1
|
Abé T, Yamazaki M, Nozumi M, Maruyama S, Takamura K, Ohashi R, Ajioka Y, Tanuma JI. Ladinin-1 in actin arcs of oral squamous cell carcinoma is involved in cell migration and epithelial phenotype. Sci Rep 2024; 14:22778. [PMID: 39354061 PMCID: PMC11445451 DOI: 10.1038/s41598-024-74041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Histopathologically, oral squamous cell carcinoma (OSCC) consists of well-defined interfaces with adjacent non-cancerous epithelium. Previously, we found that SCC tissues expressed higher levels of specific proteins at this interface. Ladinin-1 (LAD1) is one of the specific molecules that has increased expressions in cancer fronts; however, its function in OSCC is unknown. Therefore, this study aimed to elucidate the function of LAD1 in human OSCC cells. LAD1 was localized on the actin arc at the distal periphery of cell clusters in the OSCC cell lines HSC-2, HSC-3, and HSC-4. When LAD1 was knocked down, cellular migration was repressed in wound scratch assays but was reversed in three-dimensional collagen gel invasion assays. Characteristic LAD1 localization along actin arcs forming the leading edge of migrating cells was diminished with loss of filopodia formation and ruffling in knockdown cells, in which the expression levels of cell motility-related genes-p21-activated kinase 1 (PAK1) and caveolin-1 (CAV1)-were upregulated and downregulated, respectively. LAD1 expression was also associated with the downregulation of vimentin and increased histological differentiation of OSCC. These results suggest that LAD1 is involved in actin dynamics during filopodia and lamellipodia formation, and in maintaining the epithelial phenotype of OSCC cells.
Collapse
Affiliation(s)
- Tatsuya Abé
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Manabu Yamazaki
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medicine, Niigata University, Niigata, Japan
| | - Satoshi Maruyama
- Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata, Japan
| | - Kaori Takamura
- Division of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Riuko Ohashi
- Division of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoichi Ajioka
- Division of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Jun-Ichi Tanuma
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
2
|
Nakajima C, Sawada M, Umeda E, Takagi Y, Nakashima N, Kuboyama K, Kaneko N, Yamamoto S, Nakamura H, Shimada N, Nakamura K, Matsuno K, Uesugi S, Vepřek NA, Küllmer F, Nasufović V, Uchiyama H, Nakada M, Otsuka Y, Ito Y, Herranz-Pérez V, García-Verdugo JM, Ohno N, Arndt HD, Trauner D, Tabata Y, Igarashi M, Sawamoto K. Identification of the growth cone as a probe and driver of neuronal migration in the injured brain. Nat Commun 2024; 15:1877. [PMID: 38461182 PMCID: PMC10924819 DOI: 10.1038/s41467-024-45825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/01/2024] [Indexed: 03/11/2024] Open
Abstract
Axonal growth cones mediate axonal guidance and growth regulation. We show that migrating neurons in mice possess a growth cone at the tip of their leading process, similar to that of axons, in terms of the cytoskeletal dynamics and functional responsivity through protein tyrosine phosphatase receptor type sigma (PTPσ). Migrating-neuron growth cones respond to chondroitin sulfate (CS) through PTPσ and collapse, which leads to inhibition of neuronal migration. In the presence of CS, the growth cones can revert to their extended morphology when their leading filopodia interact with heparan sulfate (HS), thus re-enabling neuronal migration. Implantation of an HS-containing biomaterial in the CS-rich injured cortex promotes the extension of the growth cone and improve the migration and regeneration of neurons, thereby enabling functional recovery. Thus, the growth cone of migrating neurons is responsive to extracellular environments and acts as a primary regulator of neuronal migration.
Collapse
Affiliation(s)
- Chikako Nakajima
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Erika Umeda
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Yuma Takagi
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Norihiko Nakashima
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Kazuya Kuboyama
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
- Laboratory of Neuronal Regeneration, Graduate School of Brain Science, Doshisha University, Kyoto, 610-0394, Japan
| | - Satoaki Yamamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Haruno Nakamura
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Naoki Shimada
- Research and Development Center, The Japan Wool Textile Co., Ltd., Kobe, 675-0053, Japan
| | - Koichiro Nakamura
- Medical Device Department, Nikke Medical Co., Ltd., Osaka, 541-0048, Japan
| | - Kumiko Matsuno
- Research and Development Center, The Japan Wool Textile Co., Ltd., Kobe, 675-0053, Japan
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, 606-8507, Japan
| | - Shoji Uesugi
- Medical Device Department, Nikke Medical Co., Ltd., Osaka, 541-0048, Japan
| | - Nynke A Vepřek
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Florian Küllmer
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Veselin Nasufović
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany
| | | | | | - Yuji Otsuka
- Toray Research Center, Inc., Otsu, 520-8567, Japan
| | - Yasuyuki Ito
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute, University of Valencia, CIBERNED, Valencia, 46980, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute, University of Valencia, CIBERNED, Valencia, 46980, Spain
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, 329-0498, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Hans-Dieter Arndt
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY, 10003, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, 606-8507, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.
| |
Collapse
|
3
|
Honda A, Nozumi M, Ito Y, Natsume R, Kawasaki A, Nakatsu F, Abe M, Uchino H, Matsushita N, Ikeda K, Arita M, Sakimura K, Igarashi M. Very-long-chain fatty acids are crucial to neuronal polarity by providing sphingolipids to lipid rafts. Cell Rep 2023; 42:113195. [PMID: 37816355 DOI: 10.1016/j.celrep.2023.113195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/19/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Fatty acids have long been considered essential to brain development; however, the involvement of their synthesis in nervous system formation is unclear. We generate mice with knockout of GPSN2, an enzyme for synthesis of very-long-chain fatty acids (VLCFAs) and investigate the effects. Both GPSN2-/- and GPSN2+/- mice show abnormal neuronal networks as a result of impaired neuronal polarity determination. Lipidomics of GPSN2-/- embryos reveal that ceramide synthesis is specifically inhibited depending on FA length; namely, VLCFA-containing ceramide is reduced. We demonstrate that lipid rafts are highly enriched in growth cones and that GPSN2+/- neurons lose gangliosides in their membranes. Application of C24:0 ceramide, but not C16:0 ceramide or C24:0 phosphatidylcholine, to GPSN2+/- neurons rescues both neuronal polarity determination and lipid-raft density in the growth cone. Taken together, our results indicate that VLCFA synthesis contributes to physiological neuronal development in brain network formation, in particular neuronal polarity determination through the formation of lipid rafts.
Collapse
Affiliation(s)
- Atsuko Honda
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan; Center for Research Promotion, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Yasuyuki Ito
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Rie Natsume
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Fubito Nakatsu
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Haruki Uchino
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Kazutaka Ikeda
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan.
| |
Collapse
|
4
|
Ahn J, Ohk K, Won J, Choi DH, Jung YH, Yang JH, Jun Y, Kim JA, Chung S, Lee SH. Modeling of three-dimensional innervated epidermal like-layer in a microfluidic chip-based coculture system. Nat Commun 2023; 14:1488. [PMID: 36932093 PMCID: PMC10023681 DOI: 10.1038/s41467-023-37187-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Reconstruction of skin equivalents with physiologically relevant cellular and matrix architecture is indispensable for basic research and industrial applications. As skin-nerve crosstalk is increasingly recognized as a major element of skin physiological pathology, the development of reliable in vitro models to evaluate the selective communication between epidermal keratinocytes and sensory neurons is being demanded. In this study, we present a three-dimensional innervated epidermal keratinocyte layer as a sensory neuron-epidermal keratinocyte co-culture model on a microfluidic chip using the slope-based air-liquid interfacing culture and spatial compartmentalization. Our co-culture model recapitulates a more organized basal-suprabasal stratification, enhanced barrier function, and physiologically relevant anatomical innervation and demonstrated the feasibility of in situ imaging and functional analysis in a cell-type-specific manner, thereby improving the structural and functional limitations of previous coculture models. This system has the potential as an improved surrogate model and platform for biomedical and pharmaceutical research.
Collapse
Affiliation(s)
- Jinchul Ahn
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea
- Next&Bio Inc., Seoul, 02841, South Korea
| | - Kyungeun Ohk
- R&D center, Humedix, Co., Ltd., Seongnam, 13201, South Korea
- Department of Bio-convergence Engineering, Korea University, Seoul, 02841, South Korea
| | - Jihee Won
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea
- Next&Bio Inc., Seoul, 02841, South Korea
| | - Dong-Hee Choi
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea
- Next&Bio Inc., Seoul, 02841, South Korea
| | - Yong Hun Jung
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea
- Next&Bio Inc., Seoul, 02841, South Korea
| | | | - Yesl Jun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
- Drug Discovery Platform Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Jin-A Kim
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea.
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea.
