1
|
Shaw JLA, Judy JD, Kumar A, Bertsch P, Wang MB, Kirby JK. Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9433-9445. [PMID: 28745897 DOI: 10.1021/acs.est.7b01094] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chronic exposure to environmental contaminants can induce heritable "transgenerational" modifications to organisms, potentially affecting future ecosystem health and functionality. Incorporating transgenerational epigenetic heritability into risk assessment procedures has been previously suggested. However, a critical review of existing literature yielded numerous studies claiming transgenerational impacts, with little compelling evidence. Therefore, contaminant-induced epigenetic inheritance may be less common than is reported in the literature. We identified a need for multigeneration epigenetic studies that extend beyond what could be deemed "direct exposure" to F1 and F2 gametes and also include subsequent multiple nonexposed generations to adequately evaluate transgenerational recovery times. Also, increased experimental replication is required to account for the highly variable nature of epigenetic responses and apparent irreproducibility of current studies. Further, epigenetic end points need to be correlated with observable detrimental organism changes before a need for risk management can be properly determined. We suggest that epigenetic-based contaminant studies include concentrations lower than current "EC10-20" or "Lowest Observable Effect Concentrations" for the organism's most sensitive phenotypic end point, as higher concentrations are likely already regulated. Finally, we propose a regulatory framework and optimal experimental design that enables transgenerational epigenetic effects to be assessed and incorporated into conventional ecotoxicological testing.
Collapse
Affiliation(s)
- Jennifer L A Shaw
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Waite Road, Urrbrae, Adelaide Australia , 5064
| | - Jonathan D Judy
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Waite Road, Urrbrae, Adelaide Australia , 5064
- University of Florida , Soil and Water Sciences Department, 1692 McCarthy Drive, Gainesville, Florida 32611, United States
| | - Anupama Kumar
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Waite Road, Urrbrae, Adelaide Australia , 5064
| | - Paul Bertsch
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water , Brisbane, Queensland Australia , 4001
| | - Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Agriculture and Food Unit, Black Mountain, Canberra, Australian Capital Territory, Australia , 2601
| | - Jason K Kirby
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Waite Road, Urrbrae, Adelaide Australia , 5064
| |
Collapse
|
2
|
Cooper DJ, Chen IC, Hernandez C, Wang Y, Walter CA, McCarrey JR. Pluripotent cells display enhanced resistance to mutagenesis. Stem Cell Res 2017; 19:113-117. [PMID: 28129601 DOI: 10.1016/j.scr.2016.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/19/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022] Open
Abstract
Pluripotent cells have been reported to exhibit lower frequencies of point mutations and higher levels of DNA repair than differentiated cells. This predicts that pluripotent cells are less susceptible to mutagenic exposures than differentiated cells. To test this prediction, we used a lacI mutation-reporter transgene system to assess the frequency of point mutations in multiple lines of mouse pluripotent embryonic stem cells and induced pluripotent cells, as well as in multiple lines of differentiated fibroblast cells, before and after exposure to a moderate dose of the mutagen, methyl methanesulfonate. We also measured levels of key enzymes in the base excision repair (BER) pathway in each cell line before and after exposure to the mutagen. Our results confirm that pluripotent cells normally maintain lower frequencies of point mutations than differentiated cells, and show that differentiated cells exhibit a large increase in mutation frequency following a moderate mutagenic exposure, whereas pluripotent cells subjected to the same exposure show no increase in mutations. This result likely reflects the higher levels of BER proteins detectable in pluripotent cells prior to exposure and supports our thesis that maintenance of enhanced genetic integrity is a fundamental characteristic of pluripotent cells.
