pattern in the apelin cassette when passaged on D17 cells expressing hAPJ in three separate molecular evolution studies. This pattern reflects selection for reduced ligand-receptor interaction and is compatible with a model in which SL3-AP has evolved not to activate hAPJ receptor internalization. IMPORTANCE Few successful examples of engineered retargeting of a retroviral vector exist. The engineered SL3-AP envelope is capable of utilizing either the murine Xpr1 or the human APJ receptor for entry. In addition, SL3-AP is the first example of an engineered retrovirus retaining its dual tropism after several rounds of passaging on cells expressing only one of its receptors. We demonstrate that the virus evolves toward reduced ligand-receptor affinity, which sheds new light on virus adaptation. We provide indirect evidence that such reduced affinity leads to reduced receptor internalization and propose a novel model in which too rapid receptor internalization may decrease virus entry.
Collapse
|
7
|
Role of Cysteines in Stabilizing the Randomized Receptor Binding Domains within Feline Leukemia Virus Envelope Proteins. J Virol 2015; 90:2971-80. [PMID: 26719270 DOI: 10.1128/jvi.02544-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/22/2015] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Retargeting of gammaretroviral envelope proteins has shown promising results in the isolation of novel isolates with therapeutic potential. However, the optimal conditions required to obtain high-affinity retargeted envelope proteins with narrow tropism are not understood. This study highlights the advantage of constrained peptides within receptor binding domains and validates the random library screening technique of obtaining novel retargeted Env proteins. Using a modified vector backbone to screen the envelope libraries on 143B osteosarcoma cells, three novel and unique retargeted envelopes were isolated. The use of complex disulfide bonds within variable regions required for receptor binding is found within natural gammaretroviral envelope isolates. Interestingly, two of the isolates, named AII and BV2, have a pair of cysteines located within the randomized region of 11 amino acids similar to that identified within the CP Env, an isolate identified in a previous Env library screen on the human renal carcinoma Caki-1 cell line. The amino acids within the randomized region of AII and BV2 envelopes that are essential for viral infection have been identified in this study and include these cysteine residues. Through mutagenesis studies, the putative disulfide bond pairs including and beyond the randomized region were examined. In parallel, the disulfide bonds of CP Env were identified using mass spectrometry. The results indicate that this pair of cysteines creates the structural context to position key hydrophobic (F and W) and basic (K and H) residues critical for viral titer and suggest that AII, BV2, and CP internal cysteines bond together in distinct ways. IMPORTANCE Retargeted gammaretroviral particles have broad applications for therapeutic use. Although great advances have been achieved in identifying new Env-host cell receptor pairs, the rules for designing optimal Env libraries are still unclear. We have found that isolates with an additional pair of cysteines within the randomized region have the highest transduction efficiencies. This emphasizes the importance of considering cysteine pairs in the design of new libraries. Furthermore, our data clearly indicate that these cysteines are essential for viral infectivity by presenting essential residues to the host cell receptor. These studies facilitate the screening of Env libraries for functional entry into target cells, allowing the identification of novel gammaretroviral Envs targeting alternative host cell receptors for gene and protein delivery.
Collapse
|
8
|
Wu DT, Roth MJ. MLV based viral-like-particles for delivery of toxic proteins and nuclear transcription factors. Biomaterials 2014; 35:8416-26. [PMID: 24997480 DOI: 10.1016/j.biomaterials.2014.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 12/17/2022]
Abstract
We have developed nanoparticles based on Murine Leukemia Virus virus-like-particles (VLPs) that efficiently deliver therapeutic bioactive proteins in their native state into target cells. Nuclear transcription factors and toxic proteins were incorporated into the VLPs from stable producer cells without transducing viral-encoded genetic material. Delivery of nuclear transcription factors required incorporation of nuclear export signals (NESs) into the vector backbone for the efficient formation of VLPs. In the presence of an appropriate targeting Env glycoprotein, transcription factors delivered and activated nuclear transcription in the target cells. Additionally, we show delivery of the bacterial toxin, MazF, which is an ACA-specific mRNA interferase resulted in the induction of cell death. The stable producer cells are protected from the toxin through co-expression of the anti-toxin MazE and continuously released MazF incorporating VLPs. This highly adaptable platform can be harnessed to alter and regulate cellular processes by bioactive protein delivery.