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.
| | - Sang-Hoon Lee
- Department of Bio-convergence Engineering, Korea University, Seoul, 02841, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
5
|
Schneider F, Metz I, Rust MB. Regulation of actin filament assembly and disassembly in growth cone motility and axon guidance. Brain Res Bull 2023; 192:21-35. [PMID: 36336143 DOI: 10.1016/j.brainresbull.2022.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Directed outgrowth of axons is fundamental for the establishment of neuronal networks. Axon outgrowth is guided by growth cones, highly motile structures enriched in filamentous actin (F-actin) located at the axons' distal tips. Growth cones exploit F-actin-based protrusions to scan the environment for guidance cues, and they contain the sensory apparatus to translate guidance cue information into intracellular signaling cascades. These cascades act upstream of actin-binding proteins (ABP) and thereby control assembly and disassembly of F-actin. Spatiotemporally controlled F-actin dis-/assembly in growth cones steers the axon towards attractants and away from repellents, and it thereby navigates the axon through the developing nervous system. Hence, ABP that control F-actin dynamics emerged as critical regulators of neuronal network formation. In the present review article, we will summarize and discuss current knowledge of the mechanisms that control remodeling of the actin cytoskeleton in growth cones, focusing on recent progress in the field. Further, we will introduce tools and techniques that allow to study actin regulatory mechanism in growth cones.
Collapse
Affiliation(s)
- Felix Schneider
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Isabell Metz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032 Marburg, Germany.
| |
Collapse
|
6
|
Martin ER, Gandawijaya J, Oguro-Ando A. A novel method for generating glutamatergic SH-SY5Y neuron-like cells utilizing B-27 supplement. Front Pharmacol 2022; 13:943627. [PMID: 36339621 PMCID: PMC9630362 DOI: 10.3389/fphar.2022.943627] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/12/2022] [Indexed: 08/26/2023] Open
Abstract
The human SH-SY5Y neuroblastoma cell line is widely used in neuroscience research as a neuronal cell model. Following differentiation to a neuron-like state, SH-SY5Y cells become more morphologically similar to neurons and form functional synapses. Previous studies have managed to differentiate SH-SY5Y cells towards cholinergic, dopaminergic and adrenergic fates. However, their application in disease modeling remains limited as other neuronal subtypes (e.g., glutamatergic, GABAergic) are also implicated in neurological disorders, and no current protocols exist to generate these subtypes of differentiated SH-SY5Y cells. Our study aimed to evaluate the use of a xeno-free version of B-27, a supplement commonly used in neuronal culture, for SH-SY5Y maintenance and differentiation. To evaluate the proliferative capacity of SH-SY5Y cells cultured in B-27, we performed growth curve analyses, immunocytochemical staining for Ki-67 and qRT-PCR to track changes in cell cycle progression. SH-SY5Y cells cultured in FBS or under serum-starved conditions were used as controls. We observed that SH-SY5Y cells show reduced growth and proliferation rates accompanied by decreased CDK6 and CDK1 expression following 4-day exposure to B-27, suggesting B-27 induces a quiescent state in SH-SY5Y cells. Importantly, this reduced growth rate was not due to increased apoptosis. As cell cycle exit is associated with differentiation, we next sought to determine the fate of SH-SY5Y cells cultured in B-27. B-27-cultured SH-SY5Y cells show changes in cell morphology, adopting pyramidal shapes and extending neurites, and upregulation of neuronal differentiation markers (GAP43, TUBB3, and SYP). B-27-cultured SH-SY5Y cells also show increased expression of glutamatergic markers (GLUL and GLS). These findings suggest that B-27 may be a non-toxic inducer of glutamatergic SH-SY5Y differentiation. Our study demonstrates a novel way of using B-27 to obtain populations of glutamatergic SH-SY5Y cells. As dysregulated glutamatergic signaling is associated with a variety of neuropsychiatric and neurodegenerative disorders, the capability to generate glutamatergic neuron-like SH-SY5Y cells creates endless disease modeling opportunities. The ease of SH-SY5Y culture allows researchers to generate large-scale cultures for high-throughput pharmacological or toxicity studies. Also compatible with the growing popularity of animal-component-free studies, this xeno-free B-27/SH-SY5Y culture system will be a valuable tool to boost the translational potential of preliminary studies requiring glutamatergic neuronal cells of human origin.
Collapse
Affiliation(s)
- Emily-Rose Martin
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
- Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
7
|
Khan S. Endoplasmic Reticulum in Metaplasticity: From Information Processing to Synaptic Proteostasis. Mol Neurobiol 2022; 59:5630-5655. [PMID: 35739409 DOI: 10.1007/s12035-022-02916-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The ER (endoplasmic reticulum) is a Ca2+ reservoir and the unique protein-synthesizing machinery which is distributed throughout the neuron and composed of multiple different structural domains. One such domain is called EMC (endoplasmic reticulum membrane protein complex), pleiotropic nature in cellular functions. The ER/EMC position inside the neurons unmasks its contribution to synaptic plasticity via regulating various cellular processes from protein synthesis to Ca2+ signaling. Since presynaptic Ca2+ channels and postsynaptic ionotropic receptors are organized into the nanodomains, thus ER can be a crucial player in establishing TMNCs (transsynaptic molecular nanocolumns) to shape efficient neural communications. This review hypothesized that ER is not only involved in stress-mediated neurodegeneration but also axon regrowth, remyelination, neurotransmitter switching, information processing, and regulation of pre- and post-synaptic functions. Thus ER might not only be a protein-synthesizing and quality control machinery but also orchestrates plasticity of plasticity (metaplasticity) within the neuron to execute higher-order brain functions and neural repair.
Collapse
Affiliation(s)
- Shumsuzzaman Khan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
8
|
Okada M, Kawagoe Y, Takasugi T, Nozumi M, Ito Y, Fukusumi H, Kanemura Y, Fujii Y, Igarashi M. JNK1-Dependent Phosphorylation of GAP-43 Serine 142 is a Novel Molecular Marker for Axonal Growth. Neurochem Res 2022; 47:2668-2682. [PMID: 35347634 DOI: 10.1007/s11064-022-03580-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
Abstract
Mammalian axon growth has mechanistic similarities with axon regeneration. The growth cone is an important structure that is involved in both processes, and GAP-43 (growth associated protein-43 kDa) is believed to be the classical molecular marker. Previously, we used growth cone phosphoproteomics to demonstrate that S96 and T172 of GAP-43 in rodents are highly phosphorylated sites that are phosphorylated by c-jun N-terminal protein kinase (JNK). We also revealed that phosphorylated (p)S96 and pT172 antibodies recognize growing axons in the developing brain and regenerating axons in adult peripheral nerves. In rodents, S142 is another putative JNK-dependent phosphorylation site that is modified at a lower frequency than S96 and T172. Here, we characterized this site using a pS142-specific antibody. We confirmed that pS142 was detected by co-expressing mouse GAP-43 and JNK1. pS142 antibody labeled growth cones and growing axons in developing mouse neurons. pS142 was sustained until at least nine weeks after birth in mouse brains. The pS142 antibody could detect regenerating axons following sciatic nerve injury in adult mice. Comparison of amino acid sequences indicated that rodent S142 corresponds to human T151, which is predicted to be a substrate of the MAPK family, which includes JNK. Thus, we confirmed that the pS142 antibody recognized human phospho-GAP-43 using activated JNK1, and also that its immunostaining pattern in neurons differentiated from human induced pluripotent cells was similar to those observed in mice. These results indicate that the S142 residue is phosphorylated by JNK1 and that the pS142 antibody is a new candidate molecular marker for axonal growth in both rodents and human.
Collapse
Affiliation(s)
- Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Neurosurgery, Medical and Dental Hospital, Niigata University, Niigata, Japan
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, Japan
| | - Yosuke Kawagoe
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, Japan
| | - Toshiyuki Takasugi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, Japan
| | - Yasuyuki Ito
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, Japan
| | - Hayato Fukusumi
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, Japan.
| |
Collapse
|
9
|
Convergent selective signaling impairment exposes the pathogenicity of latrophilin-3 missense variants linked to inheritable ADHD susceptibility. Mol Psychiatry 2022; 27:2425-2438. [PMID: 35393556 PMCID: PMC9135631 DOI: 10.1038/s41380-022-01537-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Latrophilin-3 (Lphn3; also known as ADGRL3) is a member of the adhesion G Protein Coupled Receptor subfamily, which participates in the stabilization and maintenance of neuronal networks by mediating intercellular adhesion through heterophilic interactions with transmembrane ligands. Polymorphisms modifying the Lphn3 gene are associated with attention-deficit/hyperactivity disorder (ADHD) in children and its persistence into adulthood. How these genetic alterations affect receptor function remains unknown. Here, we conducted the functional validation of distinct ADHD-related Lphn3 variants bearing mutations in the receptor's adhesion motif-containing extracellular region. We found that all variants tested disrupted the ability of Lphn3 to stabilize intercellular adhesion in a manner that was distinct between ligands classes, but which did not depend on ligand-receptor interaction parameters, thus pointing to altered intrinsic receptor signaling properties. Using G protein signaling biosensors, we determined that Lphn3 couples to Gαi1, Gαi2, Gαs, Gαq, and Gα13. However, all ADHD-related receptor variants consistently lacked intrinsic as well as ligand-dependent Gα13 coupling efficiency while maintaining unaltered coupling to Gαi, Gαs, and Gαq. Consistent with these alterations, actin remodeling functions as well as actin-relevant RhoA signaling normally displayed by the constitutively active Lphn3 receptor were impeded by select receptor variants, thus supporting additional signaling defects. Taken together, our data point to Gα13 selective signaling impairments as representing a disease-relevant pathogenicity pathway that can be inherited through Lphn3 gene polymorphisms. This study highlights the intricate interplay between Lphn3 GPCR functions and the actin cytoskeleton in modulating neurodevelopmental cues related to ADHD etiology.
