1
|
Das SS, Mahapatra SK. Consequence of Red Blood Cells Deformability on Heat Sink Effect of Blood in a Three-Dimensional Bifurcated Vessel. J Biomech Eng 2024; 146:091001. [PMID: 38477912 DOI: 10.1115/1.4065058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
Several diseases like Sickle Cell Anemia, Thalassemia, Hereditary Spherocytosis, Malaria, and Micro-angiopathic Hemolytic Anemia can alter the normal shape of red blood cells (RBCs). The objective of this study is to gain insight into how a change in RBC deformability can affect blood heat transfer. The heat sink effect in a bifurcated vessel with two asymptotic cases (case 1: deformable and case 2: nondeformable RBCs) is being studied during hyperthermia treatment in a three-dimensional bifurcated vessel, whose wall is being subjected to constant heat flux boundary condition. Euler-Euler multiphase method along with the granular model and Kinetic theory is used to include the particle nature of RBCs during blood flow in the current model. To enhance the efficiency of the numerical model, user-defined functions (UDFs) are imported into the model from the C++ interface. The numerical model used is verified with the experimental results from (Carr and Tiruvaloor, 1989, "Enhancement of Heat Transfer in Red Cell Suspensions In Vitro Experiments," ASME J. Biomech. Eng., 111(2), pp. 152-156; Yeleswarapu et al. 1998, "The Flow of Blood in Tubes: Theory and Experiment," Mech. Res. Commun., 25(3), pp. 257-262). The results indicate that the deformability of RBCs can change both the flow dynamics and heat sink effect in a bifurcated vessel, which subsequently affects the efficacy and efficiency of the thermal ablation procedure. Both spatial and transient Nusselt numbers of blood flow with deformable RBCs are slightly higher compared to the one with nondeformable RBCs.
Collapse
|
2
|
Nagalingam N, Korede V, Irimia D, Westerweel J, Padding JT, Hartkamp R, Eral HB. Unified framework for laser-induced transient bubble dynamics within microchannels. Sci Rep 2024; 14:18763. [PMID: 39138284 PMCID: PMC11322490 DOI: 10.1038/s41598-024-68971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Oscillatory flow in confined spaces is central to understanding physiological flows and rational design of synthetic periodic-actuation based micromachines. Using theory and experiments on oscillating flows generated through a laser-induced cavitation bubble, we associate the dynamic bubble size (fluid velocity) and bubble lifetime to the laser energy supplied-a control parameter in experiments. Employing different channel cross-section shapes, sizes and lengths, we demonstrate the characteristic scales for velocity, time and energy to depend solely on the channel geometry. Contrary to the generally assumed absence of instability in low Reynolds number flows ( < 1000 ), we report a momentary flow distortion that originates due to the boundary layer separation near channel walls during flow deceleration. The emergence of distorted laminar states is characterized using two stages. First the conditions for the onset of instabilities is analyzed using the Reynolds number and Womersley number for oscillating flows. Second the growth and the ability of an instability to prevail is analyzed using the convective time scale of the flow. Our findings inform rational design of microsystems leveraging pulsatile flows via cavitation-powered microactuation.
Collapse
Affiliation(s)
- Nagaraj Nagalingam
- Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, Netherlands
| | - Vikram Korede
- Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, Netherlands
| | - Daniel Irimia
- Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, Netherlands
| | - Jerry Westerweel
- Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, Netherlands
| | - Johan T Padding
- Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, Netherlands
| | - Remco Hartkamp
- Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, Netherlands
| | - Hüseyin Burak Eral
- Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, Netherlands.
| |
Collapse
|
3
|
Recktenwald SM, Rashidi Y, Graham I, Arratia PE, Del Giudice F, Wagner C. Morphology, repulsion, and ordering of red blood cells in viscoelastic flows under confinement. SOFT MATTER 2024; 20:4950-4963. [PMID: 38873747 DOI: 10.1039/d4sm00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Red blood cells (RBC), the primary carriers of oxygen in the body, play a crucial role across several biomedical applications, while also being an essential model system of a deformable object in the microfluidics and soft matter fields. However, RBC behavior in viscoelastic liquids, which holds promise in enhancing microfluidic diagnostic applications, remains poorly studied. We here show that using viscoelastic polymer solutions as a suspending carrier causes changes in the clustering and shape of flowing RBC in microfluidic flows when compared to a standard Newtonian suspending liquid. Additionally, when the local RBC concentration increases to a point where hydrodynamic interactions take place, we observe the formation of equally-spaced RBC structures, resembling the viscoelasticity-driven ordered particles observed previously in the literature, thus providing the first experimental evidence of viscoelasticity-driven cell ordering. The observed RBC ordering, unaffected by polymer molecular architecture, persists as long as the surrounding medium exhibits shear-thinning, viscoelastic properties. Complementary numerical simulations reveal that viscoelasticity-induced repulsion between RBCs leads to equidistant structures, with shear-thinning modulating this effect. Our results open the way for the development of new biomedical technologies based on the use of viscoelastic liquids while also clarifying fundamental aspects related to multibody hydrodynamic interactions in viscoelastic microfluidic flows.
Collapse
Affiliation(s)
- Steffen M Recktenwald
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Yazdan Rashidi
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
| | - Ian Graham
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesco Del Giudice
- Complex Fluid Research Group, Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Christian Wagner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
4
|
Allolio C, Fábián B, Dostalík M. OrganL: Dynamic triangulation of biomembranes using curved elements. Biophys J 2024; 123:1553-1562. [PMID: 38704638 PMCID: PMC11213972 DOI: 10.1016/j.bpj.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/25/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
We describe a method for simulating biomembranes of arbitrary shape. In contrast to other dynamically triangulated surface (DTS) algorithms, our method provides a rich, quasi-tangent-continuous, yet local description of the surface. We use curved Nagata triangles, which we generalize to cubic order to achieve the requisite flexibility. The resulting interpolation can be constructed locally without iterations, at the cost of having only approximate tangent continuity away from the vertices. This allows us to provide a parallelized and fine-tuned Monte Carlo implementation. As a first example of the potential benefits of the enhanced description, our method supports inhomogeneous lipid distributions as well as lipid mixing. It also supports restraints and constraints of various types and is constructed to be as easily extensible as possible. We validate the approach by testing its numerical accuracy, followed by reproducing the known Helfrich solutions for shapes with rotational symmetry. Finally, we present some example applications, including curvature-driven demixing and stylized effects of proteins. Input files for these examples, as well as the implementation itself, are freely available for researchers under the name OrganL (https://zenodo.org/doi/10.5281/zenodo.11204709).
Collapse
Affiliation(s)
- Christoph Allolio
- Charles University, Faculty of Mathematics and Physics, Mathematical Institute, Prague, Czech Republic.
| | - Balázs Fábián
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mark Dostalík
- Charles University, Faculty of Mathematics and Physics, Mathematical Institute, Prague, Czech Republic
| |
Collapse
|
5
|
Yamamoto T, Watanabe H. Energy spectrum analysis on a red blood cell model. J Chem Phys 2023; 159:234119. [PMID: 38117019 DOI: 10.1063/5.0169467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
It is important to understand the dynamics of red blood cells (RBCs) in blood flow. This requires the formulation of coarse-grained RBC models that reproduce the hydrodynamic properties of blood accurately. One of the models that successfully reproduces the rheology and morphology of blood has been proposed by Fedosov et al. [Comput. Methods Appl. Mech. Eng. 199, 1937-1948 (2010)]. The proposed RBC model contains several parameters whose values are determined by either various experiments or physical requirements. In this study, we developed a new method of determining parameter values precisely from the fluctuations of the RBC membrane. Specifically, we studied the relationship between the spectra of the fluctuations and model parameters. Characteristic peaks were observed in the spectra, whose peak frequencies were dependent on the parameter values. In addition, we investigated the spectra of the radius of gyration. We identified the peaks originating from the spring potential and the volume-conserving potential appearing in the spectra. These results lead to the precise experimental determination of the parameters used in the RBC model.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Hiroshi Watanabe
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
6
|
Bureau L, Coupier G, Salez T. Lift at low Reynolds number. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:111. [PMID: 37957450 DOI: 10.1140/epje/s10189-023-00369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Lift forces are widespread in hydrodynamics. These are typically observed for big and fast objects and are often associated with a combination of fluid inertia (i.e. large Reynolds numbers) and specific symmetry-breaking mechanisms. In contrast, the properties of viscosity-dominated (i.e. low Reynolds numbers) flows make it more difficult for such lift forces to emerge. However, the inclusion of boundary effects qualitatively changes this picture. Indeed, in the context of soft and biological matter, recent studies have revealed the emergence of novel lift forces generated by boundary softness, flow gradients and/or surface charges. The aim of the present review is to gather and analyse this corpus of literature, in order to identify and unify the questioning within the associated communities, and pave the way towards future research.
