1
|
Genetically modified hematopoietic stem/progenitor cells that produce IL-10-secreting regulatory T cells. Proc Natl Acad Sci U S A 2019; 116:2634-2639. [PMID: 30683721 DOI: 10.1073/pnas.1811984116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Random amino acid copolymers used in the treatment of multiple sclerosis in man or experimental autoimmune encephalomyelitis (EAE) in mice [poly(Y,E,A,K)n, known as Copaxone, and poly(Y,F,A,K)n] function at least in part by generation of IL-10-secreting regulatory T cells that mediate bystander immunosuppression. The mechanism through which these copolymers induce Tregs is unknown. To investigate this question, four previously described Vα3.2 Vβ14 T cell receptor (TCR) cDNAs, the dominant clonotype generated in splenocytes after immunization of SJL mice, that differed only in their CDR3 sequences were utilized to generate retrogenic mice. The high-level production of IL-10 as well as IL-5 and small amounts of the related cytokines IL-4 and IL-13 by CD4+ T cells isolated from the splenocytes of these mice strongly suggests that the TCR itself encodes information for specific cytokine secretion. The proliferation and production of IL-10 by these Tregs was costimulated by activation of glucocorticoid-induced TNF receptor (GITR) (expressed at high levels by these cells) through its ligand GITRL. A mechanism for generation of cells with this specificity is proposed. Moreover, retrogenic mice expressing these Tregs were protected from induction of EAE by the appropriate autoantigen.
Collapse
|
2
|
Yin ML, Song HL, Yang Y, Zheng WP, Liu T, Shen ZY. Effect of CXCR3/HO-1 genes modified bone marrow mesenchymal stem cells on small bowel transplant rejection. World J Gastroenterol 2017; 23:4016-4038. [PMID: 28652655 PMCID: PMC5473121 DOI: 10.3748/wjg.v23.i22.4016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/20/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether bone marrow mesenchymal stem cells (BMMSCs) modified with the HO-1 and CXCR3 genes can augment the inhibitory effect of BMMSCs on small bowel transplant rejection. METHODS Lewis rat BMMSCs were cultured in vitro. Third-passage BMMSCs were transduced with the CXCR3/HO-1 genes or the HO-1 gene alone. The rats were divided into six groups and rats in the experimental group were pretreated with BMMSCs 7 d prior to small bowel transplant. Six time points (instant, 1 d, 3 d, 7 d, 10 d, and 14 d) (n = 6) were chosen for each group. Hematoxylin-eosin staining was used to observe pathologic rejection, while immunohistochemistry and Western blot were used to detect protein expression. Flow cytometry was used to detect T lymphocytes and enzyme linked immunosorbent assay was used to detect cytokines. RESULTS The median survival time of BMMSCs from the CXCR3/HO-1 modified group (53 d) was significantly longer than that of the HO-1 modified BMMSCs group (39 d), the BMMSCs group (26 d), and the NS group (control group) (16 d) (P < 0.05). Compared with BMMSCs from the HO-1 modified BMMSCs, BMMSCs, and NS groups, rejection of the small bowel in the CXCR3/HO-1 modified group was significantly reduced, while the weight of transplant recipients was also significantly decreased (P < 0.05). Furthermore, IL-2, IL-6, IL-17, IFN-γ, and TNF-α levels were significantly decreased and the levels of IL-10 and TGF-β were significantly increased (P < 0.05). CONCLUSION BMMSCs modified with the CXCR3 and HO-1 genes can abrogate the rejection of transplanted small bowel more effectively and significantly increase the survival time of rats that receive a small bowel transplant.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Survival
- Cells, Cultured
- Cytokines/blood
- Graft Rejection/enzymology
- Graft Rejection/immunology
- Graft Rejection/pathology
- Graft Rejection/prevention & control
- Graft Survival
- Heme Oxygenase-1/genetics
- Heme Oxygenase-1/metabolism
- Intestine, Small/enzymology
- Intestine, Small/immunology
- Intestine, Small/pathology
- Intestine, Small/transplantation
- Male
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/enzymology
- Mesenchymal Stem Cells/immunology
- Phenotype
- Rats, Inbred BN
- Rats, Inbred Lew
- Receptors, CXCR3/genetics
- Receptors, CXCR3/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Time Factors
- Transfection
Collapse
|
3
|
Adair P, Kim YC, Pratt KP, Scott DW. Avidity of human T cell receptor engineered CD4(+) T cells drives T-helper differentiation fate. Cell Immunol 2015; 299:30-41. [PMID: 26653006 DOI: 10.1016/j.cellimm.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 12/18/2022]
Abstract
The role of the T cell receptor (TCR) in antigen recognition and activation of T lymphocytes is well established. However, how the TCR affects T-helper differentiation/skewing is less well understood, particularly for human CD4(+) (CD4) T cell subsets. Here we investigate the role of TCR specific antigen avidity in differentiation and maintenance of human Th1, Th2 and Th17 subsets. Two human TCRs, both specific for the same peptide antigen but with different avidities, were cloned and expressed in human CD4 T cells. These TCR engineered cells were then stimulated with specific antigen in unskewed and T-helper skewed conditions. We show that TCR avidity can control the percentage of IL-4 and IFN-γ co-expression in unskewed TCR engineered cells, that effector function can be maintained in a TCR avidity-dependent manner in skewed TCR engineered cells, and that increased TCR avidity can accelerate Th1 skewing of TCR engineered cells.
