1
|
Mei K, Borrelli WR, Vong A, Schwartz BJ. Using Machine Learning to Understand the Causes of Quantum Decoherence in Solution-Phase Bond-Breaking Reactions. J Phys Chem Lett 2024; 15:903-911. [PMID: 38241152 PMCID: PMC10839908 DOI: 10.1021/acs.jpclett.3c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Decoherence is a fundamental phenomenon that occurs when an entangled quantum state interacts with its environment, leading to collapse of the wave function. The inevitability of decoherence provides one of the most intrinsic limits of quantum computing. However, there has been little study of the precise chemical motions from the environment that cause decoherence. Here, we use quantum molecular dynamics simulations to explore the photodissociation of Na2+ in liquid Ar, in which solvent fluctuations induce decoherence and thus determine the products of chemical bond breaking. We use machine learning to characterize the solute-solvent environment as a high-dimensional feature space that allows us to predict when and onto which photofragment the bonding electron will localize. We find that reaching a requisite photofragment separation and experiencing out-of-phase solvent collisions underlie decoherence during chemical bond breaking. Our work highlights the utility of machine learning for interpreting complex solution-phase chemical processes as well as identifies the molecular underpinnings of decoherence.
Collapse
Affiliation(s)
- Kenneth
J. Mei
- Department of Chemistry &
Biochemistry, University of California,
Los Angeles, Los Angeles, California 90095-1569, United States
| | - William R. Borrelli
- Department of Chemistry &
Biochemistry, University of California,
Los Angeles, Los Angeles, California 90095-1569, United States
| | - Andy Vong
- Department of Chemistry &
Biochemistry, University of California,
Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J. Schwartz
- Department of Chemistry &
Biochemistry, University of California,
Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
2
|
Kollenz P, Herten DP, Buckup T. Unravelling the Kinetic Model of Photochemical Reactions via Deep Learning. J Phys Chem B 2020; 124:6358-6368. [PMID: 32589422 DOI: 10.1021/acs.jpcb.0c04299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Time-resolved spectroscopies have been playing an essential role in the elucidation of the fundamental mechanisms of light-driven processes, particularly in exploring relaxation models for electronically excited molecules. However, the determination of such models from experimentally obtained time-resolved and spectrally resolved data still demands a high degree of intuition, frequently poses numerical challenges, and is often not free from ambiguities. Here, we demonstrate the analysis of time-resolved laser spectroscopy data via a deep learning network to obtain the correct relaxation kinetic model. In its current design, the presented Deep Spectroscopy Kinetic Analysis Network (DeepSKAN) can predict kinetic models (involved states and relaxation pathways) consisting of up to five states, which results in 103 possible different classes, by estimating the probability of occurrence of a given kinetic model class. DeepSKAN was trained with synthetic time-resolved spectra spanning over 4 orders of magnitude in time with a unitless time axis, thereby demonstrating its potential as a universal approach for analyzing data from various time-resolved spectroscopy techniques in different time ranges. By adding the probabilities of each pathway of the top-k models normalized by the total probability, we can determine the relaxation pathways for a given data set with high certainty (up to 99%). Due to its architecture and training, DeepSKAN is robust against experimental noise and typical preanalysis errors like time-zero corrections. Application of DeepSKAN to experimental data is successfully demonstrated for three different photoinduced processes: transient absorption of the retinal isomerization, transient IR spectroscopy of the relaxation of the photoactivated DRONPA, and transient absorption of the dynamics in lycopene. This approach delivers kinetic models and could be a unifying asset in several areas of spectroscopy.
Collapse
Affiliation(s)
- Philipp Kollenz
- Physikalisch Chemisches Institut, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Dirk-Peter Herten
- Physikalisch Chemisches Institut, Ruprecht-Karls University, D-69120 Heidelberg, Germany.,Institute of Cardiovascular Sciences & School of Chemistry, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B152TT, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - Tiago Buckup
- Physikalisch Chemisches Institut, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| |
Collapse
|
3
|
van Thor JJ. Advances and opportunities in ultrafast X-ray crystallography and ultrafast structural optical crystallography of nuclear and electronic protein dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:050901. [PMID: 31559317 PMCID: PMC6759419 DOI: 10.1063/1.5110685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/29/2019] [Indexed: 05/02/2023]
Abstract
Both nuclear and electronic dynamics contribute to protein function and need multiple and complementary techniques to reveal their ultrafast structural dynamics response. Real-space information obtained from the measurement of electron density dynamics by X-ray crystallography provides aspects of both, while the molecular physics of coherence parameters and frequency-frequency correlation needs spectroscopy methods. Ultrafast pump-probe applications of protein dynamics in crystals provide real-space information through direct X-ray crystallographic structure analysis or through structural optical crystallographic analysis. A discussion of methods of analysis using ultrafast macromolecular X-ray crystallography and ultrafast nonlinear structural optical crystallography is presented. The current and future high repetition rate capabilities provided by X-ray free electron lasers for ultrafast diffraction studies provide opportunities for optical control and optical selection of nuclear coherence which may develop to access higher frequency dynamics through improvements of sensitivity and time resolution to reveal coherence directly. Specific selection of electronic coherence requires optical probes, which can provide real-space structural information through photoselection of oriented samples and specifically in birefringent crystals. Ultrafast structural optical crystallography of photosynthetic energy transfer has been demonstrated, and the theory of two-dimensional structural optical crystallography has shown a method for accessing the structural selection of electronic coherence.