Collapse
Affiliation(s)
- Lionel Bureau
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France.
| | | | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33400, Talence, France.
| |
Collapse
|
7
|
Raj M K, Priyadarshani J, Karan P, Bandyopadhyay S, Bhattacharya S, Chakraborty S. Bio-inspired microfluidics: A review. BIOMICROFLUIDICS 2023; 17:051503. [PMID: 37781135 PMCID: PMC10539033 DOI: 10.1063/5.0161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Biomicrofluidics, a subdomain of microfluidics, has been inspired by several ideas from nature. However, while the basic inspiration for the same may be drawn from the living world, the translation of all relevant essential functionalities to an artificially engineered framework does not remain trivial. Here, we review the recent progress in bio-inspired microfluidic systems via harnessing the integration of experimental and simulation tools delving into the interface of engineering and biology. Development of "on-chip" technologies as well as their multifarious applications is subsequently discussed, accompanying the relevant advancements in materials and fabrication technology. Pointers toward new directions in research, including an amalgamated fusion of data-driven modeling (such as artificial intelligence and machine learning) and physics-based paradigm, to come up with a human physiological replica on a synthetic bio-chip with due accounting of personalized features, are suggested. These are likely to facilitate physiologically replicating disease modeling on an artificially engineered biochip as well as advance drug development and screening in an expedited route with the minimization of animal and human trials.
Collapse
Affiliation(s)
- Kiran Raj M
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Jyotsana Priyadarshani
- Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Celestijnenlaan 300, 3001 Louvain, Belgium
| | - Pratyaksh Karan
- Géosciences Rennes Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Saumyadwip Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumya Bhattacharya
- Achira Labs Private Limited, 66b, 13th Cross Rd., Dollar Layout, 3–Phase, JP Nagar, Bangalore, Karnataka 560078, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
8
|
Akerkouch L, Le T. Shape Transitions of Red Blood Cell under Oscillatory Flows in Microchannels. RESEARCH SQUARE 2023:rs.3.rs-3296659. [PMID: 37693621 PMCID: PMC10491371 DOI: 10.21203/rs.3.rs-3296659/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
This paper aims to examine the ability to control Red Blood Cell (RBCs) dynamics and the associated extracellular flow patterns in microfluidic channels via oscillatory flows. Our computational approach employs a hybrid continuum-particle coupling, in which the cell membrane and cytosol fluid are modeled using the Dissipative Particle Dynamics (DPD) method. The blood plasma is modeled as an incompressible fluid via the Immersed Boundary Method (IBM). This coupling is novel because it provides an accurate description of RBC dynamics while the extracellular flow patterns around the RBCs are also captured in detail. Our coupling methodology is validated with available experimental and computational data in the literature and shows excellent agreement. We explore the controlling regimes by varying the shape of the oscillatory flow waveform at the channel inlet. Our simulation results show that a host of RBC morphological dynamics emerges depending on the channel geometry, the incoming flow waveform, and the RBC initial location. Complex dynamics of RBC are induced by the flow waveform. Our results show that the RBC shape is strongly dependent on its initial location. Our results suggest that the controlling of oscillatory flows can be used to induce specific morphological shapes of RBCs and the surrounding fluid patterns in bio-engineering applications.
Collapse
Affiliation(s)
- Lahcen Akerkouch
- Department of Civil, Construction, and Environmental Engineering, North Dakota State University, 1410 14th N, Fargo, 58102, ND, USA
| | - Trung Le
- Department of Civil, Construction, and Environmental Engineering, North Dakota State University, 1410 14th N, Fargo, 58102, ND, USA
| |
Collapse
|
9
|
Advanced Optical Wavefront Technologies to Improve Patient Quality of Vision and Meet Clinical Requests. Polymers (Basel) 2022; 14:polym14235321. [PMID: 36501713 PMCID: PMC9741482 DOI: 10.3390/polym14235321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Adaptive optics (AO) is employed for the continuous measurement and correction of ocular aberrations. Human eye refractive errors (lower-order aberrations such as myopia and astigmatism) are corrected with contact lenses and excimer laser surgery. Under twilight vision conditions, when the pupil of the human eye dilates to 5-7 mm in diameter, higher-order aberrations affect the visual acuity. The combined use of wavefront (WF) technology and AO systems allows the pre-operative evaluation of refractive surgical procedures to compensate for the higher-order optical aberrations of the human eye, guiding the surgeon in choosing the procedure parameters. Here, we report a brief history of AO, starting from the description of the Shack-Hartmann method, which allowed the first in vivo measurement of the eye's wave aberration, the wavefront sensing technologies (WSTs), and their principles. Then, the limitations of the ocular wavefront ascribed to the IOL polymeric materials and design, as well as future perspectives on improving patient vision quality and meeting clinical requests, are described.
Collapse
|
10
|
Fridman L, Yelin D. Measuring the red blood cell shape in capillary flow using spectrally encoded flow cytometry. BIOMEDICAL OPTICS EXPRESS 2022; 13:4583-4591. [PMID: 36187245 PMCID: PMC9484409 DOI: 10.1364/boe.464875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 05/31/2023]
Abstract
Red blood cells in small capillaries exhibit a wide variety of deformations that reflect their true physiological conditions at these important locations. By applying a technique for the high-speed microscopy of flowing cells, termed spectrally encoded flow cytometry (SEFC), we image the light reflected from the red blood cells in human capillaries, and propose an analytical slipper-like model for the cell morphology that can reproduce the experimental in vivo images. The results of this work would be useful for studying the unique flow conditions in these vessels, and for extracting useful clinical parameters that reflect the true physiology of the blood cells in situ.
Collapse
|
11
|
Chen X, Li H, Wu T, Gong Z, Guo J, Li Y, Li B, Ferraro P, Zhang Y. Optical-force-controlled red-blood-cell microlenses for subwavelength trapping and imaging. BIOMEDICAL OPTICS EXPRESS 2022; 13:2995-3004. [PMID: 35774333 PMCID: PMC9203105 DOI: 10.1364/boe.457700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 05/31/2023]
Abstract
We demonstrate that red blood cells (RBCs), with an adjustable focusing effect controlled by optical forces, can act as bio-microlenses for trapping and imaging subwavelength objects. By varying the laser power injected into a tapered fiber probe, the shape of a swelled RBC can be changed from spherical to ellipsoidal by the optical forces, thus adjusting the focal length of such bio-microlens in a range from 3.3 to 6.5 µm. An efficient optical trapping and a simultaneous fluorescence detecting of a 500-nm polystyrene particle have been realized using the RBC microlens. Assisted by the RBC microlens, a subwavelength imaging has also been achieved, with a magnification adjustable from 1.6× to 2×. The RBC bio-microlenses may offer new opportunities for the development of fully biocompatible light-driven devices in diagnosis of blood disease.
Collapse
Affiliation(s)
- Xixi Chen
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Heng Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Tianli Wu
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Zhiyong Gong
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Jinghui Guo
- Department of Physiology, School of Medicine, Jinan University, 510632 Guangzhou, China
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems «E. Caianiello», Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| |
Collapse
|
12
|
Czaja B, de Bouter J, Heisler M, Závodszky G, Karst S, Sarunic M, Maberley D, Hoekstra A. The effect of stiffened diabetic red blood cells on wall shear stress in a reconstructed 3D microaneurysm. Comput Methods Biomech Biomed Engin 2022; 25:1691-1709. [PMID: 35199620 DOI: 10.1080/10255842.2022.2034794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Blood flow within the vasculature of the retina has been found to influence the progression of diabetic retinopathy. In this research cell resolved blood flow simulations are used to study the pulsatile flow of whole blood through a segmented retinal microaneurysm. Images were collected using adaptive optics optical coherence tomography of the retina of a patient with diabetic retinopathy, and a sidewall (sacciform) microaneurysm was segmented from the volumetric data. The original microaneurysm neck width was varied to produce two additional aneurysm geometries in order to probe the influence of neck width on the transport of red blood cells and platelets into the aneurysm. Red blood cell membrane stiffness was also increased to resolve the impact of rigid red blood cells, as a result of diabetes, in blood flow. Wall shear stress and wall shear stress gradients were calculated throughout the aneurysm domains, and the quantification of the influence of the red blood cells is presented. Average wall shear stress and wall shear stress gradients increased due to the increase of red blood cell membrane stiffness. Stiffened red blood cells were also found to induce higher local wall shear stress and wall shear stress gradients as they passed through the leading and draining parental vessels. Stiffened red blood cells were found to penetrate the aneurysm sac more than healthy red blood cells, as well as decreasing the margination of platelets to the vessel walls of the parental vessel, which caused a decrease in platelet penetration into the aneurysm sac.