Collapse
|
10
|
Golbar SJ, Gaeini AA, Jahromi MK. The Effects of Exercise on Cerebellar Growth-Associated Protein 43 and Adenylyl Cyclase- Associated Protein 1 Gene Expression and Proteins in Diabetic-Induced Neuropathy and Healthy Male Wistar Rats. Int J Prev Med 2021; 12:137. [PMID: 34912513 PMCID: PMC8631120 DOI: 10.4103/ijpvm.ijpvm_416_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The effect of exercise on the cerebellum cells in diabetic-induced neuropathy and healthy situations is not clear yet. Growth-associated protein 43 (GAP-43) and adenylyl cyclase-associated protein 1 (CAP-1) proteins can restore nerve cells. This study aimed to investigate the effect of aerobic exercise on GAP-43 and CAP-1 and their mRNA in the cerebellar tissue of diabetic-induced neuropathy and healthy Wistar rats. METHODS Around 40 healthy male Wistar rats with a mean weight of 271 ± 11.2 g were divided randomly into four groups; healthy aerobic exercise, diabetic-aerobic exercise, healthy-control, and diabetic-control. The exercise group performed aerobic exercise 5 days per week for 6 weeks. RESULTS Exercise increased CAP1 protein in the cerebellum tissue of healthy (P = 0.002) and diabetic (P = 0.002) groups compared with matched control groups. The effect of exercise on CAP1 was greater in diabetic compared with the healthy group (P = 0.002). The expression of CAP1 mRNA in the cerebellum was higher in the healthy exercise compared with the healthy control group (P = 0.002) and in the healthy exercise compared with the diabetic exercise group (P = 0.026). GAP43 protein was lower in the healthy exercise compared with the healthy control group (P = 0.002) while it was higher in diabetic exercise compared to the healthy exercise group (P = 0.002). Expression of GAP43 mRNA in the cerebellum was higher in the healthy (P = 0.002) and diabetic (P = 0.002) exercise groups compared to non-exercise matched groups and in the diabetic control group compared with the healthy control group (P = 0.002). Exercise improved latency in diabetic (P = 0.001) and healthy exercise groups (P = 0.02). No significant difference was found in blood glucose between exercise and control groups (P > 0.05). CONCLUSION Exercise improved cerebellar functions in healthy and diabetic rats, probably mediating by CAP1 protein, even without changing blood glucose.
Collapse
Affiliation(s)
| | - Abbas Ali Gaeini
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Maryam Koushkie Jahromi
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
| |
Collapse
|
11
|
Hou X, Nozumi M, Nakamura H, Igarashi M, Sugiyama S. Coactosin Promotes F-Actin Protrusion in Growth Cones Under Cofilin-Related Signaling Pathway. Front Cell Dev Biol 2021; 9:660349. [PMID: 34235144 PMCID: PMC8256272 DOI: 10.3389/fcell.2021.660349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/31/2021] [Indexed: 12/03/2022] Open
Abstract
During brain development, axon outgrowth and its subsequent pathfinding are reliant on a highly motile growth cone located at the tip of the axon. Actin polymerization that is regulated by actin-depolymerizing factors homology (ADF-H) domain-containing family drives the formation of lamellipodia and filopodia at the leading edge of growth cones for axon guidance. However, the precise localization and function of ADF-H domain-containing proteins involved in axon extension and retraction remain unclear. We have previously shown that transcripts and proteins of coactosin-like protein 1 (COTL1), an ADF-H domain-containing protein, are observed in neurites and axons in chick embryos. Coactosin overexpression analysis revealed that this protein was localized to axonal growth cones and involved in axon extension in the midbrain. We further examined the specific distribution of coactosin and cofilin within the growth cone using superresolution microscopy, structured illumination microscopy, which overcomes the optical diffraction limitation and is suitable to the analysis of cellular dynamic movements. We found that coactosin was tightly associated with F-actin bundles at the growth cones and that coactosin overexpression promoted the expansion of lamellipodia and extension of growth cones. Coactosin knockdown in oculomotor neurons resulted in an increase in the levels of the inactive, phosphorylated form of cofilin and dysregulation of actin polymerization and axonal elongation, which suggests that coactosin promoted axonal growth in a cofilin-dependent manner. Indeed, the application of a dominant-negative form of LIMK1, a downstream effector of GTPases, reversed the effect of coactosin knockdown on axonal growth by enhancing cofilin activity. Combined, our results indicate that coactosin functions promote the assembly of protrusive actin filament arrays at the leading edge for growth cone motility.
Collapse
Affiliation(s)
- Xubin Hou
- Laboratory of Neuronal Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Department of Molecular Neurobiology, Graduate School of Life Sciences, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Harukazu Nakamura
- Department of Molecular Neurobiology, Graduate School of Life Sciences, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sayaka Sugiyama
- Laboratory of Neuronal Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
12
|
Functional Redundancy of Cyclase-Associated Proteins CAP1 and CAP2 in Differentiating Neurons. Cells 2021; 10:cells10061525. [PMID: 34204261 PMCID: PMC8234816 DOI: 10.3390/cells10061525] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023] Open
Abstract
Cyclase-associated proteins (CAPs) are evolutionary-conserved actin-binding proteins with crucial functions in regulating actin dynamics, the spatiotemporally controlled assembly and disassembly of actin filaments (F-actin). Mammals possess two family members (CAP1 and CAP2) with different expression patterns. Unlike most other tissues, both CAPs are expressed in the brain and present in hippocampal neurons. We recently reported crucial roles for CAP1 in growth cone function, neuron differentiation, and neuron connectivity in the mouse brain. Instead, CAP2 controls dendritic spine morphology and synaptic plasticity, and its dysregulation contributes to Alzheimer's disease pathology. These findings are in line with a model in which CAP1 controls important aspects during neuron differentiation, while CAP2 is relevant in differentiated neurons. We here report CAP2 expression during neuron differentiation and its enrichment in growth cones. We therefore hypothesized that CAP2 is relevant not only in excitatory synapses, but also in differentiating neurons. However, CAP2 inactivation neither impaired growth cone morphology and motility nor neuron differentiation. Moreover, CAP2 mutant mice did not display any obvious changes in brain anatomy. Hence, differently from CAP1, CAP2 was dispensable for neuron differentiation and brain development. Interestingly, overexpression of CAP2 rescued not only growth cone size in CAP1-deficient neurons, but also their morphology and differentiation. Our data provide evidence for functional redundancy of CAP1 and CAP2 in differentiating neurons, and they suggest compensatory mechanisms in single mutant neurons.
Collapse
|
13
|
Meehan SD, Abdelrahman L, Arcuri J, Park KK, Samarah M, Bhattacharya SK. Proteomics and systems biology in optic nerve regeneration. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:249-270. [PMID: 34340769 DOI: 10.1016/bs.apcsb.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We present an overview of current state of proteomic approaches as applied to optic nerve regeneration in the historical context of nerve regeneration particularly central nervous system neuronal regeneration. We present outlook pertaining to the optic nerve regeneration proteomics that the latter can extrapolate information from multi-systems level investigations. We present an account of the current need of systems level standardization for comparison of proteome from various models and across different pharmacological or biophysical treatments that promote adult neuron regeneration. We briefly overview the need for deriving knowledge from proteomics and integrating with other omics to obtain greater biological insight into process of adult neuron regeneration in the optic nerve and its potential applicability to other central nervous system neuron regeneration.
Collapse
Affiliation(s)
- Sean D Meehan
- Molecular and Cellular Pharmacology Graduate Program, University of Miami, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States
| | - Leila Abdelrahman
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Electrical and Computer Engineering, University of Miami, Miami, FL, United States
| | - Jennifer Arcuri
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Molecular and Cellular Pharmacology Graduate Program, University of Miami, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States
| | - Kevin K Park
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States; Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | | | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Molecular and Cellular Pharmacology Graduate Program, University of Miami, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States.
| |
Collapse
|
14
|
Axonal Organelles as Molecular Platforms for Axon Growth and Regeneration after Injury. Int J Mol Sci 2021; 22:ijms22041798. [PMID: 33670312 PMCID: PMC7918155 DOI: 10.3390/ijms22041798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Investigating the molecular mechanisms governing developmental axon growth has been a useful approach for identifying new strategies for boosting axon regeneration after injury, with the goal of treating debilitating conditions such as spinal cord injury and vision loss. The picture emerging is that various axonal organelles are important centers for organizing the molecular mechanisms and machinery required for growth cone development and axon extension, and these have recently been targeted to stimulate robust regeneration in the injured adult central nervous system (CNS). This review summarizes recent literature highlighting a central role for organelles such as recycling endosomes, the endoplasmic reticulum, mitochondria, lysosomes, autophagosomes and the proteasome in developmental axon growth, and describes how these organelles can be targeted to promote axon regeneration after injury to the adult CNS. This review also examines the connections between these organelles in developing and regenerating axons, and finally discusses the molecular mechanisms within the axon that are required for successful axon growth.