Collapse
Affiliation(s)
- Dai-Tze Wu
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane Rm 636, Piscataway, NJ, USA
| | - Monica J Roth
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane Rm 636, Piscataway, NJ, USA.
| |
Collapse
|
9
|
Zhang X, Sarangi A, Wu DT, Kanduri J, Roth MJ. Gene delivery in a mouse xenograft of a retargeted retrovirus to a solid 143B osteosarcoma. Virol J 2013; 10:194. [PMID: 23767896 PMCID: PMC3689073 DOI: 10.1186/1743-422x-10-194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/10/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteosarcomas are the most common primary bone malignancies found in children and adolescents. An optimized system was developed for efficient retroviral gene delivery into solid 143B osteosarcoma tumors in mice using a retargeted Env. In these studies, the viral Env CP was isolated from an in vitro screen of a library of feline leukemia virus Env randomized in the receptor-binding domain and maintained high titer on human 143B osteosarcoma cell line. FINDINGS The vector developed to express the random Env libraries encoded the drug selectable marker neo. To adapt this for studies in live animals, the murine based vector was modified to express the luciferase gene. The bicistronic vector developed expressed both the CP Env and luciferase in the presence of either the MPMV CTE or a WPRE element. Virus bearing the CP FeLV Env variant maintained high titers after concentration allowing for direct visualization of delivery of the luciferase gene in subcutaneous 143B osteosarcoma tumors. CONCLUSION This system serves as a proof-of-concept for the use of novel FeLV Env pseudotyped MLV particles for in vivo gene delivery. Gene delivery and expression of lucerifase from viral particles bearing the CP Env was readily detected in live mice after a single round of intratumor injection.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
10
|
Mazari PM, Roth MJ. Library screening and receptor-directed targeting of gammaretroviral vectors. Future Microbiol 2013; 8:107-21. [PMID: 23252496 DOI: 10.2217/fmb.12.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene- and cell-based therapies hold great potential for the advancement of the personalized medicine movement. Gene therapy vectors have made dramatic leaps forward since their inception. Retroviral-based vectors were the first to gain clinical attention and still offer the best hope for the long-term correction of many disorders. The fear of nonspecific transduction makes targeting a necessary feature for most clinical applications. However, this remains a difficult feature to optimize, with specificity often coming at the expense of efficiency. The aim of this article is to discuss the various methods employed to retarget retroviral entry. Our focus will lie on the modification of gammaretroviral envelope proteins with an in-depth discussion of the creation and screening of envelope libraries.
Collapse
Affiliation(s)
- Peter M Mazari
- University of Medicine & Dentistry of NJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
11
|
Construction of a gammaretrovirus with a novel tropism and wild-type replication kinetics capable of using human APJ as entry receptor. J Virol 2012; 86:10621-7. [PMID: 22811542 DOI: 10.1128/jvi.01028-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have constructed a replication-competent gammaretrovirus (SL3-AP) capable of using the human G-protein-coupled receptor hAPJ as its entry receptor. The envelope protein of the virus was made by insertion of the 13-amino-acid peptide ligand for hAPJ, flanked by linker sequences, into one of the variable loops of the receptor binding domain of SL3-2, a murine leukemia virus (MLV) that uses the xenotropic-polytropic virus receptor Xpr1 and which has a host range limited to murine cells. This envelope protein can utilize hAPJ as well as murine Xpr1 for entry into host cells with equal efficiencies. In addition, the SL3-AP virus replicates in cells expressing either of its receptors, hAPJ and murine Xpr1, and causes resistance to superinfection and downregulation of hAPJ in infected cells. Thus, SL3-AP is the first example of a retargeted replication-competent retrovirus, with replication characteristics and receptor interference properties similar to those of natural isolates.