Collapse
Affiliation(s)
- Benjamin Czaja
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands
| | - Jonathan de Bouter
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands
| | - Morgan Heisler
- School of Engineering Science, Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Gábor Závodszky
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands.,Department of Hydrodynamic Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Sonja Karst
- Department of Ophthalmology and Optometry, Medical University Vienna, Vienna, Austria
| | - Marinko Sarunic
- School of Engineering Science, Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - David Maberley
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alfons Hoekstra
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Trejo-Soto C, Lázaro GR, Pagonabarraga I, Hernández-Machado A. Microfluidics Approach to the Mechanical Properties of Red Blood Cell Membrane and Their Effect on Blood Rheology. MEMBRANES 2022; 12:217. [PMID: 35207138 PMCID: PMC8878405 DOI: 10.3390/membranes12020217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
In this article, we describe the general features of red blood cell membranes and their effect on blood flow and blood rheology. We first present a basic description of membranes and move forward to red blood cell membranes' characteristics and modeling. We later review the specific properties of red blood cells, presenting recent numerical and experimental microfluidics studies that elucidate the effect of the elastic properties of the red blood cell membrane on blood flow and hemorheology. Finally, we describe specific hemorheological pathologies directly related to the mechanical properties of red blood cells and their effect on microcirculation, reviewing microfluidic applications for the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Claudia Trejo-Soto
- Instituto de Física, Pontificia Universidad Católica de Valparaiso, Casilla 4059, Chile
| | - Guillermo R. Lázaro
- Departament de Física de la Materia Condensada, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain; (G.R.L.); (I.P.); (A.H.-M.)
| | - Ignacio Pagonabarraga
- Departament de Física de la Materia Condensada, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain; (G.R.L.); (I.P.); (A.H.-M.)
- CECAM, Centre Europeén de Calcul Atomique et Moleéculaire, École Polytechnique Feédeérale de Lausanne (EPFL), Batochime—Avenue Forel 2, 1015 Lausanne, Switzerland
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Aurora Hernández-Machado
- Departament de Física de la Materia Condensada, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain; (G.R.L.); (I.P.); (A.H.-M.)
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Fan R, Zachariah GT, Padding JT, Hartkamp R. Real-time temperature measurement in stochastic rotation dynamics. Phys Rev E 2021; 104:034124. [PMID: 34654203 DOI: 10.1103/physreve.104.034124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/03/2021] [Indexed: 11/07/2022]
Abstract
Many physical and chemical processes involve energy change with rates that depend sensitively on local temperature. Important examples include heterogeneously catalyzed reactions and activated desorption. Because of the multiscale nature of such systems, it is desirable to connect the macroscopic world of continuous hydrodynamic and temperature fields to mesoscopic particle-based simulations with discrete particle events. In this work we show how to achieve real-time measurement of the local temperature in stochastic rotation dynamics (SRD), a mesoscale method particularly well suited for problems involving hydrodynamic flows with thermal fluctuations. We employ ensemble averaging to achieve local temperature measurement in dynamically changing environments. After validation by heat diffusion between two isothermal plates, heating of walls by a hot strip, and by temperature programed desorption, we apply the method to a case of a model flow reactor with temperature-sensitive heterogeneously catalyzed reactions on solid spherical catalysts. In this model, adsorption, chemical reactions, and desorption are explicitly tracked on the catalyst surface. This work opens the door for future projects where SRD is used to couple hydrodynamic flows and thermal fluctuations to solids with complex temperature-dependent surface mechanisms.
Collapse
Affiliation(s)
- Rong Fan
- Complex Fluid Processing, Process and Energy Department, Delft University of Technology, 2628 CB Delft, The Netherlands
| | - Githin T Zachariah
- Complex Fluid Processing, Process and Energy Department, Delft University of Technology, 2628 CB Delft, The Netherlands
| | - Johan T Padding
- Complex Fluid Processing, Process and Energy Department, Delft University of Technology, 2628 CB Delft, The Netherlands
| | - Remco Hartkamp
- Complex Fluid Processing, Process and Energy Department, Delft University of Technology, 2628 CB Delft, The Netherlands
| |
Collapse
|
15
|
Javadi E, Jamali S. Hemorheology: the critical role of flow type in blood viscosity measurements. SOFT MATTER 2021; 17:8446-8458. [PMID: 34514478 DOI: 10.1039/d1sm00856k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The crucial role of the hemorheological characteristics of blood in a range of diagnoses, treatments and drug delivery mechanisms is widely accepted. Nonetheless, the literature on blood rheology remains inconclusive and sometimes even contradictory. This is in part due to natural variance of blood samples from one study to another, but also stems from fundamental differences in the consequences of the choice of rheometric flow employed. Here, and using a detailed and accurate computational scheme, we thoroughly study the role of flow type in measurement of blood viscosity. Performing these in silico measurements, we isolate the role of flow type and geometry at different hematocrit levels. We show that flow curves obtained in pressure-driven flows relevant to laminar circulatory flows deviate greatly from ones obtained in drag flow at the same hematocrit level. Our numerical platform also allows for the yield stress to be measured under quiescent conditions and without imposing any flow for different hematocrits. We discuss the scaling of the yield stress with the hematocrit level, and show that the differences in pressure vs. drag flows stem from the Red Blood Cell (RBC) orientation at different flow rates as well as the existence of a cell free layer close to the walls.
Collapse
Affiliation(s)
- Elahe Javadi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Safa Jamali
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Bernardino K, Ribeiro MCC. Relating the structure and dynamics of ionic liquids under shear by means of reverse non-equilibrium molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:13984-13995. [PMID: 34151339 DOI: 10.1039/d1cp01205c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effect of the shear rate on the viscosity and the structure of 1-ethyl-3-methylimidazolium based ionic liquids with three different anions (tetrafluoroborate, dicyanamide, and bis(trifluoromethylsulfonyl)imide) was studied by means of reverse non-equilibrium molecular dynamics (RNEMD) simulations using a polarizable force field. The three liquids display a Newtonian plateau followed by a shear thinning regime at shear rates of the order of GHz. Even though the main features of the liquid structure remains under shear, systematic changes were noticed at the GHz rates, with coordination shells becoming more diffuse as noticed by the reduction in the difference between consecutive maxima and minima in the radial distribution function. Interestingly, these structural changes with the shear rate can be precisely fitted using the Carreau equation, which is a well-known expression for the shear rate dependence of the viscosity. The fitting parameters for different distributions can be used to explain qualitatively the shear thinning behavior of these liquids. In the GHz range, the cations and, in a minor extension, some anions, tend to assume preferentially a parallel orientation with the flux, which contributes to the shear thinning behavior and may have consequences for adhesion in applications as lubricants.
Collapse
Affiliation(s)
- Kalil Bernardino
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, Brazil.
| | - Mauro C C Ribeiro
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, Brazil.
| |
Collapse
|
17
|
Yaya F, Römer J, Guckenberger A, John T, Gekle S, Podgorski T, Wagner C. Vortical flow structures induced by red blood cells in capillaries. Microcirculation 2021; 28:e12693. [PMID: 33666310 DOI: 10.1111/micc.12693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Knowledge about the flow field of the plasma around the red blood cells in capillary flow is important for a physical understanding of blood flow and the transport of micro- and nanoparticles and molecules in the flowing plasma. We conducted an experimental study on the flow field around red blood cells in capillary flow that is complemented by simulations of vortical flow between red blood cells. METHODS Red blood cells were injected in a 10 × 12 µm rectangular microchannel at a low hematocrit, and the flow field around one or two cells was captured by a high-speed camera that tracked 250 nm nanoparticles in the flow field, acting as tracers. RESULTS While the flow field around a steady "croissant" shape is found to be similar to that of a rigid sphere, the flow field around a "slipper" shape exhibits a small vortex at the rear of the red blood cell. Even more pronounced are vortex-like structures observed in the central region between two neighboring croissants. CONCLUSIONS The rotation frequency of the vortices is to a good approximation, inversely proportional to the distance between the cells. Our experimental data are complemented by numerical simulations.
