1
|
Zernia S, Ettefa F, Sil S, Koeman C, Deplazes-Lauber J, Freitag M, Holt LJ, Stigler J. LINE-1 ribonucleoprotein condensates bind DNA to enable nuclear entry during mitosis. SCIENCE ADVANCES 2025; 11:eadt9318. [PMID: 40315332 PMCID: PMC12047440 DOI: 10.1126/sciadv.adt9318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/27/2025] [Indexed: 05/04/2025]
Abstract
Long interspersed nuclear element-1 (LINE-1) is an autonomous retrotransposon that makes up a substantial portion of the human genome, contributing to genetic diversity and genome evolution. LINE-1 encodes two proteins, ORF1p and ORF2p, both essential for successful retrotransposition. ORF2p has endonuclease and reverse transcription activity, while ORF1p binds RNA. Many copies of ORF1p assemble onto the LINE-1 RNA to form a ribonucleoprotein (RNP) condensate. However, the function of these condensates in the LINE-1 life cycle remains unclear. Using reconstitution assays on DNA curtains, we show that L1 RNP condensates gain DNA binding activity only when RNA is super-saturated with ORF1p. In cells, L1 RNP condensates bind to chromosomes during mitosis. Mutational analysis reveals that DNA binding is crucial for nuclear entry and LINE-1 retrotransposition activity. Thus, a key function of ORF1p is to form an RNP condensate that gains access to the genome through DNA binding upon nuclear envelope breakdown.
Collapse
Affiliation(s)
- Sarah Zernia
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Farida Ettefa
- New York University Grossmann School of Medicine, New York, NY, USA
- Institute for System Genetics, New York, NY, USA
| | - Srinjoy Sil
- New York University Grossmann School of Medicine, New York, NY, USA
- Institute for System Genetics, New York, NY, USA
| | - Cas Koeman
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Marvin Freitag
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Liam J. Holt
- New York University Grossmann School of Medicine, New York, NY, USA
- Institute for System Genetics, New York, NY, USA
| | - Johannes Stigler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
2
|
Cashen BA, Naufer MN, Morse M, McCauley MJ, Rouzina I, Jones CE, Furano AV, Williams MC. L1-ORF1p nucleoprotein can rapidly assume distinct conformations and simultaneously bind more than one nucleic acid. Nucleic Acids Res 2024; 52:14013-14029. [PMID: 39565204 DOI: 10.1093/nar/gkae1141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
LINE-1 (L1) is a parasitic retrotransposable DNA element, active in primates for the last 80-120 Myr. L1 has generated nearly one-third of the human genome by copying its transcripts, and those of other genetic elements (e.g. Alu and SVA), into genomic DNA by target site-primed reverse transcription (TPRT) and remains active in modern humans. L1 encodes two proteins that bind their encoding transcript (cis preference) to form an L1 ribonucleoprotein (RNP) that mediates retrotransposition. ORF2p provides reverse transcriptase and endonuclease activity. ORF1p, its major component, is a homo-trimeric phospho-protein that binds single-stranded nucleic acid (ssNA) with high affinity and exhibits nucleic acid (NA) chaperone activity. We used optical tweezers to examine ORF1p binding to individual single-stranded DNA (ssDNA) molecules and found that the arrangement of ORF1p on the ssDNA depends on their molar ratio. When the concentration of ORF1p is just sufficient to saturate the entire NA molecule, the nucleoprotein (NP) is compact and stable. However, additional ORF1p binds and destabilizes the compacted NP, allowing it to engage a second ssDNA. Our results suggest that ORF1p displaced from its RNA template during TPRT could bind and destabilize remaining downstream L1 RNP, making them susceptible to hijacking by non-L1 templates, and thereby enable retrotransposition of non-L1 transcripts.
Collapse
Affiliation(s)
- Ben A Cashen
- Northeastern University, Department of Physics, 360 Huntington Avenue, Boston, MA 02115, USA
| | - M Nabuan Naufer
- Northeastern University, Department of Physics, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Michael Morse
- Northeastern University, Department of Physics, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Micah J McCauley
- Northeastern University, Department of Physics, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Ioulia Rouzina
- Ohio State University, Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, 281 W Lane Avenue, Columbus, OH 43210, USA
| | - Charles E Jones
- The Laboratory of Molecular and Cellular Biology, NIDDK, NIH, 8 Center Drive, Bethesda, MD 20892, USA
| | - Anthony V Furano
- The Laboratory of Molecular and Cellular Biology, NIDDK, NIH, 8 Center Drive, Bethesda, MD 20892, USA
| | - Mark C Williams
- Northeastern University, Department of Physics, 360 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
3
|
Colgan DJ. The Families of Non-LTR Transposable Elements within Neritimorpha and Other Gastropoda. Genes (Basel) 2024; 15:783. [PMID: 38927719 PMCID: PMC11203168 DOI: 10.3390/genes15060783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Repeated sequences, especially transposable elements (TEs), are known to be abundant in some members of the important invertebrate class Gastropoda. TEs that do not have long terminal repeated sequences (non-LTR TEs) are frequently the most abundant type but have not been well characterised in any gastropod. Despite this, sequences in draft gastropod genomes are often described as non-LTR TEs, but without identification to family type. This study was conducted to characterise non-LTR TEs in neritimorph snails, using genomic skimming surveys of three species and the recently published draft genome of Theodoxus fluviatilis. Multiple families of non-LTR TEs from the I, Jockey, L1, R2 and RTE superfamilies were found, although there were notably few representatives of the first of these, which is nevertheless abundant in other Gastropoda. Phylogenetic analyses of amino acid sequences of the reverse transcriptase domain from the elements ORF2 regions found considerable interspersion of representatives of the four neritimorph taxa within non-LTR families and sub-families. In contrast, phylogenetic analyses of sequences from the elements' ORF1 region resolved the representatives from individual species as monophyletic. However, using either region, members of the two species of the Neritidae were closely related, suggesting their potential for investigation of phyletic evolution at the family level.
Collapse
Affiliation(s)
- Donald James Colgan
- Malacology, AMRI, The Australian Museum, 1 William St., Sydney 2010, Australia
| |
Collapse
|
4
|
Mendez-Dorantes C, Burns KH. LINE-1 retrotransposition and its deregulation in cancers: implications for therapeutic opportunities. Genes Dev 2023; 37:948-967. [PMID: 38092519 PMCID: PMC10760644 DOI: 10.1101/gad.351051.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Long interspersed element 1 (LINE-1) is the only protein-coding transposon that is active in humans. LINE-1 propagates in the genome using RNA intermediates via retrotransposition. This activity has resulted in LINE-1 sequences occupying approximately one-fifth of our genome. Although most copies of LINE-1 are immobile, ∼100 copies are retrotransposition-competent. Retrotransposition is normally limited via epigenetic silencing, DNA repair, and other host defense mechanisms. In contrast, LINE-1 overexpression and retrotransposition are hallmarks of cancers. Here, we review mechanisms of LINE-1 regulation and how LINE-1 may promote genetic heterogeneity in tumors. Finally, we discuss therapeutic strategies to exploit LINE-1 biology in cancers.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
5
|
Khan M, Shah S, Lv B, Lv Z, Ji N, Song Z, Wu P, Wang X, Mehmood A. Molecular Mechanisms of Alu and LINE-1 Interspersed Repetitive Sequences Reveal Diseases of Visual System Dysfunction. Ocul Immunol Inflamm 2023; 31:1848-1858. [PMID: 36040959 DOI: 10.1080/09273948.2022.2112238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/05/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Short interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINE-1s) are the abundant and well-characterized repetitive elements in the human genome. METHODS For this review, all relevant original research studies were assessed by searching electronic databases, including PubMed, Google Scholar, and Web of Science, by using relevant keywords. Accumulating evidence indicates that the disorder of gene expression regulated by these repetitive sequences is one of the causes of the diseases of visual system dysfunction, including retinal degenerations, glaucoma, retinitis punctata albescens, retinitis pigmentosa, geographic atrophy, and age-related macular degeneration, suggesting that SINEs and LINE-1s may have great potential implications in ophthalmology. RESULTS Alu elements belonging to the SINEs are present in more than one million copies, comprising 10% of the human genome. CONCLUSION This study offers recent advances in Alu and LINE-1 mechanisms in the development of eye diseases. The current study could advance our knowledge of the roles of SINEs and LINE-1s in the developing process of eye diseases, suggesting new diagnostic biomarkers, therapeutic strategies, and significant points for future studies.
Collapse
Affiliation(s)
- Murad Khan
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Suleman Shah
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Baixue Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China
| | - Zhanjun Lv
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Ning Ji
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Zhixue Song
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Peiyuan Wu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Arshad Mehmood
- Department of Neurology, the Second Hospital of Hebei Medical University, City Shijiazhuang, P.R. China
| |
Collapse
|
6
|
Mizgier NA, Jones CE, Furano AV. Co-expression of distinct L1 retrotransposon coiled coils can lead to their entanglement. Mob DNA 2023; 14:16. [PMID: 37864180 PMCID: PMC10588031 DOI: 10.1186/s13100-023-00303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023] Open
Abstract
L1 (LINE1) non-LTR retrotransposons are ubiquitous genomic parasites and the dominant transposable element in humans having generated about 40% of their genomic DNA during their ~ 100 million years (Myr) of activity in primates. L1 replicates in germ line cells and early embryos, causing genetic diversity and defects, but can be active in some somatic stem cells, tumors and during aging. L1 encodes two proteins essential for retrotransposition: ORF2p, a reverse transcriptase that contains an endonuclease domain, and ORF1p, a coiled coil mediated homo trimer, which functions as a nucleic acid chaperone. Both proteins contain highly conserved domains and preferentially bind their encoding transcript to form an L1 ribonucleoprotein (RNP), which mediates retrotransposition. However, the coiled coil has periodically undergone episodes of substantial amino acid replacement to the extent that a given L1 family can concurrently express multiple ORF1s that differ in the sequence of their coiled coils. Here we show that such distinct ORF1p sequences can become entangled forming heterotrimers when co-expressed from separate vectors and speculate on how coiled coil entanglement could affect coiled coil evolution.
Collapse
Affiliation(s)
- Nikola A. Mizgier
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892 USA
| | - Charlie E. Jones
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892 USA
| | - Anthony V. Furano
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
7
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
8
|
Gerdes P, Chan D, Lundberg M, Sanchez-Luque FJ, Bodea GO, Ewing AD, Faulkner GJ, Richardson SR. Locus-resolution analysis of L1 regulation and retrotransposition potential in mouse embryonic development. Genome Res 2023; 33:1465-1481. [PMID: 37798118 PMCID: PMC10620060 DOI: 10.1101/gr.278003.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023]
Abstract
Mice harbor ∼2800 intact copies of the retrotransposon Long Interspersed Element 1 (L1). The in vivo retrotransposition capacity of an L1 copy is defined by both its sequence integrity and epigenetic status, including DNA methylation of the monomeric units constituting young mouse L1 promoters. Locus-specific L1 methylation dynamics during development may therefore elucidate and explain spatiotemporal niches of endogenous retrotransposition but remain unresolved. Here, we interrogate the retrotransposition efficiency and epigenetic fate of source (donor) L1s, identified as mobile in vivo. We show that promoter monomer loss consistently attenuates the relative retrotransposition potential of their offspring (daughter) L1 insertions. We also observe that most donor/daughter L1 pairs are efficiently methylated upon differentiation in vivo and in vitro. We use Oxford Nanopore Technologies (ONT) long-read sequencing to resolve L1 methylation genome-wide and at individual L1 loci, revealing a distinctive "smile" pattern in methylation levels across the L1 promoter region. Using Pacific Biosciences (PacBio) SMRT sequencing of L1 5' RACE products, we then examine DNA methylation dynamics at the mouse L1 promoter in parallel with transcription start site (TSS) distribution at locus-specific resolution. Together, our results offer a novel perspective on the interplay between epigenetic repression, L1 evolution, and genome stability.
