1
|
The Mutant β E202K Sliding Clamp Protein Impairs DNA Polymerase III Replication Activity. J Bacteriol 2021; 203:e0030321. [PMID: 34543108 DOI: 10.1128/jb.00303-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Expression of the Escherichia coli dnaN-encoded β clamp at ≥10-fold higher than chromosomally expressed levels impedes growth by interfering with DNA replication. We hypothesized that the excess β clamp sequesters the replicative DNA polymerase III (Pol III) to inhibit replication. As a test of this hypothesis, we obtained eight mutant clamps with an inability to impede growth and measured their ability to stimulate Pol III replication in vitro. Compared with the wild-type clamp, seven of the mutants were defective, consistent with their elevated cellular levels failing to sequester Pol III. However, the βE202K mutant that bears a glutamic acid-to-lysine substitution at residue 202 displayed an increased affinity for Pol IIIα and Pol III core (Pol IIIαεθ), suggesting that it could still sequester Pol III effectively. Of interest, βE202K supported in vitro DNA replication by Pol II and Pol IV but was defective with Pol III. Genetic experiments indicated that the dnaNE202K strain remained proficient in DNA damage-induced mutagenesis but was induced modestly for SOS and displayed sensitivity to UV light and methyl methanesulfonate. These results correlate an impaired ability of the mutant βE202K clamp to support Pol III replication in vivo with its in vitro defect in DNA replication. Taken together, our results (i) support the model that sequestration of Pol III contributes to growth inhibition, (ii) argue for the existence of an additional mechanism that contributes to lethality, and (iii) suggest that physical and functional interactions of the β clamp with Pol III are more extensive than appreciated currently. IMPORTANCE The β clamp plays critically important roles in managing the actions of multiple proteins at the replication fork. However, we lack a molecular understanding of both how the clamp interacts with these different partners and the mechanisms by which it manages their respective actions. We previously exploited the finding that an elevated cellular level of the β clamp impedes Escherichia coli growth by interfering with DNA replication. Using a genetic selection method, we obtained novel mutant β clamps that fail to inhibit growth. Their analysis revealed that βE202K is unique among them. Our work offers new insights into how the β clamp interacts with and manages the actions of E. coli DNA polymerases II, III, and IV.
Collapse
|
2
|
Archaeal DNA polymerases: new frontiers in DNA replication and repair. Emerg Top Life Sci 2018; 2:503-516. [PMID: 33525823 DOI: 10.1042/etls20180015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022]
Abstract
Archaeal DNA polymerases have long been studied due to their superior properties for DNA amplification in the polymerase chain reaction and DNA sequencing technologies. However, a full comprehension of their functions, recruitment and regulation as part of the replisome during genome replication and DNA repair lags behind well-established bacterial and eukaryotic model systems. The archaea are evolutionarily very broad, but many studies in the major model systems of both Crenarchaeota and Euryarchaeota are starting to yield significant increases in understanding of the functions of DNA polymerases in the respective phyla. Recent advances in biochemical approaches and in archaeal genetic models allowing knockout and epitope tagging have led to significant increases in our understanding, including DNA polymerase roles in Okazaki fragment maturation on the lagging strand, towards reconstitution of the replisome itself. Furthermore, poorly characterised DNA polymerase paralogues are finding roles in DNA repair and CRISPR immunity. This review attempts to provide a current update on the roles of archaeal DNA polymerases in both DNA replication and repair, addressing significant questions that remain for this field.
Collapse
|
3
|
Murison DA, Timson RC, Koleva BN, Ordazzo M, Beuning PJ. Identification of the Dimer Exchange Interface of the Bacterial DNA Damage Response Protein UmuD. Biochemistry 2017; 56:4773-4785. [DOI: 10.1021/acs.biochem.7b00560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David A. Murison
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rebecca C. Timson
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Bilyana N. Koleva
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Michael Ordazzo
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Penny J. Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Murison DA, Ollivierre JN, Huang Q, Budil DE, Beuning PJ. Altering the N-terminal arms of the polymerase manager protein UmuD modulates protein interactions. PLoS One 2017; 12:e0173388. [PMID: 28273172 PMCID: PMC5342242 DOI: 10.1371/journal.pone.0173388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/14/2017] [Indexed: 12/02/2022] Open
Abstract
Escherichia coli cells that are exposed to DNA damaging agents invoke the SOS response that involves expression of the umuD gene products, along with more than 50 other genes. Full-length UmuD is expressed as a 139-amino-acid protein, which eventually cleaves its N-terminal 24 amino acids to form UmuD'. The N-terminal arms of UmuD are dynamic and contain recognition sites for multiple partner proteins. Cleavage of UmuD to UmuD' dramatically affects the function of the protein and activates UmuC for translesion synthesis (TLS) by forming DNA Polymerase V. To probe the roles of the N-terminal arms in the cellular functions of the umuD gene products, we constructed additional N-terminal truncated versions of UmuD: UmuD 8 (UmuD Δ1-7) and UmuD 18 (UmuD Δ1-17). We found that the loss of just the N-terminal seven (7) amino acids of UmuD results in changes in conformation of the N-terminal arms, as determined by electron paramagnetic resonance spectroscopy with site-directed spin labeling. UmuD 8 is cleaved as efficiently as full-length UmuD in vitro and in vivo, but expression of a plasmid-borne non-cleavable variant of UmuD 8 causes hypersensitivity to UV irradiation, which we determined is the result of a copy-number effect. UmuD 18 does not cleave to form UmuD', but confers resistance to UV radiation. Moreover, removal of the N-terminal seven residues of UmuD maintained its interactions with the alpha polymerase subunit of DNA polymerase III as well as its ability to disrupt interactions between alpha and the beta processivity clamp, whereas deletion of the N-terminal 17 residues resulted in decreases in binding to alpha and in the ability to disrupt the alpha-beta interaction. We find that UmuD 8 mimics full-length UmuD in many respects, whereas UmuD 18 lacks a number of functions characteristic of UmuD.
