1
|
Kondacs L, Parijat P, Cobb AJA, Kampourakis T. Synthesis and Biophysical Characterization of Fingolimod Derivatives as Cardiac Troponin Antagonists. ACS Med Chem Lett 2024; 15:413-417. [PMID: 38505838 PMCID: PMC10945792 DOI: 10.1021/acsmedchemlett.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/21/2024] Open
Abstract
Calcium binding to cardiac troponin C (cTnC) in the thin filaments acts as a trigger for cardiac muscle contraction. The N-lobe of cTnC (NcTnC) undergoes a conformational change in the presence of calcium that allows for interaction with the switch region of cardiac troponin I (cTnISP), releasing its inhibitory effect on the thin filament structure. The small molecule fingolimod inhibits cTnC-cTnISP interactions via electrostatic repulsion between its positively charged tail and positively charged residues in cTnISP and acts as a calcium desensitizer of the contractile myofilaments. Here we investigate the structure-activity relationship of the fingolimod hydrophobic headgroup and show that increasing the alkyl chain length increases both its affinity for NcTnC and its inhibitory effect on the NcTnC-cTnISP interaction and that decreasing flexibility completely abolishes these effects. Strikingly, the longer derivatives have no effect on the calcium affinity of cTnC, suggesting that they act as better inhibitors.
Collapse
Affiliation(s)
- Laszlo Kondacs
- Department
of Chemistry, King’s College London, Britannia House, London SE1 1DB, United Kingdom
| | - Priyanka Parijat
- Randall
Centre for Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s
College London, London SE1 1UL, United Kingdom
| | - Alexander J. A. Cobb
- Department
of Chemistry, King’s College London, Britannia House, London SE1 1DB, United Kingdom
| | - Thomas Kampourakis
- Randall
Centre for Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s
College London, London SE1 1UL, United Kingdom
| |
Collapse
|
2
|
Zhang S, Kim D, Park M, Yin JH, Park J, Chung YJ. Suppression of Metastatic Ovarian Cancer Cells by Bepridil, a Calcium Channel Blocker. Life (Basel) 2023; 13:1607. [PMID: 37511982 PMCID: PMC10381520 DOI: 10.3390/life13071607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Although surgery followed by platinum-based therapy is effective as a standard treatment in the early stages of ovarian cancer, the majority of cases are diagnosed at advanced stages, leading to poor prognosis. Thus, the identification of novel therapeutic drugs is needed. In this study, we assessed the effectiveness of bepridil-a calcium channel blocker-in ovarian cancer cells using two cell lines: SKOV-3, and SKOV-3-13 (a highly metastatic clone of SKOV-3). Treatment of these cell lines with bepridil significantly reduced cell viability, migration, and invasion. Notably, SKOV-3-13 was more sensitive to bepridil than SKOV-3. The TGF-β1-induced epithelial-mesenchymal transition (EMT)-like phenotype was reversed by treatment with bepridil in both cell lines. Consistently, expression levels of EMT-related markers, including vimentin, β-catenin, and Snail, were also substantially decreased by the treatment with bepridil. An in vivo mouse xenograft model was used to confirm these findings. Tumor growth was significantly reduced by bepridil treatment in SKOV-3-13-inoculated mice, and immunohistochemistry showed consistently decreased expression of EMT-related markers. Our findings are the first to report anticancer effects of bepridil in ovarian cancer, and they suggest that bepridil holds significant promise as an effective therapeutic agent for targeting metastatic ovarian cancer.
Collapse
Affiliation(s)
- Songzi Zhang
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dokyeong Kim
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Minyoung Park
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jing Hu Yin
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Junseong Park
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yeun-Jun Chung
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Mahmud Z, Tikunova S, Belevych N, Wagg CS, Zhabyeyev P, Liu PB, Rasicci DV, Yengo CM, Oudit GY, Lopaschuk GD, Reiser PJ, Davis JP, Hwang PM. Small Molecule RPI-194 Stabilizes Activated Troponin to Increase the Calcium Sensitivity of Striated Muscle Contraction. Front Physiol 2022; 13:892979. [PMID: 35755445 PMCID: PMC9213791 DOI: 10.3389/fphys.2022.892979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Small molecule cardiac troponin activators could potentially enhance cardiac muscle contraction in the treatment of systolic heart failure. We designed a small molecule, RPI-194, to bind cardiac/slow skeletal muscle troponin (Cardiac muscle and slow skeletal muscle share a common isoform of the troponin C subunit.) Using solution NMR and stopped flow fluorescence spectroscopy, we determined that RPI-194 binds to cardiac troponin with a dissociation constant KD of 6-24 μM, stabilizing the activated complex between troponin C and the switch region of troponin I. The interaction between RPI-194 and troponin C is weak (KD 311 μM) in the absence of the switch region. RPI-194 acts as a calcium sensitizer, shifting the pCa50 of isometric contraction from 6.28 to 6.99 in mouse slow skeletal muscle fibers and from 5.68 to 5.96 in skinned cardiac trabeculae at 100 μM concentration. There is also some cross-reactivity with fast skeletal muscle fibers (pCa50 increases from 6.27 to 6.52). In the slack test performed on the same skinned skeletal muscle fibers, RPI-194 slowed the velocity of unloaded shortening at saturating calcium concentrations, suggesting that it slows the rate of actin-myosin cross-bridge cycling under these conditions. However, RPI-194 had no effect on the ATPase activity of purified actin-myosin. In isolated unloaded mouse cardiomyocytes, RPI-194 markedly decreased the velocity and amplitude of contractions. In contrast, cardiac function was preserved in mouse isolated perfused working hearts. In summary, the novel troponin activator RPI-194 acts as a calcium sensitizer in all striated muscle types. Surprisingly, it also slows the velocity of unloaded contraction, but the cause and significance of this is uncertain at this time. RPI-194 represents a new class of non-specific troponin activator that could potentially be used either to enhance cardiac muscle contractility in the setting of systolic heart failure or to enhance skeletal muscle contraction in neuromuscular disorders.
Collapse
Affiliation(s)
- Zabed Mahmud
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Svetlana Tikunova
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Cory S Wagg
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Pavel Zhabyeyev
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Philip B Liu
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - David V Rasicci
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, University Park, PA, United States
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, University Park, PA, United States
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Peter J Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Cai F, Robertson IM, Kampourakis T, Klein BA, Sykes BD. The Role of Electrostatics in the Mechanism of Cardiac Thin Filament Based Sensitizers. ACS Chem Biol 2020; 15:2289-2298. [PMID: 32633482 DOI: 10.1021/acschembio.0c00519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heart muscle contraction is regulated by calcium binding to cardiac troponin C. This induces troponin I (cTnI) switch region binding to the regulatory domain of troponin C (cNTnC), pulling the cTnI inhibitory region off actin and triggering muscle contraction. Small molecules targeting this cNTnC-cTnI interface have potential in the treatment of heart disease. Most of these have an aromatic core which binds to the hydrophobic core of cNTnC, and a polar and often charged 'tail'. The calmodulin antagonist W7 is unique in that it acts as calcium desensitizer. W7 binds to the interface of cNTnC and cTnI switch region and weakens cTnI binding, possibly by electrostatic repulsion between the positively charged terminal amino group of W7 and the positively charged RRVR144-147 region of cTnI. To evaluate the role of electrostatics, we synthesized A7, where the amino group of W7 was replaced with a carboxyl group. We determined the high-resolution solution NMR structure of A7 bound to a cNTnC-cTnI chimera. The structure shows that A7 does not change the overall conformation of the cNTnC-cTnI interface, and the naphthalene ring of A7 sits in the same hydrophobic pocket as that of W7, but the charged tail takes a different route to the surface of the complex, especially with respect to the position of the switch region of cTnI. We measured the affinities of A7 for cNTnC and the cNTnC-cTnI complex and that of the cTnI switch peptide for the cNTnC-A7 complex. We also compared the binding of W7 and A7 for two cNTnC-cTnI chimeras, differing in the presence or absence of the RRVR region of cTnI. A7 decreased the binding affinity of cTnI to cNTnC substantially less than W7 and bound more tightly to the more positively charged chimera. We tested the effects of W7 and A7 on the force-calcium relation of demembranated rat right ventricular trabeculae and demonstrated that A7 has a much weaker desensitization effect than W7. We also synthesized A6, which has one less methylene group on the hydrocarbon chain than A7. A6 did not affect binding of cTnI switch peptide nor change the calcium sensitivity of ventricular trabeculae. These results suggest that the negative inotropic effect of W7 may result from a combination of electrostatic repulsion and steric hindrance with cTnI.
Collapse
Affiliation(s)
- Fangze Cai
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Ian M. Robertson
- Ministry of Health, Government of Alberta, Edmonton, AB T5J 1S6, Canada
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Brittney A. Klein
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
5
|
Nakano SJ, Walker JS, Walker LA, Li X, Du Y, Miyamoto SD, Sucharov CC, Garcia AM, Mitchell MB, Ambardekar AV, Stauffer BL. Increased myocyte calcium sensitivity in end-stage pediatric dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 317:H1221-H1230. [PMID: 31625780 DOI: 10.1152/ajpheart.00409.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dilated cardiomyopathy (DCM) is the most common cause of heart failure (HF) in children, resulting in high mortality and need for heart transplantation. The pathophysiology underlying pediatric DCM is largely unclear; however, there is emerging evidence that molecular adaptations and response to conventional HF medications differ between children and adults. To gain insight into alterations leading to systolic dysfunction in pediatric DCM, we measured cardiomyocyte contractile properties and sarcomeric protein phosphorylation in explanted pediatric DCM myocardium (N = 8 subjects) compared with nonfailing (NF) pediatric hearts (N = 8 subjects). Force-pCa curves were generated from skinned cardiomyocytes in the presence and absence of protein kinase A. Sarcomeric protein phosphorylation was quantified with Pro-Q Diamond staining after gel electrophoresis. Pediatric DCM cardiomyocytes demonstrate increased calcium sensitivity (pCa50 =5.70 ± 0.0291), with an associated decrease in troponin (Tn)I phosphorylation compared with NF pediatric cardiomyocytes (pCa50 =5.59 ± 0.0271, P = 0.0073). Myosin binding protein C and TnT phosphorylation are also lower in pediatric DCM, whereas desmin phosphorylation is increased. Pediatric DCM cardiomyocytes generate peak tension comparable to that of NF pediatric cardiomyocytes [DCM 29.7 mN/mm2, interquartile range (IQR) 21.5-49.2 vs. NF 32.8 mN/mm2, IQR 21.5-49.2 mN/mm2; P = 0.6125]. In addition, cooperativity is decreased in pediatric DCM compared with pediatric NF (Hill coefficient: DCM 1.56, IQR 1.31-1.94 vs. NF 1.94, IQR 1.36-2.86; P = 0.0425). Alterations in sarcomeric phosphorylation and cardiomyocyte contractile properties may represent an impaired compensatory response, contributing to the detrimental DCM phenotype in children.NEW & NOTEWORTHY Our study is the first to demonstrate that cardiomyocytes from infants and young children with dilated cardiomyopathy (DCM) exhibit increased calcium sensitivity (likely mediated by decreased troponin I phosphorylation) compared with nonfailing pediatric cardiomyocytes. Compared with published values in adult cardiomyocytes, pediatric cardiomyocytes have notably decreased cooperativity, with a further reduction in the setting of DCM. Distinct adaptations in cardiomyocyte contractile properties may contribute to a differential response to pharmacological therapies in the pediatric DCM population.