Collapse
Affiliation(s)
- François Yaya
- Experimental Physics, Saarland University, Saarbrücken, Germany.,Laboratoire Interdisciplinaire de Physique, Saint Martin d'Hères, France
| | - Johannes Römer
- Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Bayreuth, Germany
| | - Achim Guckenberger
- Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Bayreuth, Germany
| | - Thomas John
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Bayreuth, Germany
| | - Thomas Podgorski
- Laboratoire Interdisciplinaire de Physique, Saint Martin d'Hères, France
| | - Christian Wagner
- Experimental Physics, Saarland University, Saarbrücken, Germany.,Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg City, Luxembourg
| |
Collapse
|
18
|
Roca JF, Menezes IF, Carvalho MS. Mobility Reduction in the Flow of an Elastic Microcapsule through a Constricted Channel. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jose F. Roca
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22453-900, Brazil
| | - Ivan F. Menezes
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22453-900, Brazil
| | - Marcio S. Carvalho
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22453-900, Brazil
| |
Collapse
|
19
|
Abstract
This overview presents the recent progress in our understanding of gas transfer by the lungs during the respiratory cycle and during breath holding. Different phenomena intervene in gas transfer, convection and diffusion in the gas, dissolution, diffusion across the alveolar-capillary membrane, diffusion across blood plasma, and finally diffusion and reaction with hemoglobin inside blood cells. The different gases, O2 , CO, and NO, have very different reaction times with hemoglobin ranging from a few microseconds to tens of milliseconds. This is leading to different outcomes. For O2 , the solutions to the coupled nonlinear gas and blood equations are obtained at the acinus level. They include the fact that the acinar internal ventilation is strongly heterogeneous due to the arborescent structure. Also, in the dynamic calculation, one takes care of the delay between the start of inhalation and arrival of fresh air in the acinus. This "dead" time is the dynamic equivalent of the dead space ventilation. The question of the dependence of Vo2 on ventilation and perfusion takes a different form. The results show that Vo2 is not only a function of the ventilation/perfusion ratio but also depends on the variables: acinar ventilation VEac and perfusion Qac . The ratio VEac /Qac roughly determines arterial O2 saturation and arterial and alveolar O2 partial pressure. The classic Roughton-Forster interpretation of DLCO (separation between independent membrane and blood resistance) was a mathematical conjecture. It was shown recently that this conjecture was violated. This article presents an alternative interpretation that uses time concepts instead of resistance. © 2021 American Physiological Society. Compr Physiol 11:1289-1314, 2021.
Collapse
Affiliation(s)
- Bernard Sapoval
- Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Palaiseau, France
| | - Min-Yeong Kang
- Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Palaiseau, France
| | - Anh Tuan Dinh-Xuan
- Service de Physiologie-Explorations Fonctionnelles, Hôpital Cochin, AP-HP, Université Paris Descartes, Paris, France
| |
Collapse
|
20
|
Chien W, Gompper G, Fedosov DA. Effect of cytosol viscosity on the flow behavior of red blood cell suspensions in microvessels. Microcirculation 2020; 28:e12668. [PMID: 33131140 DOI: 10.1111/micc.12668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The flow behavior of blood is strongly affected by red blood cell (RBC) properties, such as the viscosity ratio C between cytosol and suspending medium, which can significantly be altered in several pathologies (e.g. sickle-cell disease, malaria). The main objective of this study is to understand the effect of C on macroscopic blood flow properties such as flow resistance in microvessels, and to link it to the deformation and dynamics of single RBCs. METHODS We employ mesoscopic hydrodynamic simulations to investigate flow properties of RBC suspensions with different cytosol viscosities for various flow conditions in cylindrical microchannels. RESULTS Starting from a dispersed cell configuration which approximates RBC dispersion at vessel bifurcations in the microvasculature, we find that the flow convergence and development of RBC-free layer (RBC-FL) depend only weakly on C, and require a convergence length in the range of 25D-50D, where D is channel diameter. In vessels with D ≤ 20 μ m , the final resistance of developed flow is nearly the same for C = 5 and C = 1, while for D = 40 μ m , the flow resistance for C = 5 is about 10% larger than for C = 1. The similarities and differences in flow resistance can be explained by viscosity-dependent RBC-FL thicknesses, which are associated with the viscosity-dependent dynamics of single RBCs. CONCLUSIONS The weak effect on the flow resistance and RBC-FL explains why RBCs can contain a high concentration of hemoglobin for efficient oxygen delivery, without a pronounced increase in the flow resistance. Furthermore, our results suggest that significant alterations in microvascular flow in various pathologies are likely not due to mere changes in cytosolic viscosity.
Collapse
Affiliation(s)
- Wei Chien
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
21
|
Liu A, Yang Z, Liu L, Chen J, An L. Role of Functionality in Cross-Stream Migration, Structures, and Dynamics of Star Polymers in Poiseuille Flow. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aiqing Liu
- College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhenyue Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Lijun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Jizhong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
22
|
Kessel B, Lee M, Bonato A, Tinguely Y, Tosoratti E, Zenobi‐Wong M. 3D Bioprinting of Macroporous Materials Based on Entangled Hydrogel Microstrands. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001419. [PMID: 32999847 PMCID: PMC7509724 DOI: 10.1002/advs.202001419] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/02/2020] [Indexed: 05/24/2023]
Abstract
Hydrogels are excellent mimetics of mammalian extracellular matrices and have found widespread use in tissue engineering. Nanoporosity of monolithic bulk hydrogels, however, limits mass transport of key biomolecules. Microgels used in 3D bioprinting achieve both custom shape and vastly improved permissivity to an array of cell functions, however spherical-microbead-based bioinks are challenging to upscale, are inherently isotropic, and require secondary crosslinking. Here, bioinks based on high-aspect-ratio hydrogel microstrands are introduced to overcome these limitations. Pre-crosslinked, bulk hydrogels are deconstructed into microstrands by sizing through a grid with apertures of 40-100 µm. The microstrands are moldable and form a porous, entangled structure, stable in aqueous medium without further crosslinking. Entangled microstrands have rheological properties characteristic of excellent bioinks for extrusion bioprinting. Furthermore, individual microstrands align during extrusion and facilitate the alignment of myotubes. Cells can be placed either inside or outside the hydrogel phase with >90% viability. Chondrocytes co-printed with the microstrands deposit abundant extracellular matrix, resulting in a modulus increase from 2.7 to 780.2 kPa after 6 weeks of culture. This powerful approach to deconstruct bulk hydrogels into advanced bioinks is both scalable and versatile, representing an important toolbox for 3D bioprinting of architected hydrogels.
Collapse
Affiliation(s)
- Benjamin Kessel
- Department of Health Sciences and TechnologyHPL J 22Otto‐Stern‐Weg 7Zürich8093Switzerland
| | - Mihyun Lee
- Department of Health Sciences and TechnologyHPL J 22Otto‐Stern‐Weg 7Zürich8093Switzerland
| | - Angela Bonato
- Department of Health Sciences and TechnologyHPL J 22Otto‐Stern‐Weg 7Zürich8093Switzerland
| | - Yann Tinguely
- Department of Health Sciences and TechnologyHPL J 22Otto‐Stern‐Weg 7Zürich8093Switzerland
| | - Enrico Tosoratti
- Department of Health Sciences and TechnologyHPL J 22Otto‐Stern‐Weg 7Zürich8093Switzerland
| | - Marcy Zenobi‐Wong
- Department of Health Sciences and TechnologyHPL J 22Otto‐Stern‐Weg 7Zürich8093Switzerland
| |
Collapse
|
23
|
Yang J, Wang R, Xie D. Self-organization in suspensions of telechelic star polymers. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Shelton DS, Shelton SG, Daniel DK, Raja M, Bhat A, Tanguay RL, Higgs DM, Martins EP. Collective Behavior in Wild Zebrafish. Zebrafish 2020; 17:243-252. [PMID: 32513074 DOI: 10.1089/zeb.2019.1851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic change is expected to alter environments at alarming rates. To predict the impact of modified environments on social behavior, we must study the relationship between environmental features and collective behavior in a genetically tractable model, zebrafish (Danio rerio). Here, we conducted a field study to examine the relationship between salient environmental features and collective behavior in four populations of zebrafish. We found zebrafish in flowing water formed volatile groups, whereas those in still water had more consistent membership and leadership. Groups in fast-flowing water were large (up to 2000 fish) and tightly knit with short nearest neighbor distances, whereas group sizes were smaller (11 fish/group) with more space between individual fish in still and slow-flowing water. These observations point to a possible profound role of water flow in influencing collective behavior in wild zebrafish.
Collapse
Affiliation(s)
- Delia S Shelton
- Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon, USA.,Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Department of Biological Sciences, University of Windsor, Windsor, Canada
| | | | - Danita K Daniel
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Manickam Raja
- Department of Biomedical Engineering, The Kavery College of Engineering, Salem, India
| | - Anuradha Bhat
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Robyn L Tanguay
- Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon, USA
| | - Dennis M Higgs
- Department of Biological Sciences, University of Windsor, Windsor, Canada
| | - Emília P Martins
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
25
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
26
|
Koolivand A, Dimitrakopoulos P. Motion of an Elastic Capsule in a Trapezoidal Microchannel Under Stokes Flow Conditions. Polymers (Basel) 2020; 12:E1144. [PMID: 32429526 PMCID: PMC7284694 DOI: 10.3390/polym12051144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/29/2022] Open
Abstract
Even though the research interest in the last decades has been mainly focused on the capsule dynamics in cylindrical or rectangular ducts, channels with asymmetric cross-sections may also be desirable especially for capsule migration and sorting. Therefore, in the present study we investigate computationally the motion of an elastic spherical capsule in an isosceles trapezoidal microchannel at low and moderate flow rates under the Stokes regime. The steady-state capsule location is quite close to the location where the single-phase velocity of the surrounding fluid is maximized. Owing to the asymmetry of the trapezoidal channel, the capsule's steady-state shape is asymmetric while its membrane slowly tank-treads. In addition, our investigation reveals that tall trapezoidal channels with low base ratios produce significant off-center migration for large capsules compared to that for smaller capsules for a given channel length. Thus, we propose a microdevice for the sorting of artificial and physiological capsules based on their size, by utilizing tall trapezoidal microchannels with low base ratios. The proposed sorting microdevice can be readily produced via glass fabrication or as a microfluidic device via micromilling, while the required flow conditions do not cause membrane rupture.