Collapse
Affiliation(s)
- David A. Murison
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Jaylene N. Ollivierre
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Qiuying Huang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - David E. Budil
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Penny J. Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America
| |
Collapse
|
5
|
Abstract
This review describes the components of the Escherichia coli replisome and the dynamic process in which they function and interact under normal conditions. It also briefly describes the behavior of the replisome during situations in which normal replication fork movement is disturbed, such as when the replication fork collides with sites of DNA damage. E. coli DNA Pol III was isolated first from a polA mutant E. coli strain that lacked the relatively abundant DNA Pol I activity. Further biochemical studies, and the use of double mutant strains, revealed Pol III to be the replicative DNA polymerase essential to cell viability. In a replisome, DnaG primase must interact with DnaB for activity, and this constraint ensures that new RNA primers localize to the replication fork. The leading strand polymerase continually synthesizes DNA in the direction of the replication fork, whereas the lagging-strand polymerase synthesizes short, discontinuous Okazaki fragments in the opposite direction. Discontinuous lagging-strand synthesis requires that the polymerase rapidly dissociate from each new completed Okazaki fragment in order to begin the extension of a new RNA primer. Lesion bypass can be thought of as a two-step reaction that starts with the incorporation of a nucleotide opposite the lesion, followed by the extension of the resulting distorted primer terminus. A remarkable property of E. coli, and many other eubacterial organisms, is the speed at which it propagates. Rapid cell division requires the presence of an extremely efficient replication machinery for the rapid and faithful duplication of the genome.
Collapse
|
6
|
A Genetic Selection for dinB Mutants Reveals an Interaction between DNA Polymerase IV and the Replicative Polymerase That Is Required for Translesion Synthesis. PLoS Genet 2015; 11:e1005507. [PMID: 26352807 PMCID: PMC4564189 DOI: 10.1371/journal.pgen.1005507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/14/2015] [Indexed: 11/19/2022] Open
Abstract
Translesion DNA synthesis (TLS) by specialized DNA polymerases (Pols) is a conserved mechanism for tolerating replication blocking DNA lesions. The actions of TLS Pols are managed in part by ring-shaped sliding clamp proteins. In addition to catalyzing TLS, altered expression of TLS Pols impedes cellular growth. The goal of this study was to define the relationship between the physiological function of Escherichia coli Pol IV in TLS and its ability to impede growth when overproduced. To this end, 13 novel Pol IV mutants were identified that failed to impede growth. Subsequent analysis of these mutants suggest that overproduced levels of Pol IV inhibit E. coli growth by gaining inappropriate access to the replication fork via a Pol III-Pol IV switch that is mechanistically similar to that used under physiological conditions to coordinate Pol IV-catalyzed TLS with Pol III-catalyzed replication. Detailed analysis of one mutant, Pol IV-T120P, and two previously described Pol IV mutants impaired for interaction with either the rim (Pol IVR) or the cleft (Pol IVC) of the β sliding clamp revealed novel insights into the mechanism of the Pol III-Pol IV switch. Specifically, Pol IV-T120P retained complete catalytic activity in vitro but, like Pol IVR and Pol IVC, failed to support Pol IV TLS function in vivo. Notably, the T120P mutation abrogated a biochemical interaction of Pol IV with Pol III that was required for Pol III-Pol IV switching. Taken together, these results support a model in which Pol III-Pol IV switching involves interaction of Pol IV with Pol III, as well as the β clamp rim and cleft. Moreover, they provide strong support for the view that Pol III-Pol IV switching represents a vitally important mechanism for regulating TLS in vivo by managing access of Pol IV to the DNA. Bacterial DNA polymerase IV (Pol IV) is capable of replicating damaged DNA via a process termed translesion DNA synthesis (TLS). Pol IV-mediated TLS can be accurate or error-prone, depending on the type of DNA damage. Errors made by Pol IV contribute to antibiotic resistance and adaptation of bacterial pathogens. In addition to catalyzing TLS, overproduction of Escherichia coli Pol IV impedes growth. In the current work, we demonstrate that both of these functions rely on the ability of Pol IV to bind the β sliding processivity clamp and switch places on DNA with the replicative Pol, Pol III. This switch requires that Pol IV contact both Pol III as well as two discrete sites on the β clamp protein. Taken together, these results provide a deeper understanding of how E. coli manages the actions of Pol III and Pol IV to coordinate high fidelity replication with potentially error-prone TLS.
Collapse
|
7
|
Gruber AJ, Erdem AL, Sabat G, Karata K, Jaszczur MM, Vo DD, Olsen TM, Woodgate R, Goodman MF, Cox MM. A RecA protein surface required for activation of DNA polymerase V. PLoS Genet 2015; 11:e1005066. [PMID: 25811184 PMCID: PMC4374754 DOI: 10.1371/journal.pgen.1005066] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/11/2015] [Indexed: 11/25/2022] Open
Abstract
DNA polymerase V (pol V) of Escherichia coli is a translesion DNA polymerase responsible for most of the mutagenesis observed during the SOS response. Pol V is activated by transfer of a RecA subunit from the 3'-proximal end of a RecA nucleoprotein filament to form a functional complex called DNA polymerase V Mutasome (pol V Mut). We identify a RecA surface, defined by residues 112-117, that either directly interacts with or is in very close proximity to amino acid residues on two distinct surfaces of the UmuC subunit of pol V. One of these surfaces is uniquely prominent in the active pol V Mut. Several conformational states are populated in the inactive and active complexes of RecA with pol V. The RecA D112R and RecA D112R N113R double mutant proteins exhibit successively reduced capacity for pol V activation. The double mutant RecA is specifically defective in the ATP binding step of the activation pathway. Unlike the classic non-mutable RecA S117F (recA1730), the RecA D112R N113R variant exhibits no defect in filament formation on DNA and promotes all other RecA activities efficiently. An important pol V activation surface of RecA protein is thus centered in a region encompassing amino acid residues 112, 113, and 117, a surface exposed at the 3'-proximal end of a RecA filament. The same RecA surface is not utilized in the RecA activation of the homologous and highly mutagenic RumA'2B polymerase encoded by the integrating-conjugative element (ICE) R391, indicating a lack of structural conservation between the two systems. The RecA D112R N113R protein represents a new separation of function mutant, proficient in all RecA functions except SOS mutagenesis.
Collapse
Affiliation(s)
- Angela J Gruber
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Aysen L Erdem
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Grzegorz Sabat
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kiyonobu Karata
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Malgorzata M Jaszczur
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Dan D Vo
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Tayla M Olsen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
8
|
Dimer exchange and cleavage specificity of the DNA damage response protein UmuD. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:611-20. [PMID: 23220418 DOI: 10.1016/j.bbapap.2012.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/01/2012] [Accepted: 11/27/2012] [Indexed: 11/23/2022]
Abstract
The cellular response to DNA damage in Escherichia coli is controlled in part by the activity of the umuD gene products. The full-length dimeric UmuD(2) is the initial product that is expressed shortly after the induction of the SOS response and inhibits bacterial mutagenesis, allowing for error-free repair to occur. Over time, the slow auto-cleavage of UmuD(2) to UmuD'(2) promotes mutagenesis to ensure cell survival. The intracellular levels of UmuD(2) and UmuD'(2) are further regulated by degradation in vivo, returning the cell to a non-mutagenic state. To further understand the dynamic regulatory roles of the umuD gene products, we monitored the kinetics of exchange and cleavage of the UmuD(2) and UmuD'(2) homodimers as well as of the UmuDD' heterodimer under equilibrium conditions. We found that the heterodimer is the preferred but not exclusive protein form, and that both the heterodimer and homodimers exhibit slow exchange kinetics which is further inhibited in the presence of interacting partner DinB. In addition, the heterodimer efficiently cleaves to form UmuD'(2). Together, this work reveals an intricate UmuD lifecycle that involves dimer exchange and cleavage in the regulation of the DNA damage response.