Collapse
Affiliation(s)
- Stephanie J Nakano
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - John S Walker
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Xiaotao Li
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Yanmei Du
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Shelley D Miyamoto
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Max B Mitchell
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Brian L Stauffer
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado.,Division of Cardiology, Department of Medicine, Denver Health and Hospital Authority, Denver, Colorado
| |
Collapse
|
6
|
Bowman JD, Coldren WH, Lindert S. Mechanism of Cardiac Troponin C Calcium Sensitivity Modulation by Small Molecules Illuminated by Umbrella Sampling Simulations. J Chem Inf Model 2019; 59:2964-2972. [PMID: 31141358 DOI: 10.1021/acs.jcim.9b00256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac troponin C (cTnC) binds intracellular calcium and subsequently cardiac troponin I (cTnI), initiating cardiac muscle contraction. Due to its role in contraction, cTnC has been a therapeutic target in the search for small molecules to treat conditions that interfere with normal muscle contraction like the heritable cardiomyopathies. Structural studies have shown the binding location of small molecules such as bepridil, dfbp-o, 3-methyldiphenylamine (DPA), and W7 to be a hydrophobic pocket in the regulatory domain of cTnC (cNTnC) but have not shown the influence of these small molecules on the energetics of opening this domain. Here we describe an application of an umbrella sampling method used to elucidate the impact these calcium sensitivity modulators have on the free energy of cNTnC hydrophobic patch opening. We found that all these molecules lowered the free energy of opening in the absence of the cTnI, with bepridil facilitating the least endergonic transformation. In the presence of cTnI, however, we saw a stabilization of the open configuration due to DPA and dfbp-o binding, and a destabilization of the open configuration imparted by bepridil and W7. Predicted poor binding molecule NSC34337 left the hydrophobic patch in under 3 ns in conventional MD simulations suggesting that only hydrophobic patch binders stabilized the open conformation. In conclusion, this study presents a novel approach to study the impact of small molecules on hydrophobic patch opening through umbrella sampling, and it proposes mechanisms for calcium sensitivity modulation.
Collapse
Affiliation(s)
- Jacob D Bowman
- Department of Chemistry and Biochemistry , Ohio State University , 2114 Newman & Wolfrom Laboratory, 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - William H Coldren
- Department of Chemistry and Biochemistry , Ohio State University , 2114 Newman & Wolfrom Laboratory, 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry , Ohio State University , 2114 Newman & Wolfrom Laboratory, 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| |
Collapse
|
7
|
Szatkowski L, Lynn ML, Holeman T, Williams MR, Baldo AP, Tardiff JC, Schwartz SD. Proof of Principle that Molecular Modeling Followed by a Biophysical Experiment Can Develop Small Molecules that Restore Function to the Cardiac Thin Filament in the Presence of Cardiomyopathic Mutations. ACS OMEGA 2019; 4:6492-6501. [PMID: 31342001 PMCID: PMC6649307 DOI: 10.1021/acsomega.8b03340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/28/2019] [Indexed: 06/10/2023]
Abstract
This article reports a coupled computational experimental approach to design small molecules aimed at targeting genetic cardiomyopathies. We begin with a fully atomistic model of the cardiac thin filament. To this we dock molecules using accepted computational drug binding methodologies. The candidates are screened for their ability to repair alterations in biophysical properties caused by mutation. Hypertrophic and dilated cardiomyopathies caused by mutation are initially biophysical in nature, and the approach we take is to correct the biophysical insult prior to irreversible cardiac damage. Candidate molecules are then tested experimentally for both binding and biophysical properties. This is a proof of concept study-eventually candidate molecules will be tested in transgenic animal models of genetic (sarcomeric) cardiomyopathies.
Collapse
Affiliation(s)
- Lukasz Szatkowski
- Department
of Chemistry and Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Melissa L. Lynn
- Department of Physiological
Sciences and Department of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Teryn Holeman
- Department of Physiological
Sciences and Department of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Michael R. Williams
- Department
of Chemistry and Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Anthony P. Baldo
- Department
of Chemistry and Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Jil C. Tardiff
- Department of Physiological
Sciences and Department of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Steven D. Schwartz
- Department
of Chemistry and Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
8
|
Tikunova SB, Cuesta A, Price M, Li MX, Belevych N, Biesiadecki BJ, Reiser PJ, Hwang PM, Davis JP. 3-Chlorodiphenylamine activates cardiac troponin by a mechanism distinct from bepridil or TFP. J Gen Physiol 2018; 151:9-17. [PMID: 30442775 PMCID: PMC6314390 DOI: 10.1085/jgp.201812131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/02/2018] [Indexed: 01/14/2023] Open
Abstract
Cardiac troponin activators could be beneficial in systolic heart failure. Tikunova et al. demonstrate that, unlike previously known calcium sensitizers, the small molecule 3-chlorodiphenylamine does not activate isolated cardiac troponin C but instead activates the intact troponin complex. Despite extensive efforts spanning multiple decades, the development of highly effective Ca2+ sensitizers for the heart remains an elusive goal. Existing Ca2+ sensitizers have other targets in addition to cardiac troponin (cTn), which can lead to adverse side effects, such as hypotension or arrhythmias. Thus, there is a need to design Ca2+-sensitizing drugs with higher affinity and selectivity for cTn. Previously, we determined that many compounds based on diphenylamine (DPA) were able to bind to a cTnC–cTnI chimera with moderate affinity (Kd ∼10–120 µM). Of these compounds, 3-chlorodiphenylamine (3-Cl-DPA) bound most tightly (Kd of 10 µM). Here, we investigate 3-Cl-DPA further and find that it increases the Ca2+ sensitivity of force development in skinned cardiac muscle. Using NMR, we show that, like the known Ca2+ sensitizers, trifluoperazine (TFP) and bepridil, 3-Cl-DPA is able to bind to the isolated N-terminal domain (N-domain) of cTnC (Kd of 6 µM). However, while the bulky molecules of TFP and bepridil stabilize the open state of the N-domain of cTnC, the small and flexible 3-Cl-DPA molecule is able to bind without stabilizing this open state. Thus, unlike TFP, which drastically slows the rate of Ca2+ dissociation from the N-domain of isolated cTnC in a dose-dependent manner, 3-Cl-DPA has no effect on the rate of Ca2+ dissociation. On the other hand, the affinity of 3-Cl-DPA for a cTnC–TnI chimera is at least an order of magnitude higher than that of TFP or bepridil, likely because 3-Cl-DPA is less disruptive of cTnI binding to cTnC. Therefore, 3-Cl-DPA has a bigger effect on the rate of Ca2+ dissociation from the entire cTn complex than TFP and bepridil. Our data suggest that 3-Cl-DPA activates the cTn complex via a unique mechanism and could be a suitable scaffold for the development of novel treatments for systolic heart failure.
Collapse
Affiliation(s)
- Svetlana B Tikunova
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| | - Andres Cuesta
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| | - Morgan Price
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| | - Monica X Li
- Departments of Medicine and Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | | | - Peter J Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | - Peter M Hwang
- Departments of Medicine and Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| |
Collapse
|
9
|
Li MX, Gelozia S, Danmaliki GI, Wen Y, Liu PB, Lemieux MJ, West FG, Sykes BD, Hwang PM. The calcium sensitizer drug MCI-154 binds the structural C-terminal domain of cardiac troponin C. Biochem Biophys Rep 2018; 16:145-151. [PMID: 30417133 PMCID: PMC6218639 DOI: 10.1016/j.bbrep.2018.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 11/27/2022] Open
Abstract
The compound MCI-154 was previously shown to increase the calcium sensitivity of cardiac muscle contraction. Using solution NMR spectroscopy, we demonstrate that MCI-154 interacts with the calcium-sensing subunit of the cardiac troponin complex, cardiac troponin C (cTnC). Surprisingly, however, it binds only to the structural C-terminal domain of cTnC (cCTnC), and not to the regulatory N-terminal domain (cNTnC) that determines the calcium sensitivity of cardiac muscle. Physiologically, cTnC is always bound to cardiac troponin I (cTnI), so we examined its interaction with MCI-154 in the presence of two soluble constructs, cTnI1–77 and cTnI135–209, which contain all of the segments of cTnI known to interact with cTnC. Neither the cTnC-cTnI1–77 complex nor the cTnC-cTnI135–209 complex binds to MCI-154. Since residues 39–60 of cTnI are known to bind tightly to the cCTnC domain to form a structured core that is invariant throughout the cardiac cycle, we conclude that MCI-154 does not bind to cTnC when it is part of the intact cardiac troponin complex. Thus, MCI-154 likely exerts its calcium sensitizing effect by interacting with a target other than cardiac troponin. MCI-154 is a small molecule calcium sensitizer in cardiac muscle. The N-domain of cardiac troponin C controls calcium sensitivity in cardiac muscle. MCI-154 binds weakly to the promiscuous C-terminal domain of troponin C. Cardiac troponin C does not bind MCI-154 in the presence of troponin I. MCI-154 does not exert its calcium sensitizing effect directly through troponin C.