Collapse
Affiliation(s)
- Patrick Adair
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA; Molecular Medicine Program, University of Maryland School of Medicine, Baltimore, MD 20814, USA
| | - Yong Chan Kim
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA
| | - Kathleen P Pratt
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA
| | - David W Scott
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA
| |
Collapse
|
4
|
Li J, Yu F, Chen Y, Oupický D. Polymeric drugs: Advances in the development of pharmacologically active polymers. J Control Release 2015; 219:369-382. [PMID: 26410809 DOI: 10.1016/j.jconrel.2015.09.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023]
Abstract
Synthetic polymers play a critical role in pharmaceutical discovery and development. Current research and applications of pharmaceutical polymers are mainly focused on their functions as excipients and inert carriers of other pharmacologically active agents. This review article surveys recent advances in alternative pharmaceutical use of polymers as pharmacologically active agents known as polymeric drugs. Emphasis is placed on the benefits of polymeric drugs that are associated with their macromolecular character and their ability to explore biologically relevant multivalency processes. We discuss the main therapeutic uses of polymeric drugs as sequestrants, antimicrobials, antivirals, and anticancer and anti-inflammatory agents.
Collapse
Affiliation(s)
- Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yi Chen
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; Department of Chemistry, University of Nebraska Lincoln, Lincoln, NE, USA; Department of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Tumor growth elicits antigen-specific cytotoxic as well as immune suppressive responses. Interleukin-10 (IL-10) is a key immune-suppressive cytokine produced by regulatory T-cells and by helper T-cells. Here, we review pleiotropic functions of IL-10 that impact the immune pathology of cancer. RECENT FINDINGS The role of IL-10 in cancer has become less certain with the knowledge of its immune stimulatory functions. IL-10 is needed for T-helper cell functions, T-cell immune surveillance, and suppression of cancer-associated inflammation. By promoting tumor-specific immune surveillance and hindering pathogenic inflammation, IL-10 is emerging as a key cytokine in the battle of the host against cancer. SUMMARY IL-10 functions at the cross-roads of immune stimulation and immune suppression in cancer. Immunological mechanisms of action of IL-10 can be ultimately exploited to develop novel and effective cancer therapies.
Collapse
|
6
|
Kawamoto N, Ohnishi H, Kondo N, Strominger JL. The role of dendritic cells in the generation of CD4(+) CD25(HI) Foxp3(+) T cells induced by amino acid copolymers. Int Immunol 2012; 25:53-65. [PMID: 22968996 DOI: 10.1093/intimm/dxs087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The effects of the amino acid copolymers used in the therapy of experimental autoimmune encephalomyelitis, poly(Y,E,A,K)(n) (Copaxone(®)) and poly(Y,F,A,K)(n), on murine myeloid cells have been investigated. After administration of these copolymers to mice, increases in several splenic myeloid cell populations were observed, including CD11b(+) CD11c(+) dendritic cells. The latter were the major splenic cell type that secreted CCL22 (macrophage-derived chemokine) on stimulation with amino acid copolymers. CCL22 secretion was also stimulated from bone marrow-derived dendritic cells (BMDC) generated with GM-CSF in much larger amounts than from bone marrow-derived macrophages generated with M-CSF. Moreover, CCL22 secretion could also be obtained using BMDC generated from two different types of MHC II(-/-) mice, indicating that an innate immune receptor is involved. Finally, incubation of these BMDC or splenic dendritic cells with naive CD4(+) CD25(-) T cells resulted in formation of CD4(+) CD25(HI) Foxp3 T cells (~25% of which were Foxp3(+)). The number of these regulatory cells was doubled by pretreatment of BMDC with amino acid copolymers.