Collapse
|
12
|
Wu DT, Seita Y, Zhang X, Lu CW, Roth MJ. Antibody-directed lentiviral gene transduction for live-cell monitoring and selection of human iPS and hES cells. PLoS One 2012; 7:e34778. [PMID: 22536330 PMCID: PMC3334894 DOI: 10.1371/journal.pone.0034778] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 03/09/2012] [Indexed: 12/21/2022] Open
Abstract
The identification of stem cells within a mixed population of cells is a major hurdle for stem cell biology--in particular, in the identification of induced pluripotent stem (iPS) cells during the reprogramming process. Based on the selective expression of stem cell surface markers, a method to specifically infect stem cells through antibody-conjugated lentiviral particles has been developed that can deliver both visual markers for live-cell imaging as well as selectable markers to enrich for iPS cells. Antibodies recognizing SSEA4 and CD24 mediated the selective infection of the iPS cells over the parental human fibroblasts, allowing for rapid expansion of these cells by puromycin selection. Adaptation of the vector allows for the selective marking of human embryonic stem (hES) cells for their removal from a population of differentiated cells. This method has the benefit that it not only identifies stem cells, but that specific genes, including positive and negative selection markers, regulatory genes or miRNA can be delivered to the targeted stem cells. The ability to specifically target gene delivery to human pluripotent stem cells has broad applications in tissue engineering and stem cell therapies.
Collapse
Affiliation(s)
- Dai-tze Wu
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Yasunari Seita
- Deptartment of Ob/Gyn, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Xia Zhang
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Chi-Wei Lu
- Deptartment of Ob/Gyn, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Monica J. Roth
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
13
|
Mazari PM, Argaw T, Valdivieso L, Zhang X, Marcucci KT, Salomon DR, Wilson CA, Roth MJ. Comparison of the convergent receptor utilization of a retargeted feline leukemia virus envelope with a naturally-occurring porcine endogenous retrovirus A. Virology 2012; 427:118-26. [PMID: 22405627 DOI: 10.1016/j.virol.2012.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 12/12/2011] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
In vitro screening of randomized FeLV Envelope libraries identified the CP isolate, which enters cells through HuPAR-1, one of two human receptors utilized by porcine endogenous retrovirus-A (PERV-A), a distantly related gammaretrovirus. The CP and PERV-A Envs however, share little amino acid homology. Their receptor utilization was examined to define the common receptor usage of these disparate viral Envs. We demonstrate that the receptor usage of CP extends to HuPAR-2 but not to the porcine receptor PoPAR, the cognate receptor for PERV-A. Reciprocal interference between virus expressing CP and PERV-A Envs was observed on human cells. Amino acid residues localized to within the putative second extracellular loop (ECL-2) of PAR-1 and PAR-2 are found to be critical for CP envelope function. Through a panel of receptor chimeras and point mutations, this area was also found to be responsible for the differential usage of the PoPAR receptor between CP and PERV-A.
Collapse
Affiliation(s)
- Peter M Mazari
- University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Department of Biochemistry, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Katrin Helfer-Hungerbuehler A, Cattori V, Bachler B, Hartnack S, Riond B, Ossent P, Lutz H, Hofmann-Lehmann R. Quantification and molecular characterization of the feline leukemia virus A receptor. INFECTION GENETICS AND EVOLUTION 2011; 11:1940-50. [PMID: 21889617 DOI: 10.1016/j.meegid.2011.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/30/2011] [Accepted: 08/17/2011] [Indexed: 01/19/2023]
Abstract
Virus receptors and their expression patterns on the cell surface determine the cell tropism of the virus, host susceptibility and the pathogenesis of the infection. Feline thiamine transport protein 1 (fTHTR1) has been identified as the receptor for feline leukemia virus (FeLV) A. The goal of the present study was to develop a quantitative, TaqMan real-time PCR assay to investigate fTHTR1 mRNA expression in tissues of uninfected and FeLV-infected cats, cats of different ages, in tumor tissues and leukocyte subsets. Moreover, the receptor was molecularly characterized in different feline species. fTHTR1 mRNA expression was detected in all 30 feline tissues investigated, oral mucosa scrapings and blood. Importantly, identification of significant differences in fTHTR1 expression relied on normalization with an appropriate reference gene. The lowest levels were found in the blood, whereas high levels were measured in the oral mucosa, salivary glands and the musculature. In the blood, T lymphocytes showed significantly higher fTHTR1 mRNA expression levels than neutrophil granulocytes. In vitro activation of peripheral blood mononuclear cells with concanavalin A alone or followed by interleukin-2 led to a transient increase of fTHTR1 mRNA expression. In the blood, but not in the examined tissues, FeLV-infected cats tended to have lower fTHTR1 mRNA levels than uninfected cats. The fTHTR1 mRNA levels were not significantly different between tissues with lymphomas and the corresponding non-neoplastic tissues. fTHTR1 was highly conserved among different feline species (Iberian lynx, Asiatic and Indian lion, European wildcat, jaguarundi, domestic cat). In conclusion, while ubiquitous fTHTR1 mRNA expression corresponded to the broad target tissue range of FeLV, particularly high fTHTR1 levels were found at sites of virus entry and shedding. The differential susceptibility of different species to FeLV could not be attributed to variations in the fTHTR1 sequence.