Collapse
|
9
|
Silva MC, Nevin P, Ronayne EA, Beuning PJ. Selective disruption of the DNA polymerase III α-β complex by the umuD gene products. Nucleic Acids Res 2012; 40:5511-22. [PMID: 22406830 PMCID: PMC3384344 DOI: 10.1093/nar/gks229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA polymerase III (DNA pol III) efficiently replicates the Escherichia coli genome, but it cannot bypass DNA damage. Instead, translesion synthesis (TLS) DNA polymerases are employed to replicate past damaged DNA; however, the exchange of replicative for TLS polymerases is not understood. The umuD gene products, which are up-regulated during the SOS response, were previously shown to bind to the α, β and ε subunits of DNA pol III. Full-length UmuD inhibits DNA replication and prevents mutagenic TLS, while the cleaved form UmuD' facilitates mutagenesis. We show that α possesses two UmuD binding sites: at the N-terminus (residues 1-280) and the C-terminus (residues 956-975). The C-terminal site favors UmuD over UmuD'. We also find that UmuD, but not UmuD', disrupts the α-β complex. We propose that the interaction between α and UmuD contributes to the transition between replicative and TLS polymerases by removing α from the β clamp.
Collapse
Affiliation(s)
- Michelle C Silva
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
10
|
Ollivierre JN, Budil DE, Beuning PJ. Electron spin labeling reveals the highly dynamic N-terminal arms of the SOS mutagenesis protein UmuD. MOLECULAR BIOSYSTEMS 2011; 7:3183-6. [PMID: 21975937 DOI: 10.1039/c1mb05334e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy was used to probe the conformational dynamics of the N-terminal arms of the umuD gene products. We determined that the arms of UmuD(2) display a large degree of motion, are largely unbound from the globular C-terminal domain, and that the free energy of dissociation is +2.1 kJ mol(-1).
Collapse
Affiliation(s)
- Jaylene N Ollivierre
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, USA
| | | | | |
Collapse
|
11
|
Bichara M, Meier M, Wagner J, Cordonnier A, Lambert IB. Postreplication repair mechanisms in the presence of DNA adducts in Escherichia coli. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 727:104-22. [DOI: 10.1016/j.mrrev.2011.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 02/02/2023]
|
12
|
Crystal structure of DNA polymerase III β sliding clamp from Mycobacterium tuberculosis. Biochem Biophys Res Commun 2011; 405:272-7. [DOI: 10.1016/j.bbrc.2011.01.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/05/2011] [Indexed: 11/19/2022]
|
13
|
Ollivierre JN, Sikora JL, Beuning PJ. The dimeric SOS mutagenesis protein UmuD is active as a monomer. J Biol Chem 2010; 286:3607-17. [PMID: 21118802 DOI: 10.1074/jbc.m110.167254] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homodimeric umuD gene products play key roles in regulating the cellular response to DNA damage in Escherichia coli. UmuD(2) is composed of 139-amino acid subunits and is up-regulated as part of the SOS response. Subsequently, damage-induced RecA·ssDNA nucleoprotein filaments mediate the slow self-cleavage of the N-terminal 24-amino acid arms yielding UmuD'(2). UmuD(2) and UmuD'(2) make a number of distinct protein-protein contacts that both prevent and facilitate mutagenic translesion synthesis. Wild-type UmuD(2) and UmuD'(2) form exceptionally tight dimers in solution; however, we show that the single amino acid change N41D generates stable, active UmuD and UmuD' monomers that functionally mimic the dimeric wild-type proteins. The UmuD N41D monomer is proficient for cleavage and interacts physically with DNA polymerase IV (DinB) and the β clamp. Furthermore, the N41D variants facilitate UV-induced mutagenesis and promote overall cell viability. Taken together, these observations show that a monomeric form of UmuD retains substantial function in vivo and in vitro.
Collapse
Affiliation(s)
- Jaylene N Ollivierre
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
14
|
Ollivierre JN, Fang J, Beuning PJ. The Roles of UmuD in Regulating Mutagenesis. J Nucleic Acids 2010; 2010. [PMID: 20936072 PMCID: PMC2948943 DOI: 10.4061/2010/947680] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 08/01/2010] [Indexed: 11/20/2022] Open
Abstract
All organisms are subject to DNA damage from both endogenous and environmental sources. DNA damage that is not fully repaired can lead to mutations. Mutagenesis is now understood to be an active process, in part facilitated by lower-fidelity DNA polymerases that replicate DNA in an error-prone manner. Y-family DNA polymerases, found throughout all domains of life, are characterized by their lower fidelity on undamaged DNA and their specialized ability to copy damaged DNA. Two E. coli Y-family DNA polymerases are responsible for copying damaged DNA as well as for mutagenesis. These DNA polymerases interact with different forms of UmuD, a dynamic protein that regulates mutagenesis. The UmuD gene products, regulated by the SOS response, exist in two principal forms: UmuD(2), which prevents mutagenesis, and UmuD(2)', which facilitates UV-induced mutagenesis. This paper focuses on the multiple conformations of the UmuD gene products and how their protein interactions regulate mutagenesis.