Collapse
|
15
|
Igarashi M, Honda A, Kawasaki A, Nozumi M. Neuronal Signaling Involved in Neuronal Polarization and Growth: Lipid Rafts and Phosphorylation. Front Mol Neurosci 2020; 13:150. [PMID: 32922262 PMCID: PMC7456915 DOI: 10.3389/fnmol.2020.00150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Neuronal polarization and growth are developmental processes that occur during neuronal cell differentiation. The molecular signaling mechanisms involved in these events in in vivo mammalian brain remain unclear. Also, cellular events of the neuronal polarization process within a given neuron are thought to be constituted of many independent intracellular signal transduction pathways (the "tug-of-war" model). However, in vivo results suggest that such pathways should be cooperative with one another among a given group of neurons in a region of the brain. Lipid rafts, specific membrane domains with low fluidity, are candidates for the hotspots of such intracellular signaling. Among the signals reported to be involved in polarization, a number are thought to be present or translocated to the lipid rafts in response to extracellular signals. As part of our analysis, we discuss how such novel molecular mechanisms are combined for effective regulation of neuronal polarization and growth, focusing on the significance of the lipid rafts, including results based on recently introduced methods.
Collapse
Affiliation(s)
- Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Atsuko Honda
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| |
Collapse
|
16
|
Phosphoproteomic and bioinformatic methods for analyzing signaling in vertebrate axon growth and regeneration. J Neurosci Methods 2020; 339:108723. [DOI: 10.1016/j.jneumeth.2020.108723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
|
17
|
Chauhan MZ, Arcuri J, Park KK, Zafar MK, Fatmi R, Hackam AS, Yin Y, Benowitz L, Goldberg JL, Samarah M, Bhattacharya SK. Multi-Omic Analyses of Growth Cones at Different Developmental Stages Provides Insight into Pathways in Adult Neuroregeneration. iScience 2020; 23:100836. [PMID: 32058951 PMCID: PMC6997871 DOI: 10.1016/j.isci.2020.100836] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Growth cones (GCs) are structures associated with growing neurons. GC membrane expansion, which necessitates protein-lipid interactions, is critical to axonal elongation in development and in adult neuritogenesis. We present a multi-omic analysis that integrates proteomics and lipidomics data for the identification of GC pathways, cell phenotypes, and lipid-protein interactions, with an analytic platform to facilitate the visualization of these data. We combine lipidomic data from GC and adult axonal regeneration following optic nerve crush. Our results reveal significant molecular variability in GCs across developmental ages that aligns with the upregulation and downregulation of lipid metabolic processes and correlates with distinct changes in the lipid composition of GC plasmalemma. We find that these processes also define the transition into a growth-permissive state in the adult central nervous system. The insight derived from these analyses will aid in promoting adult regeneration and functional innervation in devastating neurodegenerative diseases. Simultaneous proteomics and lipidomics analyses of developmental growth cones Combined multi-omics analyses of regenerating optic nerves and growth cones Integrating protein-protein with protein-lipid interactions in growth cones
Collapse
Affiliation(s)
- Muhammad Zain Chauhan
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jennifer Arcuri
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Biomedical Sciences & Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kevin K Park
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Biomedical Sciences & Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maroof Khan Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rabeet Fatmi
- Department of Computer Science, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Biomedical Sciences & Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yuqin Yin
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Larry Benowitz
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jeffrey L Goldberg
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohammad Samarah
- Department of Computer Science, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Biomedical Sciences & Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
18
|
3β, 6β-dichloro-5-hydroxy-5α-cholestane facilitates neuronal development through modulating TrkA signaling regulated proteins in primary hippocampal neuron. Sci Rep 2019; 9:18919. [PMID: 31831796 PMCID: PMC6908615 DOI: 10.1038/s41598-019-55364-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Potentiating neuritogenesis through pharmacological intervention might hold therapeutic promise in neurodegenerative disorders and acute brain injury. Here, we investigated the novel neuritogenic potentials of a steroidal chlorohydrin, 3β, 6β-dichloro-5-hydroxy-5α-cholestane (hereafter, SCH) and the change in cellular proteome to gain insight into the underlying mechanism of its neurotrophic activity in hippocampal neurons. Morphometric analysis showed that SCH promoted early neuronal differentiation, dendritic arborization and axonal maturation. Proteomic and bioinformatic analysis revealed that SCH induced upregulation of several proteins, including those associated with neuronal differentiation and development. Immunocytochemical data further indicates that SCH-treated neurons showed upregulation of Hnrnpa2b1 and Map1b, validating their proteomic profiles. In addition, a protein-protein interaction network analysis identified TrkA as a potential target connecting most of the upregulated proteins. The neurite outgrowth effect of SCH was suppressed by TrkA inhibitor, GW441756, verifying TrkA-dependent activity of SCH, which further supports the connection of TrkA with the upregulated proteins. Also, the computational analysis revealed that SCH interacts with the NGF-binding domain of TrkA through Phe327 and Asn355. Collectively, our findings provide evidence that SCH promotes neuronal development via upregulating TrkA-signaling proteins and suggest that SCH could be a promising therapeutic agent in the prevention and treatment of neurodegenerative disorders.
Collapse
|
19
|
Ishikawa Y, Okada M, Honda A, Ito Y, Tamada A, Endo N, Igarashi M. Phosphorylation sites of microtubule-associated protein 1B (MAP 1B) are involved in axon growth and regeneration. Mol Brain 2019; 12:93. [PMID: 31711525 PMCID: PMC6849251 DOI: 10.1186/s13041-019-0510-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 01/29/2023] Open
Abstract
The growth cone is a specialized structure that forms at the tip of extending axons in developing and regenerating neurons. This structure is essential for accurate synaptogenesis at developmental stages, and is also involved in plasticity-dependent synaptogenesis and axon regeneration in the mature brain. Thus, understanding the molecular mechanisms utilized by growth cones is indispensable to understanding neuronal network formation and rearrangement. Phosphorylation is the most important and commonly utilized protein modification in signal transduction. We previously identified microtubule-associated protein 1B (MAP 1B) as the most frequently phosphorylated protein among ~ 1200 phosphorylated proteins. MAP 1B has more than 10 phosphorylation sites that were present more than 50 times among these 1200 proteins. Here, we produced phospho-specific antibodies against phosphorylated serines at positions 25 and 1201 of MAP 1B that specifically recognize growing axons both in cultured neurons and in vivo in various regions of the embryonic brain. Following sciatic nerve injury, immunoreactivity with each antibody increased compared to the sham operated group. Experiments with transected and sutured nerves revealed that regenerating axons were specifically recognized by these antibodies. These results suggest that these MAP 1B phosphorylation sites are specifically involved in axon growth and that phospho-specific antibodies against MAP 1B are useful markers of growing/regenerating axons.
Collapse
Affiliation(s)
- Yuya Ishikawa
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Masayasu Okada
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan.,Trans-disciplinary Research Programs, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Atsuko Honda
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Yasuyuki Ito
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Atsushi Tamada
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan.,Trans-disciplinary Research Programs, Brain Research Institute, Niigata University, Niigata, Japan.,Department of iPS Cell Applied Medicine, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Naoto Endo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan. .,Trans-disciplinary Research Programs, Brain Research Institute, Niigata University, Niigata, Japan.
| |
Collapse
|
20
|
New observations in neuroscience using superresolution microscopy. J Neurosci 2019; 38:9459-9467. [PMID: 30381437 DOI: 10.1523/jneurosci.1678-18.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022] Open
Abstract
Superresolution microscopy (SM) techniques are among the revolutionary methods for molecular and cellular observations in the 21st century. SM techniques overcome optical limitations, and several new observations using SM lead us to expect these techniques to have a large impact on neuroscience in the near future. Several types of SM have been developed, including structured illumination microscopy (SIM), stimulated emission depletion microscopy (STED), and photoactivated localization microscopy (PALM)/stochastic optical reconstruction microscopy (STORM), each with special features. In this Minisymposium, experts in these different types of SM discuss the new structural and functional information about specific important molecules in neuroscience that has been gained with SM. Using these techniques, we have revealed novel mechanisms of endocytosis in nerve growth, fusion pore dynamics, and described quantitative new properties of excitatory and inhibitory synapses. Additional powerful techniques, including single molecule-guided Bayesian localization SM (SIMBA) and expansion microscopy (ExM), alone or combined with super-resolution observation, are also introduced in this session.
Collapse
|
21
|
Falk J, Boubakar L, Castellani V. Septin functions during neuro-development, a yeast perspective. Curr Opin Neurobiol 2019; 57:102-109. [DOI: 10.1016/j.conb.2019.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/24/2022]
|
22
|
Formicola N, Vijayakumar J, Besse F. Neuronal ribonucleoprotein granules: Dynamic sensors of localized signals. Traffic 2019; 20:639-649. [PMID: 31206920 DOI: 10.1111/tra.12672] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
Abstract
Membrane-less organelles, because of their capacity to dynamically, selectively and reversibly concentrate molecules, are very well adapted for local information processing and rapid response to environmental fluctuations. These features are particularly important in the context of neuronal cells, where synapse-specific activation, or localized extracellular cues, induce signaling events restricted to specialized axonal or dendritic subcompartments. Neuronal ribonucleoprotein (RNP) particles, or granules, are nonmembrane bound macromolecular condensates that concentrate specific sets of mRNAs and regulatory proteins, promoting their long-distance transport to axons or dendrites. Neuronal RNP granules also have a dual function in regulating the translation of associated mRNAs: while preventing mRNA translation at rest, they fuel local protein synthesis upon activation. As revealed by recent work, rapid and reversible switches between these two functional modes are triggered by modifications of the networks of interactions underlying RNP granule assembly. Such flexible properties also come with a cost, as neuronal RNP granules are prone to transition into pathological aggregates in response to mutations, aging, or cellular stresses, further emphasizing the need to better understand the mechanistic principles governing their dynamic assembly and regulation in living systems.