Collapse
Affiliation(s)
- Abdollah Koolivand
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Panagiotis Dimitrakopoulos
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
27
|
Yamaguchi K, Tsuji T, Aoshiba K, Nakamura H, Abe S. What are appropriate values of relative krogh diffusion Constant of NO against CO and of theta-NO in alveolar septa? Respir Physiol Neurobiol 2020; 276:103415. [PMID: 32068129 DOI: 10.1016/j.resp.2020.103415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To propose new physical constants for NO and CO (Krogh diffusion constant ratio (KDNO/CO) and specific blood conductance for NO (θNO)) for calculating DMCO and Vc, according to Roughton-Forster's equation (Roughton and Forster, J. Appl. Physiol. 11: 290-302, 1957) from simultaneous DLNO and DLCO measurements. RESULTS AND CONCLUSIONS (1) The Graham's law is unacceptable for determining KDNO/CO because CO does not fulfil all the conditions of an "ideal" gas. We have re-estimated KDNO/CO in a new way based on difference in molar volumes of two gases (molar volume theory). The KDNO/CO thus decided is 2.34. (2) θNO measured with rapid-reaction, constant-flow method by Carlsen and Comroe (J. Gen. Physiol. 42: 83-107, 1958) may be underestimated by about 40 % due to unstirred water layer surrounding the erythrocyte. (3) Erythrocyte θO2 can be harvested from O2 release kinetics in presence of high concentration of dithionite, which effectively removes the unstirred water layer-elicited effect. Multiplication of erythrocyte θO2 by erythrocyte KDNO/O2 equals erythrocyte θNO, the value of which is 6.2 mL/min/mmHg/(mL⋅blood). According to the concepts of Kang et al. (RESPNB. 241: 62-71, 2017) and Borland et al. (RESPNB. 241: 58-61, 2017), in vitro θNO decided from rapid-mixing experiments may mirror bulk absorption of NO by erythrocytes. (4) In pulmonary capillaries, NO uptake takes place predominantly in the surface rim of the erythrocyte. This surface absorption of NO increases the θNO 10-fold versus bulk absorption of NO to about 60 mL/min/mmHg/(mL⋅blood).
Collapse
Affiliation(s)
- Kazuhiro Yamaguchi
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo 160-0023, Japan.
| | - Takao Tsuji
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo 160-0023, Japan.
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ibaraki 300-0395, Japan.
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ibaraki 300-0395, Japan.
| | - Shinji Abe
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo 160-0023, Japan.
| |
Collapse
|
28
|
Head D, Storm C. Nonaffinity and Fluid-Coupled Viscoelastic Plateau for Immersed Fiber Networks. PHYSICAL REVIEW LETTERS 2019; 123:238005. [PMID: 31868451 DOI: 10.1103/physrevlett.123.238005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Indexed: 06/10/2023]
Abstract
We employ a matrix-based solver for the linear rheology of fluid-immersed disordered spring networks to reveal four distinct dynamic response regimes. One regime-completely absent in the known vacuum response-exhibits coupled fluid flow and network deformation, with both components responding nonaffinely. This regime contains an additional plateau (peak) in the frequency-dependent storage (loss) modulus-features that vanish without full hydrodynamic interactions. The mechanical response of immersed networks such as biopolymers and hydrogels is thus richer than previously established and offers additional modalities for design and control through fluid interactions.
Collapse
Affiliation(s)
- David Head
- School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
29
|
Liao CT, Chen YL. Shear-induced non-monotonic viscosity dependence for model red blood cell suspensions in microvessels. BIOMICROFLUIDICS 2019; 13:064115. [PMID: 31768201 PMCID: PMC6861169 DOI: 10.1063/1.5127879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The cell-free layer thickness of an aggregating red blood cell (RBC) suspension in a rectangular microchannel is investigated by hybrid fluid-particle numerical modeling. Several factors affect the suspension viscosity, cell-free layer thickness, and the cell aggregate distribution. These include the hematocrit, vessel size, red cell stiffness, aggregation interaction, and shear rate. In particular, the effect of the shear rate on the cell-free layer thickness is controversial. We found that the suspension viscosity increases along with a decrease in the cell-free layer thickness as the shear rate increases for aggregating model RBCs at low shear rates. At moderate to high shear rates, the cell-free layer thickness increases with the increasing shear rate from medium to strong shear flow for both 10% and 20% red blood cell suspensions.
Collapse
|
30
|
Unraveling the Vascular Fate of Deformable Circulating Tumor Cells Via a Hierarchical Computational Model. Cell Mol Bioeng 2019. [DOI: 10.1007/s12195-019-00587-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
31
|
Singha S, Malipeddi AR, Zurita-Gotor M, Sarkar K, Shen K, Loewenberg M, Migler KB, Blawzdziewicz J. Mechanisms of spontaneous chain formation and subsequent microstructural evolution in shear-driven strongly confined drop monolayers. SOFT MATTER 2019; 15:4873-4889. [PMID: 31165134 PMCID: PMC6914215 DOI: 10.1039/c9sm00536f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It was experimentally demonstrated by Migler and his collaborators [Phys. Rev. Lett., 2001, 86, 1023; Langmuir, 2003, 19, 8667] that a strongly confined drop monolayer sheared between two parallel plates can spontaneously develop a flow-oriented drop-chain morphology. Here we show that the formation of the chain-like microstructure is driven by far-field Hele-Shaw quadrupolar interactions between drops, and that drop spacing within chains is controlled by the effective drop repulsion associated with the existence of confinement-induced reversing streamlines, i.e., the swapping trajectory effect. Using direct numerical simulations and an accurate quasi-2D model that incorporates quadrupolar and swapping-trajectory contributions, we analyze microstructural evolution in a monodisperse drop monolayer. Consistent with experimental observations, we find that drop spacing within individual chains is usually uniform. Further analysis shows that at low area fractions all chains have the same spacing, but at higher area fractions there is a large spacing variation from chain to chain. These findings are explained in terms of uncompressed and compressed chains. At low area fractions most chains are uncompressed (spacing equals lst, which is the stable separation of an isolated pair). At higher area fractions compressed chains (with tighter spacing) are formed in a process of chain zipping along y-shaped structural defects. We also discuss the relevance of our findings to other shear-driven systems, such as suspensions of spheres in non-Newtonian fluids.
Collapse
Affiliation(s)
- Sagnik Singha
- Department of Mechanical Engineering, Texas Tech University, Box 41021, Lubbock, TX 79409, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Reichel F, Mauer J, Nawaz AA, Gompper G, Guck J, Fedosov DA. High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability. Biophys J 2019; 117:14-24. [PMID: 31235179 DOI: 10.1016/j.bpj.2019.05.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/03/2019] [Accepted: 05/22/2019] [Indexed: 02/01/2023] Open
Abstract
The motion of red blood cells (RBCs) in microchannels is important for microvascular blood flow and biomedical applications such as blood analysis in microfluidics. The current understanding of the complexity of RBC shapes and dynamics in microchannels is mainly based on several simulation studies, but there are a few systematic experimental investigations. Here, we present a combined study that systematically characterizes RBC behavior for a wide range of flow rates and channel sizes. Even though simulations and experiments generally show good agreement, experimental observations demonstrate that there is no single well-defined RBC state for fixed flow conditions but rather a broad distribution of states. This result can be attributed to the inherent variability in RBC mechanical properties, which is confirmed by a model that takes the variation in RBC shear elasticity into account. This represents a significant step toward a quantitative connection between RBC behavior in microfluidic devices and their mechanical properties, which is essential for a high-throughput characterization of diseased cells.
Collapse
Affiliation(s)
- Felix Reichel
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Johannes Mauer
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Ahmad Ahsan Nawaz
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Max Planck Institute for the Science of Light, Erlangen, Germany.
| | - Dmitry A Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
33
|
Lázaro GR, Hernández-Machado A, Pagonabarraga I. Collective behavior of red blood cells in confined channels. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:46. [PMID: 30989403 DOI: 10.1140/epje/i2019-11805-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
We study the flow properties of red blood cells in confined channels, when the channel width is comparable to the cell size. We focus on the case of intermediate concentrations when hydrodynamic interactions between cells play a dominant role. This regime is different to the case of low concentration in which the cells behave as hydrodynamically isolated. In this last case, the dynamic behavior is entirely controlled by the interplay between the interaction with the wall and the elastic response of the cell membrane. Our results highlight the different fluid properties when collective flow is present. The cells acquire a characteristic slipper shape, and parachute shapes are only observed at very large capillary numbers. We have characterized the spatial ordering and the layering by means of a pairwise correlation function. Focusing effects are observed at the core of the channel instead of at the lateral position typical of the single-train case. These results indicate that at these intermediate concentrations we observed at the microscale the first steps of the well-known macroscopic Fahraeus-Lindqvist effect. The rheological properties of the suspension are studied by means of the effective viscosity, with an expected shear-thinning behavior. Two main differences are obtained with respect to the single-train case. First, a large magnitude of the viscosity is obtained indicating a high resistance to flow. Secondly, the shear-thinning behavior is obtained at larger values of the capillary number respect to the single-train case. These results suggest that the phenomena of ordering in space and orientation occur at higher values of the capillary number.