Collapse
Affiliation(s)
- Daniel J Cooper
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - I-Chung Chen
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Christine Hernandez
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Christi A Walter
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States.
| |
Collapse
|
3
|
McCarrey JR, Lehle JD, Raju SS, Wang Y, Nilsson EE, Skinner MK. Tertiary Epimutations - A Novel Aspect of Epigenetic Transgenerational Inheritance Promoting Genome Instability. PLoS One 2016; 11:e0168038. [PMID: 27992467 PMCID: PMC5167269 DOI: 10.1371/journal.pone.0168038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/23/2016] [Indexed: 11/29/2022] Open
Abstract
Exposure to environmental factors can induce the epigenetic transgenerational inheritance of disease. Alterations to the epigenome termed “epimutations” include “primary epimutations” which are epigenetic alterations in the absence of genetic change and “secondary epimutations” which form following an initial genetic change. To determine if secondary epimutations contribute to transgenerational transmission of disease following in utero exposure to the endocrine disruptor vinclozolin, we exposed pregnant female rats carrying the lacI mutation-reporter transgene to vinclozolin and assessed the frequency of mutations in kidney tissue and sperm recovered from F1 and F3 generation progeny. Our results confirm that vinclozolin induces primary epimutations rather than secondary epimutations, but also suggest that some primary epimutations can predispose a subsequent accelerated accumulation of genetic mutations in F3 generation descendants that have the potential to contribute to transgenerational phenotypes. We therefore propose the existence of “tertiary epimutations” which are initial primary epimutations that promote genome instability leading to an accelerated accumulation of genetic mutations.
Collapse
Affiliation(s)
- John R. McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX United States of America
- * E-mail:
| | - Jake D. Lehle
- Department of Biology, University of Texas at San Antonio, San Antonio, TX United States of America
| | - Seetha S. Raju
- Department of Biology, University of Texas at San Antonio, San Antonio, TX United States of America
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio, San Antonio, TX United States of America
| | - Eric E. Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA United States of America
| |
Collapse
|
4
|
Chen IC, Hernandez C, Xu X, Cooney A, Wang Y, McCarrey JR. Dynamic Variations in Genetic Integrity Accompany Changes in Cell Fate. Stem Cells Dev 2016; 25:1698-1708. [PMID: 27627671 DOI: 10.1089/scd.2016.0221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pluripotent stem cells hold the potential to form the basis of novel approaches to treatment of disease in vivo as well as to facilitate the generation of models for human disease, providing powerful avenues to discovery of novel diagnostic biomarkers and/or innovative drug regimens in vitro. However, this will require extensive maintenance, expansion, and manipulation of these cells in culture, which raises a concern regarding the extent to which genetic integrity will be preserved throughout these manipulations. We used a mutation reporter (lacI) transgene approach to conduct direct comparisons of mutation frequencies in cell populations that shared a common origin and genetic identity, but were induced to undergo transitions in cell fate between pluripotent and differentiated states, or vice versa. We confirm that pluripotent cells normally maintain enhanced genetic integrity relative to that in differentiated cells, and we extend this finding to show that dynamic transformations in the relative stringency at which genetic integrity is maintained are associated with transitions between pluripotent and differentiated cellular states. These results provide insight into basic biological distinctions between pluripotent and differentiated cell types that impact genetic integrity in a manner that is directly relevant to the potential clinical use of these cell types.
Collapse
Affiliation(s)
- I-Chung Chen
- 1 Department of Biology, University of Texas at San Antonio , San Antonio, Texas
| | - Christine Hernandez
- 1 Department of Biology, University of Texas at San Antonio , San Antonio, Texas
| | - Xueping Xu
- 2 Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Austin Cooney
- 2 Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center , Houston, Texas.,3 Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell , Medical School, Austin, Texas
| | - Yufeng Wang
- 1 Department of Biology, University of Texas at San Antonio , San Antonio, Texas
| | - John R McCarrey
- 1 Department of Biology, University of Texas at San Antonio , San Antonio, Texas
| |
Collapse
|
5
|
Niemann H. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 2016; 86:80-90. [PMID: 27160443 DOI: 10.1016/j.theriogenology.2016.04.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development.