Collapse
Affiliation(s)
- Patricia Gerdes
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Dorothy Chan
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Mischa Lundberg
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia
- Translational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales 2113, Australia
| | - Francisco J Sanchez-Luque
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- GENYO. Centre for Genomics and Oncological Research (Pfizer-University of Granada-Andalusian Regional Government), PTS Granada, 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Gabriela O Bodea
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adam D Ewing
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia;
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sandra R Richardson
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia;
| |
Collapse
|
9
|
Pieplow C, Wessel G. Functional annotation of a hugely expanded nanos repertoire in Lytechinus variegatus, the green sea urchin. Mol Reprod Dev 2023; 90:310-322. [PMID: 37039283 PMCID: PMC10225336 DOI: 10.1002/mrd.23684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/17/2023] [Accepted: 03/18/2023] [Indexed: 04/12/2023]
Abstract
Nanos genes encode essential RNA-binding proteins involved in germline determination and germline stem cell maintenance. When examining diverse classes of echinoderms, typically three, sometimes four, nanos genes are present. In this analysis, we identify and annotate nine nanos orthologs in the green sea urchin, Lytechinus variegatus (Lv). All nine genes are transcribed and grouped into three distinct classes. Class one includes the germline Nanos, with one member: Nanos2. Class two includes Nanos3-like genes, with significant sequence similarity to Nanos3 in the purple sea urchin, Strongylocentrotus purpuratus (Sp), but with wildly variable expression patterns. The third class includes several previously undescribed nanos zinc-finger genes that may be the result of duplications of Nanos2. All nine nanos transcripts occupy unique genomic loci and are expressed with unique temporal profiles during development. Importantly, here we describe and characterize the unique genomic location, conservation, and phylogeny of the Lv ortholog of the well-studied Sp Nanos2. However, in addition to the conserved germline functioning Nanos2, the green sea urchin appears to be an outlier in the echinoderm phyla with eight additional nanos genes. We hypothesize that this expansion of nanos gene members may be the result of a previously uncharacterized L1-class transposon encoded on the opposite strand of a nanos2 pseudogene present on chromosome 12 in this species. The expansion of nanos genes described here represents intriguing insights into germline specification and nanos evolution in this species of sea urchin.
Collapse
Affiliation(s)
- Cosmo Pieplow
- MCB Department, Division of Biomedicine, Brown University, Providence RI 02912
| | - Gary Wessel
- MCB Department, Division of Biomedicine, Brown University, Providence RI 02912
| |
Collapse
|
10
|
Sil S, Keegan S, Ettefa F, Denes LT, Boeke JD, Holt LJ. Condensation of LINE-1 is critical for retrotransposition. eLife 2023; 12:e82991. [PMID: 37114770 PMCID: PMC10202459 DOI: 10.7554/elife.82991] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/27/2023] [Indexed: 04/29/2023] Open
Abstract
LINE-1 (L1) is the only autonomously active retrotransposon in the human genome, and accounts for 17% of the human genome. The L1 mRNA encodes two proteins, ORF1p and ORF2p, both essential for retrotransposition. ORF2p has reverse transcriptase and endonuclease activities, while ORF1p is a homotrimeric RNA-binding protein with poorly understood function. Here, we show that condensation of ORF1p is critical for L1 retrotransposition. Using a combination of biochemical reconstitution and live-cell imaging, we demonstrate that electrostatic interactions and trimer conformational dynamics together tune the properties of ORF1p assemblies to allow for efficient L1 ribonucleoprotein (RNP) complex formation in cells. Furthermore, we relate the dynamics of ORF1p assembly and RNP condensate material properties to the ability to complete the entire retrotransposon life-cycle. Mutations that prevented ORF1p condensation led to loss of retrotransposition activity, while orthogonal restoration of coiled-coil conformational flexibility rescued both condensation and retrotransposition. Based on these observations, we propose that dynamic ORF1p oligomerization on L1 RNA drives the formation of an L1 RNP condensate that is essential for retrotransposition.
Collapse
Affiliation(s)
- Srinjoy Sil
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Sarah Keegan
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Farida Ettefa
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Lance T Denes
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Jef D Boeke
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
11
|
Cashen BA, Naufer M, Morse M, Jones CE, Williams M, Furano A. The L1-ORF1p coiled coil enables formation of a tightly compacted nucleic acid-bound complex that is associated with retrotransposition. Nucleic Acids Res 2022; 50:8690-8699. [PMID: 35871298 PMCID: PMC9410894 DOI: 10.1093/nar/gkac628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Long interspersed nuclear element 1 (L1) parasitized most vertebrates and constitutes ∼20% of the human genome. It encodes ORF1p and ORF2p which form an L1-ribonucleoprotein (RNP) with their encoding transcript that is copied into genomic DNA (retrotransposition). ORF1p binds single-stranded nucleic acid (ssNA) and exhibits NA chaperone activity. All vertebrate ORF1ps contain a coiled coil (CC) domain and we previously showed that a CC-retrotransposition null mutant prevented formation of stably bound ORF1p complexes on ssNA. Here, we compared CC variants using our recently improved method that measures ORF1p binding to ssDNA at different forces. Bound proteins decrease ssDNA contour length and at low force, retrotransposition-competent ORF1ps (111p and m14p) exhibit two shortening phases: the first is rapid, coincident with ORF1p binding; the second is slower, consistent with formation of tightly compacted complexes by NA-bound ORF1p. In contrast, two retrotransposition-null CC variants (151p and m15p) did not attain the second tightly compacted state. The C-terminal half of the ORF1p trimer (not the CC) contains the residues that mediate NA-binding. Our demonstrating that the CC governs the ability of NA-bound retrotransposition-competent trimers to form tightly compacted complexes reveals the biochemical phenotype of these coiled coil mutants.
Collapse
Affiliation(s)
- Ben A Cashen
- Northeastern University, Department of Physics, Boston, MA02115, USA
| | - M Nabuan Naufer
- Northeastern University, Department of Physics, Boston, MA02115, USA
| | - Michael Morse
- Northeastern University, Department of Physics, Boston, MA02115, USA
| | - Charles E Jones
- The Laboratory of Molecular and Cellular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Mark C Williams
- Northeastern University, Department of Physics, Boston, MA02115, USA
| | - Anthony V Furano
- The Laboratory of Molecular and Cellular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Campitelli LF, Yellan I, Albu M, Barazandeh M, Patel ZM, Blanchette M, Hughes TR. Reconstruction of full-length LINE-1 progenitors from ancestral genomes. Genetics 2022; 221:6584822. [PMID: 35552404 PMCID: PMC9252281 DOI: 10.1093/genetics/iyac074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
Sequences derived from the Long INterspersed Element-1 (L1) family of retrotransposons occupy at least 17% of the human genome, with 67 distinct subfamilies representing successive waves of expansion and extinction in mammalian lineages. L1s contribute extensively to gene regulation, but their molecular history is difficult to trace, because most are present only as truncated and highly mutated fossils. Consequently, L1 entries in current databases of repeat sequences are composed mainly of short diagnostic subsequences, rather than full functional progenitor sequences for each subfamily. Here, we have coupled 2 levels of sequence reconstruction (at the level of whole genomes and L1 subfamilies) to reconstruct progenitor sequences for all human L1 subfamilies that are more functionally and phylogenetically plausible than existing models. Most of the reconstructed sequences are at or near the canonical length of L1s and encode uninterrupted ORFs with expected protein domains. We also show that the presence or absence of binding sites for KRAB-C2H2 Zinc Finger Proteins, even in ancient-reconstructed progenitor L1s, mirrors binding observed in human ChIP-exo experiments, thus extending the arms race and domestication model. RepeatMasker searches of the modern human genome suggest that the new models may be able to assign subfamily resolution identities to previously ambiguous L1 instances. The reconstructed L1 sequences will be useful for genome annotation and functional study of both L1 evolution and L1 contributions to host regulatory networks.
Collapse
Affiliation(s)
- Laura F Campitelli
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Isaac Yellan
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Mihai Albu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Marjan Barazandeh
- Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zain M Patel
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Mathieu Blanchette
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Department of Computer Science, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
13
|
Ventura-López C, López-Galindo L, Rosas C, Sánchez-Castrejón E, Galindo-Torres P, Pascual C, Rodríguez-Fuentes G, Juárez OE, Galindo-Sánchez CE. Sex-specific role of the optic gland in octopus maya: A transcriptomic analysis. Gen Comp Endocrinol 2022; 320:114000. [PMID: 35217062 DOI: 10.1016/j.ygcen.2022.114000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/17/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
The optic glands (OG) of cephalopods are a source of molecules associated with the control of reproductive traits and lifecycle events such as sexual maturation, reproductive behavior, feeding, parental care, and senescence. However, little is known about the role of the optic gland in Octopus maya adults during mating and egg laying. RNA sequencing, de novo transcriptome assembly, ubiquity and differential expression analysis were performed. First, we analyzed the expression patterns of transcripts commonly associated with OG regulatory functions to describe their possible role once the maturation of the gonad is complete. The transcriptomic profiles of the optic gland of both sexes were compared with emphasis on the signaling pathways involved in the dimorphism of reproductive traits. Results suggest that in the OG of males, the reproductive condition (mated or non-mated) did not affect the general expression profile. In contrast, more differentially expressed genes were observed in females. In mated females, the mRNA metabolic process and the response to norepinephrine were enriched, suggesting a high cellular activity in preparation for the laying of the embryos. Whereas in egg-laying females, energetic and metabolic processes were the most represented, including the oxidation-reduction process. Finally, the gene expression patterns in senescence females suggest a physiological response to starvation as well as upregulation of genes involved retrotransposon activity. In conclusion, more substantial fluctuations in gene expression were observed in the optic glands of the fertilized females compared to the males. Such differences might be associated with the regulation of the egg-laying and the onset of senescence.
Collapse
Affiliation(s)
- Claudia Ventura-López
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Laura López-Galindo
- Instituto de Investigaciones Oceanológicas (IIO), Universidad Autónoma de Baja California (UABC), Carretera Ensenada-Tijuana No. 3917, Fraccionamiento Playitas, Ensenada, Baja California CP 22860, Mexico
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Puerto de Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico
| | - Edna Sánchez-Castrejón
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Pavel Galindo-Torres
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Cristina Pascual
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Puerto de Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico
| | - Gabriela Rodríguez-Fuentes
- Unidad de Química en Sisal, Facultad de Química Universidad Nacional Autónoma de México (UNAM), Puerto de Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico
| | - Oscar E Juárez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Clara E Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| |
Collapse
|
14
|
Pfaff AL, Bubb VJ, Quinn JP, Koks S. Locus specific reduction of L1 expression in the cortices of individuals with amyotrophic lateral sclerosis. Mol Brain 2022; 15:25. [PMID: 35346298 PMCID: PMC8961898 DOI: 10.1186/s13041-022-00914-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
The activation and dysregulation of retrotransposons has been identified in the CNS of individuals with the fatal neurodegenerative disorder Amyotrophic lateral sclerosis (ALS). This includes elements from multiple different families and subfamilies of retrotransposons, however there is limited knowledge of the specific loci from which this expression occurs in ALS. The long interspersed element-1 (L1) is the only autonomous retrotransposon in the human genome and members of this family of elements maintain the ability to mobilise. Despite L1s contributing to 17% of the human genome only 80-100 L1s encode the required proteins for mobilisation and are retrotransposition competent. Identifying the specific loci from which L1 expression occurs will inform on the potential functional consequences of their expression, such as the potential for somatic retrotransposition or DNA damage caused by the endonuclease activity of the ORF2 protein of the L1. Here we characterised L1 loci expression using the L1EM tool ( https://github.com/FenyoLab/L1EM ) in RNA sequencing data from 518 samples across four tissues (motor cortex, frontal cortex, cerebellum and cervical spinal cord) in the Target ALS cohort obtained from the New York Genome Center. There was a significant reduction in total intact L1 expression (those that encode functional proteins) in two brain regions of individuals with ALS compared to controls and clustering of the ALS brain regions occurred based on their intact L1 expression profile. Although overall the levels of L1 expression were reduced in ALS/ALS with other neurological disorder (ND) there were individuals in which L1s were expressed at much higher levels than the rest of the ALS/ALSND cohort. Expressed L1 loci were more frequently located in introns compared to those not expressed and the level of L1 expression positively correlated with the expression of the gene in which it was located. Significant differences were observed in the expression profiles of L1s in ALS and specific features of these elements, such as location in the genome and whether or not they are intact, were significantly associated with those that were expressed in the cohort.