Collapse
Affiliation(s)
- Monica X Li
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Shorena Gelozia
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Gaddafi I Danmaliki
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Yurong Wen
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.,School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Philip B Liu
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Frederick G West
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Peter M Hwang
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2R3.,Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
10
|
Gonzalez-Martinez D, Johnston JR, Landim-Vieira M, Ma W, Antipova O, Awan O, Irving TC, Bryant Chase P, Pinto JR. Structural and functional impact of troponin C-mediated Ca 2+ sensitization on myofilament lattice spacing and cross-bridge mechanics in mouse cardiac muscle. J Mol Cell Cardiol 2018; 123:26-37. [PMID: 30138628 DOI: 10.1016/j.yjmcc.2018.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/26/2018] [Accepted: 08/05/2018] [Indexed: 12/25/2022]
Abstract
Acto-myosin cross-bridge kinetics are important for beat-to-beat regulation of cardiac contractility; however, physiological and pathophysiological mechanisms for regulation of contractile kinetics are incompletely understood. Here we explored whether thin filament-mediated Ca2+ sensitization influences cross-bridge kinetics in permeabilized, osmotically compressed cardiac muscle preparations. We used a murine model of hypertrophic cardiomyopathy (HCM) harboring a cardiac troponin C (cTnC) Ca2+-sensitizing mutation, Ala8Val in the regulatory N-domain. We also treated wild-type murine muscle with bepridil, a cTnC-targeting Ca2+ sensitizer. Our findings suggest that both methods of increasing myofilament Ca2+ sensitivity increase cross-bridge cycling rate measured by the rate of tension redevelopment (kTR); force per cross-bridge was also enhanced as measured by sinusoidal stiffness and I1,1/I1,0 ratio from X-ray diffraction. Computational modeling suggests that Ca2+ sensitization through this cTnC mutation or bepridil accelerates kTR primarily by promoting faster cross-bridge detachment. To elucidate if myofilament structural rearrangements are associated with changes in kTR, we used small angle X-ray diffraction to simultaneously measure myofilament lattice spacing and isometric force during steady-state Ca2+ activations. Within in vivo lattice dimensions, lattice spacing and steady-state isometric force increased significantly at submaximal activation. We conclude that the cTnC N-domain controls force by modulating both the number and rate of cycling cross-bridges, and that the both methods of Ca2+ sensitization may act through stabilization of cTnC's D-helix. Furthermore, we propose that the transient expansion of the myofilament lattice during Ca2+ activation may be an additional factor that could increase the rate of cross-bridge cycling in cardiac muscle. These findings may have implications for the pathophysiology of HCM.
Collapse
Affiliation(s)
- David Gonzalez-Martinez
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Weikang Ma
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Olga Antipova
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA; X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Omar Awan
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Thomas C Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - J Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
11
|
Schlecht W, Dong WJ. Dynamic Equilibrium of Cardiac Troponin C's Hydrophobic Cleft and Its Modulation by Ca 2+ Sensitizers and a Ca 2+ Sensitivity Blunting Phosphomimic, cTnT(T204E). Bioconjug Chem 2017; 28:2581-2590. [PMID: 28876897 DOI: 10.1021/acs.bioconjchem.7b00418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several studies have suggested that conformational dynamics are important in the regulation of thin filament activation in cardiac troponin C (cTnC); however, little direct evidence has been offered to support these claims. In this study, a dye homodimerization approach is developed and implemented that allows the determination of the dynamic equilibrium between open and closed conformations in cTnC's hydrophobic cleft. Modulation of this equilibrium by Ca2+, cardiac troponin I (cTnI), cardiac troponin T (cTnT), Ca2+-sensitizers, and a Ca2+-desensitizing phosphomimic of cTnT (cTnT(T204E) is characterized. Isolated cTnC contained a small open conformation population in the absence of Ca2+ that increased significantly upon the addition of saturating levels of Ca2+. This suggests that the Ca2+-induced activation of thin filament arises from an increase in the probability of hydrophobic cleft opening. The inclusion of cTnI increased the population of open cTnC, and the inclusion of cTnT had the opposite effect. Samples containing Ca2+-desensitizing cTnT(T204E) showed a slight but insignificant decrease in open conformation probability compared to samples with cardiac troponin T, wild type [cTnT(wt)], while Ca2+ sensitizer treated samples generally increased open conformation probability. These findings show that an equilibrium between the open and closed conformations of cTnC's hydrophobic cleft play a significant role in tuning the Ca2+ sensitivity of the heart.
Collapse
Affiliation(s)
- William Schlecht
- The Voiland School of Chemical Engineering and Bioengineering and ‡The Department of Integrated Neuroscience and Physiology, Washington State University , Pullman, Washington 99164, United States
| | - Wen-Ji Dong
- The Voiland School of Chemical Engineering and Bioengineering and ‡The Department of Integrated Neuroscience and Physiology, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
12
|
Cai F, Li MX, Pineda-Sanabria SE, Gelozia S, Lindert S, West F, Sykes BD, Hwang PM. Structures reveal details of small molecule binding to cardiac troponin. J Mol Cell Cardiol 2016; 101:134-144. [PMID: 27825981 DOI: 10.1016/j.yjmcc.2016.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 11/27/2022]
Abstract
In cardiac and skeletal muscle, the troponin complex turns muscle contraction on and off in a calcium-dependent manner. Many small molecules are known to bind to the troponin complex to modulate its calcium binding affinity, and this may be useful in a broad range of conditions in which striated muscle function is compromised, such as congestive heart failure. As a tool for developing drugs specific for the cardiac isoform of troponin, we have designed a chimeric construct (cChimera) consisting of the regulatory N-terminal domain of cardiac troponin C (cNTnC) fused to the switch region of cardiac troponin I (cTnI), mimicking the key binding event that turns on muscle contraction. We demonstrate by solution NMR spectroscopy that cChimera faithfully reproduces the native interface between cTnI and cNTnC. We determined that small molecules based on diphenylamine can bind to cChimera with a KD as low as 10μM. Solution NMR structures show that minimal structural perturbations in cChimera are needed to accommodate 3-methyldiphenylamine (3-mDPA), which is probably why it binds with higher affinity than previously studied compounds like bepridil, despite its significantly smaller size. The unsubstituted aromatic ring of 3-mDPA binds to an inner hydrophobic pocket adjacent to the central beta sheet of cNTnC. However, the methyl-substituted ring is able to bind in two different orientations, either inserting into the cNTnC-cTnI interface or "flipping out" to form contacts primarily with helix C of cNTnC. Our work suggests that preservation of the native interaction between cNTnC and cTnI is key to the development of a high affinity cardiac troponin-specific drug.
Collapse
Affiliation(s)
- Fangze Cai
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Monica X Li
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Shorena Gelozia
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - Frederick West
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada; Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
13
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Pineda-Sanabria SE, Robertson IM, Sun YB, Irving M, Sykes BD. Probing the mechanism of cardiovascular drugs using a covalent levosimendan analog. J Mol Cell Cardiol 2016; 92:174-84. [PMID: 26853943 PMCID: PMC4831045 DOI: 10.1016/j.yjmcc.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/24/2016] [Accepted: 02/02/2016] [Indexed: 01/16/2023]
Abstract
One approach to improve contraction in the failing heart is the administration of calcium (Ca2 +) sensitizers. Although it is known that levosimendan and other sensitizers bind to troponin C (cTnC), their in vivo mechanism is not fully understood. Based on levosimendan, we designed a covalent Ca2 + sensitizer (i9) that targets C84 of cTnC and exchanged this complex into cardiac muscle. The NMR structure of the covalent complex showed that i9 binds deep in the hydrophobic pocket of cTnC. Despite slightly reducing troponin I affinity, i9 enhanced the Ca2 + sensitivity of cardiac muscle. We conclude that i9 enhances Ca2 + sensitivity by stabilizing the open conformation of cTnC. These findings provide new insights into the in vivo mechanism of Ca2 + sensitization and demonstrate that directly targeting cTnC has significant potential in cardiovascular therapy. A Ca2 + sensitizer, i9 was designed that forms a covalent bond with C84 of cTnC. i9 stabilized the open state of the N-domain of cTnC. The structure of the covalent cTnC-cTnI-i9 complex was solved by NMR. The structure showed that i9 binds deep in the hydrophobic pocket of cTnC. Despite slightly reducing cTnI affinity, i9 enhanced the Ca2 + sensitivity of cardiac muscle.
Collapse
Affiliation(s)
- Sandra E Pineda-Sanabria
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ian M Robertson
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Brian D Sykes
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
15
|
Hwang PM. '(De-)sensitization' vs. 'Uncoupling': what drives cardiomyopathies in the thin filament? Cardiovasc Res 2016; 109:185-6. [PMID: 26464330 DOI: 10.1093/cvr/cvv232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter M Hwang
- University of Alberta, 5-112 Clinical Sciences Building, Edmonton T6G 2G3, Canada
| |
Collapse
|
16
|
Schlecht W, Li KL, Hu D, Dong W. Fluorescence Based Characterization of Calcium Sensitizer Action on the Troponin Complex. Chem Biol Drug Des 2015; 87:171-81. [PMID: 26375298 DOI: 10.1111/cbdd.12651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/15/2015] [Accepted: 08/05/2015] [Indexed: 11/29/2022]
Abstract
Calcium sensitizers enhance the transduction of the Ca(2+) signal into force within the heart and have found use in treating heart failure. However the mechanisms of action for most Ca(2+) sensitizers remain unclear. To address this issue an efficient fluorescence based approach to Ca(2+) sensitizer screening was developed which monitors cardiac troponin C's (cTnC's) hydrophobic cleft. This approach was tested on four common Ca(2+) -sensitizers, EMD 57033, levosimendan, bepridil and pimobendan with the aim of elucidating the mechanisms of action for each as well as proving the efficacy of the new screening method. Ca(2+) -titration experiments were employed to determine the effect on Ca(2+) sensitivity and cooperativity of cTnC opening, while stopped flow experiments were used to investigate the impact on cTnC relaxation kinetics. Bepridil was shown to increase the sensitivity of cTnC for Ca(2+) under all reconstitution conditions, sensitization by the other drugs was context dependent. Levosimendan and pimobendan reduced the rate of cTnC closing consistent with a stabilization of cTnC's open conformation while bepridil increased the rate of relaxation. Experiments were also run on samples containing cTnT(T204E), a known Ca(2+) -desensitizing phosphorylation mimic. Levosimendan, bepridil, and pimobendan were found to elevate the Ca(2+) -sensitivity of cTnT(T204E) containing samples in this context.