Collapse
|
23
|
Burbach JPH, Meijer DH. Latrophilin's Social Protein Network. Front Neurosci 2019; 13:643. [PMID: 31297045 PMCID: PMC6608557 DOI: 10.3389/fnins.2019.00643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/05/2019] [Indexed: 01/06/2023] Open
Abstract
Latrophilins (LPHNs) are adhesion GPCRs that are originally discovered as spider's toxin receptors, but are now known to be involved in brain development and linked to several neuronal and non-neuronal disorders. Latrophilins act in conjunction with other cell adhesion molecules and may play a leading role in its network organization. Here, we focus on the main protein partners of latrophilins, namely teneurins, FLRTs and contactins and summarize their respective temporal and spatial expression patterns, links to neurodevelopmental disorders as well as their structural characteristics. We discuss how more recent insights into the separate cell biological functions of these proteins shed light on the central role of latrophilins in this network. We postulate that latrophilins control the refinement of synaptic properties of specific subtypes of neurons, requiring discrete combinations of proteins.
Collapse
Affiliation(s)
- J Peter H Burbach
- Department of Translational Neuroscience, UMCU Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dimphna H Meijer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
24
|
Farias J, Sotelo JR, Sotelo‐Silveira J. Toward Axonal System Biology: Genome Wide Views of Local mRNA Translation. Proteomics 2019; 19:e1900054. [DOI: 10.1002/pmic.201900054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/12/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Joaquina Farias
- Departamento de Proteínas y Ácidos NucleicosInstituto de Investigaciones Biológicas Clemente Estable Montevideo CP 11600 Uruguay
- Departamento de GenómicaInstituto de Investigaciones Biológicas Clemente Estable Montevideo CP 11600 Uruguay
| | - José Roberto Sotelo
- Departamento de Proteínas y Ácidos NucleicosInstituto de Investigaciones Biológicas Clemente Estable Montevideo CP 11600 Uruguay
| | - José Sotelo‐Silveira
- Departamento de GenómicaInstituto de Investigaciones Biológicas Clemente Estable Montevideo CP 11600 Uruguay
- Sección Biología CelularFacultad de Ciencias, Universidad de la República Montevideo CP 11400 Uruguay
| |
Collapse
|
25
|
Moreno-Salinas AL, Avila-Zozaya M, Ugalde-Silva P, Hernández-Guzmán DA, Missirlis F, Boucard AA. Latrophilins: A Neuro-Centric View of an Evolutionary Conserved Adhesion G Protein-Coupled Receptor Subfamily. Front Neurosci 2019; 13:700. [PMID: 31354411 PMCID: PMC6629964 DOI: 10.3389/fnins.2019.00700] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
The adhesion G protein-coupled receptors latrophilins have been in the limelight for more than 20 years since their discovery as calcium-independent receptors for α-latrotoxin, a spider venom toxin with potent activity directed at neurotransmitter release from a variety of synapse types. Latrophilins are highly expressed in the nervous system. Although a substantial amount of studies has been conducted to describe the role of latrophilins in the toxin-mediated action, the recent identification of endogenous ligands for these receptors helped confirm their function as mediators of adhesion events. Here we hypothesize a role for latrophilins in inter-neuronal contacts and the formation of neuronal networks and we review the most recent information on their role in neurons. We explore molecular, cellular and behavioral aspects related to latrophilin adhesion function in mice, zebrafish, Drosophila melanogaster and Caenorhabditis elegans, in physiological and pathophysiological conditions, including autism spectrum, bipolar, attention deficit and hyperactivity and substance use disorders.
Collapse
Affiliation(s)
- Ana L. Moreno-Salinas
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Monserrat Avila-Zozaya
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Paul Ugalde-Silva
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - David A. Hernández-Guzmán
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Antony A. Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
26
|
Igarashi M, Okuda S. Evolutionary analysis of proline-directed phosphorylation sites in the mammalian growth cone identified using phosphoproteomics. Mol Brain 2019; 12:53. [PMID: 31151465 PMCID: PMC6545026 DOI: 10.1186/s13041-019-0476-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
The growth cone is essential for nerve growth and axon regeneration, which directly form and rearrange the neural network. Recently, to clarify the molecular signaling pathways in the growth cone that utilize protein phosphorylation, we performed a phosphoproteomics study of mammalian growth cone membranes derived from the developing rodent brain and identified > 30,000 phosphopeptides from ~ 1200 proteins. We found that the phosphorylation sites were highly proline directed and primarily mitogen-activated protein kinase (MAPK) dependent, due to particular activation of c-jun N-terminal protein kinase (JNK), a member of the MAPK family. Because the MAPK/JNK pathway is also involved in axon regeneration of invertebrate model organisms such Caenorhabditis elegans and Drosophila, we performed evolutionary bioinformatics analysis of the mammalian growth cone phosphorylation sites. Although these sites were generally conserved within vertebrates, they were not necessarily conserved in these invertebrate model organisms. In particular, high-frequency phosphorylation sites (> 20 times) were less conserved than low-frequency sites. Taken together, the mammalian growth cones contain a large number of vertebrate-specific phosphorylation sites and stronger dependence upon MAPK/JNK than C. elegans or Drosophila. We conclude that axon growth/regeneration likely involves many vertebrate-specific phosphorylation sites.
Collapse
Affiliation(s)
- Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan.
| | - Shujiro Okuda
- Laboratory of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
27
|
Cruz-Ortega JS, Boucard AA. Actin cytoskeleton remodeling defines a distinct cellular function for adhesion G protein-coupled receptors ADGRL/latrophilins 1, 2 and 3. Biol Open 2019; 8:bio.039826. [PMID: 30926595 PMCID: PMC6503996 DOI: 10.1242/bio.039826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Latrophilins represent a subgroup of the adhesion G protein-coupled receptor family, which bind to actin-associated scaffolding proteins. They are expressed in various tissues, suggesting that they might participate in biological processes that are ubiquitous. Here we focus on actin cytoskeleton dynamics to explore the role of latrophilins in mammalian cells. Individual overexpression of each latrophilin isoform comparably increased cell volume while modifying the net profile of F-actin-dependent cell extensions, as evaluated by confocal microscopy analysis. Latrophilin deletion mutants evidenced that direct coupling to the intracellular machinery was a requirement for modulating cell extensions. The association between latrophilins and the actin cytoskeleton was detected by co-immunoprecipitation assays and corroborated with immunocytochemistry analysis. Consistent with the destabilization of F-actin structures, latrophilin isoforms constitutively induced a prominent increase in the activity of actin-depolymerizing factor, cofilin. Intercellular adhesion events stabilized by heterophilic Teneurin-4 trans-interactions disrupted latrophilin colocalization with F-actin and led to an isoform-specific rescue of cell extensions. Thus, we find that the actin cytoskeleton machinery constitutes an important component of constitutive as well as ligand-induced signaling for latrophilins. This article has an associated First Person interview with the first author of the paper. Summary: Synapses involve the adhesion function of latrophilins within existing neuronal extensions. We show that latrophilins engage the actin cytoskeleton, both constitutively and upon ligand stimulation, to dictate cell extension patterns.
Collapse
Affiliation(s)
- Judith S Cruz-Ortega
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México City 07360, México
| | - Antony A Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México City 07360, México
| |
Collapse
|
28
|
Tanaka M, Fujii Y, Hirano K, Higaki T, Nagasaki A, Ishikawa R, Okajima T, Katoh K. Fascin in lamellipodia contributes to cell elasticity by controlling the orientation of filamentous actin. Genes Cells 2019; 24:202-213. [PMID: 30664308 DOI: 10.1111/gtc.12671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 11/30/2022]
Abstract
Fascin, an actin-bundling protein, is present in the filopodia and lamellipodia of growth cones. However, few studies have examined lamellipodial fascin because it is difficult to observe. In this study, we evaluated lamellipodial fascin. We visualized the actin meshwork of lamellipodia in live growth cones by super-resolution microscopy. Fascin was colocalized with the actin meshwork in lamellipodia. Ser39 of fascin is a well-known phosphorylation site that controls the binding of fascin to actin filaments. Fluorescence recovery after photobleaching experiments with confocal microscopy showed that binding of fascin was controlled by phosphorylation of Ser39 in lamellipodia. Moreover, TPA, an agonist of protein kinase C, induced phosphorylation of fascin and dissociation from actin filaments in lamellipodia. Time series images showed that dissociation of fascin from the actin meshwork was induced by TPA. As fascin dissociated from actin filaments, the orientation of the actin filaments became parallel to the leading edge. The angle of actin filaments against the leading edge was changed from 73° to 15°. This decreased the elasticity of the lamellipodia by 40%, as measured by atomic force microscopy. These data suggest that actin bundles made by fascin contribute to elasticity of the growth cone.