Collapse
Affiliation(s)
- Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Perth, 8 Verdun Street, Nedlands, WA 6009 Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA Australia
| | - Vivien J. Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, 8 Verdun Street, Nedlands, WA 6009 Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA Australia
| |
Collapse
|
15
|
Pinter TB, Ervin CS, Deb A, Penner-Hahn JE, Pecoraro VL. Cu(I) Binding to Designed Proteins Reveals a Putative Copper Binding Site of the Human Line1 Retrotransposon Protein ORF1p. Inorg Chem 2022; 61:5084-5091. [PMID: 35286080 PMCID: PMC10754372 DOI: 10.1021/acs.inorgchem.2c00057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Long interspersed nuclear elements-1 (L1) are autonomous retrotransposons that encode two proteins in different open reading frames (ORF1 and ORF2). The ORF1p, which may be an RNA binding and chaperone protein, contains a three-stranded coiled coil (3SCC) domain that facilitates the formation of the biologically active homotrimer. This 3SCC domain is composed of seven amino acid (heptad) repeats as found in native and designed peptides and a stammer that modifies the helical structure. Cysteine residues occur at three hydrophobic positions (2 a and 1 d sites) within this domain. We recently showed that the cysteine layers in ORF1p and model de novo designed peptides bind the toxic metalloid lead(II) with high affinities, a feature that had not been previously recognized. However, there is little understanding of how essential metal ions might interact with this metal binding domain. We have, therefore, investigated the copper(I) binding properties of analogous de novo designed 3SCCs that contain cysteine layers within the hydrophobic core. The results from UV-visible and X-ray absorption spectroscopy show that these designed peptides bind Cu(I) with high affinity in a pH-dependent manner. At pH 9, monomeric trigonal planar Cu(I)S3 centers are formed with 1 equiv of metal, while dinuclear centers form with a second equivalent of metal. At physiologic pH conditions, the dinuclear center forms cooperatively. These data suggest that ORF1p is capable of binding two copper ions to its tris(cysteine) layers. This has major implications for ORF1p coiled coil domain stability and dynamics, ultimately potentially impacting the resulting biological activity.
Collapse
Affiliation(s)
- Tyler B.J. Pinter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- These authors contributed equally to this work
| | - Catherine S. Ervin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- These authors contributed equally to this work
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James E. Penner-Hahn
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Zhou S, Sakashita A, Yuan S, Namekawa SH. Retrotransposons in the Mammalian Male Germline. Sex Dev 2022; 16:404-422. [PMID: 35231923 PMCID: PMC11974347 DOI: 10.1159/000520683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
Retrotransposons are a subset of DNA sequences that constitute a large part of the mammalian genome. They can translocate autonomously or non-autonomously, potentially jeopardizing the heritable germline genome. Retrotransposons coevolved with the host genome, and the germline is the prominent battlefield between retrotransposons and the host genome to maximize their mutual fitness. Host genomes have developed various mechanisms to suppress and control retrotransposons, including DNA methylation, histone modifications, and Piwi-interacting RNA (piRNA), for their own benefit. Thus, rapidly evolved retrotransposons often acquire positive functions, including gene regulation within the germline, conferring reproductive fitness in a species over the course of evolution. The male germline serves as an ideal model to examine the regulation and evolution of retrotransposons, resulting in genomic co-evolution with the host genome. In this review, we summarize and discuss the regulatory mechanisms of retrotransposons, stage-by-stage, during male germ cell development, with a particular focus on mice as an extensively studied mammalian model, highlighting suppression mechanisms and emerging functions of retrotransposons in the male germline.
Collapse
Affiliation(s)
- Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Akihiko Sakashita
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| |
Collapse
|
17
|
Kaur D, Agrahari M, Bhattacharya A, Bhattacharya S. The non-LTR retrotransposons of Entamoeba histolytica: genomic organization and biology. Mol Genet Genomics 2022; 297:1-18. [PMID: 34999963 DOI: 10.1007/s00438-021-01843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022]
Abstract
Genome sequence analysis of Entamoeba species revealed various classes of transposable elements. While E. histolytica and E. dispar are rich in non-long terminal repeat (LTR) retrotransposons, E. invadens contains predominantly DNA transposons. Non-LTR retrotransposons of E. histolytica constitute three families of long interspersed nuclear elements (LINEs), and their short, nonautonomous partners, SINEs. They occupy ~ 11% of the genome. The EhLINE1/EhSINE1 family is the most abundant and best studied. EhLINE1 is 4.8 kb, with two ORFs that encode functions needed for retrotransposition. ORF1 codes for the nucleic acid-binding protein, and ORF2 has domains for reverse transcriptase (RT) and endonuclease (EN). Most copies of EhLINEs lack complete ORFs. ORF1p is expressed constitutively, but ORF2p is not detected. Retrotransposition could be demonstrated upon ectopic over expression of ORF2p, showing that retrotransposition machinery is functional. The newly retrotransposed sequences showed a high degree of recombination. In transcriptomic analysis, RNA-Seq reads were mapped to individual EhLINE1 copies. Although full-length copies were transcribed, no full-length 4.8 kb transcripts were seen. Rather, sense transcripts mapped to ORF1, RT and EN domains. Intriguingly, there was strong antisense transcription almost exclusively from the RT domain. These unique features of EhLINE1 could serve to attenuate retrotransposition in E. histolytica.
Collapse
|
18
|
Miller I, Totrov M, Korotchkina L, Kazyulkin DN, Gudkov AV, Korolev S. Structural dissection of sequence recognition and catalytic mechanism of human LINE-1 endonuclease. Nucleic Acids Res 2021; 49:11350-11366. [PMID: 34554261 PMCID: PMC8565326 DOI: 10.1093/nar/gkab826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/12/2022] Open
Abstract
Long interspersed nuclear element-1 (L1) is an autonomous non-LTR retrotransposon comprising ∼20% of the human genome. L1 self-propagation causes genomic instability and is strongly associated with aging, cancer and other diseases. The endonuclease domain of L1’s ORFp2 protein (L1-EN) initiates de novo L1 integration by nicking the consensus sequence 5′-TTTTT/AA-3′. In contrast, related nucleases including structurally conserved apurinic/apyrimidinic endonuclease 1 (APE1) are non-sequence specific. To investigate mechanisms underlying sequence recognition and catalysis by L1-EN, we solved crystal structures of L1-EN complexed with DNA substrates. This showed that conformational properties of the preferred sequence drive L1-EN’s sequence-specificity and catalysis. Unlike APE1, L1-EN does not bend the DNA helix, but rather causes ‘compression’ near the cleavage site. This provides multiple advantages for L1-EN’s role in retrotransposition including facilitating use of the nicked poly-T DNA strand as a primer for reverse transcription. We also observed two alternative conformations of the scissile bond phosphate, which allowed us to model distinct conformations for a nucleophilic attack and a transition state that are likely applicable to the entire family of nucleases. This work adds to our mechanistic understanding of L1-EN and related nucleases and should facilitate development of L1-EN inhibitors as potential anticancer and antiaging therapeutics.
Collapse
Affiliation(s)
- Ian Miller
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | - Andrei V Gudkov
- Genome Protection, Inc., Buffalo, NY 14203, USA.,Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
19
|
Frassinelli L, Orecchini E, Al-Wardat S, Tripodi M, Mancone C, Doria M, Galardi S, Ciafrè SA, Michienzi A. The RNA editing enzyme ADAR2 restricts L1 mobility. RNA Biol 2021; 18:75-87. [PMID: 34224323 PMCID: PMC8677026 DOI: 10.1080/15476286.2021.1940020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) are enzymes that convert adenosines to inosines in double-stranded RNAs (RNA editing A-to-I). ADAR1 and ADAR2 were previously reported as HIV-1 proviral factors. The aim of this study was to investigate the composition of the ADAR2 ribonucleoprotein complex during HIV-1 expression. By using a dual-tag affinity purification procedure in cells expressing HIV-1 followed by mass spectrometry analysis, we identified 10 non-ribosomal ADAR2-interacting factors. A significant fraction of these proteins was previously found associated to the Long INterspersed Element 1 (LINE1 or L1) ribonucleoparticles and to regulate the life cycle of L1 retrotransposons. Considering that we previously demonstrated that ADAR1 is an inhibitor of LINE-1 retrotransposon activity, we investigated whether also ADAR2 played a similar function. To reach this goal, we performed specific cell culture retrotransposition assays in cells overexpressing or ablated for ADAR2. These experiments unveil a novel function of ADAR2 as suppressor of L1 retrotransposition. Furthermore, we showed that ADAR2 binds the basal L1 RNP complex. Overall, these data support the role of ADAR2 as regulator of L1 life cycle.
Collapse
Affiliation(s)
- Loredana Frassinelli
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Elisa Orecchini
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Sofian Al-Wardat
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Marco Tripodi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Margherita Doria
- Unit of Primary Immunodeficiency, Bambino Gesu` Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
20
|
Mukherjee K, Sur D, Singh A, Rai S, Das N, Sekar R, Narindi S, Dhingra VK, Jat B, Balraam KVV, Agarwal SP, Mandal PK. Robust expression of LINE-1 retrotransposon encoded proteins in oral squamous cell carcinoma. BMC Cancer 2021; 21:628. [PMID: 34044801 PMCID: PMC8161598 DOI: 10.1186/s12885-021-08174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/07/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Oral Squamous Cell Carcinoma (OSCC) results from a series of genetic alteration in squamous cells. This particular type of cancer considers one of the most aggressive malignancies to control because of its frequent local invasions to the regional lymph node. Although several biomarkers have been reported, the key marker used to predict the behavior of the disease is largely unknown. Here we report Long INterpersed Element-1 (LINE1 or L1) retrotransposon activity in post-operative oral cancer samples. L1 is the only active retrotransposon occupying around 17% of the human genome with an estimated 500,000 copies. An active L1 encodes two proteins (L1ORF1p and L1ORF2p); both of which are critical in the process of retrotransposition. Several studies report that the L1 retrotransposon is highly active in many cancers. L1 activity is generally determined by assaying L1ORF1p because of its high expression and availability of the antibody. However, due to its lower expression and unavailability of a robust antibody, detection of L1ORF2p has been limited. L1ORF2p is the crucial protein in the process of retrotransposition as it provides endonuclease and reverse transcriptase (RT) activity. METHODS Immunohistochemistry and Western blotting were performed on the post-operative oral cancer samples and murine tissues. RESULTS Using in house novel antibodies against both the L1 proteins (L1ORF1p and L1ORF2p), we found L1 retrotransposon is extremely active in post-operative oral cancer tissues. Here, we report a novel human L1ORF2p antibody generated using an 80-amino-acid stretch from the RT domain, which is highly conserved among different species. The antibody detects significant L1ORF2p expression in human oral squamous cell carcinoma (OSCC) samples and murine germ tissues. CONCLUSIONS We report exceptionally high L1ORF1p and L1ORF2p expression in post-operative oral cancer samples. The novel L1ORF2p antibody reported in this study will serve as a useful tool to understand why L1 activity is deregulated in OSCC and how it contributes to the progression of this particular cancer. Cross-species reactivity of L1ORF2p antibody due to the conserved epitope will be useful to study the retrotransposon biology in mice and rat germ tissues.