Collapse
Affiliation(s)
- William Schlecht
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, PO Box 646515, Washington State University, Pullman, WA 99164-6515, USA
| | - King-Lun Li
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, PO Box 646515, Washington State University, Pullman, WA 99164-6515, USA
| | - Dehong Hu
- The Environmental and Molecular Science Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard Richland, WA 99354, USA
| | - Wenji Dong
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, PO Box 646515, Washington State University, Pullman, WA 99164-6515, USA
| |
Collapse
|
17
|
Li MX, Hwang PM. Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs. Gene 2015; 571:153-66. [PMID: 26232335 DOI: 10.1016/j.gene.2015.07.074] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/24/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
Abstract
In striated muscle, the protein troponin complex turns contraction on and off in a calcium-dependent manner. The calcium-sensing component of the complex is troponin C, which is expressed from the TNNC1 gene in both cardiac muscle and slow-twitch skeletal muscle (identical transcript in both tissues) and the TNNC2 gene in fast-twitch skeletal muscle. Cardiac troponin C (cTnC) is made up of two globular EF-hand domains connected by a flexible linker. The structural C-domain (cCTnC) contains two high affinity calcium-binding sites that are always occupied by Ca(2+) or Mg(2+) under physiologic conditions, stabilizing an open conformation that remains anchored to the rest of the troponin complex. In contrast, the regulatory N-domain (cNTnC) contains a single low affinity site that is largely unoccupied at resting calcium concentrations. During muscle activation, calcium binding to cNTnC favors an open conformation that binds to the switch region of troponin I, removing adjacent inhibitory regions of troponin I from actin and allowing muscle contraction to proceed. Regulation of the calcium binding affinity of cNTnC is physiologically important, because it directly impacts the calcium sensitivity of muscle contraction. Calcium sensitivity can be modified by drugs that stabilize the open form of cNTnC, post-translational modifications like phosphorylation of troponin I, or downstream thin filament protein interactions that impact the availability of the troponin I switch region. Recently, mutations in cTnC have been associated with hypertrophic or dilated cardiomyopathy. A detailed understanding of how calcium sensitivity is regulated through the troponin complex is necessary for explaining how mutations perturb its function to promote cardiomyopathy and how post-translational modifications in the thin filament affect heart function and heart failure. Troponin modulating drugs are being developed for the treatment of cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Monica X Li
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Peter M Hwang
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
18
|
Abstract
Various human diseases can disrupt the balance between muscle contraction and relaxation. Sarcomeric modulators can be used to readjust this balance either indirectly by intervening in signalling pathways or directly through interaction with the muscle proteins that control contraction. Such agents represent a novel approach to treating any condition in which striated muscle function is compromised, including heart failure, cardiomyopathies, skeletal myopathies and a wide range of neuromuscular conditions. Here, we review agents that modulate the mechanical function of the sarcomere, focusing on emerging compounds that target myosin or the troponin complex.
Collapse
|
19
|
Robertson IM, Pineda-Sanabria SE, Holmes PC, Sykes BD. Conformation of the critical pH sensitive region of troponin depends upon a single residue in troponin I. Arch Biochem Biophys 2014; 552-553:40-9. [DOI: 10.1016/j.abb.2013.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 12/20/2022]
|
20
|
Katrukha IA. Human cardiac troponin complex. Structure and functions. BIOCHEMISTRY (MOSCOW) 2014; 78:1447-65. [DOI: 10.1134/s0006297913130063] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Genchev GZ, Kobayashi T, Lu H. Calcium induced regulation of skeletal troponin--computational insights from molecular dynamics simulations. PLoS One 2013; 8:e58313. [PMID: 23554884 PMCID: PMC3598806 DOI: 10.1371/journal.pone.0058313] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/01/2013] [Indexed: 01/11/2023] Open
Abstract
The interaction between calcium and the regulatory site(s) of striated muscle regulatory protein troponin switches on and off muscle contraction. In skeletal troponin binding of calcium to sites I and II of the TnC subunit results in a set of structural changes in the troponin complex, displaces tropomyosin along the actin filament and allows myosin-actin interaction to produce mechanical force. In this study, we used molecular dynamics simulations to characterize the calcium dependent dynamics of the fast skeletal troponin molecule and its TnC subunit in the calcium saturated and depleted states. We focused on the N-lobe and on describing the atomic level events that take place subsequent to removal of the calcium ion from the regulatory sites I and II. A main structural event - a closure of the A/B helix hydrophobic pocket results from the integrated effect of the following conformational changes: the breakage of H-bond interactions between the backbone nitrogen atoms of the residues at positions 2, 9 and sidechain oxygen atoms of the residue at position 12 (N2-OE12/N9-OE12) in sites I and II; expansion of sites I and II and increased site II N-terminal end-segment flexibility; strengthening of the β-sheet scaffold; and the subsequent re-packing of the N-lobe hydrophobic residues. Additionally, the calcium release allows the N-lobe to rotate relative to the rest of the Tn molecule. Based on the findings presented herein we propose a novel model of skeletal thin filament regulation.
Collapse
Affiliation(s)
- Georgi Z. Genchev
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Tomoyoshi Kobayashi
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (HL); (TK)
| | - Hui Lu
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Shanghai Institute of Medical Genetics, Children’s Hospital of Shanghai, Shanghai, China
- Key Lab of Embryo Molecular Biology, Ministry of Health, Shanghai, China
- Shanghai Lab of Embryo and Reproduction Engineering, Shanghai, China
- * E-mail: (HL); (TK)
| |
Collapse
|
22
|
Cordina NM, Liew CK, Gell DA, Fajer PG, Mackay JP, Brown LJ. Effects of calcium binding and the hypertrophic cardiomyopathy A8V mutation on the dynamic equilibrium between closed and open conformations of the regulatory N-domain of isolated cardiac troponin C. Biochemistry 2013; 52:1950-62. [PMID: 23425245 DOI: 10.1021/bi4000172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Troponin C (TnC) is the calcium-binding subunit of the troponin complex responsible for initiating striated muscle contraction in response to calcium influx. In the skeletal TnC isoform, calcium binding induces a structural change in the regulatory N-domain of TnC that involves a transition from a closed to open structural state and accompanying exposure of a large hydrophobic patch for troponin I (TnI) to subsequently bind. However, little is understood about how calcium primes the N-domain of the cardiac isoform (cTnC) for interaction with the TnI subunit as the open conformation of the regulatory domain of cTnC has been observed only in the presence of bound TnI. Here we use paramagnetic relaxation enhancement (PRE) to characterize the closed to open transition of isolated cTnC in solution, a process that cannot be observed by traditional nuclear magnetic resonance methods. Our PRE data from four spin-labeled monocysteine constructs of isolated cTnC reveal that calcium binding triggers movement of the N-domain helices toward an open state. Fitting of the PRE data to a closed to open transition model reveals the presence of a small population of cTnC molecules in the absence of calcium that possess an open conformation, the level of which increases substantially upon Ca(2+) binding. These data support a model in which calcium binding creates a dynamic equilibrium between the closed and open structural states to prime cTnC for interaction with its target peptide. We also used PRE data to assess the structural effects of a familial hypertrophic cardiomyopathy point mutation located within the N-domain of cTnC (A8V). The PRE data show that the Ca(2+) switch mechanism is perturbed by the A8V mutation, resulting in a more open N-domain conformation in both the apo and holo states.
Collapse
Affiliation(s)
- Nicole M Cordina
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Kekenes-Huskey PM, Lindert S, McCammon JA. Molecular basis of calcium-sensitizing and desensitizing mutations of the human cardiac troponin C regulatory domain: a multi-scale simulation study. PLoS Comput Biol 2012; 8:e1002777. [PMID: 23209387 PMCID: PMC3510055 DOI: 10.1371/journal.pcbi.1002777] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022] Open
Abstract
Troponin C (TnC) is implicated in the initiation of myocyte contraction via binding of cytosolic Ca²⁺ and subsequent recognition of the Troponin I switch peptide. Mutations of the cardiac TnC N-terminal regulatory domain have been shown to alter both calcium binding and myofilament force generation. We have performed molecular dynamics simulations of engineered TnC variants that increase or decrease Ca²⁺ sensitivity, in order to understand the structural basis of their impact on TnC function. We will use the distinction for mutants that are associated with increased Ca²⁺ affinity and for those mutants with reduced affinity. Our studies demonstrate that for GOF mutants V44Q and L48Q, the structure of the physiologically-active site II Ca²⁺ binding site in the Ca²⁺-free (apo) state closely resembled the Ca²⁺-bound (holo) state. In contrast, site II is very labile for LOF mutants E40A and V79Q in the apo form and bears little resemblance with the holo conformation. We hypothesize that these phenomena contribute to the increased association rate, k(on), for the GOF mutants relative to LOF. Furthermore, we observe significant positive and negative positional correlations between helices in the GOF holo mutants that are not found in the LOF mutants. We anticipate these correlations may contribute either directly to Ca²⁺ affinity or indirectly through TnI association. Our observations based on the structure and dynamics of mutant TnC provide rationale for binding trends observed in GOF and LOF mutants and will guide the development of inotropic drugs that target TnC.
Collapse
Affiliation(s)
- Peter Michael Kekenes-Huskey
- Department of Pharmacology, Center for Theoretical Biological Physics, National Computational Biomedical Resource and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America.
| | | | | |
Collapse
|
24
|
Warner WA, Sanchez R, Dawoodian A, Li E, Momand J. Identification of FDA-approved drugs that computationally bind to MDM2. Chem Biol Drug Des 2012; 80:631-7. [PMID: 22703617 DOI: 10.1111/j.1747-0285.2012.01428.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The integrity of the p53 tumor suppressor pathway is compromised in the majority of cancers. In 7% of cancers p53 is inactivated by abnormally high levels of MDM2--an E3 ubiquitin ligase that polyubiquitinates p53, marking it for degradation. MDM2 engages p53 through its hydrophobic cleft, and blockage of that cleft by small molecules can re-establish p53 activity. Small molecule MDM2 inhibitors have been developed, but there is likely to be a high cost and long time period before effective drugs reach the market. An alternative is to repurpose FDA-approved drugs. This report describes a new approach, called Computational Conformer Selection, to screen for compounds that potentially inhibit MDM2. This screen was used to computationally generate up to 600 conformers of 3244 FDA-approved drugs. Drug conformer similarities to 41 computationally-generated conformers of MDM2 inhibitor nutlin 3a were ranked by shape and charge distribution. Quantification of similarities by Tanimoto combo scoring resulted in scores that ranged from 0.142 to 0.802. In silico docking of drugs to MDM2 was used to calculate binding energies and to visualize contacts between the top-ranking drugs and the MDM2 hydrophobic cleft. We present 15 FDA-approved drugs predicted to inhibit p53/MDM2 interaction.