Collapse
Affiliation(s)
- Jaylene N Ollivierre
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, MA 02115, USA
| | | | | |
Collapse
|
15
|
Fang J, Rand KD, Silva MC, Wales TE, Engen JR, Beuning PJ. Conformational dynamics of the Escherichia coli DNA polymerase manager proteins UmuD and UmuD'. J Mol Biol 2010; 398:40-53. [PMID: 20206636 DOI: 10.1016/j.jmb.2010.02.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 01/24/2023]
Abstract
The expression of Escherichia coli umuD gene products is upregulated as part of the SOS response to DNA damage. UmuD is initially produced as a 139-amino-acid protein, which subsequently cleaves off its N-terminal 24 amino acids in a reaction dependent on RecA/single-stranded DNA, giving UmuD'. The two forms of the umuD gene products play different roles in the cell. UmuD is implicated in a primitive DNA damage checkpoint and prevents DNA polymerase IV-dependent -1 frameshift mutagenesis, while the cleaved form facilitates UmuC-dependent mutagenesis via formation of DNA polymerase V (UmuD'(2)C). Thus, the cleavage of UmuD is a crucial switch that regulates replication and mutagenesis via numerous protein-protein interactions. A UmuD variant, UmuD3A, which is noncleavable but is a partial biological mimic of the cleaved form UmuD', has been identified. We used hydrogen-deuterium exchange mass spectrometry (HXMS) to probe the conformations of UmuD, UmuD', and UmuD3A. In HXMS experiments, backbone amide hydrogens that are solvent accessible or not involved in hydrogen bonding become labeled with deuterium over time. Our HXMS results reveal that the N-terminal arm of UmuD, which is truncated in the cleaved form UmuD', is dynamic. Residues that are likely to contact the N-terminal arm show more deuterium exchange in UmuD' and UmuD3A than in UmuD. These observations suggest that noncleavable UmuD3A mimics the cleaved form UmuD' because, in both cases, the arms are relatively unbound from the globular domain. Gas-phase hydrogen exchange experiments, which specifically probe the exchange of side-chain hydrogens and are carried out on shorter timescales than solution experiments, show that UmuD' incorporates more deuterium than either UmuD or UmuD3A. This work indicates that these three forms of the UmuD gene products are highly flexible, which is of critical importance for their many protein interactions.
Collapse
Affiliation(s)
- Jing Fang
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
16
|
Characterization of novel alleles of the Escherichia coli umuDC genes identifies additional interaction sites of UmuC with the beta clamp. J Bacteriol 2009; 191:5910-20. [PMID: 19633075 DOI: 10.1128/jb.00292-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translesion synthesis is a DNA damage tolerance mechanism by which damaged DNA in a cell can be replicated by specialized DNA polymerases without being repaired. The Escherichia coli umuDC gene products, UmuC and the cleaved form of UmuD, UmuD', comprise a specialized, potentially mutagenic translesion DNA polymerase, polymerase V (UmuD'(2)C). The full-length UmuD protein, together with UmuC, plays a role in a primitive DNA damage checkpoint by decreasing the rate of DNA synthesis. It has been proposed that the checkpoint is manifested as a cold-sensitive phenotype that is observed when the umuDC gene products are overexpressed. Elevated levels of the beta processivity clamp along with elevated levels of the umuDC gene products, UmuD'C, exacerbate the cold-sensitive phenotype. We used this observation as the basis for genetic selection to identify two alleles of umuD' and seven alleles of umuC that do not exacerbate the cold-sensitive phenotype when they are present in cells with elevated levels of the beta clamp. The variants were characterized to determine their abilities to confer the umuD'C-specific phenotype UV-induced mutagenesis. The umuD variants were assayed to determine their proficiencies in UmuD cleavage, and one variant (G129S) rendered UmuD noncleaveable. We found at least two UmuC residues, T243 and L389, that may further define the beta binding region on UmuC. We also identified UmuC S31, which is predicted to bind to the template nucleotide, as a residue that is important for UV-induced mutagenesis.
Collapse
|
17
|
A model for DNA polymerase switching involving a single cleft and the rim of the sliding clamp. Proc Natl Acad Sci U S A 2009; 106:12664-9. [PMID: 19617571 DOI: 10.1073/pnas.0903460106] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The actions of Escherichia coli DNA Polymerase IV (Pol IV) in mutagenesis are managed by its interaction with the beta sliding clamp. In the structure reported by Bunting et al. [EMBO J (2003) 22:5883-5892], the C-tail of Pol IV contacts a hydrophobic cleft on the clamp, while residues V303-P305 reach over the dimer interface to contact the rim of the adjacent clamp protomer. Using mutant forms of these proteins impaired for either the rim or the cleft contacts, we determined that the rim contact was dispensable for Pol IV replication in vitro, while the cleft contact was absolutely required. Using an in vitro assay to monitor Pol III*-Pol IV switching, we determined that a single cleft on the clamp was sufficient to support the switch, and that both the rim and cleft contacts were required. Results from genetic experiments support a role for the cleft and rim contacts in Pol IV function in vivo. Taken together, our findings challenge the toolbelt model and suggest instead that Pol IV contacts the rim of the clamp adjacent to the cleft that is bound by Pol III* before gaining control of the same cleft that is bound by Pol III*.
Collapse
|
18
|
Simon SM, Sousa FJR, Mohana-Borges R, Walker GC. Regulation of Escherichia coli SOS mutagenesis by dimeric intrinsically disordered umuD gene products. Proc Natl Acad Sci U S A 2008; 105:1152-7. [PMID: 18216271 PMCID: PMC2234107 DOI: 10.1073/pnas.0706067105] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Indexed: 11/18/2022] Open
Abstract
Products of the umuD gene in Escherichia coli play key roles in coordinating the switch from accurate DNA repair to mutagenic translesion DNA synthesis (TLS) during the SOS response to DNA damage. Homodimeric UmuD(2) is up-regulated 10-fold immediately after damage, after which slow autocleavage removes the N-terminal 24 amino acids of each UmuD. The remaining fragment, UmuD'(2), is required for mutagenic TLS. The small proteins UmuD(2) and UmuD'(2) make a large number of specific protein-protein contacts, including three of the five known E. coli DNA polymerases, parts of the replication machinery, and RecA recombinase. We show that, despite forming stable homodimers, UmuD(2) and UmuD'(2) have circular dichroism (CD) spectra with almost no alpha-helix or beta-sheet signal at physiological concentrations in vitro. High protein concentrations, osmolytic crowding agents, and specific interactions with a partner protein can produce CD spectra that resemble the expected beta-sheet signature. A lack of secondary structure in vitro is characteristic of intrinsically disordered proteins (IDPs), many of which act as regulators. A stable homodimer that lacks significant secondary structure is unusual but not unprecedented. Furthermore, previous single-cysteine cross-linking studies of UmuD(2) and UmuD'(2) show that they have a nonrandom structure at physiologically relevant concentrations in vitro. Our results offer insights into structural characteristics of relatively poorly understood IDPs and provide a model for how the umuD gene products can regulate diverse aspects of the bacterial SOS response.