Collapse
Affiliation(s)
- Jasper J. van Thor
- Molecular Biophysics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
4
|
Wilma K, Shu CC, Scherf U, Hildner R. Visualizing Hidden Ultrafast Processes in Individual Molecules by Single-Pulse Coherent Control. J Am Chem Soc 2018; 140:15329-15335. [DOI: 10.1021/jacs.8b08674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin Wilma
- Soft Matter Spectroscopy, University of Bayreuth, 95440 Bayreuth, Germany
| | - Chuan-Cun Shu
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha 410083, China
- School of Engineering and Information Technology, University of New South Wales, Canberra, Australian Capital Territory 2600, Australia
| | - Ullrich Scherf
- Fachbereich C − Mathematik und Naturwissenschaften and Institut für Polymertechnologie, Universität Wuppertal, 42097 Wuppertal, Germany
| | - Richard Hildner
- Soft Matter Spectroscopy, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
5
|
Gruzdev V, Korkin D, Mooney BP, Havelund JF, Møller IM, Thelen JJ. Controlled modification of biomolecules by ultrashort laser pulses in polar liquids. Sci Rep 2017; 7:5550. [PMID: 28717198 PMCID: PMC5514113 DOI: 10.1038/s41598-017-05761-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/22/2017] [Indexed: 11/18/2022] Open
Abstract
Targeted chemical modification of peptides and proteins by laser pulses in a biologically relevant environment, i.e. aqueous solvent at room temperature, allows for accurate control of biological processes. However, the traditional laser methods of control of chemical reactions are applicable only to a small class of photosensitive biomolecules because of strong and ultrafast perturbations from biomolecule-solvent interactions. Here, we report excitation of harmonics of vibration modes of solvent molecules by femtosecond laser pulses to produce controlled chemical modifications of non-photosensitive peptides and proteins in polar liquids under room conditions. The principal modifications included lysine formylation and methionine sulfoxidation both of which occur with nearly 100% yield under atmospheric conditions. That modification occurred only if the laser irradiance exceeded certain threshold level. The threshold, type, and extent of the modifications were completely controlled by solvent composition, laser wavelength, and peak irradiance of ultrashort laser pulses. This approach is expected to assist in establishing rigorous control over a broad class of biological processes in cells and tissues at the molecular level.
Collapse
Affiliation(s)
- Vitaly Gruzdev
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65211, USA.
| | - Dmitry Korkin
- Department of Computer Science, Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Brian P Mooney
- Charles W Gehrke Proteomics Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Jesper F Havelund
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5200, Odense M, Denmark
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA. .,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
6
|
Liebel M, Kukura P. Lack of evidence for phase-only control of retinal photoisomerization in the strict one-photon limit. Nat Chem 2016; 9:45-49. [DOI: 10.1038/nchem.2598] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 07/19/2016] [Indexed: 12/23/2022]
|
7
|
Konar A, Lozovoy VV, Dantus M. Stimulated Emission Enhancement Using Shaped Pulses. J Phys Chem A 2016; 120:2002-8. [DOI: 10.1021/acs.jpca.6b02010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arkaprabha Konar
- Department of Chemistry and ‡Department of
Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Vadim V. Lozovoy
- Department of Chemistry and ‡Department of
Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Marcos Dantus
- Department of Chemistry and ‡Department of
Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Weigel A, Sebesta A, Kukura P. Shaped and Feedback-Controlled Excitation of Single Molecules in the Weak-Field Limit. J Phys Chem Lett 2015; 6:4032-7. [PMID: 26706166 PMCID: PMC5322473 DOI: 10.1021/acs.jpclett.5b01748] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/17/2015] [Indexed: 05/30/2023]
Abstract
Coherent control uses tailored femtosecond pulse shapes to influence quantum pathways and drive a light-induced process toward a specific outcome. There has been a long-standing debate whether the absorption properties or the probability for population to remain in an excited state of a molecule can be influenced by the pulse shape, even if only a single photon is absorbed. Most such experiments are performed on many molecules simultaneously, so that ensemble averaging reduces the access to quantum effects. Here, we demonstrate systematic coherent control experiments on the fluorescence intensity of a single molecule in the weak-field limit. We demonstrate that a delay scan of interfering pulses reproduces the excitation spectrum of the molecule upon Fourier transformation, but that the spectral phase of a pulse sequence does not affect the transition probability. We generalize this result to arbitrary pulse shapes by performing the first closed-loop coherent control experiments on a single molecule.