Collapse
Affiliation(s)
- Guillermo R Lázaro
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 645, E08028, Barcelona, Spain
| | - Aurora Hernández-Machado
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 645, E08028, Barcelona, Spain
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 645, E08028, Barcelona, Spain.
- Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne, Batochime, Avenue Forel 2, 1015, Lausanne, Switzerland.
- Universitat de Barcelona Institute of Complex Systems, Barcelona, Spain.
| |
Collapse
|
34
|
Iss C, Midou D, Moreau A, Held D, Charrier A, Mendez S, Viallat A, Helfer E. Self-organization of red blood cell suspensions under confined 2D flows. SOFT MATTER 2019; 15:2971-2980. [PMID: 30907900 DOI: 10.1039/c8sm02571a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dynamic self-organized structures with long-range order have been observed in emulsions and suspensions of particles under confined flows. Here, experiments on red blood cell suspensions under quasi-2D confined flows and numerical simulations were combined to explore long-distance self-organization as a function of the channel width, red blood cell concentration and flow rate. They reveal and quantitatively describe the existence of red blood cell long-range alignments and heterogeneous cross-stream concentration profiles characterized by red blood cell-enriched bands parallel to the flow. Numerical simulations show that, in addition to the degree of lateral confinement, the key factor for the structural self-organization of a suspension of particles under a confined flow is the deformability of the constituent particles.
Collapse
Affiliation(s)
- Cécile Iss
- Aix Marseille Univ, CNRS, CINAM, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Han M, Whitmer JK, Luijten E. Dynamics and structure of colloidal aggregates under microchannel flow. SOFT MATTER 2019; 15:744-751. [PMID: 30633289 DOI: 10.1039/c8sm01451e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The kinetics of colloidal gels under narrow confinement are of widespread practical relevance, with applications ranging from flow in biological systems to 3D printing. Although the properties of such gels under uniform shear have received considerable attention, the effects of strongly nonuniform shear are far less understood. Motivated by the possibilities offered by recent advances in nano- and microfluidics, we explore the generic phase behavior and dynamics of attractive colloids subject to microchannel flow, using mesoscale particle-based hydrodynamic simulations. Whereas moderate shear strengths result in shear-assisted crystallization, high shear strengths overwhelm the attractions and lead to melting of the clusters. Within the transition region between these two regimes, we discover remarkable dynamics of the colloidal aggregates. Shear-induced surface melting of the aggregates, in conjunction with the Plateau-Rayleigh instability and size-dependent cluster velocities, leads to a cyclic process in which elongated threads of colloidal aggregates break up and reform, resulting in large crystallites. These insights offer new possibilities for the control of colloidal dynamics and aggregation under confinement.
Collapse
Affiliation(s)
- Ming Han
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, USA
| | - Jonathan K Whitmer
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Erik Luijten
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA. and Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA and Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
36
|
Myung JS, Roosen-Runge F, Winkler RG, Gompper G, Schurtenberger P, Stradner A. Weak Shape Anisotropy Leads to a Nonmonotonic Contribution to Crowding, Impacting Protein Dynamics under Physiologically Relevant Conditions. J Phys Chem B 2018; 122:12396-12402. [PMID: 30499666 PMCID: PMC6349356 DOI: 10.1021/acs.jpcb.8b07901] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The effect of a nonspherical
particle shape on the dynamics in
crowded solutions presents a significant challenge for a comprehensive
understanding of interaction and structural relaxation in biological
and soft matter. We report that small deviations from a spherical
shape induce a nonmonotonic contribution to the crowding effect on
the short-time cage diffusion compared with spherical systems, using
molecular dynamics simulations with mesoscale hydrodynamics of a multiparticle
collision dynamics fluid in semidilute systems with volume fractions
smaller than 0.35. We show that the nonmonotonic effect due to anisotropy
is caused by the combination of a reduced relative mobility over the
entire concentration range and a looser and less homogeneous cage
packing of nonspherical particles. Our finding stresses that nonsphericity
induces new complexity, which cannot be accounted for in effective
sphere models, and is of great interest in applications such as formulations
as well as for the fundamental understanding of soft matter in general
and crowding effects in living cells in particular.
Collapse
Affiliation(s)
- Jin Suk Myung
- Division of Physical Chemistry, Department of Chemistry , Lund University , SE-221 00 Lund , Sweden
| | - Felix Roosen-Runge
- Division of Physical Chemistry, Department of Chemistry , Lund University , SE-221 00 Lund , Sweden
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation , Forschungszentrum Jülich , D-52425 Jülich , Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation , Forschungszentrum Jülich , D-52425 Jülich , Germany
| | - Peter Schurtenberger
- Division of Physical Chemistry, Department of Chemistry , Lund University , SE-221 00 Lund , Sweden
| | - Anna Stradner
- Division of Physical Chemistry, Department of Chemistry , Lund University , SE-221 00 Lund , Sweden
| |
Collapse
|
37
|
M KR, Bhattacharya S, DasGupta S, Chakraborty S. Collective dynamics of red blood cells on an in vitro microfluidic platform. LAB ON A CHIP 2018; 18:3939-3948. [PMID: 30475361 DOI: 10.1039/c8lc01198b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Understanding the dynamics of blood flow in physiologically relevant confinements turns out to be an outstanding proposition in biomedical research. Despite the large number of studies being reported to theoretically elucidate the dynamics of red blood cells (RBCs) in confined geometries, in vitro experimental studies unveiling the implications of the collective dynamics of red blood cells in physiologically relevant bio-mimetic microfluidic channels remain elusive. Here, we investigate the implications of complex dynamvic interactions between the whole blood and a deformable channel wall fabricated using a hydrogel matrix. For a range of flow rates, we map the trajectories of the RBCs for varying levels of softness of the microchannel wall. We compare these scenarios with the reference cases of rigid polydimethylsiloxane (PDMS) channels. Our results reveal that the smallest channels investigated herein exhibit the most intricate interactions between the collective dynamics of the RBC and the wall flexibility, attributable to confinement-induced hydrodynamic interactions in the presence of spatially varying shear rates. These results may open up new paradigms in conceptual understanding of in vivo dynamics of blood flow through simple in vitro experiments on a simple microfluidic platform.
Collapse
Affiliation(s)
- Kiran Raj M
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
| | | | | | | |
Collapse
|
38
|
Chakraborty S. Electrokinetics with blood. Electrophoresis 2018; 40:180-189. [DOI: 10.1002/elps.201800353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Suman Chakraborty
- Department of Mechanical Engineering; Indian Institute of Technology Kharagpur; Kharagpur India
| |
Collapse
|
39
|
Ahmad A, Dubey V, Singh VR, Tinguely JC, Øie CI, Wolfson DL, Mehta DS, So PTC, Ahluwalia BS. Quantitative phase microscopy of red blood cells during planar trapping and propulsion. LAB ON A CHIP 2018; 18:3025-3036. [PMID: 30132501 PMCID: PMC6161620 DOI: 10.1039/c8lc00356d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/02/2018] [Indexed: 05/12/2023]
Abstract
Red blood cells (RBCs) have the ability to undergo morphological deformations during microcirculation, such as changes in surface area, volume and sphericity. Optical waveguide trapping is suitable for trapping, propelling and deforming large cell populations along the length of the waveguide. Bright field microscopy employed with waveguide trapping does not provide quantitative information about structural changes. Here, we have combined quantitative phase microscopy and waveguide trapping techniques to study changes in RBC morphology during planar trapping and transportation. By using interference microscopy, time-lapsed interferometric images of trapped RBCs were recorded in real-time and subsequently utilized to reconstruct optical phase maps. Quantification of the phase differences before and after trapping enabled study of the mechanical effects during planar trapping. During planar trapping, a decrease in the maximum phase values, an increase in the surface area and a decrease in the volume and sphericity of RBCs were observed. QPM was used to analyze the phase values for two specific regions within RBCs: the annular rim and the central donut. The phase value of the annular rim decreases whereas it increases for the central donut during planar trapping. These changes correspond to a redistribution of cytosol inside the RBC during planar trapping and transportation.