Collapse
|
25
|
Wang D, Robertson IM, Li MX, McCully ME, Crane ML, Luo Z, Tu AY, Daggett V, Sykes BD, Regnier M. Structural and functional consequences of the cardiac troponin C L48Q Ca(2+)-sensitizing mutation. Biochemistry 2012; 51:4473-87. [PMID: 22591429 DOI: 10.1021/bi3003007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calcium binding to the regulatory domain of cardiac troponin C (cNTnC) causes a conformational change that exposes a hydrophobic surface to which troponin I (cTnI) binds, prompting a series of protein-protein interactions that culminate in muscle contraction. A number of cTnC variants that alter the Ca(2+) sensitivity of the thin filament have been linked to disease. Tikunova and Davis engineered a series of cNTnC mutations that altered Ca(2+) binding properties and studied the effects on the Ca(2+) sensitivity of the thin filament and contraction [Tikunova, S. B., and Davis, J. P. (2004) J. Biol. Chem. 279, 35341-35352]. One of the mutations they engineered, the L48Q variant, resulted in a pronounced increase in the cNTnC Ca(2+) binding affinity and Ca(2+) sensitivity of cardiac muscle force development. In this work, we sought structural and mechanistic explanations for the increased Ca(2+) sensitivity of contraction for the L48Q cNTnC variant, using an array of biophysical techniques. We found that the L48Q mutation enhanced binding of both Ca(2+) and cTnI to cTnC. Nuclear magnetic resonance chemical shift and relaxation data provided evidence that the cNTnC hydrophobic core is more exposed with the L48Q variant. Molecular dynamics simulations suggest that the mutation disrupts a network of crucial hydrophobic interactions so that the closed form of cNTnC is destabilized. The findings emphasize the importance of cNTnC's conformation in the regulation of contraction and suggest that mutations in cNTnC that alter myofilament Ca(2+) sensitivity can do so by modulating Ca(2+) and cTnI binding.
Collapse
Affiliation(s)
- Dan Wang
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li AY, Lee J, Borek D, Otwinowski Z, Tibbits GF, Paetzel M. Crystal structure of cardiac troponin C regulatory domain in complex with cadmium and deoxycholic acid reveals novel conformation. J Mol Biol 2011; 413:699-711. [PMID: 21920370 PMCID: PMC4068330 DOI: 10.1016/j.jmb.2011.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 01/07/2023]
Abstract
The amino-terminal regulatory domain of cardiac troponin C (cNTnC) plays an important role as the calcium sensor for the troponin complex. Calcium binding to cNTnC results in conformational changes that trigger a cascade of events that lead to cardiac muscle contraction. The cardiac N-terminal domain of TnC consists of two EF-hand calcium binding motifs, one of which is dysfunctional in binding calcium. Nevertheless, the defunct EF-hand still maintains a role in cNTnC function. For its structural analysis by X-ray crystallography, human cNTnC with the wild-type primary sequence was crystallized under a novel crystallization condition. The crystal structure was solved by the single-wavelength anomalous dispersion method and refined to 2.2 Å resolution. The structure displays several novel features. Firstly, both EF-hand motifs coordinate cadmium ions derived from the crystallization milieu. Secondly, the ion coordination in the defunct EF-hand motif accompanies unusual changes in the protein conformation. Thirdly, deoxycholic acid, also derived from the crystallization milieu, is bound in the central hydrophobic cavity. This is reminiscent of the interactions observed for cardiac calcium sensitizer drugs that bind to the same core region and maintain the "open" conformational state of calcium-bound cNTnC. The cadmium ion coordination in the defunct EF-hand indicates that this vestigial calcium binding site retains the structural and functional elements that allow it to coordinate a cadmium ion. However, it is a result of, or concomitant with, large and unusual structural changes in cNTnC.
Collapse
Affiliation(s)
- Alison Yueh Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Jaeyong Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Dominika Borek
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Zbyszek Otwinowski
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Glen F. Tibbits
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Cardiovascular Sciences, Child and Family Research Institute, 950 West 28 Ave, Vancouver, BC, Canada V5Z 4H4
| | - Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Address correspondence to: Dr. Mark Paetzel, Simon Fraser University, Department of Molecular Biology and Biochemistry, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6, Tel.: 778-782-4230, Fax.: 778-782-5583,
| |
Collapse
|
27
|
Robertson IM, Boyko RF, Sykes BD. Visualizing the principal component of ¹H, ¹⁵N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C. JOURNAL OF BIOMOLECULAR NMR 2011; 51:115-122. [PMID: 21947920 DOI: 10.1007/s10858-011-9546-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/13/2011] [Indexed: 05/31/2023]
Abstract
Laboratories often repeatedly determine the structure of a given protein under a variety of conditions, mutations, modifications, or in a number of states. This approach can be cumbersome and tedious. Given then a database of structures, identifiers, and corresponding (1)H,(15)N-HSQC NMR spectra for homologous proteins, we investigated whether structural information could be ascertained for a new homolog solely from its (1)H,(15)N-HSQC NMR spectrum. We addressed this question with two different approaches. First, we used a semi-automated approach with the program, ORBplus. ORBplus looks for patterns in the chemical shifts and correlates these commonalities to the explicit property of interest. ORBplus ranks resonances based on consistency of the magnitude and direction of the chemical shifts within the database, and the chemical shift correlation of the unknown protein with the database. ORBplus visualizes the results by a histogram and a vector diagram, and provides residue specific predictions on structural similarities with the database. The second method we used was partial least squares (PLS), which is a multivariate statistical technique used to correlate response and predictor variables. We investigated the ability of these methods to predict the tertiary structure of the contractile regulatory protein troponin C. Troponin C undergoes a closed-to-open conformational change, which is coupled to its function in muscle. We found that both ORBplus and PLS were able to identify patterns in the (1)H,(15)N-HSQC NMR data from different states of troponin C that correlated to its conformation.
Collapse
Affiliation(s)
- Ian M Robertson
- Department of Biochemistry, University of Alberta, Edmonton, AB T5K 2W7, Canada
| | | | | |
Collapse
|
28
|
Varughese JF, Baxley T, Chalovich JM, Li Y. A computational and experimental approach to investigate bepridil binding with cardiac troponin. J Phys Chem B 2011; 115:2392-400. [PMID: 21332124 DOI: 10.1021/jp1094504] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiac troponin is a Ca(2+)-dependent switch for the contraction in heart muscle and a potential target for drugs in the therapy of heart failure. Bepridil is a drug that binds to troponin and increases calcium sensitivity of muscle contraction. Because bepridil has been well studied, it is a good model for analysis by computational and experimental methods. Molecular dynamics (MD) simulations were performed on troponin complexes of different sizes in the presence and absence of bepridil bound within the hydrophobic pocket at the N-terminal domain of troponin C. About 100 ns of simulation trajectory data were generated, which were analyzed using cross-correlation analyses and MMPBSA and MMGBSA techniques. The results indicated that bepridil binding within the hydrophobic pocket of cardiac TnC decreases the interaction of TnC with TnI at both the N-domain of TnC and the C-domain of TnC, and decreases the correlations of motions among the segments of the troponin subunits. The estimated calcium-binding affinities using MMPBSA showed that bepridil has a sensitizing effect for the isolated system of TnC, but loses this effect for the complex. Our experimental measurements of calcium dissociation rates were consistent with that prediction. We also observed that while bepridil enhanced the troponin-tropomyosin-actin-activated ATPase activity of myosin S1 at low calcium concentrations it was slightly inhibitory at high calcium concentrations. Bepridil increases the ATPase activity and force generation in muscle fibers, but its effects appear to depend on the concentration of calcium.
Collapse
Affiliation(s)
- Jayson F Varughese
- Department of Chemistry, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27858, USA
| | | | | | | |
Collapse
|
29
|
Pineda-Sanabria SE, Robertson IM, Sykes BD. Structure of trans-resveratrol in complex with the cardiac regulatory protein troponin C. Biochemistry 2011; 50:1309-20. [PMID: 21226534 DOI: 10.1021/bi101985j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiac troponin, a heterotrimeric protein complex that regulates heart contraction, represents an attractive target for the development of drugs for treating heart disease. Cardiovascular diseases are one of the chief causes of morbidity and mortality worldwide. In France, however, the death rate from heart disease is remarkably low relative to fat consumption. This so-called "French paradox" has been attributed to the high level of consumption of wine in France, and the antioxidant trans-resveratrol is thought to be the primary basis for wine's cardioprotective nature. It has been demonstrated that trans-resveratrol increases the myofilament Ca(2+) sensitivity of guinea pig myocytes [Liew, R., Stagg, M. A., MacLeod, K. T., and Collins, P. (2005) Eur. J. Pharmacol. 519, 1-8]; however, the specific mode of its action is unknown. In this study, the structure of trans-resveratrol free and bound to the calcium-binding protein, troponin C, was determined by nuclear magnetic resonance spectroscopy. The results indicate that trans-resveratrol undergoes a minor conformational change upon binding to the hydrophobic pocket of the C-domain of troponin C. The location occupied by trans-resveratrol coincides with the binding site of troponin I, troponin C's natural binding partner. This has been seen for other troponin C-targeting inotropes and implicates the modulation of the troponin C-troponin I interaction as a possible mechanism of action for trans-resveratrol.
Collapse
Affiliation(s)
- Sandra E Pineda-Sanabria
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
30
|
Takanari H, Honjo H, Takemoto Y, Suzuki T, Kato S, Harada M, Okuno Y, Ashihara T, Opthof T, Sakuma I, Kamiya K, Kodama I. Bepridil facilitates early termination of spiral-wave reentry in two-dimensional cardiac muscle through an increase of intercellular electrical coupling. J Pharmacol Sci 2010; 115:15-26. [PMID: 21157118 DOI: 10.1254/jphs.10233fp] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Bepridil is effective for conversion of atrial fibrillation to sinus rhythm and in the treatment of drug-refractory ventricular tachyarrhythmias. We investigated the effects of bepridil on electrophysiological properties and spiral-wave (SW) reentry in a 2-dimensional ventricular muscle layer of isolated rabbit hearts by optical mapping. Ventricular tachycardia (VT) induced in the presence of bepridil (1 µM) terminated earlier than in the control. Bepridil increased action potential duration (APD) by 5% - 8% under constant pacing and significantly increased the space constant. There was a linear relationship between the wavefront curvature (κ) and local conduction velocity: LCV = LCV₀ - D·κ (D, diffusion coefficient; LCV₀, LCV at κ = 0). Bepridil significantly increased D and LCV₀. The regression lines with and without bepridil crossed at κ = 20 - 40 cm⁻¹, resulting in a paradoxical decrease of LCV at κ > 40 cm⁻¹. Dye transfer assay in cultured rat cardiomyocytes confirmed that bepridil increased intercellular coupling. SW reentry in the presence of bepridil was characterized by decremental conduction near the rotation center, prominent drift, and self-termination by collision with boundaries. These results indicate that bepridil causes an increase of intercellular coupling and a moderate APD prolongation, and this combination compromises wavefront propagation near the rotation center of SW reentry, leading to its drift and early termination.