Collapse
Affiliation(s)
- S. M. Simon
- *Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - F. J. R. Sousa
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - R. Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - G. C. Walker
- To whom correspondence should be addressed at:
Massachusetts Institute of Technology, Department of Biology, 68H633, 77 Massachusetts Avenue, Cambridge, MA 02139. E-mail:
| |
Collapse
|
19
|
Maul RW, Ponticelli SKS, Duzen JM, Sutton MD. Differential binding of Escherichia coli DNA polymerases to the beta-sliding clamp. Mol Microbiol 2007; 65:811-27. [PMID: 17635192 DOI: 10.1111/j.1365-2958.2007.05828.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli strains expressing the mutant beta159-sliding clamp protein (containing both a G66E and a G174A substitution) are temperature sensitive for growth and display altered DNA polymerase (pol) usage. We selected for suppressors of the dnaN159 allele able to grow at 42 degrees C, and identified four intragenic suppressor alleles. One of these alleles (dnaN780) contained only the G66E substitution, while a second (dnaN781) contained only the G174A substitution. Genetic characterization of isogenic E. coli strains expressing these alleles indicated that certain phenotypes were dependent upon only the G174A substitution, while others required both the G66E and G174A substitutions. In order to understand the individual contributions of the G66E and the G174A substitution to the dnaN159 phenotypes, we utilized biochemical approaches to characterize the purified mutant beta159 (G66E and G174A), beta780 (G66E) and beta781 (G174A) clamp proteins. The G66E substitution conferred a more pronounced effect on pol IV replication than it did pol II or pol III, while the G174A substitution conferred a greater effect on pol III and pol IV than it did pol II. Taken together, these findings indicate that pol II, pol III and pol IV interact with distinct, albeit overlapping surfaces of the beta clamp.
Collapse
Affiliation(s)
- Robert W Maul
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
20
|
Abstract
In nature, microbes live under a variety of harsh conditions, such as excess DNA damage, starvation, pH shift, or high temperatures. Microbial cells respond to such stressful conditions mostly by switching global patterns of gene expression to relieve the environmental stress. The SOS response, which is induced by DNA damage, is one such global network of gene expression that plays a crucial role in balancing the genomic stability and flexibility that are necessary to adapt to harsh environments. Here, I review the roles of SOS-inducible and noninducible lesion-bypass DNA polymerases in mutagenesis induced by environmental stress, and discuss how these polymerases are coordinated for the replication of damaged chromosomes. Possible contributions of lesion-bypass DNA polymerase in hyperthermophilic archaea, e.g., Sulfolobus solfataricus, to genome maintenance are also discussed.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| |
Collapse
|
21
|
Kongsuwan K, Josh P, Picault MJ, Wijffels G, Dalrymple B. The plasmid RK2 replication initiator protein (TrfA) binds to the sliding clamp beta subunit of DNA polymerase III: implication for the toxicity of a peptide derived from the amino-terminal portion of 33-kilodalton TrfA. J Bacteriol 2006; 188:5501-9. [PMID: 16855240 PMCID: PMC1540049 DOI: 10.1128/jb.00231-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The broad-host-range plasmid RK2 is capable of replication and stable maintenance within a wide range of gram-negative bacterial hosts. It encodes the essential replication initiation protein TrfA, which binds to the host initiation protein, DnaA, at the plasmid origin of replication (oriV). There are two versions of the TrfA protein, 44 and 33 kDa, resulting from alternate in-frame translational starts. We have shown that the smaller protein, TrfA-33, and its 64-residue amino-terminal peptide (designated T1) physically interact with the Escherichia coli beta sliding clamp (beta(2)). This interaction appears to be mediated through a QLSLF peptide motif located near the amino-terminal end of TrfA-33 and T1, which is identical to the previously described eubacterial clamp-binding consensus motif. T1 forms a stable complex with beta(2) and was found to inhibit plasmid RK2 replication in vitro. This specific interaction between T1 and beta(2) and the ability of T1 to block DNA replication have implications for the previously reported cell lethality caused by overproduction of T1. The toxicity of T1 was suppressed when wild-type T1 was replaced with mutant T1, carrying an LF deletion in the beta-binding motif. Previously, T1 toxicity has been shown to be suppressed by Hda, an intermediate regulatory protein which helps prevent over-initiation in E. coli through its interaction with the initiator protein, DnaA, and beta(2). Our results support a model in which T1 toxicity is caused by T1 binding to beta(2), especially when T1 is overexpressed, preventing beta(2) from interacting with host replication proteins such as Hda during the early events of chromosome replication.
Collapse
Affiliation(s)
- Kritaya Kongsuwan
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia QLD 4067, Australia.
| | | | | | | | | |
Collapse
|
22
|
Goranov AI, Kuester-Schoeck E, Wang JD, Grossman AD. Characterization of the global transcriptional responses to different types of DNA damage and disruption of replication in Bacillus subtilis. J Bacteriol 2006; 188:5595-605. [PMID: 16855250 PMCID: PMC1540033 DOI: 10.1128/jb.00342-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA damage and perturbations in DNA replication can induce global transcriptional responses that can help organisms repair the damage and survive. RecA is known to mediate transcriptional responses to DNA damage in several bacterial species by inactivating the repressor LexA and phage repressors. To gain insight into how Bacillus subtilis responds to various types of DNA damage, we measured the effects of DNA damage and perturbations in replication on mRNA levels by using DNA microarrays. We perturbed replication either directly with p-hydroxyphenylazo-uracil (HPUra), an inhibitor of DNA polymerase, or indirectly with the DNA-damaging reagents mitomycin C (MMC) and UV irradiation. Our results indicate that the transcriptional responses to HPUra, MMC, and UV are only partially overlapping. recA is the major transcriptional regulator under all of the tested conditions, and LexA appears to directly repress the expression of 63 genes in 26 operons, including the 18 operons previously identified as LexA targets. MMC and HPUra treatments caused induction of an integrative and conjugative element (ICEBs1) and resident prophages (PBSX and SPbeta), which affected the expression of many host genes. Consistent with previous results, the induction of these mobile elements required recA. Induction of the phage appeared to require inactivation of LexA. Unrepaired UV damage and treatment with MMC also affected the expression of some of the genes that are controlled by DnaA. Furthermore, MMC treatment caused an increase in origin-proximal gene dosage. Our results indicate that different types of DNA damage have different effects on replication and on the global transcriptional profile.