Collapse
Affiliation(s)
- Azeem Ahmad
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
- Department of Physics
, Indian Institute of Technology Delhi
,
New Delhi 110016
, India
| | - Vishesh Dubey
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
- Department of Physics
, Indian Institute of Technology Delhi
,
New Delhi 110016
, India
| | - Vijay Raj Singh
- Department of Mechanical & Biological Engineering
, Massachusetts Institute of Technology
,
Cambridge
, MA
02139
, USA
- BioSym IRG
, Singapore-Alliance for Science & Technology Center
,
Singapore
, Singapore
| | - Jean-Claude Tinguely
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
| | - Cristina Ionica Øie
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
| | - Deanna L. Wolfson
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
| | - Dalip Singh Mehta
- Department of Physics
, Indian Institute of Technology Delhi
,
New Delhi 110016
, India
| | - Peter T. C. So
- Department of Mechanical & Biological Engineering
, Massachusetts Institute of Technology
,
Cambridge
, MA
02139
, USA
- BioSym IRG
, Singapore-Alliance for Science & Technology Center
,
Singapore
, Singapore
| | - Balpreet Singh Ahluwalia
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
| |
Collapse
|
40
|
Cooley M, Sarode A, Hoore M, Fedosov DA, Mitragotri S, Sen Gupta A. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. NANOSCALE 2018; 10:15350-15364. [PMID: 30080212 PMCID: PMC6247903 DOI: 10.1039/c8nr04042g] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Intravascular drug delivery technologies majorly utilize spherical nanoparticles as carrier vehicles. Their targets are often at the blood vessel wall or in the tissue beyond the wall, such that vehicle localization towards the wall (margination) becomes a pre-requisite for their function. To this end, some studies have indicated that under flow environment, micro-particles have a higher propensity than nano-particles to marginate to the wall. Also, non-spherical particles theoretically have a higher area of surface-adhesive interactions than spherical particles. However, detailed systematic studies that integrate various particle size and shape parameters across nano-to-micro scale to explore their wall-localization behavior in RBC-rich blood flow, have not been reported. We address this gap by carrying out computational and experimental studies utilizing particles of four distinct shapes (spherical, oblate, prolate, rod) spanning nano- to-micro scale sizes. Computational studies were performed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package, with Dissipative Particle Dynamics (DPD). For experimental studies, model particles were made from neutrally buoyant fluorescent polystyrene spheres, that were thermo-stretched into non-spherical shapes and all particles were surface-coated with biotin. Using microfluidic setup, the biotin-coated particles were flowed over avidin-coated surfaces in absence versus presence of RBCs, and particle adhesion and retention at the surface was assessed by inverted fluorescence microscopy. Our computational and experimental studies provide a simultaneous analysis of different particle sizes and shapes for their retention in blood flow and indicate that in presence of RBCs, micro-scale non-spherical particles undergo enhanced 'margination + adhesion' compared to nano-scale spherical particles, resulting in their higher binding. These results provide important insight regarding improved design of vascularly targeted drug delivery systems.
Collapse
Affiliation(s)
- Michaela Cooley
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Xu Z, Kleinstreuer C. Heterogeneous blood flow in microvessels with applications to nanodrug transport and mass transfer into tumor tissue. Biomech Model Mechanobiol 2018; 18:99-110. [PMID: 30105538 DOI: 10.1007/s10237-018-1071-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/06/2018] [Indexed: 11/25/2022]
Abstract
Nanodrug transport in tumor microvasculature and deposition/extravasation into tumor tissue are an important link in the nanodrug delivery process. Considering heterogeneous blood flow, such a dual process is numerically studied. The hematocrit distribution is solved by directly considering the forces experienced by the red blood cells (RBCs), i.e., the wall lift force and the random cell collision force. Using a straight microvessel as a test bed, validated computer simulations are performed to determine blood flow characteristics as well as the resulting nanodrug distribution and extravasation. The results confirm that RBCs migrate away from the vessel wall, leaving a cell-free layer (CFL). Nanodrug particles tend to preferentially accumulate in the CFL, leading to increased concentration near the endothelial surface layer. However, shear-induced NP diffusion is diminished within the CFL, causing to a much slower lateral transport rate into tumor tissue. These competing effects determine the NP deposition/extravasation rates. The present modeling framework and NP flux results provide new physical insight. The analysis can be readily extended to simulations of NP transport in blood microvessels of actual tumors.
Collapse
Affiliation(s)
- Z Xu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, 911 Oval Drive, Raleigh, NC, 27695-7910, USA.,Corporate Research and Technology, Eaton Corporation, W126N7250 Flint Dr, Menomonee Falls, WI, 53051, USA
| | - C Kleinstreuer
- Department of Mechanical and Aerospace Engineering, North Carolina State University, 911 Oval Drive, Raleigh, NC, 27695-7910, USA. .,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC, 27695-7910, USA.
| |
Collapse
|
42
|
Saito K, Okubo S, Kimura Y. Change in collective motion of colloidal particles driven by an optical vortex with driving force and spatial confinement. SOFT MATTER 2018; 14:6037-6042. [PMID: 29978882 DOI: 10.1039/c8sm00582f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We studied the change in collective behavior of optically driven colloidal particles on a circular path. The particles are simultaneously driven by the orbital angular momentum of an optical vortex beam generated by holographic optical tweezers. The driving force is controlled by the topological charge l of the vortex. By varying the driving force and spatial confinement, four characteristic collective motions were observed. The collective behavior results from the interplay between the optical interaction, hydrodynamic interaction and spatial confinement. Varying the topological charge of an optical vortex not only induces changes in driving force but also alters the stability of three-dimensional optical trapping. The switch between dynamic clustering and stable clustering was observed in this manner. Decreasing the cell thickness diminishes the velocity of the respective particles and increases the spatial confinement. A jamming-like characteristic collective motion appears when the thickness is small and the topological charge is large. In this regime, a ring of equally-spaced doublets was spontaneously formed in systems composed of an even number of particles.
Collapse
Affiliation(s)
- Keita Saito
- Department of Physics, School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | | | | |
Collapse
|
43
|
Shen Z, Fischer TM, Farutin A, Vlahovska PM, Harting J, Misbah C. Blood Crystal: Emergent Order of Red Blood Cells Under Wall-Confined Shear Flow. PHYSICAL REVIEW LETTERS 2018; 120:268102. [PMID: 30004752 DOI: 10.1103/physrevlett.120.268102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Driven or active suspensions can display fascinating collective behavior, where coherent motions or structures arise on a scale much larger than that of the constituent particles. Here, we report numerical simulations and an analytical model revealing that deformable particles and, in particular, red blood cells (RBCs) assemble into regular patterns in a confined shear flow. The pattern wavelength concurs well with our experimental observations. The order is of a pure hydrodynamic and inertialess origin, and it emerges from a subtle interplay between (i) hydrodynamic repulsion by the bounding walls that drives deformable cells towards the channel midplane and (ii) intercellular hydrodynamic interactions that can be attractive or repulsive depending on cell-cell separation. Various crystal-like structures arise depending on the RBC concentration and confinement. Hardened RBCs in experiments and rigid particles in simulations remain disordered under the same conditions where deformable RBCs form regular patterns, highlighting the intimate link between particle deformability and the emergence of order.
Collapse
Affiliation(s)
- Zaiyi Shen
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - Thomas M Fischer
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
- Laboratory for Red Cell Rheology, 52134 Herzogenrath, Germany
| | - Alexander Farutin
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - Petia M Vlahovska
- Engineering Sciences and Applied Math, Northwestern University, Evanston 60208, USA
| | - Jens Harting
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Fürther Strasse 248, 90429 Nürnberg, Germany
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Chaouqi Misbah
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| |
Collapse
|
44
|
Singh SP, Gompper G, Winkler RG. Steady state sedimentation of ultrasoft colloids. J Chem Phys 2018; 148:084901. [PMID: 29495770 DOI: 10.1063/1.5001886] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The structural and dynamical properties of ultra-soft colloids-star polymers-exposed to a uniform external force field are analyzed by applying the multiparticle collision dynamics technique, a hybrid coarse-grain mesoscale simulation approach, which captures thermal fluctuations and long-range hydrodynamic interactions. In the weak-field limit, the structure of the star polymer is nearly unchanged; however, in an intermediate regime, the radius of gyration decreases, in particular transverse to the sedimentation direction. In the limit of a strong field, the radius of gyration increases with field strength. Correspondingly, the sedimentation coefficient increases with increasing field strength, passes through a maximum, and decreases again at high field strengths. The maximum value depends on the functionality of the star polymer. High field strengths lead to symmetry breaking with trailing, strongly stretched polymer arms and a compact star-polymer body. In the weak-field-linear response regime, the sedimentation coefficient follows the scaling relation of a star polymer in terms of functionality and arm length.