Collapse
Affiliation(s)
- Norio Kawamoto
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
7
|
Kovalchin J, Krieger J, Genova M, Kawamoto N, Augustyniak M, Collins K, Bloom T, Masci A, Hittinger T, Dufour I, Strominger JL, Zanelli E. Macrophage-specific chemokines induced via innate immunity by amino acid copolymers and their role in EAE. PLoS One 2011; 6:e26274. [PMID: 22194778 PMCID: PMC3240613 DOI: 10.1371/journal.pone.0026274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/23/2011] [Indexed: 12/22/2022] Open
Abstract
The random amino acid copolymer poly(Y,E,A,K)n (Copaxone®) is widely used in multiple sclerosis treatment and a second generation copolymer poly(Y,F,A,K)n with enhanced efficacy in experimental autoimmune encephalomyelitis in mice has been described. A major mechanism through which copolymers function to ameliorate disease is the generation of immunosuppressive IL-10-secreting regulatory T cells entering the CNS. In addition, the antigen presenting cell to which these copolymers bind through MHC Class II proteins may have an important role. Here, both CCL22 (a Th2 cell chemoattractant) in large amounts and CXCL13 in much smaller amounts are shown to be secreted after administration of YFAK to mice and to a smaller extent by YEAK parallel to their serum concentrations. Moreover, bone marrow-derived macrophages secrete CCL22 in vitro in response to YFAK and to higher concentrations of YEAK. Strikingly, these chemokines are also secreted into serum of MHC Class II −/− mice, indicating that an innate immune receptor on these cells also has an important role. Thus, both the innate and the adaptive immune systems are involved in the mechanism of EAE amelioration by YFAK. The enhanced ability of YFAK to stimulate the innate immune system may account for its enhanced efficacy in EAE treatment.
Collapse
Affiliation(s)
- Joseph Kovalchin
- Peptimmune, Inc., Cambridge, Massachusetts, United States of America
| | - Jeffrey Krieger
- Peptimmune, Inc., Cambridge, Massachusetts, United States of America
| | - Michelle Genova
- Peptimmune, Inc., Cambridge, Massachusetts, United States of America
| | - Norio Kawamoto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | - Kathryn Collins
- Peptimmune, Inc., Cambridge, Massachusetts, United States of America
| | - Troy Bloom
- Peptimmune, Inc., Cambridge, Massachusetts, United States of America
| | - Allyson Masci
- Peptimmune, Inc., Cambridge, Massachusetts, United States of America
| | - Tara Hittinger
- Peptimmune, Inc., Cambridge, Massachusetts, United States of America
| | - Ingrid Dufour
- Peptimmune, Inc., Cambridge, Massachusetts, United States of America
| | - Jack L. Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (JLS)
| | - Eric Zanelli
- Peptimmune, Inc., Cambridge, Massachusetts, United States of America
| |
Collapse
|
8
|
Gabrysová L, Wraith DC. Antigenic strength controls the generation of antigen-specific IL-10-secreting T regulatory cells. Eur J Immunol 2010; 40:1386-95. [PMID: 20162554 PMCID: PMC3466465 DOI: 10.1002/eji.200940151] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Administration of peptides i.n. induces peripheral tolerance in Tg4 myelin basic protein-specific TCR-Tg mice. This is characterized by the generation of anergic, IL-10-secreting CD4+ T cells with regulatory function (IL-10 Treg). Myelin basic protein Ac1-9 peptide analogs, displaying a hierarchy of affinities for H-2 A(u) (Ac1-9[4K]<<[4A]<[4Y]), were used to investigate the mechanisms of tolerance induction, focusing on IL-10 Treg generation. Repeated i.n. administration of the highest affinity peptide, Ac1-9[4Y], provided complete protection against EAE, while i.n. Ac1-9[4A] and Ac1-9[4K] treatment resulted in only partial protection. Ac1-9[4Y] was also the most potent stimulus for IL-10 Treg generation. Although i.n. treatment with Ac1-9[4A] gave rise to IL-10-secreting CD4+ T cells, the population as a whole was also capable of secreting IFN-gamma after an in vitro recall response to Ac1-9[4A] or [4Y]. In addition to IL-10 production, other facets of tolerance, namely, anergy and suppression (both in vitro and in vivo), were affinity dependent, with i.n. Ac1-9[4Y]-, [4A]- or [4K]-treated CD4+ T cells being the most, intermediate and least anergic/suppressive, respectively. These findings demonstrate that the generation of IL-10 Treg in vivo is driven by high signal strength.
Collapse
Affiliation(s)
- Leona Gabrysová
- Department of Cellular and Molecular Medicine, University of Bristol School of Medical Sciences, Bristol, UK
| | | |
Collapse
|