Collapse
Affiliation(s)
- Alexi I Goranov
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
23
|
Beuning PJ, Sawicka D, Barsky D, Walker GC. Two processivity clamp interactions differentially alter the dual activities of UmuC. Mol Microbiol 2006; 59:460-74. [PMID: 16390442 DOI: 10.1111/j.1365-2958.2005.04959.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA polymerases of the Y family promote survival by their ability to synthesize past lesions in the DNA template. One Escherichia coli member of this family, DNA pol V (UmuC), which is primarily responsible for UV-induced and chemically induced mutagenesis, possesses a canonical beta processivity clamp-binding motif. A detailed analysis of this motif in DNA pol V (UmuC) showed that mutation of only two residues in UmuC is sufficient to result in a loss of UV-induced mutagenesis. Increased levels of wild-type beta can partially rescue this loss of mutagenesis. Alterations in this motif of UmuC also cause loss of the cold-sensitive and beta-dependent synthetic lethal phenotypes associated with increased levels of UmuD and UmuC that are thought to represent an exaggeration of a DNA damage checkpoint. By designing compensatory mutations in the cleft between domains II and III in beta, we restored UV-induced mutagenesis by a UmuC beta-binding motif variant. A recent co-crystal structure of the 'little finger' domain of E. coli pol IV (DinB) with beta suggests that, in addition to the canonical beta-binding motif, a second site of pol IV ((303)VWP(305)) interacts with beta at the outer rim of the dimer interface. Mutational analysis of the corresponding motif in UmuC showed that it is dispensable for induced mutagenesis, but that alterations in this motif result in loss of the cold-sensitive phenotype. These two beta interaction sites of UmuC affect the dual functions of UmuC differentially and indicate subtle and sophisticated polymerase management by the beta clamp.
Collapse
Affiliation(s)
- Penny J Beuning
- Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | |
Collapse
|
24
|
Schlacher K, Pham P, Cox MM, Goodman MF. Roles of DNA polymerase V and RecA protein in SOS damage-induced mutation. Chem Rev 2006; 106:406-19. [PMID: 16464012 DOI: 10.1021/cr0404951] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Katharina Schlacher
- Department of Biological Sciences, University of Southern California, Los Angeles, 90089-1340, USA
| | | | | | | |
Collapse
|
25
|
Beuning PJ, Simon SM, Zemla A, Barsky D, Walker GC. A non-cleavable UmuD variant that acts as a UmuD' mimic. J Biol Chem 2006; 281:9633-40. [PMID: 16464848 DOI: 10.1074/jbc.m511101200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UmuD(2) cleaves and removes its N-terminal 24 amino acids to form UmuD'(2), which activates UmuC for its role in UV-induced mutagenesis in Escherichia coli. Cells with a non-cleavable UmuD exhibit essentially no UV-induced mutagenesis and are hypersensitive to killing by UV light. UmuD binds to the beta processivity clamp ("beta") of the replicative DNA polymerase, pol III. A possible beta-binding motif has been predicted in the same region of UmuD shown to be important for its interaction with beta. We performed alanine-scanning mutagenesis of this motif ((14)TFPLF(18)) in UmuD and found that it has a moderate influence on UV-induced mutagenesis but is required for the cold-sensitive phenotype caused by elevated levels of wild-type UmuD and UmuC. Surprisingly, the wild-type and the beta-binding motif variant bind to beta with similar K(d) values as determined by changes in tryptophan fluorescence. However, these data also imply that the single tryptophan in beta is in strikingly different environments in the presence of the wild-type versus the variant UmuD proteins, suggesting a distinct change in some aspect of the interaction with little change in its strength. Despite the fact that this novel UmuD variant is non-cleavable, we find that cells harboring it display phenotypes more consistent with the cleaved form UmuD', such as resistance to killing by UV light and failure to exhibit the cold-sensitive phenotype. Cross-linking and chemical modification experiments indicate that the N-terminal arms of the UmuD variant are less likely to be bound to the globular domain than those of the wild-type, which may be the mechanism by which this UmuD variant acts as a UmuD' mimic.
Collapse
Affiliation(s)
- Penny J Beuning
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
26
|
Beuning PJ, Simon SM, Godoy VG, Jarosz DF, Walker GC. Characterization of Escherichia coli translesion synthesis polymerases and their accessory factors. Methods Enzymol 2006; 408:318-40. [PMID: 16793378 DOI: 10.1016/s0076-6879(06)08020-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Members of the Y family of DNA polymerases are specialized to replicate lesion-containing DNA. However, they lack 3'-5' exonuclease activity and have reduced fidelity compared to replicative polymerases when copying undamaged templates, and thus are potentially mutagenic. Y family polymerases must be tightly regulated to prevent aberrant mutations on undamaged DNA while permitting replication only under conditions of DNA damage. These polymerases provide a mechanism of DNA damage tolerance, confer cellular resistance to a variety of DNA-damaging agents, and have been implicated in bacterial persistence. The Y family polymerases are represented in all domains of life. Escherichia coli possesses two members of the Y family, DNA pol IV (DinB) and DNA pol V (UmuD'(2)C), and several regulatory factors, including those encoded by the umuD gene that influence the activity of UmuC. This chapter outlines procedures for in vivo and in vitro analysis of these proteins. Study of the E. coli Y family polymerases and their accessory factors is important for understanding the broad principles of DNA damage tolerance and mechanisms of mutagenesis throughout evolution. Furthermore, study of these enzymes and their role in stress-induced mutagenesis may also give insight into a variety of phenomena, including the growing problem of bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Penny J Beuning
- Department of Biology, Massachusetts Institute of Technology, Cambridge, USA
| | | | | | | | | |
Collapse
|
27
|
Dohrmann PR, McHenry CS. A bipartite polymerase-processivity factor interaction: only the internal beta binding site of the alpha subunit is required for processive replication by the DNA polymerase III holoenzyme. J Mol Biol 2005; 350:228-39. [PMID: 15923012 DOI: 10.1016/j.jmb.2005.04.065] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/25/2005] [Accepted: 04/26/2005] [Indexed: 11/30/2022]
Abstract
Previously, we localized the beta2 interacting portion of the catalytic subunit (alpha) of DNA polymerase III to the C-terminal half, downstream of the polymerase active site. Since then, two different beta2 binding sites within this region have been proposed. An internal site includes amino acid residues 920-924 (QADMF) and an extreme C-terminal site includes amino acid residues 1154-1159 (QVELEF). To permit determination of their relative contributions, we made mutations in both sites and evaluated the biochemical, genetic, and protein binding properties of the mutant alpha subunits. All purified mutant alpha subunits retained near wild-type polymerase function, which was measured in non-processive gap-filling assays. Mutations in the internal site abolished the ability of mutant alpha subunits to participate in processive synthesis. Replacement of the five-residue internal sequence with AAAKK eliminated detectable binding to beta2. In addition, mutation of residues required for beta2 binding abolished the ability of the resulting polymerase to participate in chromosomal replication in vivo. In contrast, mutations in the C-terminal site exhibited near wild-type phenotypes. alpha Subunits with the C-terminal site completely removed could participate in processive DNA replication, could bind beta2, and, if induced to high level expression, could complement a temperature-sensitive conditional lethal dnaE mutation. C-terminal defects that only partially complemented correlated with a defect in binding to tau, not beta2. A C-terminal deletion only reduced beta2 binding fourfold; tau binding was decreased ca 400-fold. The context in which the beta2 binding site was presented made an enormous difference. Replacement of the internal site with a consensus beta2 binding sequence increased the affinity of the resulting alpha for beta2 over 100-fold, whereas the same modification at the C-terminal site did not significantly increase binding. The implications of multiple interactions between a replicase and its processivity factor, including applications to polymerase cycling and interchange with other polymerases and factors at the replication fork, are discussed.