Collapse
Affiliation(s)
- Sunil P Singh
- Indian Institute of Science Education and Research Bhopal, Bhopal By pass Road Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
45
|
Hwang MY, Kim SG, Lee HS, Muller SJ. Elastic particle deformation in rectangular channel flow as a measure of particle stiffness. SOFT MATTER 2018; 14:216-227. [PMID: 29227498 DOI: 10.1039/c7sm01829k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In this study, we experimentally observed and characterized soft elastic particle deformation in confined flow in a microchannel with a rectangular cross-section. Hydrogel microparticles of pNIPAM were produced using two different concentrations of crosslinker. This resulted in particles with two different shear moduli of 13.3 ± 5.5 Pa and 32.5 ± 15.7 Pa and compressive moduli of 66 ± 10 Pa and 79 ± 15 Pa, respectively, as measured by capillary micromechanics. Under flow, the particle shapes transitioned from circular to egg, triangular, arrowhead, and ultimately parachute shaped with increasing shear rate. The shape changes were reversible, and deformed particles relaxed back to circular/spherical in the absence of flow. The thresholds for each shape transition were quantified using a non-dimensional radius of curvature at the tip, particle deformation, circularity, and the depth of the concave dimple at the trailing edge. Several of the observed shapes were distinct from those previously reported in the literature for vesicles and capsules; the elastic particles had a narrower leading tip and a lower circularity. Due to variations in the shear moduli between particles within a batch of particles, each flow rate corresponded to a small but finite range of capillary number (Ca) and resulted in a series of shapes. By arranging the images on a plot of Ca versus circularity, a direct correlation was developed between shape and Ca and thus between particle deformation and shear modulus. As the shape was very sensitive to differences in shear modulus, particle deformation in confined flow may allow for better differentiation of microparticle shear modulus than other methods.
Collapse
Affiliation(s)
- Margaret Y Hwang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
46
|
Direct Numerical Simulation of Cellular-Scale Blood Flow in 3D Microvascular Networks. Biophys J 2018; 113:2815-2826. [PMID: 29262374 DOI: 10.1016/j.bpj.2017.10.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/16/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
We present, to our knowledge, the first direct numerical simulation of 3D cellular-scale blood flow in physiologically realistic microvascular networks. The vascular networks are designed following in vivo images and data, and are comprised of bifurcating, merging, and winding vessels. Our model resolves the large deformation and dynamics of each individual red blood cell flowing through the networks with high fidelity, while simultaneously retaining the highly complex geometric details of the vascular architecture. To our knowledge, our simulations predict several novel and unexpected phenomena. We show that heterogeneity in hemodynamic quantities, which is a hallmark of microvascular blood flow, appears both in space and time, and that the temporal heterogeneity is more severe than its spatial counterpart. The cells are observed to frequently jam at vascular bifurcations resulting in reductions in hematocrit and flow rate in the daughter and mother vessels. We find that red blood cell jamming at vascular bifurcations results in several orders-of-magnitude increase in hemodynamic resistance, and thus provides an additional mechanism of increased in vivo blood viscosity as compared to that determined in vitro. A striking result from our simulations is negative pressure-flow correlations observed in several vessels, implying a significant deviation from Poiseuille's law. Furthermore, negative correlations between vascular resistance and hematocrit are observed in various vessels, also defying a major principle of particulate suspension flow. To our knowledge, these novel findings are absent in blood flow in straight tubes, and they underscore the importance of considering realistic physiological geometry and resolved cellular interactions in modeling microvascular hemodynamics.
Collapse
|
47
|
Das S, Riest J, Winkler RG, Gompper G, Dhont JKG, Nägele G. Clustering and dynamics of particles in dispersions with competing interactions: theory and simulation. SOFT MATTER 2017; 14:92-103. [PMID: 29199754 DOI: 10.1039/c7sm02019h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dispersions of particles with short-range attractive and long-range repulsive interactions exhibit rich equilibrium microstructures and a complex phase behavior. We present theoretical and simulation results for structural and, in particular, short-time diffusion properties of a colloidal model system with such interactions, both in the dispersed-fluid and equilibrium-cluster phase regions. The particle interactions are described by a generalized Lennard-Jones-Yukawa pair potential. For the theoretical-analytical description, we apply the hybrid Beenakker-Mazur pairwise additivity (BM-PA) scheme. The static structure factor input to this scheme is calculated self-consistently using the Zerah-Hansen integral equation theory approach. In the simulations, a hybrid simulation method is adopted, combing molecular dynamics simulations of colloids with the multiparticle collision dynamics approach for the fluid, which fully captures hydrodynamic interactions. The comparison of our theoretical and simulation results confirms the high accuracy of the BM-PA scheme for dispersed-fluid phase systems. For particle attraction strengths exceeding a critical value, our simulations yield an equilibrium cluster phase. Calculations of the mean lifetime of the appearing clusters and the comparison with the analytical prediction of the dissociation time of an isolated particle pair reveal quantitative differences pointing to the importance of many-particle hydrodynamic interactions for the cluster dynamics. The cluster lifetime in the equilibrium-cluster phase increases far stronger with increasing attraction strength than that in the dispersed-fluid phase. Moreover, significant changes in the cluster shapes are observed in the course of time. Hence, an equilibrium-cluster dispersion cannot be treated dynamically as a system of permanent rigid bodies.
Collapse
Affiliation(s)
- Shibananda Das
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Li X, Li H, Chang HY, Lykotrafitis G, Em Karniadakis G. Computational Biomechanics of Human Red Blood Cells in Hematological Disorders. J Biomech Eng 2017; 139:2580906. [PMID: 27814430 DOI: 10.1115/1.4035120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 02/02/2023]
Abstract
We review recent advances in multiscale modeling of the biomechanical characteristics of red blood cells (RBCs) in hematological diseases, and their relevance to the structure and dynamics of defective RBCs. We highlight examples of successful simulations of blood disorders including malaria and other hereditary disorders, such as sickle-cell anemia, spherocytosis, and elliptocytosis.
Collapse
Affiliation(s)
- Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912 e-mail:
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269;Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - George Em Karniadakis
- Fellow ASME Division of Applied Mathematics, Brown University, Providence, RI 02912 e-mail:
| |
Collapse
|
49
|
Chen Y, Li D, Li Y, Wan J, Li J, Chen H. Margination of Stiffened Red Blood Cells Regulated By Vessel Geometry. Sci Rep 2017; 7:15253. [PMID: 29127352 PMCID: PMC5681636 DOI: 10.1038/s41598-017-15524-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
Margination of stiffened red blood cells has been implicated in many vascular diseases. Here, we report the margination of stiffened RBCs in vivo, and reveal the crucial role of the vessel geometry in the margination by calculations when the blood is seen as viscoelastic fluid. The vessel-geometry-regulated margination is then confirmed by in vitro experiments in microfluidic devices, and it establishes new insights to cell sorting technology and artificial blood vessel fabrication.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| | - Donghai Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| | - Yongjian Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| | - Jiandi Wan
- Department of Microsystem Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Jiang Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haosheng Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
50
|
Ye T, Phan-Thien N, Lim CT, Li Y. Red blood cell motion and deformation in a curved microvessel. J Biomech 2017; 65:12-22. [PMID: 29102268 DOI: 10.1016/j.jbiomech.2017.09.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/23/2017] [Accepted: 09/25/2017] [Indexed: 11/24/2022]
Abstract
The flow of cells through curved vessels is often encountered in various biomedical and bioengineering applications, such as red blood cells (RBCs) passing through the curved arteries in circulation, and cells sorting through a shear-induced migration in a curved channels. Most of past numerical studies focused on the cell deformation in small straight microvessels, or on the flow pattern in large curved vessels without considering the cell deformation. However, there have been few attempts to study the cell deformation and the associated flow pattern in a curved microvessel. In this work, a particle-based method, smoothed dissipative particle dynamics (SDPD), is used to simulate the motion and deformation of a RBC in a curved microvessel of diameter comparable to the RBC diameter. The emphasis is on the effects of the curvature, the type and the size of the curved microvessel on the RBC deformation and the flow pattern. The simulation results show that a small curved shape of the microvessel has negligible effect on the RBC behavior and the flow pattern which are similar to those in a straight microvessel. When the microvessel is high in curvature, the secondary flow comes into being with a pair of Dean vortices, and the velocity profile of the primary flow is skewed toward the inner wall of the microvessel. The RBC also loses the axisymmetric deformation, and it is stretched first and then shrinks when passing through the curved part of the microvessel with the large curvature. It is also found that a pair of Dean vortices arise only under the condition of De>1 (De is the Dean number, a ratio of centrifugal to viscous competition). The Dean vortices are more easily observed in the larger or more curved microvessels. Finally, it is observed that the velocity profile of primary flow is skewed toward the inner wall of curved microvessel, i.e., the fluid close to the inner wall flows faster than that close to the outer wall. This is contrary to the common sense in large curved vessels. This velocity skewness was found to depend on the curvature of the microvessel, as well as the viscous and inertial forces.
Collapse
Affiliation(s)
- Ting Ye
- Department of Computational Mathematics, Jilin University, China.
| | - Nhan Phan-Thien
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Chwee Teck Lim
- Department of Mechanical Engineering, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore
| | - Yu Li
- Department of Computational Mathematics, Jilin University, China
| |
Collapse
|