Collapse
Affiliation(s)
- Koel Mukherjee
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand India
| | - Debpali Sur
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand India
| | - Abhijeet Singh
- Department of Head-Neck Surgery and Oncology, AIIMS Rishikesh, Rishikesh, Uttarakhand India
| | - Sandhya Rai
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand India
| | | | - Rakshanya Sekar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | | | - Vandana Kumar Dhingra
- Department of Head-Neck Surgery and Oncology, AIIMS Rishikesh, Rishikesh, Uttarakhand India
| | - Bhinyaram Jat
- Department of Head-Neck Surgery and Oncology, AIIMS Rishikesh, Rishikesh, Uttarakhand India
| | | | - Satya Prakash Agarwal
- Department of Head-Neck Surgery and Oncology, AIIMS Rishikesh, Rishikesh, Uttarakhand India
| | | |
Collapse
|
21
|
Hepatitis C virus infection restricts human LINE-1 retrotransposition in hepatoma cells. PLoS Pathog 2021; 17:e1009496. [PMID: 33872335 PMCID: PMC8084336 DOI: 10.1371/journal.ppat.1009496] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/29/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
LINE-1 (L1) retrotransposons are autonomous transposable elements that can affect gene expression and genome integrity. Potential consequences of exogenous viral infections for L1 activity have not been studied to date. Here, we report that hepatitis C virus (HCV) infection causes a significant increase of endogenous L1-encoded ORF1 protein (L1ORF1p) levels and translocation of L1ORF1p to HCV assembly sites at lipid droplets. HCV replication interferes with retrotransposition of engineered L1 reporter elements, which correlates with HCV RNA-induced formation of stress granules and can be partially rescued by knockdown of the stress granule protein G3BP1. Upon HCV infection, L1ORF1p localizes to stress granules, associates with HCV core in an RNA-dependent manner and translocates to lipid droplets. While HCV infection has a negative effect on L1 mobilization, L1ORF1p neither restricts nor promotes HCV infection. In summary, our data demonstrate that HCV infection causes an increase of endogenous L1 protein levels and that the observed restriction of retrotransposition of engineered L1 reporter elements is caused by sequestration of L1ORF1p in HCV-induced stress granules. Members of the Long Interspersed Nuclear Element 1 (LINE-1, L1) class of retrotransposons account for ~17% of the human genome and include ~100–150 intact L1 loci that are still functional. L1 mobilization is known to affect genomic integrity, thereby leading to disease-causing mutations, but little is known about the impact of exogenous viral infections on L1 and vice versa. While L1 retrotransposition is controlled by various mechanisms including CpG methylation, hypomethylation of L1 has been observed in hepatocellular carcinoma tissues of hepatitis C virus (HCV)-infected patients. Here, we demonstrate molecular interactions between HCV and L1 elements. HCV infection stably increases cellular levels of the L1-encoded ORF1 protein (L1ORF1p). HCV core and L1ORF1p interact in ribonucleoprotein complexes that traffic to lipid droplets. Despite its redistribution to HCV assembly sites, L1ORF1p is dispensable for HCV infection. In contrast, retrotransposition of engineered L1 reporter elements is restricted by HCV, correlating with an increased formation of L1ORF1p-containing cytoplasmic stress granules. Thus, our data provide first insights into the molecular interplay of endogenous transposable elements and exogenous viruses that might contribute to disease progression in vivo.
Collapse
|
22
|
Newton JC, Naik MT, Li GY, Murphy EL, Fawzi NL, Sedivy JM, Jogl G. Phase separation of the LINE-1 ORF1 protein is mediated by the N-terminus and coiled-coil domain. Biophys J 2021; 120:2181-2191. [PMID: 33798566 DOI: 10.1016/j.bpj.2021.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022] Open
Abstract
Long interspersed nuclear element-1 (L1) is a retrotransposable element that autonomously replicates in the human genome, resulting in DNA damage and genomic instability. Activation of L1 in senescent cells triggers a type I interferon response and age-associated inflammation. Two open reading frames encode an ORF1 protein functioning as messenger RNA chaperone and an ORF2 protein providing catalytic activities necessary for retrotransposition. No function has been identified for the conserved, disordered N-terminal region of ORF1. Using microscopy and NMR spectroscopy, we demonstrate that ORF1 forms liquid droplets in vitro in a salt-dependent manner and that interactions between its N-terminal region and coiled-coil domain are necessary for phase separation. Mutations disrupting blocks of charged residues within the N-terminus impair phase separation, whereas some mutations within the coiled-coil domain enhance phase separation. Demixing of the L1 particle from the cytosol may provide a mechanism to protect the L1 transcript from degradation.
Collapse
Affiliation(s)
- Jocelyn C Newton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Mandar T Naik
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island
| | - Grace Y Li
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Eileen L Murphy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island.
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island.
| |
Collapse
|
23
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that propagate within genomes. Through diverse invasion strategies, TEs have come to occupy a substantial fraction of nearly all eukaryotic genomes, and they represent a major source of genetic variation and novelty. Here we review the defining features of each major group of eukaryotic TEs and explore their evolutionary origins and relationships. We discuss how the unique biology of different TEs influences their propagation and distribution within and across genomes. Environmental and genetic factors acting at the level of the host species further modulate the activity, diversification, and fate of TEs, producing the dramatic variation in TE content observed across eukaryotes. We argue that cataloging TE diversity and dissecting the idiosyncratic behavior of individual elements are crucial to expanding our comprehension of their impact on the biology of genomes and the evolution of species.
Collapse
Affiliation(s)
- Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| |
Collapse
|
24
|
Savage AL, Lopez AI, Iacoangeli A, Bubb VJ, Smith B, Troakes C, Alahmady N, Koks S, Schumann GG, Al-Chalabi A, Quinn JP. Frequency and methylation status of selected retrotransposition competent L1 loci in amyotrophic lateral sclerosis. Mol Brain 2020; 13:154. [PMID: 33187550 PMCID: PMC7666467 DOI: 10.1186/s13041-020-00694-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Long interspersed element-1 (LINE-1/L1) is the only autonomous transposable element in the human genome that currently mobilises in both germline and somatic tissues. Recent studies have identified correlations between altered retrotransposon expression and the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) in a subset of patients. The risk of an individual developing ALS is dependent on an interaction of genetic variants and subsequent modifiers during life. These modifiers could include environmental factors, which can lead to epigenetic and genomic changes, such as somatic mutations, occurring in the neuronal cells that degenerate as the disease develops. There are more than 1 million L1 copies in the human genome today, but only 80-100 L1 loci in the reference genome are considered to be retrotransposition-competent (RC) and an even smaller number of these RC-L1s loci are highly active. We hypothesise that RC-L1s could affect normal cellular function through their mutagenic potential conferred by their ability to retrotranspose in neuronal cells and through DNA damage caused by the endonuclease activity of the L1-encoded ORF2 protein. To investigate whether either an increase in the genomic burden of RC-L1s or epigenetic changes to RC-L1s altering their expression, could play a role in disease development, we chose a set of seven well characterised genomic RC-L1 loci that were reported earlier to be highly active in a cellular L1 retrotransposition reporter assay or serve as major source elements for germline and/or somatic retrotransposition events. Analysis of the insertion allele frequency of five polymorphic RC-L1s, out of the set of seven, for their presence or absence, did not identify an increased number individually or when combined in individuals with the disease. However, we did identify reduced levels of methylation of RC-L1s in the motor cortex of those individuals with both familial and sporadic ALS compared to control brains. The changes to the regulation of the loci encompassing these RC-L1s demonstrated tissue specificity and could be related to the disease process.
Collapse
Affiliation(s)
- Abigail L Savage
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ana Illera Lopez
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Bradley Smith
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Nada Alahmady
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Department of Biology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
25
|
Pfaff AL, Bubb VJ, Quinn JP, Koks S. An Increased Burden of Highly Active Retrotransposition Competent L1s Is Associated with Parkinson's Disease Risk and Progression in the PPMI Cohort. Int J Mol Sci 2020; 21:E6562. [PMID: 32911699 PMCID: PMC7554759 DOI: 10.3390/ijms21186562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Long interspersed element-1 (LINE-1/L1s) contributes 17% of the human genome with more than 1 million elements present; however, fewer than 100 of these have evidence for being retrotransposition competent (RC). In addition to those RC-L1s present in the reference genome, there are a small number of known non-reference L1 insertions that are also retrotransposition competent. L1 activity, whether through the potentially detrimental effects of their mRNA or protein expression or somatic retrotransposition events, has been linked to several neurological conditions. The polymorphic nature of both reference and non-reference RC-L1s in terms of their presence or absence will result in individuals harboring a different combination of these elements and it is currently unknown if this type of germline variation contributes to the risk of neurological disease. Here, we utilized whole-genome sequencing data from 178 healthy controls and 372 Parkinson's disease (PD) subjects from the Parkinson's Progression Markers Initiative (PPMI) to investigate the role of RC-L1s in PD. In the PPMI cohort, we identified 22 reference and 50 non-reference polymorphic RC-L1 loci. Focusing on 16 highly active RC-L1 loci, an increased burden of these elements (≥9) was associated with PD (OR 1.25, 95% CI 1.03-1.51, p = 0.02). In addition, we identified significant associations of progression markers of PD and the burden of highly active RC-L1s. This study has identified a novel type of genetic element associated with PD risk and disease progression.
Collapse
Affiliation(s)
- Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Vivien J. Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (V.J.B.); (J.P.Q.)
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (V.J.B.); (J.P.Q.)
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
26
|
Kaul T, Morales ME, Sartor AO, Belancio VP, Deininger P. Comparative analysis on the expression of L1 loci using various RNA-Seq preparations. Mob DNA 2020; 11:2. [PMID: 31921361 PMCID: PMC6945437 DOI: 10.1186/s13100-019-0194-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023] Open
Abstract
Background Retrotransposons are one of the oldest evolutionary forces shaping mammalian genomes, with the ability to mobilize from one genomic location to another. This mobilization is also a significant factor in human disease. The only autonomous human retroelement, L1, has propagated to make up 17% of the human genome, accumulating over 500,000 copies. The majority of these loci are truncated or defective with only a few reported to remain capable of retrotransposition. We have previously published a strand-specific RNA-Seq bioinformatics approach to stringently identify at the locus-specific level the few expressed full-length L1s using cytoplasmic RNA. With growing repositories of RNA-Seq data, there is potential to mine these datasets to identify and study expressed L1s at single-locus resolution, although many datasets are not strand-specific or not generated from cytoplasmic RNA. Results We developed whole-cell, cytoplasmic and nuclear RNA-Seq datasets from 22Rv1 prostate cancer cells to test the influence of different preparations on the quality and effort needed to measure L1 expression. We found that there was minimal data loss in the identification of full-length expressed L1 s using whole cell, strand-specific RNA-Seq data compared to cytoplasmic, strand-specific RNA-Seq data. However, this was only possible with an increased amount of manual curation of the bioinformatics output to eliminate increased background. About half of the data was lost when the sequenced datasets were non-strand specific. Conclusions The results of these studies demonstrate that with rigorous manual curation the utilization of stranded RNA-Seq datasets allow identification of expressed L1 loci from either cytoplasmic or whole-cell RNA-Seq datasets.