Collapse
Affiliation(s)
- Paul R Dohrmann
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, 4200 E. Ninth Ave, B-121, Denver, CO 80262, USA
| | | |
Collapse
|
28
|
Duigou S, Ehrlich SD, Noirot P, Noirot-Gros MF. Distinctive genetic features exhibited by the Y-family DNA polymerases in Bacillus subtilis. Mol Microbiol 2005; 54:439-51. [PMID: 15469515 DOI: 10.1111/j.1365-2958.2004.04259.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Translesional DNA polymerases form a large family of structurally related proteins, known as the Y-polymerases. Bacillus subtilis encodes two Y-polymerases, referred herewith as Pol Y1 and Pol Y2. Pol Y1 was expressed constitutively and did not mediate UV mutagenesis. Pol Y1 overexpression increased spontaneous mutagenesis. This effect depended on Pol Y1 polymerase activity, Pol Y1 interaction with the beta-clamp, and did not require the presence of the RecA protein. In addition, Pol Y1 overexpression delayed cell growth at low temperature. The growth delay was mediated by Pol Y1 interaction with the beta-clamp but not by its polymerase activity, suggesting that an excess of Pol Y1 in the cell could sequester the beta-clamp. In contrast, Pol Y2 was expressed during the SOS response, and, in its absence, UV-induced mutagenesis was abolished. Upon Pol Y2 overproduction, both UV-induced and spontaneous mutagenesis were stimulated, and both depended on the Pol Y2 polymerase activity. However, UV mutagenesis did not appear to require the interaction of Pol Y2 with the beta-clamp whereas spontaneous mutagenesis did. In addition, Pol Y2-mediated spontaneous mutagenesis required the presence of RecA. Together, these results show that the regulation and the genetic requirements of the two B. subtilis Y-polymerases are different, indicating that they fulfil distinct biological roles. Remarkably, Pol Y1 appears to exhibit a mutator activity similar to that of Escherichia coli Pol IV, as well as an E. coli UmuD-related function in growth delay. Pol Y2 exhibits an E. coli Pol V-like mutator activity, but probably acts as a single polypeptide to bypass UV lesions. Thus, B. subtilis Pol Y1 and Pol Y2 exhibit distinctive features from the E. coli Y-polymerases, indicating that different bacteria have adapted different solutions to deal with the lesions in their genetic material.
Collapse
Affiliation(s)
- Stéphane Duigou
- Laboratoire de Génétique Microbienne, Domaine de Vilvert, INRA, 78352 Jouy en Josas Cedex, France
| | | | | | | |
Collapse
|
29
|
Sutton MD, Duzen JM, Maul RW. Mutant forms of theEscherichia coliβ sliding clamp that distinguish between its roles in replication and DNA polymerase V-dependent translesion DNA synthesis. Mol Microbiol 2005; 55:1751-66. [PMID: 15752198 DOI: 10.1111/j.1365-2958.2005.04500.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Escherichia colibeta sliding clamp is proposed to play an important role in regulating DNA polymerase traffic at the replication fork. As part of an ongoing effort to understand how organisms manage the actions of their multiple DNA polymerases, we examined the ability of several mutant forms of the beta clamp to function in DNA polymerase V- (pol V-) dependent translesion DNA synthesis (TLS) in vivo. Our results indicate that a dnaN159 strain, which expresses a temperature sensitive form of the beta clamp, was impaired for pol V-dependent TLS at the permissive temperature of 37 degrees C. This defect was complemented by a plasmid that expressed near-physiological levels of the wild-type clamp. Using a dnaN159 mutant strain, together with various plasmids expressing mutant forms of the clamp, we determined that residues H148 through R152, which comprise a portion of a solvent exposed loop, as well as position P363, which is located in the C-terminal tail of the beta clamp, are critically important for pol V-dependent TLS in vivo. In contrast, these same residues appear to be less critical for pol III-dependent replication. Taken together, these findings indicate that: (i) the beta clamp plays an essential role in pol V-dependent TLS in vivo and (ii) pol III and pol V interact with non-identical surfaces of the beta clamp.
Collapse
Affiliation(s)
- Mark D Sutton
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, 3435 Main Street, 140 Farber Hall, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
30
|
Brozmanová J, Vlcková V, Chovanec M. How heterologously expressed Escherichia coli genes contribute to understanding DNA repair processes in Saccharomyces cerevisiae. Curr Genet 2004; 46:317-30. [PMID: 15614491 DOI: 10.1007/s00294-004-0536-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 09/13/2004] [Accepted: 09/18/2004] [Indexed: 10/26/2022]
Abstract
DNA-damaging agents constantly challenge cellular DNA; and efficient DNA repair is therefore essential to maintain genome stability and cell viability. Several DNA repair mechanisms have evolved and these have been shown to be highly conserved from bacteria to man. DNA repair studies were originally initiated in very simple organisms such as Escherichia coli and Saccharomyces cerevisiae, bacteria being the best understood organism to date. As a consequence, bacterial DNA repair genes encoding proteins with well characterized functions have been transferred into higher organisms in order to increase repair capacity, or to complement repair defects, in heterologous cells. While indicating the contribution of these repair functions to protection against the genotoxic effects of DNA-damaging agents, heterologous expression studies also highlighted the role of the DNA lesions that are substrates for such processes. In addition, bacterial DNA repair-like functions could be identified in higher organisms using this approach. We heterologously expressed three well characterized E. coli repair genes in S. cerevisiae cells of different genetic backgrounds: (1) the ada gene encoding O(6)-methylguanine DNA-methyltransferase, a protein involved in the repair of alkylation damage to DNA, (2) the recA gene encoding the main recombinase in E. coli and (3) the nth gene, the product of which (endonuclease III) is responsible for the repair of oxidative base damage. Here, we summarize our results and indicate the possible implications they have for a better understanding of particular DNA repair processes in S. cerevisiae.