Collapse
Affiliation(s)
- Minami Tanaka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuki Fujii
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Kazumi Hirano
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Akira Nagasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ryoki Ishikawa
- School of Nursing, Gunma Prefectural College of Health Sciences, Maebashi, Japan
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
29
|
Rahmati M, Kazemi A. Various exercise intensities differentially regulate GAP-43 and CAP-1 expression in the rat hippocampus. Gene 2019; 692:185-194. [PMID: 30682386 DOI: 10.1016/j.gene.2019.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Exercise intensity is known to affect neuroplasticity. Although corticosterone and lactate levels have been linked to neuroplasticity, the effect of different endurance exercise intensity-dependent production of these biochemicals on the behaviour of hippocampal growth cone markers remains incompletely explored. Here, we investigated the effects of three different endurance treadmill training episodes for six weeks on GAP-43 and CAP-1 expression in the hippocampus of adult male Wistar rats. Our findings showed that mild exercise intensity (MEI) with a lactate production slightly higher than the lactate threshold (LT) is the optimal form of physical activity for elevating GAP-43 without changing CAP-1 expression. It was further observed that high exercise intensity (HEI) with the highest level of corticosterone and lactate production, reduced GAP-43 expression, yet increased CAP-1 expression in the hippocampus. Like HEI, we further identified similar expression patterns for these markers in low exercise intensity (LEI) with blood lactate production below LT and corticosterone level similar to MEI. The findings suggested that in high-intensity exercise, the negative pattern of hippocampal neuroplasticity depends on both corticosterone and lactate levels, whereas in low-intensity exercise, the most important factor determining this negative pattern is the lactate level. Generally, MEI with a lactate production of slightly higher than LT is the most optimal intensity for improving hippocampal neuroplasticity.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran.
| | - Abdolreza Kazemi
- Department of Physical Education and Sports Sciences, Faculty of Literature and Human Sciences, Vali E Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
30
|
Schöneberg T, Prömel S. Latrophilins and Teneurins in Invertebrates: No Love for Each Other? Front Neurosci 2019; 13:154. [PMID: 30914910 PMCID: PMC6422961 DOI: 10.3389/fnins.2019.00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/11/2019] [Indexed: 01/08/2023] Open
Abstract
Transsynaptic connections enabling cell–cell adhesion and cellular communication are a vital part of synapse formation, maintenance and function. A recently discovered interaction between the Adhesion GPCRs Latrophilins and the type II single transmembrane proteins Teneurins at mammalian synapses is vital for synapse formation and dendrite branching. While the understanding of the effects and the molecular interplay of this Latrophilin-Teneurin partnership is not entirely understood, its significance is highlighted by behavioral and neurological phenotypes in various animal models. As both groups of molecules, Latrophilins and Teneurins, are generally highly conserved, have overlapping expression and often similar functions across phyla, it can be speculated that this interaction, which has been proven essential in mammalian systems, also occurs in invertebrates to control shaping of synapses. Knowledge of the generality of this interaction is especially of interest due to its possible involvement in neuropathologies. Further, several invertebrates serve as model organisms for addressing various neurobiological research questions. So far, an interaction of Latrophilins and Teneurins has not been observed in invertebrates, but our knowledge on both groups of molecules is by far not complete. In this review, we give an overview on existing experimental evidence arguing for as well as against a potential Latrophilin-Teneurin interaction beyond mammals. By combining these insights with evolutionary aspects on each of the interaction partners we provide and discuss a comprehensive picture on the functions of both molecules in invertebrates and the likeliness of an evolutionary conservation of their interaction.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Simone Prömel
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
31
|
A novel Microproteomic Approach Using Laser Capture Microdissection to Study Cellular Protrusions. Int J Mol Sci 2019; 20:ijms20051172. [PMID: 30866487 PMCID: PMC6429397 DOI: 10.3390/ijms20051172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/17/2019] [Accepted: 02/28/2019] [Indexed: 12/28/2022] Open
Abstract
Cell–cell communication is vital to multicellular organisms, and distinct types of cellular protrusions play critical roles during development, cell signaling, and the spreading of pathogens and cancer. The differences in the structure and protein composition of these different types of protrusions and their specific functions have not been elucidated due to the lack of a method for their specific isolation and analysis. In this paper, we described, for the first time, a method to specifically isolate distinct protrusion subtypes, based on their morphological structures or fluorescent markers, using laser capture microdissection (LCM). Combined with a unique fixation and protein extraction protocol, we pushed the limits of microproteomics and demonstrate that proteins from LCM-isolated protrusions can successfully and reproducibly be identified by mass spectrometry using ultra-high field Orbitrap technologies. Our method confirmed that different types of protrusions have distinct proteomes and it promises to advance the characterization and the understanding of these unique structures to shed light on their possible role in health and disease.
Collapse
|
32
|
IGARASHI M. Molecular basis of the functions of the mammalian neuronal growth cone revealed using new methods. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:358-377. [PMID: 31406059 PMCID: PMC6766448 DOI: 10.2183/pjab.95.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 05/25/2023]
Abstract
The neuronal growth cone is a highly motile, specialized structure for extending neuronal processes. This structure is essential for nerve growth, axon pathfinding, and accurate synaptogenesis. Growth cones are important not only during development but also for plasticity-dependent synaptogenesis and neuronal circuit rearrangement following neural injury in the mature brain. However, the molecular details of mammalian growth cone function are poorly understood. This review examines molecular findings on the function of the growth cone as a result of the introduction of novel methods such superresolution microscopy and (phospho)proteomics. These results increase the scope of our understating of the molecular mechanisms of growth cone behavior in the mammalian brain.
Collapse
Affiliation(s)
- Michihiro IGARASHI
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
33
|
Vesicular movements in the growth cone. Neurochem Int 2018; 119:71-76. [DOI: 10.1016/j.neuint.2017.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/29/2017] [Accepted: 09/24/2017] [Indexed: 01/03/2023]
|
34
|
Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater 2018; 7:e1701046. [PMID: 29656561 DOI: 10.1002/adhm.201701046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/08/2018] [Indexed: 01/01/2023]
Abstract
Adult stems cells, possessing the ability to grow, migrate, proliferate, and transdifferentiate into various specific phenotypes, constitute a great asset for peripheral nerve regeneration. Adult stem cells' ability to undergo transdifferentiation is sensitive to various cell-to-cell interactions and external stimuli involving interactions with physical, mechanical, and chemical cues within their microenvironment. Various studies have employed different techniques for transdifferentiating adult stem cells from distinct sources into specific lineages (e.g., glial cells and neurons). These techniques include chemical and/or electrical induction as well as cell-to-cell interactions via co-culture along with the use of various 3D conduit/scaffold designs. Such scaffolds consist of unique materials that possess controllable physical/mechanical properties mimicking cells' natural extracellular matrix. However, current limitations regarding non-scalable transdifferentiation protocols, fate commitment of transdifferentiated stem cells, and conduit/scaffold design have required new strategies for effective stem cells transdifferentiation and implantation. In this progress report, a comprehensive review of recent advances in the transdifferentiation of adult stem cells via different approaches along with multifunctional conduit/scaffolds designs is presented for peripheral nerve regeneration. Potential cellular mechanisms and signaling pathways associated with differentiation are also included. The discussion with current challenges in the field and an outlook toward future research directions is concluded.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
| | - Suprem R. Das
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Shaowei Ding
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Donald S. Sakaguchi
- Neuroscience Program Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| | - Jonathan C. Claussen
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| |
Collapse
|
35
|
Kawasaki A, Okada M, Tamada A, Okuda S, Nozumi M, Ito Y, Kobayashi D, Yamasaki T, Yokoyama R, Shibata T, Nishina H, Yoshida Y, Fujii Y, Takeuchi K, Igarashi M. Growth Cone Phosphoproteomics Reveals that GAP-43 Phosphorylated by JNK Is a Marker of Axon Growth and Regeneration. iScience 2018; 4:190-203. [PMID: 30240740 PMCID: PMC6147025 DOI: 10.1016/j.isci.2018.05.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/05/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022] Open
Abstract
Neuronal growth cones are essential for nerve growth and regeneration, as well as for the formation and rearrangement of the neural network. To elucidate phosphorylation-dependent signaling pathways and establish useful molecular markers for axon growth and regeneration, we performed a phosphoproteomics study of mammalian growth cones, which identified >30,000 phosphopeptides of ∼1,200 proteins. The phosphorylation sites were highly proline directed and primarily MAPK dependent, owing to the activation of JNK, suggesting that proteins that undergo proline-directed phosphorylation mediate nerve growth in the mammalian brain. Bioinformatics analysis revealed that phosphoproteins were enriched in microtubules and the cortical cytoskeleton. The most frequently phosphorylated site was S96 of GAP-43 (growth-associated protein 43-kDa), a vertebrate-specific protein involved in axon growth. This previously uncharacterized phosphorylation site was JNK dependent. S96 phosphorylation was specifically detected in growing and regenerating axons as the most frequent target of JNK signaling; thus it represents a promising new molecular marker for mammalian axonal growth and regeneration. Phosphoproteomics of mammalian growth cone membranes reveals activation of MAPK JNK is the activated MAPK in growth cones and phosphorylates S96 of GAP-43 pS96 of GAP-43, the most frequent site, is observed in growing axons pS96 is biochemically detected in the regenerating axons of the peripheral nerves
Collapse
Affiliation(s)
- Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata 951-8510, Japan; Center for Trans-disciplinary Research, Institute for Research Promotion, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Masayasu Okada
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata 951-8510, Japan; Center for Trans-disciplinary Research, Institute for Research Promotion, Niigata University, Chuo-ku, Niigata 951-8510, Japan; Department of Neurosurgery, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Atsushi Tamada
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata 951-8510, Japan; Center for Trans-disciplinary Research, Institute for Research Promotion, Niigata University, Chuo-ku, Niigata 951-8510, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Shujiro Okuda
- Laboratory of Bioinformatics, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata 951-8510, Japan; Center for Trans-disciplinary Research, Institute for Research Promotion, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Yasuyuki Ito
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata 951-8510, Japan
| | - Daiki Kobayashi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata 951-8510, Japan
| | - Tokiwa Yamasaki
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryo Yokoyama
- K.K. Sciex Japan, Shinagawa-ku, Tokyo 140-0001, Japan
| | | | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yutaka Yoshida
- Center for Coordination of Research, Institute for Research Promotion, Niigata University, Ikarashi, Niigata 951-2181, Japan
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Kosei Takeuchi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata 951-8510, Japan; Center for Trans-disciplinary Research, Institute for Research Promotion, Niigata University, Chuo-ku, Niigata 951-8510, Japan; Department of Medical Cell Biology, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata 951-8510, Japan; Center for Trans-disciplinary Research, Institute for Research Promotion, Niigata University, Chuo-ku, Niigata 951-8510, Japan.