Collapse
Affiliation(s)
- Tiffany Kaul
- 1Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112 USA
| | - Maria E Morales
- 1Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112 USA
| | - Alton O Sartor
- 1Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112 USA.,2Section of Hematology and Oncology, Department of Medicine, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Victoria P Belancio
- 1Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112 USA.,3Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112 USA
| | - Prescott Deininger
- 1Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112 USA.,4Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| |
Collapse
|
27
|
Adney EM, Ochmann MT, Sil S, Truong DM, Mita P, Wang X, Kahler DJ, Fenyö D, Holt LJ, Boeke JD. Comprehensive Scanning Mutagenesis of Human Retrotransposon LINE-1 Identifies Motifs Essential for Function. Genetics 2019; 213:1401-1414. [PMID: 31666291 PMCID: PMC6893370 DOI: 10.1534/genetics.119.302601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Long Interspersed Nuclear Element-1 (LINE-1, L1) is the only autonomous active transposable element in the human genome. The L1-encoded proteins ORF1p and ORF2p enable the element to jump from one locus to another via a "copy-and-paste" mechanism. ORF1p is an RNA-binding protein, and ORF2p has endonuclease and reverse transcriptase activities. The huge number of truncated L1 remnants in the human genome suggests that the host has likely evolved mechanisms to prevent full L1 replication, and thereby decrease the proliferation of active elements and reduce the mutagenic potential of L1. In turn, L1 appears to have a minimized length to increase the probability of successful full-length replication. This streamlining would be expected to lead to high information density. Here, we describe the construction and initial characterization of a library of 538 consecutive trialanine substitutions that scan along ORF1p and ORF2p to identify functionally important regions. In accordance with the streamlining hypothesis, retrotransposition was overall very sensitive to mutations in ORF1p and ORF2p; only 16% of trialanine mutants retained near-wild-type (WT) activity. All ORF1p mutants formed near-WT levels of mRNA transcripts and 75% formed near-WT levels of protein. Two ORF1p mutants presented a unique nucleolar-relocalization phenotype. Regions of ORF2p that are sensitive to mutagenesis but lack phylogenetic conservation were also identified. We provide comprehensive information on the regions most critical to retrotransposition. This resource will guide future studies of intermolecular interactions that form with RNA, proteins, and target DNA throughout the L1 life cycle.
Collapse
Affiliation(s)
- Emily M Adney
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Matthias T Ochmann
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Srinjoy Sil
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
| | - David M Truong
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
| | - Paolo Mita
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
| | - Xuya Wang
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
| | - David J Kahler
- High Throughput Biology Laboratory, NYU Langone Health, New York 10016
| | - David Fenyö
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
| | - Liam J Holt
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
28
|
Abstract
Long interspersed element-1s (L1s) encode 2 proteins (ORF1p and ORF2p) that preferentially mobilize (i.e., retrotranspose) their encoding messenger RNA (mRNA) transcript. ORF1p and/or ORF2p can also mobilize other cellular RNAs, including short interspersed elements (SINEs), U6 small nuclear RNA (snRNA), and mRNAs. Here, we demonstrate the RNA ligase RtcB can join U6 snRNA to L1 or other cellular RNAs to create chimeric RNAs; retrotransposition of the resultant chimeric RNAs leads to chimeric pseudogene formation; and chimeric U6/L1 RNAs are part of the transcriptome in multiple human cells. These data suggest RNA ligation contributes to the plasticity of the transcriptome and that the retrotransposition of chimeric RNAs can generate genetic variation in the human genome. Long interspersed element-1 (LINE-1 or L1) amplifies via retrotransposition. Active L1s encode 2 proteins (ORF1p and ORF2p) that bind their encoding transcript to promote retrotransposition in cis. The L1-encoded proteins also promote the retrotransposition of small-interspersed element RNAs, noncoding RNAs, and messenger RNAs in trans. Some L1-mediated retrotransposition events consist of a copy of U6 RNA conjoined to a variably 5′-truncated L1, but how U6/L1 chimeras are formed requires elucidation. Here, we report the following: The RNA ligase RtcB can join U6 RNAs ending in a 2′,3′-cyclic phosphate to L1 RNAs containing a 5′-OH in vitro; depletion of endogenous RtcB in HeLa cell extracts reduces U6/L1 RNA ligation efficiency; retrotransposition of U6/L1 RNAs leads to U6/L1 pseudogene formation; and a unique cohort of U6/L1 chimeric RNAs are present in multiple human cell lines. Thus, these data suggest that U6 small nuclear RNA (snRNA) and RtcB participate in the formation of chimeric RNAs and that retrotransposition of chimeric RNA contributes to interindividual genetic variation.
Collapse
|
29
|
Kaul T, Morales ME, Smither E, Baddoo M, Belancio VP, Deininger P. RNA Next-Generation Sequencing and a Bioinformatics Pipeline to Identify Expressed LINE-1s at the Locus-Specific Level. J Vis Exp 2019. [PMID: 31157783 DOI: 10.3791/59771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Long INterspersed Elements-1 (LINEs/L1s) are repetitive elements that can copy and randomly insert in the genome resulting in genomic instability and mutagenesis. Understanding the expression patterns of L1 loci at the individual level will lend to the understanding of the biology of this mutagenic element. This autonomous element makes up a significant portion of the human genome with over 500,000 copies, though 99% are truncated and defective. However, their abundance and dominant number of defective copies make it challenging to identify authentically expressed L1s from L1-related sequences expressed as part of other genes. It is also challenging to identify which specific L1 locus is expressed due to the repetitive nature of the elements. Overcoming these challenges, we present an RNA-Seq bioinformatic approach to identify L1 expression at the locus specific level. In summary, we collect cytoplasmic RNA, select for polyadenylated transcripts, and utilize strand-specific RNA-Seq analyses to uniquely map reads to L1 loci in the human reference genome. We visually curate each L1 locus with uniquely mapped reads to confirm transcription from its own promoter and adjust mapped transcript reads to account for mappability of each individual L1 locus. This approach was applied to a prostate tumor cell line, DU145, to demonstrate the ability of this protocol to detect expression from a small number of the full-length L1 elements.
Collapse
Affiliation(s)
| | | | | | - Melody Baddoo
- Tulane Cancer Center, Tulane University; Department of Pathology, Tulane University
| | - Victoria P Belancio
- Tulane Cancer Center, Tulane University; Department of Structural and Cellular Biology, Tulane University
| | - Prescott Deininger
- Tulane Cancer Center, Tulane University; Department of Epidemiology, Tulane University;
| |
Collapse
|
30
|
Ruckthong L, Stuckey JA, Pecoraro VL. How Outer Coordination Sphere Modifications Can Impact Metal Structures in Proteins: A Crystallographic Evaluation. Chemistry 2019; 25:6773-6787. [PMID: 30861211 PMCID: PMC6510599 DOI: 10.1002/chem.201806040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 11/06/2022]
Abstract
A challenging objective of de novo metalloprotein design is to control of the outer coordination spheres of an active site to fine tune metal properties. The well-defined three stranded coiled coils, TRI and CoilSer peptides, are used to address this question. Substitution of Cys for Leu yields a thiophilic site within the core. Metals such as HgII , PbII , and AsIII result in trigonal planar or trigonal pyramidal geometries; however, spectroscopic studies have shown that CdII forms three-, four- or five-coordinate CdII S3 (OH2 )x (in which x=0-2) when the outer coordination spheres are perturbed. Unfortunately, there has been little crystallographic examination of these proteins to explain the observations. Here, the high-resolution X-ray structures of apo- and mercurated proteins are compared to explain the modifications that lead to metal coordination number and geometry variation. It reveals that Ala substitution for Leu opens a cavity above the Cys site allowing for water excess, facilitating CdII S3 (OH2 ). Replacement of Cys by Pen restricts thiol rotation, causing a shift in the metal-binding plane, which displaces water, forming CdII S3 . Residue d-Leu, above the Cys site, reorients the side chain towards the Cys layer, diminishing the space for water accommodation yielding CdII S3 , whereas d-Leu below opens more space, allowing for equal CdII S3 (OH2 ) and CdII S3 (OH2 )2 . These studies provide insights into how to control desired metal geometries in metalloproteins by using coded and non-coded amino acids.
Collapse
Affiliation(s)
- Leela Ruckthong
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology, Thonburi (KMUTT), Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
31
|
Freeman BT, Sokolowski M, Roy-Engel AM, Smither ME, Belancio VP. Identification of charged amino acids required for nuclear localization of human L1 ORF1 protein. Mob DNA 2019; 10:20. [PMID: 31080522 PMCID: PMC6501352 DOI: 10.1186/s13100-019-0159-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/10/2019] [Indexed: 01/10/2023] Open
Abstract
Background Long Interspersed Element 1 (LINE-1) is a retrotransposon that is present in 500,000 copies in the human genome. Along with Alu and SVA elements, these three retrotransposons account for more than a third of the human genome sequence. These mobile elements are able to copy themselves within the genome via an RNA intermediate, a process that can promote genome instability. LINE-1 encodes two proteins, ORF1p and ORF2p. Association of ORF1p, ORF2p and a full-length L1 mRNA in a ribonucleoprotein (RNP) particle, L1 RNP, is required for L1 retrotransposition. Previous studies have suggested that fusion of a tag to L1 proteins can interfere with L1 retrotransposition. Results Using antibodies detecting untagged human ORF1p, western blot analysis and manipulation of ORF1 sequence and length, we have identified a set of charged amino acids in the C-terminal region of ORF1p that are important in determining its subcellular localization. Mutation of 7 non-identical lysine residues is sufficient to make the resulting ORF1p to be predominantly cytoplasmic, demonstrating intrinsic redundancy of this requirement. These residues are also necessary for ORF1p to retain its association with KPNA2 nuclear pore protein. We demonstrate that this interaction is significantly reduced by RNase treatment. Using co-IP, we have also determined that human ORF1p associates with all members of the KPNA subfamily. Conclusions The prediction of NLS sequences suggested that specific sequences within ORF1p could be responsible for its subcellular localization by interacting with nuclear binding proteins. We have found that multiple charged amino acids in the C-terminus of ORF1p are involved in ORF1 subcellular localization and interaction with KPNA2 nuclear pore protein. Our data demonstrate that different amino acids can be mutated to have the same phenotypic effect on ORF1p subcellular localization, demonstrating that the net number of charged residues or protein structure, rather than their specific location, is important for the ORF1p nuclear localization. We also identified that human ORF1p interacts with all members of the KPNA family of proteins and that multiple KPNA family genes are expressed in human cell lines. Electronic supplementary material The online version of this article (10.1186/s13100-019-0159-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- B T Freeman
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - M Sokolowski
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - A M Roy-Engel
- 2Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane Cancer Center, Tulane University, New Orleans, Louisiana 70112 USA
| | - M E Smither
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - V P Belancio
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| |
Collapse
|
32
|
Pereira GC, Sanchez L, Schaughency PM, Rubio-Roldán A, Choi JA, Planet E, Batra R, Turelli P, Trono D, Ostrow LW, Ravits J, Kazazian HH, Wheelan SJ, Heras SR, Mayer J, García-Pérez JL, Goodier JL. Properties of LINE-1 proteins and repeat element expression in the context of amyotrophic lateral sclerosis. Mob DNA 2018; 9:35. [PMID: 30564290 PMCID: PMC6295051 DOI: 10.1186/s13100-018-0138-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving loss of motor neurons and having no known cure and uncertain etiology. Several studies have drawn connections between altered retrotransposon expression and ALS. Certain features of the LINE-1 (L1) retrotransposon-encoded ORF1 protein (ORF1p) are analogous to those of neurodegeneration-associated RNA-binding proteins, including formation of cytoplasmic aggregates. In this study we explore these features and consider possible links between L1 expression and ALS. RESULTS We first considered factors that modulate aggregation and subcellular distribution of LINE-1 ORF1p, including nuclear localization. Changes to some ORF1p amino acid residues alter both retrotransposition efficiency and protein aggregation dynamics, and we found that one such polymorphism is present in endogenous L1s abundant in the human genome. We failed, however, to identify CRM1-mediated nuclear export signals in ORF1p nor strict involvement of cell cycle in endogenous ORF1p nuclear localization in human 2102Ep germline teratocarcinoma cells. Some proteins linked with ALS bind and colocalize with L1 ORF1p ribonucleoprotein particles in cytoplasmic RNA granules. Increased expression of several ALS-associated proteins, including TAR DNA Binding Protein (TDP-43), strongly limits cell culture retrotransposition, while some disease-related mutations modify these effects. Using quantitative reverse transcription PCR (RT-qPCR) of ALS tissues and reanalysis of publicly available RNA-Seq datasets, we asked if changes in expression of retrotransposons are associated with ALS. We found minimal altered expression in sporadic ALS tissues but confirmed a previous report of differential expression of many repeat subfamilies in C9orf72 gene-mutated ALS patients. CONCLUSIONS Here we extended understanding of the subcellular localization dynamics of the aggregation-prone LINE-1 ORF1p RNA-binding protein. However, we failed to find compelling evidence for misregulation of LINE-1 retrotransposons in sporadic ALS nor a clear effect of ALS-associated TDP-43 protein on L1 expression. In sum, our study reveals that the interplay of active retrotransposons and the molecular features of ALS are more complex than anticipated. Thus, the potential consequences of altered retrotransposon activity for ALS and other neurodegenerative disorders are worthy of continued investigation.