Collapse
Affiliation(s)
- Hiroki Takanari
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Robertson IM, Sun YB, Li MX, Sykes BD. A structural and functional perspective into the mechanism of Ca2+-sensitizers that target the cardiac troponin complex. J Mol Cell Cardiol 2010; 49:1031-41. [PMID: 20801130 PMCID: PMC2975748 DOI: 10.1016/j.yjmcc.2010.08.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 11/25/2022]
Abstract
The Ca(2+) dependent interaction between troponin I (cTnI) and troponin C (cTnC) triggers contraction in heart muscle. Heart failure is characterized by a decrease in cardiac output, and compounds that increase the sensitivity of cardiac muscle to Ca(2+) have therapeutic potential. The Ca(2+)-sensitizer, levosimendan, targets cTnC; however, detailed understanding of its mechanism has been obscured by its instability. In order to understand how this class of positive inotropes function, we investigated the mode of action of two fluorine containing novel analogs of levosimendan; 2',4'-difluoro(1,1'-biphenyl)-4-yloxy acetic acid (dfbp-o) and 2',4'-difluoro(1,1'-biphenyl)-4-yl acetic acid (dfbp). The affinities of dfbp and dfbp-o for the regulatory domain of cTnC were measured in the absence and presence of cTnI by NMR spectroscopy, and dfbp-o was found to bind more strongly than dfbp. Dfbp-o also increased the affinity of cTnI for cTnC. Dfbp-o increased the Ca(2+)-sensitivity of demembranated cardiac trabeculae in a manner similar to levosimendan. The high resolution NMR solution structure of the cTnC-cTnI-dfbp-o ternary complex showed that dfbp-o bound at the hydrophobic interface formed by cTnC and cTnI making critical interactions with residues such as Arg147 of cTnI. In the absence of cTnI, docking localized dfbp-o to the same position in the hydrophobic groove of cTnC. The structural and functional data reveal that the levosimendan class of Ca(2+)-sensitizers work by binding to the regulatory domain of cTnC and stabilizing the pivotal cTnC-cTnI regulatory unit via a network of hydrophobic and electrostatic interactions, in contrast to the destabilizing effects of antagonists such as W7 at the same interface.
Collapse
Affiliation(s)
- Ian M. Robertson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, SE1 1UL, UK
| | - Monica X. Li
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
32
|
Abstract
About 20 proteins are known to modify their activity upon interaction with C60. Their structures are present in a database that includes more than 1200 protein structures selected as possible targets for drugs and to represent the entire Protein Data Bank. The set was examined with an algorithm that appraises quantitatively the interaction of C60 and the surface of each protein. The redundancy of the set allows to establish the predictive power of the approach that finds explicitly the most probable site where C60 docks on each protein. About 80% of the known fullerene binding proteins fall in the top 10% of scorers. The close match between the model and experiments vouches for the accuracy of the model and validates its predictions. The sites of docking are shown and discussed in view of the existing experimental data available for protein-C60 interaction. A closer exam of the 10 top scorers is discussed in detail. New proteins that can interact with C60 are identified and discussed for possible future applications as drug targets and fullerene derivatives bioconjugate materials.
Collapse
Affiliation(s)
- Matteo Calvaresi
- Dipartimento di Chimica "G. Ciamician", Universita' di Bologna, V. F. Selmi 2, 40126 Bologna, Italy.
| | | |
Collapse
|
33
|
Oleszczuk M, Robertson IM, Li MX, Sykes BD. Solution structure of the regulatory domain of human cardiac troponin C in complex with the switch region of cardiac troponin I and W7: the basis of W7 as an inhibitor of cardiac muscle contraction. J Mol Cell Cardiol 2010; 48:925-33. [PMID: 20116385 DOI: 10.1016/j.yjmcc.2010.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/19/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
The solution structure of Ca(2+)-bound regulatory domain of cardiac troponin C (cNTnC) in complex with the switch region of troponin I (cTnI(147-163)) and the calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfinamide (W7), has been determined by NMR spectroscopy. The structure reveals that the W7 naphthalene ring interacts with the terminal methyl groups of M47, M60, and M81 as well as aliphatic and aromatic side chains of several other residues in the hydrophobic pocket of cNTnC. The H3 ring proton of W7 also contacts the methyl groups of I148 and M153 of cTnI(147-163). The N-(6-aminohexyl) tail interacts primarily with the methyl groups of V64 and M81, which are located on the C- and D-helices of cNTnC. Compared to the structure of the cNTnC*Ca(2+)*W7 complex (Hoffman, R. M. B. and Sykes, B. D. (2009) Biochemistry 48, 5541-5552), the tail of W7 reorients slightly toward the surface of cNTnC while the ring remains in the hydrophobic pocket. The positively charged -NH(3)(+) group from the tail of W7 repels the positively charged R147 of cTnI(147-163). As a result, the N-terminus of the peptide moves away from cNTnC and the helical content of cTnI(147-163) is diminished, when compared to the structure of cNTnC*Ca(2+)*cTnI(147-163) (Li, M. X., Spyracopoulos, L., and Sykes B. D. (1999) Biochemistry 38, 8289-8298). Thus the ternary structure cNTnC*Ca(2+)*W7*cTnI(147-163) reported in this study offers an explanation for the approximately 13-fold affinity reduction of cTnI(147-163) for cNTnC*Ca(2+) in the presence of W7 and provides a structural basis for the inhibitory effect of W7 in cardiac muscle contraction. This generates molecular insight into structural features that are useful for the design of cTnC-specific Ca(2+)-desensitizing drugs.
Collapse
Affiliation(s)
- Marta Oleszczuk
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
34
|
Kreutziger KL, Piroddi N, Scellini B, Tesi C, Poggesi C, Regnier M. Thin filament Ca2+ binding properties and regulatory unit interactions alter kinetics of tension development and relaxation in rabbit skeletal muscle. J Physiol 2008; 586:3683-700. [PMID: 18535094 DOI: 10.1113/jphysiol.2008.152181] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The influence of Ca(2+) binding properties of individual troponin versus cooperative regulatory unit interactions along thin filaments on the rate tension develops and declines was examined in demembranated rabbit psoas fibres and isolated myofibrils. Native skeletal troponin C (sTnC) was replaced with sTnC mutants having altered Ca(2+) dissociation rates (k(off)) or with mixtures of sTnC and D28A, D64A sTnC, that does not bind Ca(2+) at sites I and II (xxsTnC), to reduce near-neighbour regulatory unit (RU) interactions. At saturating Ca(2+), the rate of tension redevelopment (k(TR)) was not altered for fibres containing sTnC mutants with decreased k(off) or mixtures of sTnC:xxsTnC. We examined the influence of k(off) on maximal activation and relaxation in myofibrils because they allow rapid and large changes in [Ca(2+)]. In myofibrils with M80Q sTnC(F27W) (decreased k(off)), maximal tension, activation rate (k(ACT)), k(TR) and rates of relaxation were not altered. With I60Q sTnC(F27W) (increased k(off)), maximal tension, k(ACT) and k(TR) decreased, with no change in relaxation rates. Surprisingly, the duration of the slow phase of relaxation increased or decreased with decreased or increased k(off), respectively. For all sTnC reconstitution conditions, Ca(2+) dependence of k(TR) in fibres showed Ca(2+) sensitivity of k(TR) (pCa(50)) shifted parallel to tension and low-Ca(2+) k(TR) was elevated. Together the data suggest the Ca(2+)-dependent rate of tension development and the duration (but not rate) of relaxation can be greatly influenced by k(off) of sTnC. This influence of sTnC binding kinetics occurs primarily within individual RUs, with only minor contributions of RU interactions at low Ca(2+).
Collapse
Affiliation(s)
- Kareen L Kreutziger
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
35
|
Li MX, Robertson IM, Sykes BD. Interaction of cardiac troponin with cardiotonic drugs: a structural perspective. Biochem Biophys Res Commun 2008; 369:88-99. [PMID: 18162171 PMCID: PMC2349097 DOI: 10.1016/j.bbrc.2007.12.108] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/11/2007] [Indexed: 11/29/2022]
Abstract
Over the 40 years since its discovery, many studies have focused on understanding the role of troponin as a myofilament based molecular switch in regulating the Ca(2+)-dependent activation of striated muscle contraction. Recently, studies have explored the role of cardiac troponin as a target for cardiotonic agents. These drugs are clinically useful for treating heart failure, a condition in which the heart is no longer able to pump enough blood to other organs. These agents act via a mechanism that modulates the Ca(2+)-sensitivity of troponin; such a mode of action is therapeutically desirable because intracellular Ca(2+) concentration is not perturbed, preserving the regulation of other Ca(2+)-based signaling pathways. This review describes molecular details of the interaction of cardiac troponin with a variety of cardiotonic drugs. We present recent structural work that has identified the docking sites of several cardiotonic drugs in the troponin C-troponin I interface and discuss their relevance in the design of troponin based drugs for the treatment of heart disease.