| |
Collapse
|
36
|
Chuang CF, King CE, Ho BW, Chien KY, Chang YC. Unbiased Proteomic Study of the Axons of Cultured Rat Cortical Neurons. J Proteome Res 2018; 17:1953-1966. [DOI: 10.1021/acs.jproteome.8b00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Proteomics Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | | |
Collapse
|
37
|
Ito Y, Honda A, Igarashi M. Glycoprotein M6a as a signaling transducer in neuronal lipid rafts. Neurosci Res 2018; 128:19-24. [DOI: 10.1016/j.neures.2017.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
|
38
|
Sugiyama E, Yao I, Setou M. Visualization of local phosphatidylcholine synthesis within hippocampal neurons using a compartmentalized culture system and imaging mass spectrometry. Biochem Biophys Res Commun 2017; 495:1048-1054. [PMID: 29162450 DOI: 10.1016/j.bbrc.2017.11.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/17/2017] [Indexed: 12/18/2022]
Abstract
Neurons extend neurites with an increased synthesis of phosphatidylcholine (PC) that is not only a membrane component but also a functional regulator with specific fatty acid composition. To analyze the local synthesis of the PC molecular species within neurons, we combined a compartmentalized culture system with matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). We observed that a newly synthesized PC, which contains exogenously administered palmitic acid-d3, is accumulated at the cell bodies and the tips of the distal neurites. The local accumulation within distal neurites is formed by distinct metabolic activity from cell bodies, suggesting that the local extracellular composition of free fatty acid can be a key to regulate specific functions of each PC molecular species. We expect our simple method to be a starting point for more sophisticated in vitro analytical methods for unveiling detailed lipid metabolisms within neurons.
Collapse
Affiliation(s)
- Eiji Sugiyama
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan; International Mass Imaging Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan; Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, Japan.
| | - Ikuko Yao
- International Mass Imaging Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan; Department of Optical Imaging, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan.
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan; International Mass Imaging Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan; Department of Systems Molecular Anatomy, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan; Department of Anatomy, The University of Hong Kong, 6/F, William MW Mong Block 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
39
|
Luarte A, Cornejo VH, Bertin F, Gallardo J, Couve A. The axonal endoplasmic reticulum: One organelle-many functions in development, maintenance, and plasticity. Dev Neurobiol 2017; 78:181-208. [PMID: 29134778 DOI: 10.1002/dneu.22560] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is highly conserved in eukaryotes and neurons. Indeed, the localization of the organelle in axons has been known for nearly half a century. However, the relevance of the axonal ER is only beginning to emerge. In this review, we discuss the structure of the ER in axons, examining the role of ER-shaping proteins and highlighting reticulons. We analyze the multiple functions of the ER and their potential contribution to axonal physiology. First, we examine the emerging roles of the axonal ER in lipid synthesis, protein translation, processing, quality control, and secretory trafficking of transmembrane proteins. We also review the impact of the ER on calcium dynamics, focusing on intracellular mechanisms and functions. We describe the interactions between the ER and endosomes, mitochondria, and synaptic vesicles. Finally, we analyze available proteomic data of axonal preparations to reveal the dynamic functionality of the ER in axons during development. We suggest that the dynamic proteome and a validated axonal interactome, together with state-of-the-art methodologies, may provide interesting research avenues in axon physiology that may extend to pathology and regeneration. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 181-208, 2018.
Collapse
Affiliation(s)
- Alejandro Luarte
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Víctor Hugo Cornejo
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisca Bertin
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Javiera Gallardo
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrés Couve
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
40
|
Honda A, Usui H, Sakimura K, Igarashi M. Rufy3 is an adapter protein for small GTPases that activates a Rac guanine nucleotide exchange factor to control neuronal polarity. J Biol Chem 2017; 292:20936-20946. [PMID: 29089386 DOI: 10.1074/jbc.m117.809541] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/25/2017] [Indexed: 01/01/2023] Open
Abstract
RUN and FYVE domain-containing 3 (Rufy3) is an adapter protein for small GTPase proteins and is bound to activated Rap2, a Ras family protein in the developing neuron. Previously, we reported the presence of a rapid cell polarity determination mechanism involving Rufy3, which is likely required for in vivo neuronal development. However, the molecular details of this mechanism are unclear. To this end, here we produced Rufy3 knock-out (Rufy3-KO) mice to study the role of Rufy3 in more detail. Examining Rufy3-KO neurons, we found that Rufy3 is recruited via glycoprotein M6A to detergent-resistant membrane domains, which are biochemically similar to lipid rafts. We also clarified that Rufy3, as a component of a ternary complex, induces the assembly of Rap2 in the axonal growth cone, whereas in the absence of Rufy3, the accumulation of a Rac guanine nucleotide exchange factor, T-cell lymphoma invasion and metastasis 2 (Tiam2/STEF), is inhibited downstream of Rap2. We also found that Rufy3 regulates the cellular localization of Rap2 and Tiam2/STEF. Taken together, we conclude that Rufy3 is a physiological adapter for Rap2 and activates Tiam2/STEF in glycoprotein M6A-regulated neuronal polarity and axon growth.
Collapse
Affiliation(s)
- Atsuko Honda
- From the Department of Neurochemistry and Molecular Cell Biology.,Trans-disciplinary Research Program, and
| | - Hiroshi Usui
- Department of Cellular Neurobiology, Institute for Brain Research, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Institute for Brain Research, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Michihiro Igarashi
- From the Department of Neurochemistry and Molecular Cell Biology, .,Trans-disciplinary Research Program, and
| |
Collapse
|
41
|
Rodriguez Sawicki L, Bottasso Arias NM, Scaglia N, Falomir Lockhart LJ, Franchini GR, Storch J, Córsico B. FABP1 knockdown in human enterocytes impairs proliferation and alters lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1587-1594. [PMID: 28919479 DOI: 10.1016/j.bbalip.2017.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 12/17/2022]
Abstract
Fatty Acid-Binding Proteins (FABPs) are abundant intracellular proteins that bind long chain fatty acids (FA) and have been related with inmunometabolic diseases. Intestinal epithelial cells express two isoforms of FABPs: liver FABP (LFABP or FABP1) and intestinal FABP (IFABP or FABP2). They are thought to be associated with intracellular dietary lipid transport and trafficking towards diverse cell fates. But still their specific functions are not well understood. To study FABP1's functions, we generated an FABP1 knockdown model in Caco-2 cell line by stable antisense cDNA transfection (FABP1as). In these cells FABP1 expression was reduced up to 87%. No compensatory increase in FABP2 was observed, strengthening the idea of differential functions of both isoforms. In differentiated FABP1as cells, apical administration of oleate showed a decrease in its initial uptake rate and in long term incorporation compared with control cells. FABP1 depletion also reduced basolateral oleate secretion. The secreted oleate distribution showed an increase in FA/triacylglyceride ratio compared to control cells, probably due to FABP1's role in chylomicron assembly. Interestingly, FABP1as cells exhibited a dramatic decrease in proliferation rate. A reduction in oleate uptake as well as a decrease in its incorporation into the phospholipid fraction was observed in proliferating cells. Overall, our studies indicate that FABP1 is essential for proper lipid metabolism in differentiated enterocytes, particularly concerning fatty acids uptake and its basolateral secretion. Moreover, we show that FABP1 is required for enterocyte proliferation, suggesting that it may contribute to intestinal homeostasis.