Collapse
Affiliation(s)
- Gavin C. Pereira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Laura Sanchez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Paul M. Schaughency
- Oncology Center-Cancer Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Alejandro Rubio-Roldán
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Jungbin A. Choi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Evarist Planet
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ranjan Batra
- Department of Neurosciences, School of Medicine, University of California at San Diego, San Diego, California USA
| | - Priscilla Turelli
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyle W. Ostrow
- Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California at San Diego, San Diego, California USA
| | - Haig H. Kazazian
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Sarah J. Wheelan
- Oncology Center-Cancer Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Sara R. Heras
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jens Mayer
- Department of Human Genetics, Medical Faculty, University of Saarland, Homburg/Saar, Germany
| | - Jose Luis García-Pérez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - John L. Goodier
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| |
Collapse
|
33
|
Benitez-Guijarro M, Lopez-Ruiz C, Tarnauskaitė Ž, Murina O, Mian Mohammad M, Williams TC, Fluteau A, Sanchez L, Vilar-Astasio R, Garcia-Canadas M, Cano D, Kempen MJH, Sanchez-Pozo A, Heras SR, Jackson AP, Reijns MA, Garcia-Perez JL. RNase H2, mutated in Aicardi-Goutières syndrome, promotes LINE-1 retrotransposition. EMBO J 2018; 37:e98506. [PMID: 29959219 PMCID: PMC6068448 DOI: 10.15252/embj.201798506] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 12/03/2022] Open
Abstract
Long INterspersed Element class 1 (LINE-1) elements are a type of abundant retrotransposons active in mammalian genomes. An average human genome contains ~100 retrotransposition-competent LINE-1s, whose activity is influenced by the combined action of cellular repressors and activators. TREX1, SAMHD1 and ADAR1 are known LINE-1 repressors and when mutated cause the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). Mutations in RNase H2 are the most common cause of AGS, and its activity was proposed to similarly control LINE-1 retrotransposition. It has therefore been suggested that increased LINE-1 activity may be the cause of aberrant innate immune activation in AGS Here, we establish that, contrary to expectations, RNase H2 is required for efficient LINE-1 retrotransposition. As RNase H1 overexpression partially rescues the defect in RNase H2 null cells, we propose a model in which RNase H2 degrades the LINE-1 RNA after reverse transcription, allowing retrotransposition to be completed. This also explains how LINE-1 elements can retrotranspose efficiently without their own RNase H activity. Our findings appear to be at odds with LINE-1-derived nucleic acids driving autoinflammation in AGS.
Collapse
Affiliation(s)
- Maria Benitez-Guijarro
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Cesar Lopez-Ruiz
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Žygimantė Tarnauskaitė
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Olga Murina
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Mahwish Mian Mohammad
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Thomas C Williams
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Adeline Fluteau
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Laura Sanchez
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Raquel Vilar-Astasio
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Marta Garcia-Canadas
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - David Cano
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Marie-Jeanne Hc Kempen
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Antonio Sanchez-Pozo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Sara R Heras
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Andrew P Jackson
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Martin Am Reijns
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Jose L Garcia-Perez
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Visconti A, Martin TC, Falchi M. YAMP: a containerized workflow enabling reproducibility in metagenomics research. Gigascience 2018; 7:5039705. [PMID: 29917068 PMCID: PMC6047416 DOI: 10.1093/gigascience/giy072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/01/2018] [Accepted: 06/11/2018] [Indexed: 01/12/2023] Open
Abstract
YAMP ("Yet Another Metagenomics Pipeline") is a user-friendly workflow that enables the analysis of whole shotgun metagenomic data while using containerization to ensure computational reproducibility and facilitate collaborative research. YAMP can be executed on any UNIX-like system and offers seamless support for multiple job schedulers as well as for the Amazon AWS cloud. Although YAMP was developed to be ready to use by nonexperts, bioinformaticians will appreciate its flexibility, modularization, and simple customization.
Collapse
Affiliation(s)
- Alessia Visconti
- Department of Twin Research and Genetic Epidemiology, King’s College London, Westminster Bridge Road, SE1 7EH, London, UK
| | - Tiphaine C Martin
- Department of Twin Research and Genetic Epidemiology, King’s College London, Westminster Bridge Road, SE1 7EH, London, UK
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King’s College London, Westminster Bridge Road, SE1 7EH, London, UK
| |
Collapse
|
35
|
Rajagopalan M, Balasubramanian S, Ramaswamy A. Insights into the RNA binding mechanism of human L1-ORF1p: a molecular dynamics study. MOLECULAR BIOSYSTEMS 2018; 13:1728-1743. [PMID: 28714502 DOI: 10.1039/c7mb00358g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recognition and binding of nucleic acids by ORF1p, an L1 retrotransposon protein, have not yet been clearly understood due to the lack of structural knowledge. The present study attempts to identify the probable single-stranded RNA binding pathway of trimeric ORF1p using computational methods like ligand mapping methodology combined with molecular dynamics simulations. Using the ligand mapping methodology, the possible RNA interacting sites on the surface of the trimeric ORF1p were identified. The crystal structure of the ORF1p timer and an RNA molecule of 29 nucleotide bases in length were used to generate the structure of the ORF1p complex based on information on predicted binding sites as well as the functional states of the CTD. The various complexes of ORF1p-RNA were generated using polyU, polyA and L1RNA sequences and were simulated for a period of 75 ns. The observed stable interaction pattern was used to propose the possible binding pathway. Based on the binding free energy for complex formation, both polyU and L1RNA complexes were identified as stable complexes, while the complex formed with polyA was the least stable one. Furthermore, the importance of the residues in the CC domain (Lys137 and Arg141), the RRM loop (Arg206, Arg210 and Arg211) and the CTD (Arg 261 and Arg262) of all three chains in stabilizing the wrapped RNA has been highlighted in this study. The presence of several electrostatic interactions including H-bond interactions increases the affinity towards RNA and hence plays a vital role in retaining the wrapped position of RNA around ORF1p. Altogether, this study presents one of the possible RNA binding pathways of ORF1p and clearly highlights the functional state of ORF1p visited during RNA binding.
Collapse
Affiliation(s)
- Muthukumaran Rajagopalan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| | | | | |
Collapse
|
36
|
Naufer MN, Furano AV, Williams MC. Protein-nucleic acid interactions of LINE-1 ORF1p. Semin Cell Dev Biol 2018; 86:140-149. [PMID: 29596909 PMCID: PMC6428221 DOI: 10.1016/j.semcdb.2018.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 11/03/2022]
Abstract
Long interspersed nuclear element 1 (LINE-1 or L1) is the dominant retrotransposon in mammalian genomes. L1 encodes two proteins ORF1p and ORF2p that are required for retrotransposition. ORF2p functions as the replicase. ORF1p is a coiled coil-mediated trimeric, high affinity RNA binding protein that packages its full- length coding transcript into an ORF2p-containing ribonucleoprotein (RNP) complex, the retrotransposition intermediate. ORF1p also is a nucleic acid chaperone that presumably facilitates the proposed nucleic acid remodeling steps involved in retrotransposition. Although detailed mechanistic understanding of ORF1p function in this process is lacking, recent studies showed that the rate at which ORF1p can form stable nucleic acid-bound oligomers in vitro is positively correlated with formation of an active L1 RNP as assayed in vivo using a cell culture-based retrotransposition assay. This rate was sensitive to minor amino acid changes in the coiled coil domain, which had no effect on nucleic acid chaperone activity. Additional studies linking the complex nucleic acid binding properties to the conformational changes of the protein are needed to understand how ORF1p facilitates retrotransposition.
Collapse
Affiliation(s)
- M Nabuan Naufer
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Anthony V Furano
- The Laboratory of Molecular and Cellular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Mark C Williams
- Northeastern University, Department of Physics, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Sookdeo A, Hepp CM, Boissinot S. Contrasted patterns of evolution of the LINE-1 retrotransposon in perissodactyls: the history of a LINE-1 extinction. Mob DNA 2018; 9:12. [PMID: 29610583 PMCID: PMC5872511 DOI: 10.1186/s13100-018-0117-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/22/2018] [Indexed: 12/30/2022] Open
Abstract
Background LINE-1 (L1) is the dominant autonomously replicating non-LTR retrotransposon in mammals. Although our knowledge of L1 evolution across the tree of life has considerably improved in recent years, what we know of L1 evolution in mammals is biased and comes mostly from studies in primates (mostly human) and rodents (mostly mouse). It is unclear if patterns of evolution that are shared between those two groups apply to other mammalian orders. Here we performed a detailed study on the evolution of L1 in perissodactyls by making use of the complete genome of the domestic horse and of the white rhinoceros. This mammalian order offers an excellent model to study the extinction of L1 since the rhinoceros is one of the few mammalian species to have lost active L1. Results We found that multiple L1 lineages, carrying different 5’UTRs, have been simultaneously active during the evolution of perissodactyls. We also found that L1 has continuously amplified and diversified in horse. In rhinoceros, L1 was very prolific early on. Two successful families were simultaneously active until ~20my ago but became extinct suddenly at exactly the same time. Conclusions The general pattern of L1 evolution in perissodactyls is very similar to what was previously described in mouse and human, suggesting some commonalities in the way mammalian genomes interact with L1. We confirmed the extinction of L1 in rhinoceros and we discuss several possible mechanisms. Electronic supplementary material The online version of this article (10.1186/s13100-018-0117-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akash Sookdeo
- 1Department of Biology, New York University, New York, NY USA
| | - Crystal M Hepp
- 2School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ USA
| | - Stéphane Boissinot
- 3New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
38
|
Khazina E, Weichenrieder O. Human LINE-1 retrotransposition requires a metastable coiled coil and a positively charged N-terminus in L1ORF1p. eLife 2018; 7:34960. [PMID: 29565245 PMCID: PMC5940361 DOI: 10.7554/elife.34960] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
LINE-1 (L1) is an autonomous retrotransposon, which acted throughout mammalian evolution and keeps contributing to human genotypic diversity, genetic disease and cancer. L1 encodes two essential proteins: L1ORF1p, a unique RNA-binding protein, and L1ORF2p, an endonuclease and reverse transcriptase. L1ORF1p contains an essential, but rapidly evolving N-terminal portion, homo-trimerizes via a coiled coil and packages L1RNA into large assemblies. Here, we determined crystal structures of the entire coiled coil domain of human L1ORF1p. We show that retrotransposition requires a non-ideal and metastable coiled coil structure, and a strongly basic L1ORF1p amino terminus. Human L1ORF1p therefore emerges as a highly calibrated molecular machine, sensitive to mutation but functional in different hosts. Our analysis rationalizes the locally rapid L1ORF1p sequence evolution and reveals striking mechanistic parallels to coiled coil-containing membrane fusion proteins. It also suggests how trimeric L1ORF1p could form larger meshworks and indicates critical novel steps in L1 retrotransposition. Almost half of the human genome consists of DNA strings that have been copied and pasted from one part of the genome to another many thousands of times. These strings of DNA are called mobile genetic elements. Mobile elements can disrupt important genes, causing disease and cancer, but they can also drive evolution. Presently, only one type of mobile element, called LINE-1, is active in the human genome and able to multiply without help from other mobile elements. LINE-1 DNA is ‘transcribed’ to form molecules of LINE-1 RNA, which can then be ‘translated’ into two distinct proteins. These bind to LINE-1 RNA, which then gets back-transcribed into DNA and inserted as a new LINE-1 element in a new region of the genome. One of the two proteins, called L1ORF1p, forms complexes where three copies of the protein come together. These ‘trimers’ cover and protect LINE-1 RNA and are required for LINE-1 mobility. Different versions of L1ORF1p are found in different animals. Part of the protein is the same across all mammals, and this ‘conserved’ part controls the ability of L1ORF1p to bind to RNA. The non-conserved part of L1ORF1p differs even between humans and their closest animal relatives and little was known about its structure or role. However, this rapidly evolving part of L1ORF1p is essential for LINE-1 mobility. Using X-ray crystallography, Khazina and Weichenrieder obtained a molecular snapshot of the part of L1ORF1p that interacts with other copies of the protein to form trimers. Combined with earlier snapshots of L1ORF1p’s conserved part, this generated a complete structural model of the L1ORF1p trimer. Additional biophysical characterizations suggest that L1ORF1p trimers form a semi-stable structure that can partially open up, indicating how trimers could form larger assemblies of L1ORF1p on LINE-1 RNA. Indeed, the need to maintain a semi-stable structure could explain why L1ORF1p is evolving so rapidly. A second important finding is that the beginning of L1ORF1p needs to be positively charged – a requirement that warrants further exploration. The structural and mechanistic insight into L1ORF1p points to critical new steps in LINE-1 mobilization. It will help to design inhibitor molecules with the goal to halt the mobilization process at various points and to dissect such steps in great detail. Understanding how to control LINE-1 mobility could help to improve stem cell therapies and reproduction assistance techniques, due to the fact that LINE-1 mobility is a potential source of mutation in stem cells, egg and sperm cells, and newly formed embryos.