Collapse
Affiliation(s)
- Monica X Li
- Department of Biochemistry, University of Alberta, Edmonton, Alta., Canada
| | | | | |
Collapse
|
36
|
Differential effects of a green tea-derived polyphenol (-)-epigallocatechin-3-gallate on the acidosis-induced decrease in the Ca(2+) sensitivity of cardiac and skeletal muscle. Pflugers Arch 2008; 456:787-800. [PMID: 18231806 DOI: 10.1007/s00424-008-0456-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/12/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCg), a green tea-derived polyphenol, has received much attention as a protective agent against cardiovascular diseases. In this study, we determined its effects on the acidosis-induced change in the Ca(2+) sensitivity of myofilaments in myofibrils prepared from porcine ventricular myocardium and chicken pectoral muscle. EGCg (0.1 mM) significantly inhibited the decrease caused by lowering the pH from 7.0 to 6.0 in the Ca(2+) sensitivity of myofibrillar ATPase activity in cardiac muscle, but not in skeletal muscle. Studies on recombinant mouse cardiac troponin C (cTnC) and chicken fast skeletal troponin C (sTnC) using circular dichroism and intrinsic and extrinsic fluorescence spectroscopy showed that EGCg bound to cTnC with a dissociation constant of approximately 3-4 muM, but did not bind to sTnC. By presumably binding to the cTnC C-lobe, EGCg decreased Ca(2+) binding to cTnC and overcame the depressant effect of protons on the Ca(2+) sensitivity of the cardiac contractile response. To demonstrate isoform-specific effects of the action of EGCg, the pH sensitivity of the Ca(2+) response was examined in cardiac myofibrils in which endogenous cTnC was replaced with exogenous sTnC or cTnC and in skeletal myofibrils in which the endogenous sTn complex was replaced with whole cardiac Tn complex (cTn). The results suggest that the binding of EGCg to the cardiac isoform-specific TnC or Tn complex alters the effect of pH on myofilament Ca(2+) sensitivity in striated muscle.
Collapse
|
37
|
Pinto JR, Parvatiyar MS, Jones MA, Liang J, Potter JD. A troponin T mutation that causes infantile restrictive cardiomyopathy increases Ca2+ sensitivity of force development and impairs the inhibitory properties of troponin. J Biol Chem 2007; 283:2156-66. [PMID: 18032382 DOI: 10.1074/jbc.m707066200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Restrictive cardiomyopathy (RCM) is a rare disorder characterized by impaired ventricular filling with decreased diastolic volume. We are reporting the functional effects of the first cardiac troponin T (CTnT) mutation linked to infantile RCM resulting from a de novo deletion mutation of glutamic acid 96. The mutation was introduced into adult and fetal isoforms of human cardiac TnT (HCTnT3-DeltaE96 and HCTnT1-DeltaE106, respectively) and studied with either cardiac troponin I (CTnI) or slow skeletal troponin I (SSTnI). Skinned cardiac fiber measurements showed a large leftward shift in the Ca(2+) sensitivity of force development with no differences in the maximal force. HCTnT1-DeltaE106 showed a significant increase in the activation of actomyosin ATPase with either CTnI or SSTnI, whereas HCTnT3-DeltaE96 was only able to increase the ATPase activity with CTnI. Both mutants showed an impaired ability to inhibit the ATPase activity. The capacity of the CTnI.CTnC and SSTnI.CTnC complexes to fully relax the fibers after TnT displacement was also compromised. Experiments performed using fetal troponin isoforms showed a less severe impact compared with the adult isoforms, which is consistent with the cardioprotective role of SSTnI and the rapid onset of RCM after birth following the isoform switch. These data indicate that troponin mutations related to RCM may have specific functional phenotypes, including large leftward shifts in the Ca(2+) sensitivity and impaired abilities to inhibit ATPase and to relax skinned fibers. All of this would account for and contribute to the severe diastolic dysfunction seen in RCM.
Collapse
Affiliation(s)
- Jose R Pinto
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
38
|
Solzin J, Iorga B, Sierakowski E, Gomez Alcazar DP, Ruess DF, Kubacki T, Zittrich S, Blaudeck N, Pfitzer G, Stehle R. Kinetic mechanism of the Ca2+-dependent switch-on and switch-off of cardiac troponin in myofibrils. Biophys J 2007; 93:3917-31. [PMID: 17704185 PMCID: PMC2099212 DOI: 10.1529/biophysj.107.111146] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The kinetics of Ca2+-dependent conformational changes of human cardiac troponin (cTn) were studied on isolated cTn and within the sarcomeric environment of myofibrils. Human cTnC was selectively labeled on cysteine 84 with N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole and reconstituted with cTnI and cTnT to the cTn complex, which was incorporated into guinea pig cardiac myofibrils. These exchanged myofibrils, or the isolated cTn, were rapidly mixed in a stopped-flow apparatus with different [Ca2+] or the Ca2+-buffer 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid to determine the kinetics of the switch-on or switch-off, respectively, of cTn. Activation of myofibrils with high [Ca2+] (pCa 4.6) induced a biphasic fluorescence increase with rate constants of >2000 s−1 and ∼330 s−1, respectively. At low [Ca2+] (pCa 6.6), the slower rate was reduced to ∼25 s−1, but was still ∼50-fold higher than the rate constant of Ca2+-induced myofibrillar force development measured in a mechanical setup. Decreasing [Ca2+] from pCa 5.0–7.9 induced a fluorescence decay with a rate constant of 39 s−1, which was approximately fivefold faster than force relaxation. Modeling the data indicates two sequentially coupled conformational changes of cTnC in myofibrils: 1), rapid Ca2+-binding (kB ≈ 120 μM−1 s−1) and dissociation (kD ≈ 550 s−1); and 2), slower switch-on (kon = 390s−1) and switch-off (koff = 36s−1) kinetics. At high [Ca2+], ∼90% of cTnC is switched on. Both switch-on and switch-off kinetics of incorporated cTn were around fourfold faster than those of isolated cTn. In conclusion, the switch kinetics of cTn are sensitively changed by its structural integration in the sarcomere and directly rate-limit neither cardiac myofibrillar contraction nor relaxation.
Collapse
Affiliation(s)
- Johannes Solzin
- Institut fuer Vegetative Physiologie, University Cologne, Köln, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
De Nicola G, Burkart C, Qiu F, Agianian B, Labeit S, Martin S, Bullard B, Pastore A. The structure of Lethocerus troponin C: insights into the mechanism of stretch activation in muscles. Structure 2007; 15:813-24. [PMID: 17637342 DOI: 10.1016/j.str.2007.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 05/07/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
To gain a molecular description of how muscles can be activated by mechanical stretch, we have solved the structure of the calcium-loaded F1 isoform of troponin C (TnC) from Lethocerus and characterized its interactions with troponin I (TnI). We show that the presence of only one calcium cation in the fourth EF hand motif is sufficient to induce an open conformation in the C-terminal lobe of F1 TnC, in contrast with what is observed in vertebrate muscle. This lobe interacts in a calcium-independent way both with the N terminus of TnI and, with lower affinity, with a region of TnI equivalent to the switch and inhibitory peptides of vertebrate muscles. Using both synthetic peptides and recombinant proteins, we show that the N lobe of F1 TnC is not engaged in interactions with TnI, excluding a regulatory role of this domain. These findings provide insights into mechanically stimulated muscle contraction.
Collapse
Affiliation(s)
- Gianfelice De Nicola
- Molecular Structure Division, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Piroddi N, Belus A, Scellini B, Tesi C, Giunti G, Cerbai E, Mugelli A, Poggesi C. Tension generation and relaxation in single myofibrils from human atrial and ventricular myocardium. Pflugers Arch 2007; 454:63-73. [PMID: 17123098 DOI: 10.1007/s00424-006-0181-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 10/17/2006] [Indexed: 10/23/2022]
Abstract
Fast solution switching techniques in single myofibrils offer the opportunity to dissect and directly examine the sarcomeric mechanisms responsible for force generation and relaxation. The feasibility of this approach is tested here in human cardiac myofibrils isolated from small samples of atrial and ventricular tissue. At sarcomere lengths between 2.0 and 2.3 mum, resting tensions were significantly higher in ventricular than in atrial myofibrils. The rate constant of active tension generation after maximal Ca(2+) activation (k (ACT)) was markedly faster in atrial than in ventricular myofibrils. In both myofibril types k (ACT) was the same as the rate of tension redevelopment after mechanical perturbations and decreased significantly by decreasing [Ca(2+)] in the activating solution. Upon sudden Ca(2+) removal, active tension fully relaxed. Relaxation kinetics were (1) much faster in atrial than in ventricular myofibrils, (2) unaffected by bepridil, a drug that increases the affinity of troponin for Ca(2+), and (3) strongly accelerated by small increases in inorganic phosphate concentration. The results indicate that myofibril tension activation and relaxation rates reflect apparent cross-bridge kinetics and their Ca(2+) regulation rather than the rates at which thin filaments are switched on or off by Ca(2+) binding or removal. Myofibrils from human hearts retain intact mechanisms for contraction regulation and tension generation and represent a viable experimental model to investigate function and dysfunction of human cardiac sarcomeres.
Collapse
Affiliation(s)
- Nicoletta Piroddi
- Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
de Tombe PP, Belus A, Piroddi N, Scellini B, Walker JS, Martin AF, Tesi C, Poggesi C. Myofilament calcium sensitivity does not affect cross-bridge activation-relaxation kinetics. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1129-36. [PMID: 17082350 DOI: 10.1152/ajpregu.00630.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We employed single myofibril techniques to test whether the presence of slow skeletal troponin-I (ssTnI) is sufficient to induce increased myofilament calcium sensitivity (EC(50)) and whether modulation of EC(50) affects the dynamics of force development. Studies were performed using rabbit psoas myofibrils activated by rapid solution switch and in which Tn was partially replaced for either recombinant cardiac Tn(cTn) or Tn composed of recombinant cTn-T (cTnT) and cTn-C (cTnC), and recombinant ssTnI (ssTnI-chimera Tn). Tn exchange was performed in rigor solution (0.5 mg/ml Tn; 20 degrees C; 2 h) and confirmed by SDS-PAGE. cTnI exchange induced a decrease in EC(50); ssTnI-chimera Tn exchange induced a further decrease in EC(50) (in microM: endogenous Tn, 1.35 +/- 0.08; cTnI, 1.04 +/- 0.13; ssTnI-chimera Tn, 0.47 +/- 0.03). EC(50) was also decreased by application of 100 microM bepridil (control: 2.04 +/- 0.03 microM; bepridil 1.35 +/- 0.03 microM). Maximum tension was not different between any groups. Despite marked alterations in EC(50), none of the dynamic activation-relaxation parameters were affected under any condition. Our results show that 1) incorporation of ssTnI into the fast skeletal sarcomere is sufficient to induce increased myofilament Ca(2+) sensitivity, and 2) the dynamics of actin-myosin interaction do not correlate with EC(50). This result suggests that intrinsic cross-bridge cycling rate is not altered by the dynamics of thin-filament activation.