Collapse
Affiliation(s)
- Heiner Niemann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany.
| |
Collapse
|
6
|
Yanagimachi R. Germ cells and fertilization: why I studied these topics and what I learned along the path of my study. Andrology 2015; 2:787-93. [PMID: 25327579 DOI: 10.1111/j.2047-2927.2014.00238.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- R Yanagimachi
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, University of Hawaii Medical School, Honolulu, HI, USA.
| |
Collapse
|
7
|
Cooper DJ, Walter CA, McCarrey JR. Co-regulation of pluripotency and genetic integrity at the genomic level. Stem Cell Res 2014; 13:508-19. [PMID: 25451711 DOI: 10.1016/j.scr.2014.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/12/2014] [Accepted: 09/20/2014] [Indexed: 12/20/2022] Open
Abstract
The Disposable Soma Theory holds that genetic integrity will be maintained at more pristine levels in germ cells than in somatic cells because of the unique role germ cells play in perpetuating the species. We tested the hypothesis that the same concept applies to pluripotent cells compared to differentiated cells. Analyses of transcriptome and cistrome databases, along with canonical pathway analysis and chromatin immunoprecipitation confirmed differential expression of DNA repair and cell death genes in embryonic stem cells and induced pluripotent stem cells relative to fibroblasts, and predicted extensive direct and indirect interactions between the pluripotency and genetic integrity gene networks in pluripotent cells. These data suggest that enhanced maintenance of genetic integrity is fundamentally linked to the epigenetic state of pluripotency at the genomic level. In addition, these findings demonstrate how a small number of key pluripotency factors can regulate large numbers of downstream genes in a pathway-specific manner.
Collapse
Affiliation(s)
- Daniel J Cooper
- Department of Biology, University of Texas at San Antonio, USA
| | - Christi A Walter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, USA.
| |
Collapse
|
8
|
Murphey P, McLean DJ, McMahan CA, Walter CA, McCarrey JR. Enhanced genetic integrity in mouse germ cells. Biol Reprod 2013; 88:6. [PMID: 23153565 DOI: 10.1095/biolreprod.112.103481] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genetically based diseases constitute a major human health burden, and de novo germline mutations represent a source of heritable genetic alterations that can cause such disorders in offspring. The availability of transgenic rodent systems with recoverable, mutation reporter genes has been used to assess the occurrence of spontaneous point mutations in germline cells. Previous studies using the lacI mutation reporter transgenic mouse system showed that the frequency of spontaneous mutations is significantly lower in advanced male germ cells than in somatic cell types from the same individuals. Here we used this same mutation reporter transgene system to show that female germ cells also display a mutation frequency that is lower than that in corresponding somatic cells and similar to that seen in male germ cells, indicating this is a common feature of germ cells in both sexes. In addition, we showed that statistically significant differences in mutation frequencies are evident between germ cells and somatic cells in both sexes as early as mid-fetal stages in the mouse. Finally, a comparison of the mutation frequency in a general population of early type A spermatogonia with that in a population enriched for Thy-1-positive spermatogonia suggests there is heterogeneity among the early spermatogonial population such that a subset of these cells are predestined to form true spermatogonial stem cells. Taken together, these results support the disposable soma theory, which posits that genetic integrity is normally maintained more stringently in the germ line than in the soma and suggests that this is achieved by minimizing the initial occurrence of mutations in early germline cells and their subsequent gametogenic progeny relative to that in somatic cells.