Collapse
Affiliation(s)
- Elena Khazina
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
39
|
Spliced integrated retrotransposed element (SpIRE) formation in the human genome. PLoS Biol 2018; 16:e2003067. [PMID: 29505568 PMCID: PMC5860796 DOI: 10.1371/journal.pbio.2003067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 03/20/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
Human Long interspersed element-1 (L1) retrotransposons contain an internal RNA polymerase II promoter within their 5′ untranslated region (UTR) and encode two proteins, (ORF1p and ORF2p) required for their mobilization (i.e., retrotransposition). The evolutionary success of L1 relies on the continuous retrotransposition of full-length L1 mRNAs. Previous studies identified functional splice donor (SD), splice acceptor (SA), and polyadenylation sequences in L1 mRNA and provided evidence that a small number of spliced L1 mRNAs retrotransposed in the human genome. Here, we demonstrate that the retrotransposition of intra-5′UTR or 5′UTR/ORF1 spliced L1 mRNAs leads to the generation of spliced integrated retrotransposed elements (SpIREs). We identified a new intra-5′UTR SpIRE that is ten times more abundant than previously identified SpIREs. Functional analyses demonstrated that both intra-5′UTR and 5′UTR/ORF1 SpIREs lack Cis-acting transcription factor binding sites and exhibit reduced promoter activity. The 5′UTR/ORF1 SpIREs also produce nonfunctional ORF1p variants. Finally, we demonstrate that sequence changes within the L1 5′UTR over evolutionary time, which permitted L1 to evade the repressive effects of a host protein, can lead to the generation of new L1 splicing events, which, upon retrotransposition, generates a new SpIRE subfamily. We conclude that splicing inhibits L1 retrotransposition, SpIREs generally represent evolutionary “dead-ends” in the L1 retrotransposition process, mutations within the L1 5′UTR alter L1 splicing dynamics, and that retrotransposition of the resultant spliced transcripts can generate interindividual genomic variation. Long interspersed element-1 (L1) sequences comprise about 17% of the human genome reference sequence. The average human genome contains about 100 active L1s that mobilize throughout the genome by a “copy and paste” process termed retrotransposition. Active L1s encode two proteins (ORF1p and ORF2p). ORF1p and ORF2p preferentially bind to their encoding RNA, forming a ribonucleoprotein particle (RNP). During retrotransposition, the L1 RNP translocates to the nucleus, where the ORF2p endonuclease makes a single-strand nick in target site DNA that exposes a 3′ hydroxyl group in genomic DNA. The 3′ hydroxyl group then is used as a primer by the ORF2p reverse transcriptase to copy the L1 RNA into cDNA, leading to the integration of an L1 copy at a new genomic location. The evolutionary success of L1 requires the faithful retrotransposition of full-length L1 mRNAs; thus, it was surprising to find that a small number of L1 retrotransposition events are derived from spliced L1 mRNAs. By using genetic, biochemical, and computational approaches, we demonstrate that spliced L1 mRNAs can undergo an initial round of retrotransposition, leading to the generation of spliced integrated retrotransposed elements (SpIREs). SpIREs represent about 2% of previously annotated full-length primate-specific L1s in the human genome reference sequence. However, because splicing leads to intra-L1 deletions that remove critical sequences required for L1 expression, SpIREs generally cannot undergo subsequent rounds of retrotransposition and can be considered “dead on arrival” insertions. Our data further highlight how genetic conflict between L1 and its host has influenced L1 expression, L1 retrotransposition, and L1 splicing dynamics over evolutionary time.
Collapse
|
40
|
Orecchini E, Frassinelli L, Galardi S, Ciafrè SA, Michienzi A. Post-transcriptional regulation of LINE-1 retrotransposition by AID/APOBEC and ADAR deaminases. Chromosome Res 2018; 26:45-59. [PMID: 29396793 DOI: 10.1007/s10577-018-9572-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/07/2018] [Indexed: 02/05/2023]
Abstract
Long interspersed element-1 (LINE-1 or L1) retrotransposons represent the only functional family of autonomous transposable elements in humans and formed 17% of our genome. Even though most of the human L1 sequences are inactive, a limited number of copies per individual retain the ability to mobilize by a process termed retrotransposition. The ongoing L1 retrotransposition may result in insertional mutagenesis that could lead to negative consequences such as genetic disease and cancer. For this reason, cells have evolved several mechanisms of defense to restrict L1 activity. Among them, a critical role for cellular deaminases [activation-induced deaminase (AID)/apolipoprotein B mRNA-editing catalytic polypeptide-like (APOBEC) and adenosine deaminases that act on RNA (ADAR) enzymes] has emerged. The majority of the AID/APOBEC family of proteins are responsible for the deamination of cytosine to uracil (C-to-U editing) within DNA and RNA targets. The ADARs convert adenosine bases to inosines (A-to-I editing) within double-stranded RNA (dsRNA) targets. This review will discuss the current understanding of the regulation of LINE-1 retrotransposition mediated by these enzymes.
Collapse
Affiliation(s)
- Elisa Orecchini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Loredana Frassinelli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
41
|
Boissinot S, Sookdeo A. The Evolution of LINE-1 in Vertebrates. Genome Biol Evol 2018; 8:3485-3507. [PMID: 28175298 PMCID: PMC5381506 DOI: 10.1093/gbe/evw247] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2016] [Indexed: 12/21/2022] Open
Abstract
The abundance and diversity of the LINE-1 (L1) retrotransposon differ greatly among vertebrates. Mammalian genomes contain hundreds of thousands L1s that have accumulated since the origin of mammals. A single group of very similar elements is active at a time in mammals, thus a single lineage of active families has evolved in this group. In contrast, non-mammalian genomes (fish, amphibians, reptiles) harbor a large diversity of concurrently transposing families, which are all represented by very small number of recently inserted copies. Why the pattern of diversity and abundance of L1 is so different among vertebrates remains unknown. To address this issue, we performed a detailed analysis of the evolution of active L1 in 14 mammals and in 3 non-mammalian vertebrate model species. We examined the evolution of base composition and codon bias, the general structure, and the evolution of the different domains of L1 (5′UTR, ORF1, ORF2, 3′UTR). L1s differ substantially in length, base composition, and structure among vertebrates. The most variation is found in the 5′UTR, which is longer in amniotes, and in the ORF1, which tend to evolve faster in mammals. The highly divergent L1 families of lizard, frog, and fish share species-specific features suggesting that they are subjected to the same functional constraints imposed by their host. The relative conservation of the 5′UTR and ORF1 in non-mammalian vertebrates suggests that the repression of transposition by the host does not act in a sequence-specific manner and did not result in an arms race, as is observed in mammals.
Collapse
|
42
|
Suarez NA, Macia A, Muotri AR. LINE-1 retrotransposons in healthy and diseased human brain. Dev Neurobiol 2017; 78:434-455. [PMID: 29239145 DOI: 10.1002/dneu.22567] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Long interspersed element-1 (LINE-1 or L1) is a transposable element with the ability to self-mobilize throughout the human genome. The L1 elements found in the human brain is hypothesized to date back 56 million years ago and has survived evolution, currently accounting for 17% of the human genome. L1 retrotransposition has been theorized to contribute to somatic mosaicism. This review focuses on the presence of L1 in the healthy and diseased human brain, such as in autism spectrum disorders. Throughout this exploration, we will discuss the impact L1 has on neurological disorders that can occur throughout the human lifetime. With this, we hope to better understand the complex role of L1 in the human brain development and its implications to human cognition. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 434-455, 2018.