Collapse
Affiliation(s)
- Pieter P de Tombe
- Center for Cardiovascular Research, Univ. of Illinois at Chicago, 835 S. Wolcott Avenue, MC901, Chicago IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Eichmüller C, Skrynnikov NR. Observation of microsecond time-scale protein dynamics in the presence of Ln3+ ions: application to the N-terminal domain of cardiac troponin C. JOURNAL OF BIOMOLECULAR NMR 2007; 37:79-95. [PMID: 17180551 DOI: 10.1007/s10858-006-9105-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/02/2006] [Indexed: 05/13/2023]
Abstract
The microsecond time-scale motions in the N-terminal domain of cardiac troponin C (NcTnC) loaded with lanthanide ions have been investigated by means of a (1)H(N) off-resonance spin-lock experiment. The observed relaxation dispersion effects strongly increase along the series of NcTnC samples containing La(3+), Ce(3+), and Pr(3+) ions. This rise in dispersion effects is due to modulation of long-range pseudocontact shifts by micros time-scale dynamics. Specifically, the motion in the coordination sphere of the lanthanide ion (i.e. in the NcTnC EF-hand motif) causes modulation of the paramagnetic susceptibility tensor which, in turn, causes modulation of pseudocontact shifts. It is also probable that opening/closing dynamics, previously identified in Ca(2+)-NcTnC, contributes to some of the observed dispersions. On the other hand, it is unlikely that monomer-dimer exchange in the solution of NcTnC is directly responsible for the dispersion effects. Finally, on-off exchange of the lanthanide ion does not seem to play any significant role. The amplification of dispersion effects by Ln(3+) ions is a potentially useful tool for studies of micros-ms motions in proteins. This approach makes it possible to observe the dispersions even when the local environment of the reporting spin does not change. This happens, for example, when the motion involves a 'rigid' structural unit such as individual alpha-helix. Even more significantly, the dispersions based on pseudocontact shifts offer better chances for structural characterization of the dynamic species. This method can be generalized for a large class of applications via the use of specially designed lanthanide-binding tags.
Collapse
|
43
|
Stehle R, Iorga B, Pfitzer G. Calcium regulation of troponin and its role in the dynamics of contraction and relaxation. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1125-8. [PMID: 17158261 DOI: 10.1152/ajpregu.00841.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Grabarek Z. Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 2006; 359:509-25. [PMID: 16678204 DOI: 10.1016/j.jmb.2006.03.066] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/25/2006] [Accepted: 03/30/2006] [Indexed: 12/31/2022]
Abstract
The calcium binding proteins of the EF-hand super-family are involved in the regulation of all aspects of cell function. These proteins exhibit a great diversity of composition, structure, Ca2+-binding and target interaction properties. Here, our current understanding of the Ca2+-binding mechanism is assessed. The structures of the EF-hand motifs containing 11-14 amino acid residues in the Ca2+-binding loop are analyzed within the framework of the recently proposed two-step Ca2+-binding mechanism. A hypothesis is put forward that in all EF-hand proteins the Ca2+-binding and the resultant conformational responses are governed by the central structure connecting the Ca2+-binding loops in the two-EF-hand domain. This structure, named EFbeta-scaffold, defines the position of the bound Ca2+, and coordinates the function of the N-terminal (variable and flexible) with the C-terminal (invariable and rigid) parts of the Ca2+-binding loop. It is proposed that the nature of the first ligand of the Ca2+-binding loop is an important determinant of the conformational change. Additional factors, including the interhelical contacts, the length, structure and flexibility of the linker connecting the EF-hand motifs, and the overall energy balance provide the fine-tuning of the Ca2+-induced conformational change in the EF-hand proteins.
Collapse
Affiliation(s)
- Zenon Grabarek
- Boston Biomedical Research Institute, Watertown, MA 02472, USA.
| |
Collapse
|
45
|
Affiliation(s)
- David A Kass
- Division of Cardiology, Department of Medicine, The Johns Hopkins University Medical Institutions, Baltimore, MD 21205, USA.
| | | |
Collapse
|
46
|
Vinogradova MV, Stone DB, Malanina GG, Karatzaferi C, Cooke R, Mendelson RA, Fletterick RJ. Ca(2+)-regulated structural changes in troponin. Proc Natl Acad Sci U S A 2005; 102:5038-43. [PMID: 15784741 PMCID: PMC555973 DOI: 10.1073/pnas.0408882102] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Indexed: 11/18/2022] Open
Abstract
Troponin senses Ca2+ to regulate contraction in striated muscle. Structures of skeletal muscle troponin composed of TnC (the sensor), TnI (the regulator), and TnT (the link to the muscle thin filament) have been determined. The structure of troponin in the Ca(2+)-activated state features a nearly twofold symmetrical assembly of TnI and TnT subunits penetrated asymmetrically by the dumbbell-shaped TnC subunit. Ca ions are thought to regulate contraction by controlling the presentation to and withdrawal of the TnI inhibitory segment from the thin filament. Here, we show that the rigid central helix of the sensor binds the inhibitory segment of TnI in the Ca(2+)-activated state. Comparison of crystal structures of troponin in the Ca(2+)-activated state at 3.0 angstroms resolution and in the Ca(2+)-free state at 7.0 angstroms resolution shows that the long framework helices of TnI and TnT, presumed to be a Ca(2+)-independent structural domain of troponin are unchanged. Loss of Ca ions causes the rigid central helix of the sensor to collapse and to release the inhibitory segment of TnI. The inhibitory segment of TnI changes conformation from an extended loop in the presence of Ca2+ to a short alpha-helix in its absence. We also show that Anapoe, a detergent molecule, increases the contractile force of muscle fibers and binds specifically, together with the TnI switch helix, in a hydrophobic pocket of TnC upon activation by Ca ions.
Collapse
Affiliation(s)
- Maia V Vinogradova
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2240, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Li MX, Wang X, Sykes BD. Structural based insights into the role of troponin in cardiac muscle pathophysiology. J Muscle Res Cell Motil 2005; 25:559-79. [PMID: 15711886 DOI: 10.1007/s10974-004-5879-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 10/25/2004] [Indexed: 10/25/2022]
Abstract
Troponin is a molecular switch, directly regulating the Ca2+-dependent activation of myofilament in striated muscle contraction. Cardiac troponin is subject to covalent and noncovalent modifications; phosphorylation modulates myofilament physiology, mutations are linked to familial hypertrophic cardiomyopathy, intracellular acidification causes myocardial infarction, and cardiotonic drugs modify myofilament response to Ca2+. The structure of troponin provides insights into the mechanism of this molecular switch and an understanding of the effects of protein modification under pathophysiological conditions. Although the structure of troponin C has been solved in various Ca2+-bound states for some time, structural information on troponin I and troponin T has only emerged recently. This review summarizes recent advances on the structure of complexes of troponin subunits with the aim of assessing how these proteins interact with each other to execute its role as a molecular switch and how covalent and noncovalent modifications affect the structure of troponin and the switch mechanism. We focus on pinpointing the specific amino acid residues involved in phosphorylation and mutation and the pH sensitive regions in the structure of troponin. We also present recent structural work that have identified the docking sites of several cardiotonic drugs on cardiac troponin C and discuss their relevance in the direction of troponin based drug design in the therapy of heart disease.
Collapse
Affiliation(s)
- Monica X Li
- CIHR Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | |
Collapse
|
48
|
Brown JH, Cohen C. Regulation of muscle contraction by tropomyosin and troponin: how structure illuminates function. ADVANCES IN PROTEIN CHEMISTRY 2005; 71:121-59. [PMID: 16230111 DOI: 10.1016/s0065-3233(04)71004-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jerry H Brown
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
49
|
Matsumoto F, Makino K, Maeda K, Patzelt H, Maéda Y, Fujiwara S. Conformational Changes of Troponin C Within the Thin Filaments Detected by Neutron Scattering. J Mol Biol 2004; 342:1209-21. [PMID: 15351646 DOI: 10.1016/j.jmb.2004.07.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 06/16/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
Regulation of skeletal and cardiac muscle contraction is associated with structural changes of the thin filament-based proteins, troponin consisting of three subunits (TnC, TnI, and TnT), tropomyosin, and actin, triggered by Ca2+-binding to TnC. Knowledge of in situ structures of these proteins is indispensable for elucidating the molecular mechanism of this Ca2+-sensitive regulation. Here, the in situ structure of TnC within the thin filaments was investigated with neutron scattering, combined with selective deuteration and the contrast matching technique. Deuterated TnC (dTnC) was first prepared, this dTnC was then reconstituted into the native thin filaments, and finally neutron scattering patterns of these reconstituted thin filaments containing dTnC were measured under the condition where non-deuterated components were rendered "invisible" to neutrons. The obtained scattering curves arising only from dTnC showed distinct difference in the absence and presence of Ca2+. These curves were analyzed by model calculations using the Monte Carlo method, in which inter-dTnC interference was explicitly taken into consideration. The model calculation showed that in situ radius of gyration of TnC was 23 A (99% confidence limits between 22 A and 23 A) and 24 A (99% confidence limits between 23 A and 25 A) in the absence and presence of Ca2+, respectively, indicating that TnC within the thin filaments assumes a conformation consistent with the extended dumbbell structure, which is different from the structures found in the crystals of various Tn complexes. Elongation of TnC by binding of Ca2+ was also suggested. Furthermore, the radial position of TnC within the thin filament was estimated to be 53 A (99% confidence limits between 49 A and 57 A) and 49 A (99% confidence limits between 44 A and 53 A) in the absence and presence of Ca2+, respectively, suggesting that this radial movement of TnC by 4A is associated with large conformational changes of the entire Tn molecule by binding of Ca2+.
Collapse
Affiliation(s)
- Fumiko Matsumoto
- Neutron Science Research Center, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Goto K, Toyama A, Takeuchi H, Takayama K, Saito T, Iwamoto M, Yeh JZ, Narahashi T. Ca2+binding sites in calmodulin and troponin C alter interhelical angle movements. FEBS Lett 2004; 561:51-7. [PMID: 15013750 DOI: 10.1016/s0014-5793(04)00114-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 01/21/2004] [Accepted: 01/26/2004] [Indexed: 11/22/2022]
Abstract
Molecular dynamics analyses were performed to examine conformational changes in the C-domain of calmodulin and the N-domain of troponin C induced by binding of Ca(2+) ions. Analyses of conformational changes in calmodulin and troponin C indicated that the shortening of the distance between Ca(2+) ions and Ca(2+) binding sites of helices caused widening of the distance between Ca(2+) binding sites of helices on opposite sides, while the hydrophobic side chains in the center of helices hardly moved due to their steric hindrance. This conformational change acts as the clothespin mechanism.
Collapse
Affiliation(s)
- Kunihiko Goto
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611-3008, USA.
| | | | | | | | | | | | | | | |
Collapse
|