Collapse
|
15
|
Urban JH, Merten CA. Retroviral display in gene therapy, protein engineering, and vaccine development. ACS Chem Biol 2011; 6:61-74. [PMID: 21171610 DOI: 10.1021/cb100285n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The display and analysis of proteins expressed on biological surfaces has become an attractive tool for the study of molecular interactions in enzymology, protein engineering, and high-throughput screening. Among the growing number of established display systems, retroviruses offer a unique and fully mammalian platform for the expression of correctly folded and post-translationally modified proteins in the context of cell plasma membrane-derived particles. This is of special interest for therapeutic applications such as gene therapy and vaccine development and also offers advantages for the engineering of mammalian proteins toward customized binding affinities and catalytic activities. This review critically summarizes the basic concepts and applications of retroviral display and analyses its benefits in comparison to other display techniques.
Collapse
Affiliation(s)
- Johannes H. Urban
- Duke Translational Research Institute and Department of Surgery, Duke University Medical Center, MSRBII, 106 Research Drive, Durham, North Carolina 27710, United States
| | - Christoph A. Merten
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
| |
Collapse
|
16
|
Helfer-Hungerbuehler AK, Cattori V, Boretti FS, Ossent P, Grest P, Reinacher M, Henrich M, Bauer E, Bauer-Pham K, Niederer E, Holznagel E, Lutz H, Hofmann-Lehmann R. Dominance of highly divergent feline leukemia virus A progeny variants in a cat with recurrent viremia and fatal lymphoma. Retrovirology 2010; 7:14. [PMID: 20167134 PMCID: PMC2837606 DOI: 10.1186/1742-4690-7-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 02/19/2010] [Indexed: 12/30/2022] Open
Abstract
Background In a cat that had ostensibly recovered from feline leukemia virus (FeLV) infection, we observed the reappearance of the virus and the development of fatal lymphoma 8.5 years after the initial experimental exposure to FeLV-A/Glasgow-1. The goals of the present study were to investigate this FeLV reoccurrence and molecularly characterize the progeny viruses. Results The FeLV reoccurrence was detected by the presence of FeLV antigen and RNA in the blood and saliva. The cat was feline immunodeficiency virus positive and showed CD4+ T-cell depletion, severe leukopenia, anemia and a multicentric monoclonal B-cell lymphoma. FeLV-A, but not -B or -C, was detectable. Sequencing of the envelope gene revealed three FeLV variants that were highly divergent from the virus that was originally inoculated (89-91% identity to FeLV-A/Glasgow-1). In the long terminal repeat 31 point mutations, some previously described in cats with lymphomas, were detected. The FeLV variant tissue provirus and viral RNA loads were significantly higher than the FeLV-A/Glasgow-1 loads. Moreover, the variant loads were significantly higher in lymphoma positive compared to lymphoma negative tissues. An increase in the variant provirus blood load was observed at the time of FeLV reoccurrence. Conclusions Our results demonstrate that ostensibly recovered FeLV provirus-positive cats may act as a source of infection following FeLV reactivation. The virus variants that had largely replaced the inoculation strain had unusually heavily mutated envelopes. The mutations may have led to increased viral fitness and/or changed the mutagenic characteristics of the virus.
Collapse
|