Collapse
Affiliation(s)
- Jela Brozmanová
- Laboratory of Molecular Genetics, Cancer Research Institute, Vlárska 7, 83391 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
31
|
Sutton MD. The Escherichia coli dnaN159 mutant displays altered DNA polymerase usage and chronic SOS induction. J Bacteriol 2004; 186:6738-48. [PMID: 15466025 PMCID: PMC522196 DOI: 10.1128/jb.186.20.6738-6748.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli beta sliding clamp, which is encoded by the dnaN gene, is reported to interact with a variety of proteins involved in different aspects of DNA metabolism. Recent findings indicate that many of these partner proteins interact with a common surface on the beta clamp, suggesting that competition between these partners for binding to the clamp might help to coordinate both the nature and order of the events that take place at a replication fork. The purpose of the experiments discussed in this report was to test a prediction of this model, namely, that a mutant beta clamp protein impaired for interactions with the replicative DNA polymerase (polymerase III [Pol III]) would likewise have impaired interactions with other partner proteins and hence would display pleiotropic phenotypes. Results discussed herein indicate that the dnaN159-encoded mutant beta clamp protein (beta159) is impaired for interactions with the alpha catalytic subunit of Pol III. Moreover, the dnaN159 mutant strain displayed multiple replication and repair phenotypes, including sensitivity to UV light, an absolute dependence on the polymerase activity of Pol I for viability, enhanced Pol V-dependent mutagenesis, and altered induction of the global SOS response. Furthermore, epistasis analyses indicated that the UV sensitivity of the dnaN159 mutant was suppressed by (not epistatic with) inactivation of Pol IV (dinB gene product). Taken together, these findings suggest that in the dnaN159 mutant, DNA polymerase usage, and hence DNA replication, repair, and translesion synthesis, are altered. These findings are discussed in terms of a model to describe how the beta clamp might help to coordinate protein traffic at the replication fork.
Collapse
Affiliation(s)
- Mark D Sutton
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 3435 Main St., 140 Farber Hall, Buffalo, NY 14214.
| |
Collapse
|
32
|
Fujii S, Gasser V, Fuchs RP. The biochemical requirements of DNA polymerase V-mediated translesion synthesis revisited. J Mol Biol 2004; 341:405-17. [PMID: 15276832 DOI: 10.1016/j.jmb.2004.06.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/04/2004] [Accepted: 06/08/2004] [Indexed: 11/29/2022]
Abstract
In addition to replicative DNA polymerases, cells contain specialized DNA polymerases involved in processes such as lesion tolerance, mutagenesis and immunoglobulin diversity. In Escherichia coli, DNA polymerase V (Pol V), encoded by the umuDC locus, is involved in translesion synthesis (TLS) and mutagenesis. Genetic studies have established that mutagenesis requires both UmuC and a proteolytic product of UmuD (UmuD'). In addition, RecA protein and the replication processivity factor, the beta-clamp, were genetically found to be essential co-factors for mutagenesis. Here, we have reconstituted Pol V-mediated bypass of three common replication-blocking lesions, namely the two major UV-induced lesions and a guanine adduct formed by a chemical carcinogen (G-AAF) under conditions that fulfil these in vivo requirements. Two co-factors are essential for efficient Pol V-mediated lesion bypass: (i) a DNA substrate onto which the beta-clamp is stably loaded; and (ii) an extended single-stranded RecA/ATP filament assembled downstream from the lesion site. For efficient bypass, Pol V needs to interact simultaneously with the beta-clamp and the 3' tip of the RecA filament. Formation of an extended RecA/ATP filament and stable loading of the beta-clamp are best achieved on long single-stranded circular DNA templates. In contrast to previously published data, the single-stranded DNA-binding protein (SSB) is not absolutely required for Pol V-mediated lesion bypass provided ATP, instead of ATPgammaS, activates the RecA filament. Further discrepancies with the existing literature are explainable by the use of either inadequate DNA substrates or a UmuC fusion protein instead of native Pol V.
Collapse
Affiliation(s)
- Shingo Fujii
- UPR 9003 du CNRS, Cancerogenese et Mutagenese Moleculaire et Structurale, 67400 Strasbourg, France
| | | | | |
Collapse
|
33
|
Liu X, Choudhury S, Roy R. In vitro and in vivo dimerization of human endonuclease III stimulates its activity. J Biol Chem 2003; 278:50061-9. [PMID: 14522981 DOI: 10.1074/jbc.m309997200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human endonuclease III (hNTH1), a DNA glycosylase with associated abasic lyase activity, repairs various mutagenic and toxic-oxidized DNA lesions, including thymine glycol. We demonstrate for the first time that the full-length hNTH1 positively cooperates in product formation as a function of enzyme concentration. The protein concentrations that caused cooperativity in turnover also exhibited dimerization, independent of DNA binding. Earlier we had found that the hNTH1 consists of two domains: a well conserved catalytic domain, and an inhibitory N-terminal tail. The N-terminal truncated proteins neither undergo dimerization, nor do they show cooperativity in turnover, indicating that the homodimerization of hNTH1 is specific and requires the N-terminal tail. Further kinetic analysis at transition states reveals that this homodimerization stimulates an 11-fold increase in the rate of release of the final product, an AP-site with a 3'-nick, and that it does not affect other intermediate reaction rates, including those of DNA N-glycosylase or AP lyase activities that are modulated by previously reported interacting proteins, YB-1, APE1, and XPG. Thus, the site of modulating action of the dimer on the hNTH1 reaction steps is unique. Moreover, the high intranuclear (2.3 microM) and cytosolic (0.65 microM) concentrations of hNTH1 determined here support the possibility of in vivo dimerization; indeed, in vivo protein cross-linking showed the presence of the dimer in the nucleus of HeLa cells. Therefore, it is likely that the dimerization of hNTH1 involving the N-terminal tail masks the inhibitory effect of this tail and plays a critical role in its catalytic turnover in the cell.
Collapse
Affiliation(s)
- Xiang Liu
- DNA Repair Laboratory, Mechanism of Carcinogenesis Program, American Health Foundation Cancer Center, Institute for Cancer Prevention, Valhalla, New York 10595, USA
| | | | | |
Collapse
|