Collapse
Affiliation(s)
- Nicole A Suarez
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| | - Angela Macia
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| |
Collapse
|
43
|
Sur D, Kustwar RK, Budania S, Mahadevan A, Hancks DC, Yadav V, Shankar SK, Mandal PK. Detection of the LINE-1 retrotransposon RNA-binding protein ORF1p in different anatomical regions of the human brain. Mob DNA 2017; 8:17. [PMID: 29201157 PMCID: PMC5700708 DOI: 10.1186/s13100-017-0101-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022] Open
Abstract
Background Recent reports indicate that retrotransposons – a type of mobile DNA – can contribute to neuronal genetic diversity in mammals. Retrotransposons are genetic elements that mobilize via an RNA intermediate by a “copy-and-paste” mechanism termed retrotransposition. Long Interspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in humans and its activity is responsible for ~ 30% of genomic mass. Historically, L1 retrotransposition was thought to be restricted to the germline; however, new data indicate L1 s are active in somatic tissue with certain regions of the brain being highly permissive. The functional implications of L1 insertional activity in the brain and how host cells regulate it are incomplete. While deep sequencing and qPCR analysis have shown that L1 copy number is much higher in certain parts of the human brain, direct in vivo studies regarding detection of L1-encoded proteins is lacking due to ineffective reagents. Results Using a polyclonal antibody we generated against the RNA-binding (RRM) domain of L1 ORF1p, we observe widespread ORF1p expression in post-mortem human brain samples including the hippocampus which has known elevated rates of retrotransposition. In addition, we find that two brains from different individuals of different ages display very different expression of ORF1p, especially in the frontal cortex. Conclusions We hypothesize that discordance of ORF1p expression in parts of the brain reported to display elevated levels of retrotransposition may suggest the existence of factors mediating post-translational regulation of L1 activity in the human brain. Furthermore, this antibody reagent will be useful as a complementary means to confirm findings related to retrotransposon biology and activity in the brain and other tissues in vivo. Electronic supplementary material The online version of this article (10.1186/s13100-017-0101-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Debpali Sur
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand India
| | | | - Savita Budania
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand India
| | - Anita Mahadevan
- Human Brain Tissue Repository (HBTR), Neurobiology Research Centre, NIMHANS, Bangalore, 560 029 India
| | - Dustin C Hancks
- Department of Human Genetics, University of Utah, Salt Lake City, UT USA.,Present address: Department of Immunology, UT South-western Medical Centre, Dallas, TX USA
| | - Vijay Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - S K Shankar
- Human Brain Tissue Repository (HBTR), Neurobiology Research Centre, NIMHANS, Bangalore, 560 029 India
| | - Prabhat K Mandal
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand India
| |
Collapse
|
44
|
Mahbub MM, Chowdhury SM, Christensen SM. Globular domain structure and function of restriction-like-endonuclease LINEs: similarities to eukaryotic splicing factor Prp8. Mob DNA 2017; 8:16. [PMID: 29151899 PMCID: PMC5678591 DOI: 10.1186/s13100-017-0097-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022] Open
Abstract
Background R2 elements are a clade of early branching Long Interspersed Elements (LINEs). LINEs are retrotransposable elements whose replication can have profound effects on the genomes in which they reside. No crystal or EM structures exist for the reverse transcriptase (RT) and linker regions of LINEs. Results Using limited proteolysis as a probe for globular domain structure, we show that the protein encoded by the Bombyx mori R2 element has two major globular domains: (1) a small globular domain consisting of the N-terminal zinc finger and Myb motifs, and (2) a large globular domain consisting of the RT, linker, and type II restriction-like endonuclease (RLE). Further digestion of the large globular domain occurred within the RT. Mapping these RT cleavages onto an updated model of the R2Bm RT indicated that the thumb of the RT was largely protected from proteolytic cleavage. The crystal structure of the large globular domain of Prp8, a eukaryotic splicing factor, was a major template used in building the R2Bm RT model, particularly the thumb region. The large fragment of Prp8 consists not only of a RT similar to R2Bm, but also an RLE and a linker connecting the two regions. The linker sequences adjacent to the RLE in LINEs and Prp8 share a set of two important α-helices and a (presumptive) knuckle/ββα structural motif that are closely associated with the thumb. The RLEs of LINEs and Prp8 share a unique catalytic core residue spacing as well as other key residues. Conclusions The protein encoded by RLE LINEs consists of two major globular domains. The larger of the two globular domain contains the RT, linker, and RLE and is similar to the large fragment of the spliceosomal protein Prp8. The similarities are suggestive of possible common ancestry. Electronic supplementary material The online version of this article (10.1186/s13100-017-0097-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Murshida Mahbub
- Department of Biology, University of Texas at Arlington, 501 S. Nedderman Drive, Room 337, Arlington, TX 76010 USA
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Room 130, Arlington, TX 76010 USA
| | - Shawn M Christensen
- Department of Biology, University of Texas at Arlington, 501 S. Nedderman Drive, Room 337, Arlington, TX 76010 USA
| |
Collapse
|
45
|
Morozov SY, Lazareva EA, Solovyev AG. RNA helicase domains of viral origin in proteins of insect retrotransposons: possible source for evolutionary advantages. PeerJ 2017; 5:e3673. [PMID: 28828268 PMCID: PMC5563155 DOI: 10.7717/peerj.3673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Recently, a novel phenomenon of horizontal gene transfer of helicase-encoding sequence from positive-stranded RNA viruses to LINE transposons in insect genomes was described. TRAS family transposons encoding an ORF2 protein, which comprised all typical functional domains and an additional helicase domain, were found to be preserved in many families during the evolution of the order Lepidoptera. In the present paper, in species of orders Hemiptera and Orthoptera, we found helicase domain-encoding sequences integrated into ORF1 of retrotransposons of the Jockey family. RNA helicases encoded by transposons of TRAS and Jockey families represented separate brunches in a phylogenetic tree of helicase domains and thus could be considered as independently originated in the evolution of insect transposons. Transcriptome database analyses revealed that both TRAS and Jockey transposons encoding the helicase domain represented transcribed genome sequences. Moreover, the transposon-encoded helicases were found to contain the full set of conserved motifs essential for their enzymatic activities. Taking into account the previously reported ability of RNA helicase encoded by TRAS ORF2 to suppress post-transcriptional RNA silencing, we propose possible scenarios of evolutionary fixation of actively expressed functional helicases of viral origin in insect retrotransposons as genetic elements advantageous for both transposons and their insect hosts.
Collapse
Affiliation(s)
- Sergey Y Morozov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
46
|
Ardeljan D, Taylor MS, Ting DT, Burns KH. The Human Long Interspersed Element-1 Retrotransposon: An Emerging Biomarker of Neoplasia. Clin Chem 2017; 63:816-822. [PMID: 28188229 DOI: 10.1373/clinchem.2016.257444] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND A large portion of intronic and intergenic space in our genome consists of repeated sequences. One of the most prevalent is the long interspersed element-1 (LINE-1, L1) mobile DNA. LINE-1 is rightly receiving increasing interest as a cancer biomarker. CONTENT Intact LINE-1 elements are self-propagating. They code for RNA and proteins that function to make more copies of the genomic element. Our current understanding is that this process is repressed in most normal cells, but that LINE-1 expression is a hallmark of many types of malignancy. Here, we will consider features of cancer cells when cellular defense mechanisms repressing LINE-1 go awry. We will review evidence that genomic LINE-1 methylation, LINE-1-encoded RNAs, and LINE-1 ORF1p (open reading frame 1 protein) may be useful in cancer diagnosis. SUMMARY The repetitive and variable nature of LINE-1 DNA sequences poses unique challenges to studying them, but recent advances in reagents and next generation sequencing present opportunities to characterize LINE-1 expression and activity in cancers and to identify clinical applications.
Collapse
Affiliation(s)
- Daniel Ardeljan
- McKusick-Nathans Institute of Genetic Medicine (IGM) and.,Medical Scientist Training Program (MSTP), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - David T Ting
- Department of Medicine and the Massachusetts General Hospital Cancer Center, Boston, MA
| | - Kathleen H Burns
- McKusick-Nathans Institute of Genetic Medicine (IGM) and .,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
47
|
Functionally conserved RNA-binding and protein-protein interaction properties of LINE-ORF1p in an ancient clade of non-LTR retrotransposons of Entamoeba histolytica. Mol Biochem Parasitol 2017; 211:84-93. [DOI: 10.1016/j.molbiopara.2016.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/17/2016] [Accepted: 11/24/2016] [Indexed: 11/23/2022]
|
48
|
Abstract
Coiled coils appear in countless structural contexts, as appendages to small proteins, as parts of multi-domain proteins, and as building blocks of filaments. Although their structure is unpretentious and their basic properties are understood in great detail, the spectrum of functional properties they provide in different proteins has become increasingly complex. This chapter aims to depict this functional spectrum, to identify common themes and their molecular basis, with an emphasis on new insights gained into dynamic aspects.
Collapse
Affiliation(s)
- Marcus D Hartmann
- Max Planck Institute for Developmental Biology, Spemannstraße 35, 72076, Tübingen, Germany.
| |
Collapse
|
49
|
Ivancevic AM, Kortschak RD, Bertozzi T, Adelson DL. LINEs between Species: Evolutionary Dynamics of LINE-1 Retrotransposons across the Eukaryotic Tree of Life. Genome Biol Evol 2016; 8:3301-3322. [PMID: 27702814 PMCID: PMC5203782 DOI: 10.1093/gbe/evw243] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
LINE-1 (L1) retrotransposons are dynamic elements. They have the potential to cause great genomic change because of their ability to ‘jump’ around the genome and amplify themselves, resulting in the duplication and rearrangement of regulatory DNA. Active L1, in particular, are often thought of as tightly constrained, homologous and ubiquitous elements with well-characterized domain organization. For the past 30 years, model organisms have been used to define L1s as 6–8 kb sequences containing a 5′-UTR, two open reading frames working harmoniously in cis, and a 3′-UTR with a polyA tail. In this study, we demonstrate the remarkable and overlooked diversity of L1s via a comprehensive phylogenetic analysis of elements from over 500 species from widely divergent branches of the tree of life. The rapid and recent growth of L1 elements in mammalian species is juxtaposed against the diverse lineages found in other metazoans and plants. In fact, some of these previously unexplored mammalian species (e.g. snub-nosed monkey, minke whale) exhibit L1 retrotranspositional ‘hyperactivity’ far surpassing that of human or mouse. In contrast, non-mammalian L1s have become so varied that the current classification system seems to inadequately capture their structural characteristics. Our findings illustrate how both long-term inherited evolutionary patterns and random bursts of activity in individual species can significantly alter genomes, highlighting the importance of L1 dynamics in eukaryotes.
Collapse
Affiliation(s)
- Atma M Ivancevic
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - R Daniel Kortschak
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Terry Bertozzi
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
50
|
Macia A, Widmann TJ, Heras SR, Ayllon V, Sanchez L, Benkaddour-Boumzaouad M, Muñoz-Lopez M, Rubio A, Amador-Cubero S, Blanco-Jimenez E, Garcia-Castro J, Menendez P, Ng P, Muotri AR, Goodier JL, Garcia-Perez JL. Engineered LINE-1 retrotransposition in nondividing human neurons. Genome Res 2016; 27:335-348. [PMID: 27965292 PMCID: PMC5340962 DOI: 10.1101/gr.206805.116] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022]
Abstract
Half the human genome is made of transposable elements (TEs), whose ongoing activity continues to impact our genome. LINE-1 (or L1) is an autonomous non-LTR retrotransposon in the human genome, comprising 17% of its genomic mass and containing an average of 80-100 active L1s per average genome that provide a source of inter-individual variation. New LINE-1 insertions are thought to accumulate mostly during human embryogenesis. Surprisingly, the activity of L1s can further impact the somatic human brain genome. However, it is currently unknown whether L1 can retrotranspose in other somatic healthy tissues or if L1 mobilization is restricted to neuronal precursor cells (NPCs) in the human brain. Here, we took advantage of an engineered L1 retrotransposition assay to analyze L1 mobilization rates in human mesenchymal (MSCs) and hematopoietic (HSCs) somatic stem cells. Notably, we have observed that L1 expression and engineered retrotransposition is much lower in both MSCs and HSCs when compared to NPCs. Remarkably, we have further demonstrated for the first time that engineered L1s can retrotranspose efficiently in mature nondividing neuronal cells. Thus, these findings suggest that the degree of somatic mosaicism and the impact of L1 retrotransposition in the human brain is likely much higher than previously thought.
Collapse
Affiliation(s)
- Angela Macia
- Department of Genomic Medicine and Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016 Granada, Spain
| | - Thomas J Widmann
- Department of Genomic Medicine and Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016 Granada, Spain
| | - Sara R Heras
- Department of Genomic Medicine and Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016 Granada, Spain
| | - Veronica Ayllon
- Department of Oncology, GENYO, Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016 Granada, Spain
| | - Laura Sanchez
- Department of Genomic Medicine and Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016 Granada, Spain
| | - Meriem Benkaddour-Boumzaouad
- Department of Genomic Medicine and Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016 Granada, Spain
| | - Martin Muñoz-Lopez
- Department of Genomic Medicine and Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016 Granada, Spain
| | - Alejandro Rubio
- Department of Genomic Medicine and Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016 Granada, Spain
| | - Suyapa Amador-Cubero
- Department of Genomic Medicine and Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016 Granada, Spain
| | - Eva Blanco-Jimenez
- Department of Genomic Medicine and Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016 Granada, Spain
| | | | - Pablo Menendez
- Department of Oncology, GENYO, Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016 Granada, Spain.,Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Instituciò Catalana Recerca Estudis Avançats (ICREA), 08036 Barcelona, Spain
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California 92093, USA
| | - John L Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jose L Garcia-Perez
- Department of Genomic Medicine and Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016 Granada, Spain.,Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|