Collapse
Affiliation(s)
- Alexander Weigel
- Physical
and Theoretical
Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Aleksandar Sebesta
- Physical
and Theoretical
Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Philipp Kukura
- Physical
and Theoretical
Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
9
|
Am-Shallem M, Kosloff R. The scaling of weak field phase-only control in Markovian dynamics. J Chem Phys 2014; 141:044121. [DOI: 10.1063/1.4890822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
10
|
Konar A, Lozovoy VV, Dantus M. Solvation Stokes-Shift Dynamics Studied by Chirped Femtosecond Laser Pulses. J Phys Chem Lett 2012; 3:2458-2464. [PMID: 26292133 DOI: 10.1021/jz300761x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The early optical dynamic response, resulting population, and electronic coherence are investigated experimentally and modeled theoretically for IR144 in solution. The fluorescence and stimulated emission response are studied systematically as a function of chirp. The magnitude of the chirp effect on fluorescence and stimulated emission is found to depend quadratically on pulse energy, even where excitation probabilities range from 0.02 to 5%, in the so-called "linear excitation regime". Interestingly, the shape of the chirp dependence on fluorescence and stimulated emission is found to be independent of pulse energy. The chirp dependence reveals dynamics related to solvent rearrangement following excitation and also depends on electronic relaxation of the chromophore. The experimental results are successfully simulated using a four-level model in the presence of inhomogeneous broadening of the electronic transitions.
Collapse
Affiliation(s)
- Arkaprabha Konar
- †Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Vadim V Lozovoy
- †Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Marcos Dantus
- †Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- ‡Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Nag A, Goswami D. Effect of linear chirp on femtosecond two-photon processes in solution. JOURNAL OF SPECTROSCOPY AND DYNAMICS 2012; 2:11. [PMID: 24364002 PMCID: PMC3868930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Coherent control via linear chirping a femtosecond laser pulse holds the promise of a potent spectroscopic tool in the study of two-photon processes in condensed phase. Here, we show modulation in the two-photon absorption and fluorescence of several common dyes in solution by simple phase ordering of femtosecond laser pulse into a linearly frequency chirped pulse. However, the modulation is dependent on associated solvent properties as the coherence is lost rapidly in the solution phase. Also, systematic effects are mostly seen only over a limited range of chirp since it is an interplay of two opposing effects on two-photon processes-linear chirp enhancing it while the associated pulse broadening reducing it.
Collapse
Affiliation(s)
- Amit Nag
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh - 208016, India
| | - Debabrata Goswami
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh - 208016, India
| |
Collapse
|
12
|
Philip Kraack J, Motzkus M, Buckup T. Selective nonlinear response preparation using femtosecond spectrally resolved four-wave-mixing. J Chem Phys 2011; 135:224505. [DOI: 10.1063/1.3666846] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Prokhorenko VI, Halpin A, Johnson PJM, Miller RJD, Brown LS. Coherent control of the isomerization of retinal in bacteriorhodopsin in the high intensity regime. J Chem Phys 2011; 134:085105. [DOI: 10.1063/1.3554743] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
14
|
Prokhorenko VI, Halpin A, Miller RJD. Coherently-controlled two-dimensional spectroscopy: Evidence for phase induced long-lived memory effects. Faraday Discuss 2011; 153:27-39; discussion 73-91. [DOI: 10.1039/c1fd00095k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
van der Walle P, Offerhaus H, Herek J, Jafarpour A. Tailoring a coherent control solution landscape by linear transforms of spectral phase basis. OPTICS EXPRESS 2010; 18:973-987. [PMID: 20173919 DOI: 10.1364/oe.18.000973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Finding an optimal phase pattern in a multidimensional solution landscape becomes easier and faster if local optima are suppressed and contour lines are tailored towards closed convex patterns. Using wideband second harmonic generation as a coherent control test case, we show that a linear combination of spectral phase basis functions can result in such improvements and also in separable phase terms, each of which can be found independently. The improved shapes are attributed to a suppressed nonlinear shear, changing the relative orientation of contour lines. The first order approximation of the process shows a simple relation between input and output phase profiles, useful for pulse shaping at ultraviolet wavelengths.
Collapse
Affiliation(s)
- Peter van der Walle
- Optical Sciences group, MESA + Institute for Nanotechnology, University of Twente, The Netherlands
| | | | | | | |
Collapse
|
16
|
|