Collapse
Affiliation(s)
- Patricia Murphey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
9
|
Mason K, Liu Z, Aguirre-Lavin T, Beaujean N. Chromatin and epigenetic modifications during early mammalian development. Anim Reprod Sci 2012; 134:45-55. [PMID: 22921722 DOI: 10.1016/j.anireprosci.2012.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mammals, the embryonic genome is transcriptionally inactive after fertilization and embryonic gene expression is initiated during the preimplantation developmental period, during so-called "embryonic genome activation (EGA)". EGA is dependent on the presence of the basal transcriptional machinery components but also on the parental genome reorganization after fertilization. Indeed, during the first cell cycles, the embryonic nuclei undergo intense remodelling that participates in the regulation of embryonic development. Among the mechanisms of this remodeling, it appears that modifications of epigenetic marks are essential especially at the time of embryonic genome activation. This review will focus on DNA methylation and histone modifications such as acetylation or methylation which are important to produce healthy embryos. We will also consider nuclear higher-order structures, such as chromosomes territories and pericentric heterochromatin clusters. The relevance of these chromatin epigenetic modifications has been sustained by the work performed on cloned embryos produced through nuclear transfer of somatic donor cells. It is indeed believed that incomplete reprogramming of the somatic nucleus, in other words, the incomplete re-establishment of the embryonic epigenetic patterns and peculiar nuclear organization may be among the causes of development failure of cloned animals. This will also be discussed in this review.
Collapse
Affiliation(s)
- Karlla Mason
- INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France
| | | | | | | |
Collapse
|
10
|
McCarrey JR. The epigenome as a target for heritable environmental disruptions of cellular function. Mol Cell Endocrinol 2012; 354:9-15. [PMID: 21970811 DOI: 10.1016/j.mce.2011.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 02/07/2023]
Abstract
The environment is a well-established source of damaging or disrupting influences on cellular function. In the past, studies of the mechanisms by which such disruptions occur have focused largely on either direct toxic effects on cellular function at the protein or cell signaling level, or mutagenic effects that impact the genome. In recent years there has been a growing appreciation for the potential for environmental influences to disrupt the epigenome and mechanisms of epigenetic regulation within the cell. Indeed, because of the inherent lability of the epigenome, this represents a primary target for environmentally induced disruption. This review summarizes the manner in which the epigenome normally regulates cellular function, the effects of disruptions on this function, and the manner in which such disruptions may or may not be corrected within the organism and/or transmitted to subsequent generations.
Collapse
Affiliation(s)
- John R McCarrey
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
11
|
Jiang C, Mithani A, Gan X, Belfield EJ, Klingler JP, Zhu JK, Ragoussis J, Mott R, Harberd NP. Regenerant Arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes. Curr Biol 2011; 21:1385-90. [PMID: 21802297 PMCID: PMC3162137 DOI: 10.1016/j.cub.2011.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/27/2011] [Accepted: 07/01/2011] [Indexed: 11/30/2022]
Abstract
Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1–3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic (“somaclonal”) variation [4–7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation.
Collapse
Affiliation(s)
- Caifu Jiang
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
McCarrey JR. Maintenance of genetic integrity during natural and assisted reproduction. Reprod Biomed Online 2009; 18 Suppl 2:51-5. [PMID: 19406032 DOI: 10.1016/s1472-6483(10)60449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The essence of reproduction involves propagation of genetic information from parents to offspring. In mammals, the frequency of spontaneously acquired mutations is lower in germ-line cells than in somatic cells, reflecting the role played by germline cells in the propagation of genetic information and the importance of maintaining genetic integrity in these cells. The Big Blue((R)) transgenic mouse model was used to investigate the frequency and spectrum of: (i) spontaneous point mutations in germ cells as they develop naturally during the life cycle of the mouse; and (ii) acquired mutations that are normally transmitted from parents to offspring during natural and assisted reproduction. The study found that germ cells normally maintain a frequency of spontaneous point mutations that is 5-10-fold lower than that observed in somatic cells from the same individual, leading to embryos with very low frequencies of point mutations in the next generation. No significant differences in the frequency or spectrum of mutations between naturally conceived fetuses and assisted-conception fetuses were observed, indicating that, with respect to maintenance of genetic integrity, these methods are safe. Preliminary analysis of fetuses produced by somatic cell nuclear transfer indicates that maintenance of genetic integrity is regulated in a tissue-specific manner by epigenetic mechanisms that are subject to reprogramming during cloning.
Collapse
Affiliation(s)
- John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78248, USA.
| |
Collapse
|