Collapse
Affiliation(s)
- Luciana Rodriguez Sawicki
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Natalia María Bottasso Arias
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Natalia Scaglia
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Lisandro Jorge Falomir Lockhart
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Gisela Raquel Franchini
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Betina Córsico
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
42
|
|
43
|
The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem Soc Trans 2017; 44:1185-1200. [PMID: 27911701 PMCID: PMC5095923 DOI: 10.1042/bst20160172] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/23/2022]
Abstract
In the 1960s, Christian Anfinsen postulated that the unique three-dimensional structure of a protein is determined by its amino acid sequence. This work laid the foundation for the sequence–structure–function paradigm, which states that the sequence of a protein determines its structure, and structure determines function. However, a class of polypeptide segments called intrinsically disordered regions does not conform to this postulate. In this review, I will first describe established and emerging ideas about how disordered regions contribute to protein function. I will then discuss molecular principles by which regulatory mechanisms, such as alternative splicing and asymmetric localization of transcripts that encode disordered regions, can increase the functional versatility of proteins. Finally, I will discuss how disordered regions contribute to human disease and the emergence of cellular complexity during organismal evolution.
Collapse
|
44
|
Epigenetic regulation of neural stem cell differentiation towards spinal cord regeneration. Cell Tissue Res 2017; 371:189-199. [PMID: 28695279 DOI: 10.1007/s00441-017-2656-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022]
Abstract
Severe spinal cord injury (SCI) leads to almost complete neural cell loss at the injured site, causing the irreversible disruption of neuronal circuits. The transplantation of neural stem or precursor cells (NS/PCs) has been regarded as potentially effective for SCI treatment because NS/PCs can compensate for the injured sites by differentiating into neurons and glial cells (astrocytes and oligodendrocytes). An understanding of the molecular mechanisms that regulate the proliferation, fate specification and maturation of NS/PCs and their progeny would facilitate the establishment of better therapeutic strategies for regeneration after SCI. In recent years, several studies of SCI animal models have demonstrated that the modulation of specific epigenetic marks by histone modifiers and non-coding RNAs directs the setting of favorable cellular environments that promote the neuronal differentiation of NS/PCs and/or the elongation of the axons of the surviving neurons at the injured sites. In this review, we provide an overview of recent progress in the epigenetic regulation/manipulation of neural cells for the treatment of SCI.
Collapse
|
45
|
Hill CE. A view from the ending: Axonal dieback and regeneration following SCI. Neurosci Lett 2017; 652:11-24. [DOI: 10.1016/j.neulet.2016.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022]
|
46
|
Extracellular Signals Induce Glycoprotein M6a Clustering of Lipid Rafts and Associated Signaling Molecules. J Neurosci 2017; 37:4046-4064. [PMID: 28275160 DOI: 10.1523/jneurosci.3319-16.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/25/2017] [Accepted: 02/18/2017] [Indexed: 01/08/2023] Open
Abstract
Lipid raft domains, where sphingolipids and cholesterol are enriched, concentrate signaling molecules. To examine how signaling protein complexes are clustered in rafts, we focused on the functions of glycoprotein M6a (GPM6a), which is expressed at a high concentration in developing mouse neurons. Using imaging of lipid rafts, we found that GPM6a congregated in rafts in a GPM6a palmitoylation-dependent manner, thereby contributing to lipid raft clustering. In addition, we found that signaling proteins downstream of GPM6a, such as Rufy3, Rap2, and Tiam2/STEF, accumulated in lipid rafts in a GPM6a-dependent manner and were essential for laminin-dependent polarity during neurite formation in neuronal development. In utero RNAi targeting of GPM6a resulted in abnormally polarized neurons with multiple neurites. These results demonstrate that GPM6a induces the clustering of lipid rafts, which supports the raft aggregation of its associated downstream molecules for acceleration of neuronal polarity determination. Therefore, GPM6a acts as a signal transducer that responds to extracellular signals.SIGNIFICANCE STATEMENT Lipid raft domains, where sphingolipids and cholesterol are enriched, concentrate signaling molecules. We focused on glycoprotein M6a (GPM6a), which is expressed at a high concentration in developing neurons. Using imaging of lipid rafts, we found that GPM6a congregated in rafts in a palmitoylation-dependent manner, thereby contributing to lipid raft clustering. In addition, we found that signaling proteins downstream of GPM6a accumulated in lipid rafts in a GPM6a-dependent manner and were essential for laminin-dependent polarity during neurite formation. In utero RNAi targeting of GPM6a resulted in abnormally polarized neurons with multiple neurites. These results demonstrate that GPM6a induces the clustering of lipid rafts, which supports the raft aggregation of its associated downstream molecules for acceleration of polarity determination. Therefore, GPM6a acts as a signal transducer that responds to extracellular signals.
Collapse
|
47
|
Nozumi M, Nakatsu F, Katoh K, Igarashi M. Coordinated Movement of Vesicles and Actin Bundles during Nerve Growth Revealed by Superresolution Microscopy. Cell Rep 2017; 18:2203-2216. [DOI: 10.1016/j.celrep.2017.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/29/2016] [Accepted: 01/31/2017] [Indexed: 01/01/2023] Open
|
48
|
Kumar A, Paeger L, Kosmas K, Kloppenburg P, Noegel AA, Peche VS. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2. Front Cell Neurosci 2016; 10:180. [PMID: 27507934 PMCID: PMC4960234 DOI: 10.3389/fncel.2016.00180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/04/2016] [Indexed: 11/29/2022] Open
Abstract
Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2gt/gt with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics.
Collapse
Affiliation(s)
- Atul Kumar
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Lars Paeger
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany; Biocenter, Institute for Zoology, University of Cologne, CologneGermany
| | - Kosmas Kosmas
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Peter Kloppenburg
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany; Biocenter, Institute for Zoology, University of Cologne, CologneGermany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Vivek S Peche
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| |
Collapse
|
49
|
The Basic Domain of Herpes Simplex Virus 1 pUS9 Recruits Kinesin-1 To Facilitate Egress from Neurons. J Virol 2015; 90:2102-11. [PMID: 26656703 DOI: 10.1128/jvi.03041-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED The alphaherpesviral envelope protein pUS9 has been shown to play a role in the anterograde axonal transport of herpes simplex virus 1 (HSV-1), yet the molecular mechanism is unknown. To address this, we used an in vitro pulldown assay to define a series of five arginine residues within the conserved pUS9 basic domain that were essential for binding the molecular motor kinesin-1. The mutation of these pUS9 arginine residues to asparagine blocked the binding of both recombinant and native kinesin-1. We next generated HSV-1 with the same pUS9 arginine residues mutated to asparagine (HSV-1pUS9KBDM) and then restored them being to arginine (HSV-1pUS9KBDR). The two mutated viruses were analyzed initially in a zosteriform model of recurrent cutaneous infection. The primary skin lesion scores were identical in severity and kinetics, and there were no differences in viral load at dorsal root ganglionic (DRG) neurons at day 4 postinfection (p.i.) for both viruses. In contrast, HSV-1pUS9KBDM showed a partial reduction in secondary skin lesions at day 8 p.i. compared to the level for HSV-1pUS9KBDR. The use of rat DRG neuronal cultures in a microfluidic chamber system showed both a reduction in anterograde axonal transport and spread from axons to nonneuronal cells for HSV-1pUS9KBDM. Therefore, the basic domain of pUS9 contributes to anterograde axonal transport and spread of HSV-1 from neurons to the skin through recruitment of kinesin-1. IMPORTANCE Herpes simplex virus 1 and 2 cause genital herpes, blindness, encephalitis, and occasionally neonatal deaths. There is also increasing evidence that sexually transmitted genital herpes increases HIV acquisition, and the reactivation of HSV increases HIV replication and transmission. New antiviral strategies are required to control resistant viruses and to block HSV spread, thereby reducing HIV acquisition and transmission. These aims will be facilitated through understanding how HSV is transported down nerves and into skin. In this study, we have defined how a key viral protein plays a role in both axonal transport and spread of the virus from nerve cells to the skin.
Collapse
|
50
|
Yang M, Wu M, Xia P, Wang C, Yan P, Gao Q, Liu J, Wang H, Duan X, Yang X. The role of microtubule-associated protein 1B in axonal growth and neuronal migration in the central nervous system. Neural Regen Res 2015; 7:842-8. [PMID: 25737712 PMCID: PMC4342712 DOI: 10.3969/j.issn.1673-5374.2012.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/08/2012] [Indexed: 01/22/2023] Open
Abstract
In this review, we discuss the role of microtubule-associated protein 1B (MAP1B) and its phosphorylation in axonal development and regeneration in the central nervous system. MAP1B exhibits similar functions during axonal development and regeneration. MAP1B and phosphorylated MAP1B in neurons and axons maintain a dynamic balance between cytoskeletal components, and regulate the stability and interaction of microtubules and actin to promote axonal growth, neural connectivity and regeneration in the central nervous system.
Collapse
Affiliation(s)
- Maoguang Yang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Minfei Wu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Peng Xia
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Chunxin Wang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Peng Yan
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Qi Gao
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Jian Liu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Haitao Wang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xingwei Duan
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xiaoyu Yang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|